TWI483381B - Light emitting diode having plurality of light emitting cells and method of fabricating the same - Google Patents
Light emitting diode having plurality of light emitting cells and method of fabricating the same Download PDFInfo
- Publication number
- TWI483381B TWI483381B TW098128710A TW98128710A TWI483381B TW I483381 B TWI483381 B TW I483381B TW 098128710 A TW098128710 A TW 098128710A TW 98128710 A TW98128710 A TW 98128710A TW I483381 B TWI483381 B TW I483381B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- dielectric layer
- light
- emitting diode
- dielectric
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 239000004065 semiconductor Substances 0.000 claims description 108
- 239000000758 substrate Substances 0.000 claims description 34
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 19
- 238000000151 deposition Methods 0.000 claims description 18
- 230000008021 deposition Effects 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 10
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims description 6
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000005304 joining Methods 0.000 claims 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 419
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 7
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 229910002601 GaN Inorganic materials 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000012858 packaging process Methods 0.000 description 5
- 238000001962 electrophoresis Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 229920005591 polysilicon Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910010199 LiAl Inorganic materials 0.000 description 1
- -1 Lithium aluminum compound Chemical class 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/15—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
- H01L27/153—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L24/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L2224/24—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
- H01L2224/241—Disposition
- H01L2224/24135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/24137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/82—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
- H01L2224/82909—Post-treatment of the connector or the bonding area
- H01L2224/82951—Forming additional members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12041—LED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/507—Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Devices (AREA)
- Led Device Packages (AREA)
Description
本發明是有關於一種發光二極體與其製造方法,且特別是有關於一種發光二極體具有多個發光單元,和導線連接各發光單元間,和保護發光單元的介電層,以及其製造方法。The present invention relates to a light-emitting diode and a method of fabricating the same, and more particularly to a light-emitting diode having a plurality of light-emitting units, and a wire connecting the light-emitting units, and a dielectric layer protecting the light-emitting unit, and manufacturing thereof method.
自從GaN基體的藍光發光二極體被發展出來後,許多不同的嘗試要改善發光二極體的發光效能,並且提出不同的結構改良於不同的應用中。GaN基體的藍光或紫外光發光二極體被廣泛地應用在許多領域,像是自然色發光二極體裝置、發光二極體交通號誌板、白光發光二極體等,並且被期望用來取代在一般發光領域中的白光螢光燈。Since the development of blue light-emitting diodes of GaN substrates, many different attempts have been made to improve the luminous efficacy of light-emitting diodes, and different structural improvements have been proposed for different applications. Blue or ultraviolet light-emitting diodes of GaN substrates are widely used in many fields, such as natural color light-emitting diode devices, light-emitting diode traffic signs, white light-emitting diodes, etc., and are expected to be used. It replaces the white fluorescent lamp in the general field of illumination.
一般來說,發光二極體藉由施加順正向電流,以及需要供應直流電流,就可以發光。考量發光二極體之正向電流操作特性,一些具有多個互相逆向並聯的發光單元,或是藉由一交流電源而使用橋式整流器來操作的發光二極體就被研發出來。此外,還有一些發光二極體被發展出來,這些發光二極體具有多個發光單元,被形成在一單基板上,並且彼此被串聯連接且並聯連接,以藉由高電壓直流電流電源,而發出具有高輸出和高效能的光。在這些發光二極體中,這些發光單元都被形成在一單基板上,並且透過導線彼此連接,以藉由交流或直流電流電源,而發出具有高輸出和高效能的光。In general, a light-emitting diode can emit light by applying a forward current and a supply of a direct current. Considering the forward current operating characteristics of the light-emitting diodes, some light-emitting diodes having a plurality of mutually parallel-connected light-emitting units or operating with a bridge rectifier by an AC power source have been developed. In addition, a plurality of light emitting diodes having a plurality of light emitting units formed on a single substrate and connected in series and connected in parallel to each other by a high voltage direct current power source are further developed. It emits light with high output and high performance. In these light-emitting diodes, these light-emitting units are formed on a single substrate and are connected to each other through a wire to emit light having high output and high efficiency by an alternating current or direct current power source.
Sakai等人所發表「具有發光元件之發光裝置」的專利(WO 2004/023568A1),揭露了具有連接至高壓交流或直流電流電源之多個發光單元的發光二極體的實例。An example of a "light-emitting device with light-emitting elements" (WO 2004/023568 A1) issued by Sakai et al. discloses an example of a light-emitting diode having a plurality of light-emitting units connected to a high-voltage alternating current or direct current power source.
這些發光單元藉由空橋導線(Air-bridge Wires)彼此連接,從而提供一發光二極體,可以藉由交流或直流電流電源來操作。These light-emitting units are connected to each other by Air-bridge Wires to provide a light-emitting diode that can be operated by an AC or DC current source.
然而,發光單元間藉由空橋導線的互相連接,可能會導致導線之可靠度的下降,這個問題,是因為導線的絕緣,或是由於外部潮濕或撞擊而增加了導線的電阻。為了避免這些問題,因此採用以階段覆蓋製程(Step-cover Process)為基礎的導線連接技術。所謂的階段覆蓋製程,是在覆蓋發光單元之介電層上形成導線的製程。如此一來,由於導線是放置在介電層上,會比空橋導線還穩定。However, the interconnection of the light-emitting units by the empty bridge wires may cause the reliability of the wires to decrease. This problem is caused by the insulation of the wires or the resistance of the wires due to external moisture or impact. In order to avoid these problems, wire bonding technology based on the Step-cover Process is adopted. The so-called stage covering process is a process of forming a wire on a dielectric layer covering the light emitting unit. As a result, since the wires are placed on the dielectric layer, they are more stable than the empty wires.
然而,由階段覆蓋製程形成的導線,仍舊會暴露在外界,並且還是會受到潮氣或外部撞擊而導致絕緣。在具有多個發光單元的發光二極體中包含一些導線,若是其中一條導線變成絕緣,則該發光二極體將無法被使用。此外,由於發光二極體中使用數條導線,使得潮氣會沿著這些導線侵入發光單元,因此將會損害發光單元的發光效率。However, the wires formed by the stage-covering process are still exposed to the outside world and are still subject to moisture or external impacts leading to insulation. In a light-emitting diode having a plurality of light-emitting units, some wires are included, and if one of the wires becomes insulated, the light-emitting diodes cannot be used. In addition, since a plurality of wires are used in the light-emitting diode, moisture may invade the light-emitting unit along the wires, and thus the light-emitting efficiency of the light-emitting unit will be impaired.
另外一方面,當發光二極體被用於實際的應用中,像是一般傳統的光源或是類似的光源時,需要有認知一些色彩的多樣性,像是白光透過紫外光的轉換,或是藍光藉由螢光材料而變為具有更高波長的光。傳統上,環氧化物包含上述的螢光材料,其在封裝中,覆蓋在可以發出短波長 光的發光二極體上。對於這些白光發光二極體而言,可以在封裝製程中可以形成一具有螢光材料的色彩轉換層,而此製程與發光二極體晶片的製程是互相獨立的,這使得封裝製程變得更複雜,並且導致在封裝製程中產生高失敗率。而在封裝製程期間發生的錯誤所導致成本損失,明顯地高於在發光二極體晶片製程期間發生錯誤所導致的成本損失。On the other hand, when the light-emitting diode is used in practical applications, such as a conventional light source or a similar light source, it is necessary to recognize the diversity of colors such as white light through ultraviolet light conversion, or Blue light is converted to light having a higher wavelength by a fluorescent material. Traditionally, epoxies contain the above-described fluorescent materials, which are encapsulated in a package that emits short wavelengths. Light on the light-emitting diode. For these white light emitting diodes, a color conversion layer having a fluorescent material can be formed in the packaging process, and the process of the process and the LED chip are independent of each other, which makes the packaging process more complicated. Complex and leads to high failure rates in the packaging process. The cost loss caused by errors occurring during the packaging process is significantly higher than the cost loss caused by errors occurring during the LED wafer fabrication process.
本發明是用來解決上述習知技術的和其它問題,並且本發明的一個觀點就是提供一種發光二極體,其可以防止由潮氣的侵入或外部撞擊,而導致導線的斷開、導線的電阻增加或是發光單元的效率降低,並且也提供此發光二極體的製造方法。The present invention is to solve the above-mentioned conventional problems and other problems, and an aspect of the present invention is to provide a light-emitting diode which can prevent the breakage of a wire and the resistance of a wire by intrusion of moisture or external impact. The increase or the efficiency of the light-emitting unit is lowered, and the manufacturing method of the light-emitting diode is also provided.
本發明的另一觀點,是提供一種發光二極體,其包括一介電層,以保護導線和發光單元,並且具有強化在介電層和在介電層下方形成之下層間的接合力,以及此發光二極體的製造方法。Another aspect of the present invention is to provide a light emitting diode including a dielectric layer to protect a wire and a light emitting unit, and having a bonding force between the dielectric layer and the underlying layer formed under the dielectric layer. And a method of manufacturing the light emitting diode.
本發明再一觀點,是提供一種發光二極體,其包括一螢光材料,可以轉換在晶片級之發光單元所發出之光的波長,以及此發光二極體的製造方法。Still another aspect of the present invention is to provide a light emitting diode comprising a fluorescent material capable of converting a wavelength of light emitted by a light emitting unit at a wafer level, and a method of manufacturing the light emitting diode.
依照其中一觀點,一種發光二極體,包括:彼此分離配置在一單基板上的多個發光單元,而每一發光單元包括一下半導體層和一上半導體層,該上半導體層位於下半導體層的一區域上,及一主動層位於上半導體層和下半導體 層之間;一第一介電層覆蓋在發光單元的整個表面,並且具有多個開口,形成在下半導體層其它的區域上和上半導體層上;多個導線形成在第一介電層上,並且透過開口而將相鄰之發光單元彼此電性連接;以及一第二介電層覆蓋在第一介電層和導線上。在此,第一介電層和第二介電層是由相同的材料所形成,並且第一介電層的厚度比第二介電層還厚。According to one aspect, a light emitting diode includes: a plurality of light emitting units disposed apart from each other on a single substrate, and each of the light emitting units includes a lower semiconductor layer and an upper semiconductor layer, the upper semiconductor layer being located on the lower semiconductor layer On a region, and an active layer is located on the upper semiconductor layer and the lower semiconductor Between the layers; a first dielectric layer covering the entire surface of the light emitting unit, and having a plurality of openings formed on other regions of the lower semiconductor layer and on the upper semiconductor layer; a plurality of wires are formed on the first dielectric layer, And connecting adjacent light emitting units to each other through the opening; and a second dielectric layer covering the first dielectric layer and the wires. Here, the first dielectric layer and the second dielectric layer are formed of the same material, and the thickness of the first dielectric layer is thicker than the second dielectric layer.
由於第二介電層覆蓋導線和發光單元,因此可以保護導線和發光單元免於潮氣的侵入,或是從外部來的撞擊。此外,由於第一介電層和第二介電層是由相同的材料所形成,因此就可以改善第一介電層和第二介電層之間的接合力,而避免第二介電層產生裂痕。另外,由於第一介電層的厚度比第二介電層厚,因此可以避免第二介電層產生分離。Since the second dielectric layer covers the wires and the light-emitting unit, the wires and the light-emitting unit can be protected from moisture intrusion or impact from the outside. In addition, since the first dielectric layer and the second dielectric layer are formed of the same material, the bonding force between the first dielectric layer and the second dielectric layer can be improved, and the second dielectric layer can be avoided. Cracks occur. In addition, since the thickness of the first dielectric layer is thicker than that of the second dielectric layer, separation of the second dielectric layer can be avoided.
第一介電層具有4500Å~1μm的厚度,並且第二介電層的厚度高於500Å。若是第一介電層的厚度低於4500Å,則在導線和發光單元之間就可能發生電斷路。另一方面,雖然在導線和發光單元之間的電斷路,可以簡單地以增加第一介電層的厚度來避免,但是若是第一介電層過厚,就會損害光的傳導,而降低發光效率。因此,第一介電層較佳是不超過1μm的厚度。相對地,若是第二介電層的厚度小於500Å,就很難保護發光二極體避免從外部來的潮氣侵入。The first dielectric layer has a thickness of 4500 Å to 1 μm and the second dielectric layer has a thickness greater than 500 Å. If the thickness of the first dielectric layer is less than 4500 Å, an electrical disconnection may occur between the wires and the light-emitting unit. On the other hand, although the electrical disconnection between the wire and the light-emitting unit can be easily avoided by increasing the thickness of the first dielectric layer, if the first dielectric layer is too thick, the light conduction is impaired and the light is reduced. Luminous efficiency. Therefore, the first dielectric layer is preferably not more than 1 μm thick. In contrast, if the thickness of the second dielectric layer is less than 500 Å, it is difficult to protect the light-emitting diode from moisture intrusion from the outside.
在此,第一介電層和第二介電層的厚度,可以參照當 第一介電層和第二介電層在一平面基板上形成的厚度,但是並不限於此。通常,在發光二極體中第一介電層和第二介電層實際的厚度,會比上述的厚度還薄。Here, the thickness of the first dielectric layer and the second dielectric layer can be referred to when The thickness of the first dielectric layer and the second dielectric layer formed on a planar substrate is not limited thereto. Generally, the actual thickness of the first dielectric layer and the second dielectric layer in the light emitting diode is thinner than the above thickness.
第一介電層和第二介電層可以利用電漿增強CVD而形成的氧化矽層或氮化矽層。氧化矽層或氮化矽層可以在200~300℃之間的溫度進行沉積。The first dielectric layer and the second dielectric layer may be formed of a ruthenium oxide layer or a tantalum nitride layer formed by plasma enhanced CVD. The ruthenium oxide layer or the tantalum nitride layer can be deposited at a temperature between 200 and 300 °C.
特別的是,第二介電層是在第一介電層之沉積溫度的-20~+20%之間的溫度範圍內進行沉積。在電漿增強CVD中,沉積層的品質依據沉積溫度而有明顯的變化。因此,第一介電層和第二介電層可以在大致相同的溫度下進行沉積,以改善第一介電層和第二介電層之間的接合力。In particular, the second dielectric layer is deposited over a temperature range between -20 and +20% of the deposition temperature of the first dielectric layer. In plasma enhanced CVD, the quality of the deposited layer varies significantly depending on the deposition temperature. Therefore, the first dielectric layer and the second dielectric layer can be deposited at substantially the same temperature to improve the bonding force between the first dielectric layer and the second dielectric layer.
另一方面,導線可以具有多層結構,其包括連接第一介電層的一下層,以及連接第二介電層的一上層。下層可以是Cr層或Ti層,而上層也可以是Cr層或Ti層。特別的是,當第一介電層是氧化物層或氮化物層時,Cr層或Ti層就可以很強地接合在第一介電層上。另外,將Cr層或Ti層進行加熱處理,也可以改善接合力。此外,在上層和下層之間可以配置Au層、Au/Ni層或是Au/Al層。In another aspect, the wire can have a multilayer structure including a lower layer connecting the first dielectric layer and an upper layer connecting the second dielectric layer. The lower layer may be a Cr layer or a Ti layer, and the upper layer may also be a Cr layer or a Ti layer. In particular, when the first dielectric layer is an oxide layer or a nitride layer, the Cr layer or the Ti layer can be strongly bonded to the first dielectric layer. Further, by heat-treating the Cr layer or the Ti layer, the bonding force can also be improved. Further, an Au layer, an Au/Ni layer, or an Au/Al layer may be disposed between the upper layer and the lower layer.
第一介電層和第二介電層可以利用聚合物來形成,例如旋制氧化矽(Spin-on-glass,SOG)或苯環丁烯(BCB)。由於這些層可以採用旋轉塗布來形成,因此該層可以使用非常簡單的製程來製作。另外,第二介電層可以在至少一部分區域中含有一磷光劑。因此,在晶片級就可以獲得白光或其它的色光。The first dielectric layer and the second dielectric layer may be formed using a polymer such as spin-on-glass (SOG) or benzocyclobutene (BCB). Since these layers can be formed by spin coating, the layers can be fabricated using a very simple process. Additionally, the second dielectric layer can contain a phosphor in at least a portion of the region. Therefore, white light or other colored light can be obtained at the wafer level.
選擇性地,磷光層可以形成在第二介電層上。磷光層也可以藉由例如樹脂和磷光劑的混合物,或是藉由電泳的施加,而塗布在第二介電層。Alternatively, a phosphor layer may be formed on the second dielectric layer. The phosphor layer can also be applied to the second dielectric layer by, for example, a mixture of a resin and a phosphor, or by application of electrophoresis.
另一方面,透明電極層可以配置在第一介電層和上半導體層之間。透明電極層可以藉由銦錫氧化物(ITO)或透明金屬來形成。當透明電極層是由透明金屬所形成時,其可以從至少包括Au、Ni、Pt、Al、Cr和Ti的組合中選擇出來的一種金屬。In another aspect, the transparent electrode layer can be disposed between the first dielectric layer and the upper semiconductor layer. The transparent electrode layer can be formed by indium tin oxide (ITO) or a transparent metal. When the transparent electrode layer is formed of a transparent metal, it may be a metal selected from at least a combination of Au, Ni, Pt, Al, Cr, and Ti.
導線可以通過透明電極層電性連接到上半導體層。透明電極層可以具有多個開口,而上半導體層透過這些開口而被暴露出來,並且這些開口則被導線填滿。The wire may be electrically connected to the upper semiconductor layer through the transparent electrode layer. The transparent electrode layer may have a plurality of openings through which the upper semiconductor layer is exposed, and the openings are filled with wires.
從本發明另一觀點來看,一種發光二極體的製造方法,包括:在一單基板上,形成多個彼此分離的發光單元,而每一發光單元包括一下半導體層、和一上半導體層位於下半導體層的一區域上,及一主動層位於上半導體層和下半導體層之間;形成一第一介電層,覆蓋發光單元的整個表面,並且在下半導體層其它的區域上和上半導體層上形成多個開口;在第一介電層上形成多個導線,並且透過開口將相鄰的發光單元彼此電性連接;以及形成一第二介電層,覆蓋在第一介電層和導線上。第一介電層和第二介電層是由相同的材料所形成,並且第一介電層的厚度比第二介電層的厚度還厚。According to another aspect of the present invention, a method of fabricating a light emitting diode includes: forming a plurality of light emitting cells separated from each other on a single substrate, and each of the light emitting cells includes a lower semiconductor layer and an upper semiconductor layer Located on a region of the lower semiconductor layer, and an active layer between the upper semiconductor layer and the lower semiconductor layer; forming a first dielectric layer covering the entire surface of the light emitting unit, and on the other regions of the lower semiconductor layer and the upper semiconductor Forming a plurality of openings on the layer; forming a plurality of wires on the first dielectric layer, and electrically connecting adjacent light emitting units to each other through the opening; and forming a second dielectric layer covering the first dielectric layer and On the wire. The first dielectric layer and the second dielectric layer are formed of the same material, and the thickness of the first dielectric layer is thicker than the thickness of the second dielectric layer.
因此,本發明可以保護導線和發光單元免於受到外部潮氣或撞擊的影響,並且可以改善第一介電層和第二介電 層之間的接合力。Therefore, the present invention can protect the wire and the light emitting unit from external moisture or impact, and can improve the first dielectric layer and the second dielectric The bonding force between the layers.
第一介電層具有4500Å~1μm的厚度,並且第二介電層的厚度大於500Å。第一介電層和第二介電層是氧化矽層或氮化矽層,其利用電漿增強CVD法而在200~300℃之間的溫度進行沉積。此外,第二介電層是在第一介電層之沉積溫度的-20~+20%之間的溫度範圍內進行沉積。The first dielectric layer has a thickness of 4500 Å to 1 μm and the second dielectric layer has a thickness greater than 500 Å. The first dielectric layer and the second dielectric layer are a hafnium oxide layer or a tantalum nitride layer deposited by a plasma enhanced CVD method at a temperature between 200 and 300 °C. Further, the second dielectric layer is deposited in a temperature range between -20 and +20% of the deposition temperature of the first dielectric layer.
另一方面,導線包括連接第一介電層的一下層,以及連接第二介電層的一上層。在此,下層可以是Cr層或Ti層,而上層也可以是Cr層或Ti層。此外,在形成第二介電層之前,導線可以進行熱處理,以改善導線與第一介電層之間的介面接合特性。在此,導線可以在300~500℃之間的溫度進行加熱處理。In another aspect, the wire includes a lower layer connecting the first dielectric layer and an upper layer connecting the second dielectric layer. Here, the lower layer may be a Cr layer or a Ti layer, and the upper layer may also be a Cr layer or a Ti layer. Furthermore, the wires may be heat treated prior to forming the second dielectric layer to improve interfacial bonding characteristics between the wires and the first dielectric layer. Here, the wires can be heat treated at a temperature between 300 and 500 °C.
在揭露的一些實施例中,第一介電層和第二介電層可以由聚合物所形成。此外,第二介電層可以含有磷光劑。In some embodiments disclosed, the first dielectric layer and the second dielectric layer can be formed from a polymer. Further, the second dielectric layer may contain a phosphor.
在揭露的其他實施例中,在第二介電層上可以形成一磷光層。磷光層也可以藉由電泳的施加,而塗布在第二介電層,或例如使用樹脂和磷光劑的混合物,該混合物是由磷光劑分散於樹脂而成。In other embodiments disclosed, a phosphor layer can be formed on the second dielectric layer. The phosphor layer may also be applied to the second dielectric layer by application of electrophoresis, or for example, a mixture of a resin and a phosphor, which is dispersed in a resin by a phosphor.
形成多個發光單元的步驟,包括形成透明電極層在上半導體層上。透明電極層是在500~800℃之間的溫度進行加熱處理。透明電極層具有開口,而上半導體層可以透過該開口而被暴露出來,並且該開口中被填滿導線。The step of forming a plurality of light emitting units includes forming a transparent electrode layer on the upper semiconductor layer. The transparent electrode layer is heat treated at a temperature between 500 and 800 °C. The transparent electrode layer has an opening through which the upper semiconductor layer can be exposed, and the opening is filled with a wire.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
以下的敘述,將參考附圖而對本發明作一詳細的介紹。以下的實施例所述,提供給本發明領域之技藝者,能夠完全認識本發明。應當知道很明顯的,在不離開本發明所揭露的領域,本發明的系統、製程或是機具是可變更的。另外需要注意的是,圖式的繪製並非按照精準的尺寸,並且一些尺寸是被放大,以使圖式的敘述能夠清楚。此外,在說明書和圖式中,類似的元件被註記成類似的元件符號。In the following description, the present invention will be described in detail with reference to the accompanying drawings. The present invention will be fully appreciated by those skilled in the art from this disclosure. It will be apparent that the system, process or implement of the present invention is subject to change without departing from the scope of the invention. It should also be noted that the drawing is not based on precise dimensions, and some dimensions are enlarged to make the description of the schema clear. In addition, in the description and drawings, like elements are recited as similar element symbols.
圖1繪示為依照本發明之一實施例的一種發光二極體的剖面圖。1 is a cross-sectional view of a light emitting diode in accordance with an embodiment of the present invention.
請參照圖1,本實施例所提供發光二極體,包括基板51、多個發光單元56、第一介電層63、導線65和第二介電層67,並且另外包括緩衝層53、透明電極層61和磷光層69。基板51可以是一絕緣基板,例如是藍寶石基板。Referring to FIG. 1 , the light emitting diode provided in this embodiment includes a substrate 51 , a plurality of light emitting units 56 , a first dielectric layer 63 , a wire 65 , and a second dielectric layer 67 , and additionally includes a buffer layer 53 and a transparent layer. Electrode layer 61 and phosphor layer 69. The substrate 51 may be an insulating substrate such as a sapphire substrate.
多個發光單元56彼此分離的配置在單基板51上。每一發光單元56,包括一下半導體層55、一配置在下半導體層55部分區域上的上半導體層59和介於上下半導體層之間的主動層57。該上半導體層59和下半導體層55可以分別是n型和p型半導體層,或為相反的配置。The plurality of light emitting units 56 are disposed apart from each other on the single substrate 51. Each of the light emitting units 56 includes a lower semiconductor layer 55, an upper semiconductor layer 59 disposed on a partial region of the lower semiconductor layer 55, and an active layer 57 interposed between the upper and lower semiconductor layers. The upper semiconductor layer 59 and the lower semiconductor layer 55 may be n-type and p-type semiconductor layers, respectively, or in an opposite configuration.
下半導體55、主動層57和上半導體層59可以由Ga-N基體的材料,也就是(Al,In,Ga)N所形成。主動層57的組成,決定發出來的光具有需要的波長,例如紫外光或藍光。下和上半導體層55和59的材料需要具有比主動層57還高的能帶隙(band gap energy)。The lower semiconductor 55, the active layer 57, and the upper semiconductor layer 59 may be formed of a material of a Ga-N substrate, that is, (Al, In, Ga)N. The composition of the active layer 57 determines that the emitted light has a desired wavelength, such as ultraviolet light or blue light. The materials of the lower and upper semiconductor layers 55 and 59 are required to have a higher band gap energy than the active layer 57.
下半導體層55和/或上半導體層59可以形成如圖所示的單層結構,或是形成多層結構。此外,主動層57可以具有單個或多個量子井結構。The lower semiconductor layer 55 and/or the upper semiconductor layer 59 may form a single layer structure as shown or form a multilayer structure. Additionally, active layer 57 can have a single or multiple quantum well structures.
緩衝層53可以置於發光單元56和基板51之間。緩衝層53是用來紓減基板51和下半導體層55之間的晶格錯置。The buffer layer 53 may be placed between the light emitting unit 56 and the substrate 51. The buffer layer 53 is for reducing the lattice misalignment between the substrate 51 and the lower semiconductor layer 55.
第一介電層63覆蓋整個發光單元56的表面。第一介電層63具有多個開口,形成在下半導體層55的其它區域上,而這些區域是相鄰於具有上半導體層59之下半導體層55的區域,另有多個開口形成在上半導體層59上。這些開口都互相分離,使得發光單元56的側壁會被第一介電層63覆蓋。第一介電層63也覆蓋在發光單元56之間基板51的區域上。第一介電層63可以是矽氧化層(SiO2 )或氮氧化層,並且可以在200~300℃由電漿增強的CVD所形成。在此,第一介電層63具有4500Å~1μm的厚度。若是第一介電層63的厚度低於4500Å,則由於層覆蓋的特性,第一介電層63的厚度會在發光單元的低側相對減少,並且電的絕緣會在發光單元56和形成在第一介電層63上的導線65之間發生。另一方面,雖然利用增加第一介電層63的厚度可以輕易地避免導線65和發光單元56之間電的絕緣,但是第一介電層63太厚會損害光的傳導,因而降低了發光效率。因此,第一介電層的厚度較佳不要超過1μm。The first dielectric layer 63 covers the entire surface of the light emitting unit 56. The first dielectric layer 63 has a plurality of openings formed on other regions of the lower semiconductor layer 55, and these regions are adjacent to the region having the semiconductor layer 55 under the upper semiconductor layer 59, and a plurality of openings are formed in the upper semiconductor On layer 59. These openings are separated from each other such that the sidewalls of the light emitting unit 56 are covered by the first dielectric layer 63. The first dielectric layer 63 also covers the area of the substrate 51 between the light emitting units 56. The first dielectric layer 63 may be a tantalum oxide layer (SiO 2 ) or an oxynitride layer, and may be formed by plasma enhanced CVD at 200 to 300 ° C. Here, the first dielectric layer 63 has a thickness of 4,500 Å to 1 μm. If the thickness of the first dielectric layer 63 is less than 4500 Å, the thickness of the first dielectric layer 63 may be relatively reduced on the low side of the light emitting unit due to the layer covering characteristics, and electrical insulation may be formed in the light emitting unit 56 and Occurs between the wires 65 on the first dielectric layer 63. On the other hand, although electrical insulation between the wire 65 and the light emitting unit 56 can be easily avoided by increasing the thickness of the first dielectric layer 63, the first dielectric layer 63 is too thick to impair light conduction, thereby reducing light emission. effectiveness. Therefore, the thickness of the first dielectric layer is preferably not more than 1 μm.
另一方面,第一介電層63上形成導線65。導線65透過開口可以電性連接下和上半導體層55和59。此外,導 線65還可以將相鄰之發光單元56的下半導體層55和上半導體層59互相連接,以形成發光單元56的串聯陣列。多個串聯陣列可以形成,並互相連接成反向並聯,利用交流電源操作。另外,一橋式整流器(未繪示)可形成連接至發光單元56的串聯陣列,使橋式整流器可藉由交流電源來驅動這些發光單元56。橋式整流器可以藉由連接多個相同結構的發光單元56而形成,而這些發光單元藉由導線65而彼此連接。On the other hand, a wire 65 is formed on the first dielectric layer 63. The wires 65 are electrically connected to the lower and upper semiconductor layers 55 and 59 through the openings. In addition, guide Line 65 can also interconnect the lower semiconductor layer 55 and the upper semiconductor layer 59 of adjacent light emitting cells 56 to form a series array of light emitting cells 56. Multiple series arrays can be formed and interconnected in anti-parallel, operating with an AC power source. In addition, a bridge rectifier (not shown) can form a series array connected to the light unit 56, so that the bridge rectifier can drive the light units 56 by an alternating current source. The bridge rectifier can be formed by connecting a plurality of light-emitting units 56 of the same structure, and the light-emitting units are connected to each other by wires 65.
導線65可以選擇連接彼此相鄰之發光單元的下半導體層55或上半導體層59。如此一來,多個發光單元56可以彼此連接成串聯或是並聯形式。The wires 65 may be selected to connect the lower semiconductor layer 55 or the upper semiconductor layer 59 of the light-emitting units adjacent to each other. In this way, the plurality of light emitting units 56 can be connected to each other in series or in parallel.
導線65可以由導電材料形成,此導電材料例如是金屬或是矽摻雜材料,像是多晶矽材料。特別的是,導線65可以形成多層結構,並且可以包括Cr或Ti的下層65a,以及Cr或Ti的上層65c。此外,Au、Au/Ni或Au/Al的中間層65b,則配置在下層65a和上層65c之間。The wire 65 may be formed of a conductive material such as a metal or tantalum doping material such as a polysilicon material. In particular, the wires 65 may form a multilayer structure and may include a lower layer 65a of Cr or Ti, and an upper layer 65c of Cr or Ti. Further, an intermediate layer 65b of Au, Au/Ni or Au/Al is disposed between the lower layer 65a and the upper layer 65c.
另一方面,透明電極層61可以配置於上半導體層59和第一介電層63之間。透明電極層61可以透過形成在上半導體層59上的開口而暴露出來。透明電極層61允許從主動層57所產生的光穿透,並且可以分散地供應電流給上半導體層59。導線65可以連接透過開口暴露出來透明電極層61,以電性連接上半導體層59。此外,透明電極層61可以具有開口,而透過此開口,上半導體層59可以顯露出來,並且導線65則填滿透明電極層61中的開口。On the other hand, the transparent electrode layer 61 may be disposed between the upper semiconductor layer 59 and the first dielectric layer 63. The transparent electrode layer 61 can be exposed through an opening formed in the upper semiconductor layer 59. The transparent electrode layer 61 allows light generated from the active layer 57 to penetrate, and can supply a current to the upper semiconductor layer 59 in a dispersed manner. The wire 65 may be connected to expose the transparent electrode layer 61 through the opening to electrically connect the upper semiconductor layer 59. Further, the transparent electrode layer 61 may have an opening through which the upper semiconductor layer 59 may be exposed, and the wire 65 fills the opening in the transparent electrode layer 61.
第二介電層67覆蓋導線65和第一介電層63。第二介電層67保護導線65不受到潮氣和類似因素的影響,並且也保護導線65和發光單元56不受到外部撞擊的損壞。The second dielectric layer 67 covers the wires 65 and the first dielectric layer 63. The second dielectric layer 67 protects the wires 65 from moisture and the like, and also protects the wires 65 and the light-emitting unit 56 from external impact damage.
第二介電層67可以由氧化矽(SiO2 )或氮化矽所形成,其是與第一介電層63使用相同的材料。而如同第一介電層63,第二介電層67也可以在200~300℃的溫度條件中,利用電漿增強的CVD來形成。當第一介電層63利用電漿增強的CVD形成時,第二介電層67可以在第一介電層63沉積溫度的-20~+20%之範圍內的溫度被形成。較佳地,第二介電層67的沉積溫度,是與第一介電層63的沉積溫度相同。The second dielectric layer 67 may be formed of tantalum oxide (SiO 2 ) or tantalum nitride, which is the same material as the first dielectric layer 63. Like the first dielectric layer 63, the second dielectric layer 67 can also be formed by plasma enhanced CVD at a temperature of 200 to 300 °C. When the first dielectric layer 63 is formed by plasma enhanced CVD, the second dielectric layer 67 may be formed at a temperature in the range of -20 to +20% of the deposition temperature of the first dielectric layer 63. Preferably, the deposition temperature of the second dielectric layer 67 is the same as the deposition temperature of the first dielectric layer 63.
這可以由圖2獲得證實,圖2繪示為依據第一和第二介電層之沉積溫度下取樣之樣本的通過率可靠度測試的圖表。在可靠度測試中,是在250℃沉積氧化矽層作為第一介電層63來製作樣本,而當沉積的溫度改變時,沉積另外的氧化矽層作為第二介電層67。可靠度測試進行1000小時。在此次測試中,利用第二介電層67不同的沉積溫度製作了20個樣本,而每一樣本都是在潮濕的條件下進行測試。請參照圖2,當第二介電層67是在第一介電層63之沉積溫度(250℃)之-20~+20%的溫度範圍內的溫度被沉積時,此樣本會顯現較佳的可靠度。另一方面,當第二介電層67的沉積溫度超過上述的範圍,則可靠度會快速下降。此外,當第一和第二介電層63、67沉積在相同的溫度下時,則成功率為100%,這是最高的可靠度。This can be confirmed by Figure 2, which is a graph showing the passivity reliability test of samples sampled at deposition temperatures of the first and second dielectric layers. In the reliability test, a ruthenium oxide layer was deposited as a first dielectric layer 63 at 250 ° C to prepare a sample, and when the temperature of the deposition was changed, another ruthenium oxide layer was deposited as the second dielectric layer 67. The reliability test was carried out for 1000 hours. In this test, 20 samples were made using different deposition temperatures of the second dielectric layer 67, and each sample was tested under wet conditions. Referring to FIG. 2, when the second dielectric layer 67 is deposited at a temperature within a temperature range of -20 to +20% of the deposition temperature (250 ° C) of the first dielectric layer 63, the sample may be better. Reliability. On the other hand, when the deposition temperature of the second dielectric layer 67 exceeds the above range, the reliability is rapidly lowered. Further, when the first and second dielectric layers 63, 67 are deposited at the same temperature, the success rate is 100%, which is the highest reliability.
另外,第二介電層67的厚度比第一介電層63薄,其具有500Å以上的厚度。由於第二介電層67比第一介電層63薄,因此第二介電層67可以避免從第一介電層63產生分離。若是第二介電層67的厚度低於500Å,則就無法在外部撞擊和潮溼影響下保護導線和發光單元。In addition, the second dielectric layer 67 is thinner than the first dielectric layer 63 and has a thickness of 500 Å or more. Since the second dielectric layer 67 is thinner than the first dielectric layer 63, the second dielectric layer 67 can avoid separation from the first dielectric layer 63. If the thickness of the second dielectric layer 67 is less than 500 Å, the wire and the light-emitting unit cannot be protected under the influence of external impact and moisture.
磷光層69可以含有分布在樹脂中或是在電泳中沉積。磷光層69覆蓋第二介電層67,並且轉換發光單元56所發出之光的波長。The phosphor layer 69 may be contained in a resin or deposited in electrophoresis. The phosphor layer 69 covers the second dielectric layer 67 and converts the wavelength of the light emitted by the light emitting unit 56.
圖3到圖9繪示為依照本發明之一實施例的一種發光二極體之製程方法的剖面圖。3 to 9 are cross-sectional views showing a method of fabricating a light emitting diode according to an embodiment of the present invention.
請參照圖3,下半導體層55、主動層57和上半導體層59被形成在基板51上。此外,在形成下半導體層55之前,還可以在基板51上形成緩衝層53。Referring to FIG. 3, a lower semiconductor layer 55, an active layer 57, and an upper semiconductor layer 59 are formed on the substrate 51. Further, the buffer layer 53 may be formed on the substrate 51 before the lower semiconductor layer 55 is formed.
基板51的材料可以包括,但不限定於藍寶石(Al2 O3 )、碳化矽(SiC)、氧化鋅(ZnO)、矽(Si)、砷化鎵(GaAs)、磷化鎵(GaP)、鋰鋁化合物(LiAl2 O3 )、氮化硼(BN)、氮化鋁(AlN)、或氮化鎵(GaN),以及可以依據形成在其上的半導體層而選用其它的材料。The material of the substrate 51 may include, but is not limited to, sapphire (Al 2 O 3 ), tantalum carbide (SiC), zinc oxide (ZnO), bismuth (Si), gallium arsenide (GaAs), gallium phosphide (GaP), Lithium aluminum compound (LiAl 2 O 3 ), boron nitride (BN), aluminum nitride (AlN), or gallium nitride (GaN), and other materials may be selected depending on the semiconductor layer formed thereon.
緩衝層53是形成來紓解基板51和半導體層55之間的晶格錯置,並且可以由例如氮化鎵(GaN)或氮化鋁(AlN)來形成。若是基板51是一導電基板,則緩衝層53可以由絕緣或半絶緣層來形成,並且可以由AlN或半絕緣GaN來形成。The buffer layer 53 is formed to dissolve the lattice misalignment between the substrate 51 and the semiconductor layer 55, and may be formed of, for example, gallium nitride (GaN) or aluminum nitride (AlN). If the substrate 51 is a conductive substrate, the buffer layer 53 may be formed of an insulating or semi-insulating layer, and may be formed of AlN or semi-insulating GaN.
下半導體層55、主動層57和上半導體層59可以由 GaN基體的材料,也就是(Al,In,Ga)N來形成。下半導體層55、上半導體層59和主動層57可以間歇地或連續地由有機金屬氣相化學沉積法(MOCVD)、分子束磊晶法、混合氣相磊晶(HVPE)或類似的方法來長成。The lower semiconductor layer 55, the active layer 57, and the upper semiconductor layer 59 may be composed of The material of the GaN matrix, that is, (Al, In, Ga)N, is formed. The lower semiconductor layer 55, the upper semiconductor layer 59, and the active layer 57 may be intermittently or continuously formed by organometallic vapor phase chemical deposition (MOCVD), molecular beam epitaxy, mixed vapor epitaxy (HVPE), or the like. grow into.
在此,上和下半導體層59、55可以分別是n型和p型半導體層,或為相反的配置。在GaN基體的合成半導體層中,n型半導體層可以由異質摻雜來形成,例如摻雜Si,而p型半導體層也可以由異質摻雜來形成,例如摻雜Mg。Here, the upper and lower semiconductor layers 59, 55 may be n-type and p-type semiconductor layers, respectively, or in an opposite configuration. In the synthetic semiconductor layer of the GaN matrix, the n-type semiconductor layer may be formed by hetero-doping, such as doping Si, and the p-type semiconductor layer may also be formed by hetero-doping, such as doping Mg.
請參照圖4,發光單元56藉由圖案化上半導體層59、主動層57和下半導體層55,而彼此分離形成。在此步驟中,上半導體層59是位於下半導體層55的一區域上,而下半導體層55其它的區域則暴露出來。另外,發光單元56之間的緩衝層53則被移除,以將基板51暴露出來。Referring to FIG. 4, the light emitting unit 56 is formed separately from each other by patterning the upper semiconductor layer 59, the active layer 57, and the lower semiconductor layer 55. In this step, the upper semiconductor layer 59 is on a region of the lower semiconductor layer 55, and the other regions of the lower semiconductor layer 55 are exposed. In addition, the buffer layer 53 between the light emitting units 56 is removed to expose the substrate 51.
請參照圖5,在發光單元56之上半導體層59上方,形成透明電極層61。透明電極層61可以利用氧化金屬,像是ITO或是透明金屬來形成。以透明金屬來說,透明電極層61可以從至少包括Au、Ni、Pt、Al、Cr和Ti的組合中選擇其中之一,或其合金。Referring to FIG. 5, a transparent electrode layer 61 is formed over the semiconductor layer 59 above the light emitting unit 56. The transparent electrode layer 61 can be formed using an oxidized metal such as ITO or a transparent metal. In the case of a transparent metal, the transparent electrode layer 61 may be selected from a combination including at least Au, Ni, Pt, Al, Cr, and Ti, or an alloy thereof.
透明電極層61可以具有一開口61a,而上半導體層59則可以透過開口61a而暴露出來。雖然透明電極層61可以藉由沉積而形成在發光單元56上,但是透明電極層61可以在發光單元56的形成之前,就形成在上半導體層59上,並且接著在圖案化上半導體層59之前先被圖案化。The transparent electrode layer 61 may have an opening 61a, and the upper semiconductor layer 59 may be exposed through the opening 61a. Although the transparent electrode layer 61 may be formed on the light emitting unit 56 by deposition, the transparent electrode layer 61 may be formed on the upper semiconductor layer 59 before the formation of the light emitting unit 56, and then before the upper semiconductor layer 59 is patterned First patterned.
透明電極層61可以藉由加熱到500~800℃,而與上半 導體層59形成歐姆接觸。The transparent electrode layer 61 can be heated to 500 to 800 ° C, and the upper half Conductor layer 59 forms an ohmic contact.
請參照圖6,形成第一介電層63覆蓋在具有發光單元56的基板51上。第一介電層63覆蓋發光單元56的側壁和上表面,並且覆蓋基板51在發光單元56之間區域的上表面。第一介電層63可以例如,藉由電漿增強CVD形成氧化矽層或是氮化矽層。在此狀況下,第一介電層63可以在200~300℃之間沉積,並且具有4500Å~1μm的厚度。Referring to FIG. 6, a first dielectric layer 63 is formed overlying the substrate 51 having the light emitting unit 56. The first dielectric layer 63 covers the side walls and the upper surface of the light emitting unit 56, and covers the upper surface of the region of the substrate 51 between the light emitting units 56. The first dielectric layer 63 may, for example, form a hafnium oxide layer or a tantalum nitride layer by plasma enhanced CVD. In this case, the first dielectric layer 63 may be deposited between 200 and 300 ° C and has a thickness of 4,500 Å to 1 μm.
接著,圖案化第一介電層63,以在上半導體層59上形成開口63a,並且在下半導體層55的其它區域上形成開口63b。當形成透明電極層61時,透明電極層61會透過開口63a暴露出來。當透明電極層61具有開口61a時,透明電極層61的開口61a就透過第一介電層63的開口63a暴露出來。Next, the first dielectric layer 63 is patterned to form an opening 63a on the upper semiconductor layer 59, and an opening 63b is formed on other regions of the lower semiconductor layer 55. When the transparent electrode layer 61 is formed, the transparent electrode layer 61 is exposed through the opening 63a. When the transparent electrode layer 61 has the opening 61a, the opening 61a of the transparent electrode layer 61 is exposed through the opening 63a of the first dielectric layer 63.
請參照圖7,具有開口63a的第一介電層63上則形成導線65。導線65透過開口63a和63b電性連接至下半導體層55和上半導體層59,並且將相鄰的發光單元56彼此連接。Referring to FIG. 7, a wire 65 is formed on the first dielectric layer 63 having the opening 63a. The wires 65 are electrically connected to the lower semiconductor layer 55 and the upper semiconductor layer 59 through the openings 63a and 63b, and the adjacent light emitting cells 56 are connected to each other.
導線65可以藉由電鍍、一般電子束沉積、CVD或物理氣相沉積(PVD)所形成。The wire 65 can be formed by electroplating, general electron beam deposition, CVD, or physical vapor deposition (PVD).
此外,導線65可以由導電材料,例如金屬或是矽摻雜材料,像是多晶矽來形成。特別的是,導線65可以形成多層結構,並且可以包括例如Cr或Ti的下層65a,以及Cr或Ti的上層65c(如圖1所示)。此外,在下層65a和上層65c之間還配置有Au、Au/Ni、或是Au/Al的中層65b(如 圖1所示)。導線65可以在300~500℃間進行加熱處理,以加強導線65和第一介電層63之間的接合力。Further, the wires 65 may be formed of a conductive material such as a metal or tantalum doping material such as polysilicon. In particular, the wires 65 may form a multilayer structure and may include a lower layer 65a such as Cr or Ti, and an upper layer 65c of Cr or Ti (as shown in FIG. 1). In addition, an intermediate layer 65b of Au, Au/Ni, or Au/Al is disposed between the lower layer 65a and the upper layer 65c (eg, Figure 1). The wire 65 may be heat-treated at 300 to 500 ° C to reinforce the bonding force between the wire 65 and the first dielectric layer 63.
請參照圖8,第二介電層67被形成覆蓋在基板51,並且基板51有導線65形成在其上。第二介電層67覆蓋導線65和第一介電層63。第二介電層67的材料可以與第一介電層63相同,像是氧化矽(SiO2 )或氮化矽,並且第二介電層67可以藉由電漿增強CVD而在200~300℃之間形成。特別的是,第二介電層67是在第一介電層63之沉積溫度的-20~+20%之間的溫度範圍內被形成。Referring to FIG. 8, a second dielectric layer 67 is formed overlying the substrate 51, and the substrate 51 has wires 65 formed thereon. The second dielectric layer 67 covers the wires 65 and the first dielectric layer 63. The material of the second dielectric layer 67 may be the same as the first dielectric layer 63, such as yttrium oxide (SiO 2 ) or tantalum nitride, and the second dielectric layer 67 may be reinforced by plasma CVD at 200~300. Formed between °C. In particular, the second dielectric layer 67 is formed over a temperature range between -20 and +20% of the deposition temperature of the first dielectric layer 63.
請參照圖9,在第二介電層67上可以形成磷光層69。磷光層69可以採用樹脂和磷光劑的混合物而塗布在第二介電層67上,其中上述的混合物可以藉由散布磷光劑到樹脂中或是由電泳來調製。結果配置成晶片級的具有螢光材料的發光二極體。Referring to FIG. 9, a phosphor layer 69 may be formed on the second dielectric layer 67. The phosphor layer 69 may be coated on the second dielectric layer 67 using a mixture of a resin and a phosphor, wherein the above mixture may be prepared by dispersing a phosphor into the resin or by electrophoresis. The result is configured as a wafer-level light-emitting diode with a fluorescent material.
圖10繪示為依照本發明另一實施例之發光二極體的剖面圖。在此發光二極體中,聚合物被用來作為第一和第二介電層。FIG. 10 is a cross-sectional view showing a light emitting diode according to another embodiment of the present invention. In this light-emitting diode, a polymer is used as the first and second dielectric layers.
請參照圖10,發光二極體可以包括基板51、多個發光單元56、一第一介電層83、導線85和第二介電層87,並且更可以包括緩衝層53和透明電極層61。其中,基板51、發光單元56和透明電極層61都與上述的實施例相同,因此以下將會省略敘述。Referring to FIG. 10, the light emitting diode may include a substrate 51, a plurality of light emitting units 56, a first dielectric layer 83, a wire 85, and a second dielectric layer 87, and may further include a buffer layer 53 and a transparent electrode layer 61. . Here, the substrate 51, the light-emitting unit 56, and the transparent electrode layer 61 are all the same as those of the above-described embodiment, and thus the description will be omitted below.
第一介電層83可以由SOG、BCG或是其它透明的聚合物所形成,以填滿發光單元56之間的空間。第一介電層 83覆蓋下半導體層55其它的區域。在此實施例中,第一介電層83具有多個開口,而透過這些開口就可以顯露下半導體層55。另外,第一介電層83還暴露出上半導體層59或是透明電極層61。而發光單元56的側壁則被第一介電層83所覆蓋。The first dielectric layer 83 may be formed of SOG, BCG or other transparent polymer to fill the space between the light emitting units 56. First dielectric layer 83 covers the other areas of the lower semiconductor layer 55. In this embodiment, the first dielectric layer 83 has a plurality of openings through which the lower semiconductor layer 55 can be exposed. In addition, the first dielectric layer 83 also exposes the upper semiconductor layer 59 or the transparent electrode layer 61. The sidewall of the light emitting unit 56 is covered by the first dielectric layer 83.
在第一介電層83上則形成導線85,其電性連接下半導體層55和上半導體層59。導線85係透過上述的開口而電性連接至下半導體層55和上半導體層59。此外,導線85還將相鄰之發光單元56的下半導體層55和上半導體層59互相連接,以形成發光單元56的串聯陣列。可形成多個串聯陣列,並且將彼此連接成反向並聯,以透過交流電源來操作。另外,發光單元56的串聯陣列還連接一橋式整流器(未繪示),因此發光單元56可以由橋式整流器透過交流電源來驅動。橋式整流器可以藉由連接多個發光單元而形成,而這些發光單元具有相同的結構,即各發光單元56藉由導線85而彼此連接。A wire 85 is formed on the first dielectric layer 83, which is electrically connected to the lower semiconductor layer 55 and the upper semiconductor layer 59. The wire 85 is electrically connected to the lower semiconductor layer 55 and the upper semiconductor layer 59 through the above-described openings. In addition, the wires 85 interconnect the lower semiconductor layer 55 and the upper semiconductor layer 59 of the adjacent light emitting cells 56 to form a series array of light emitting cells 56. Multiple series arrays can be formed and connected in reverse parallel to each other to operate through an AC power source. In addition, the series array of the light-emitting units 56 is also connected to a bridge rectifier (not shown), so the light-emitting unit 56 can be driven by the bridge rectifier through the AC power source. The bridge rectifier can be formed by connecting a plurality of light-emitting units, and the light-emitting units have the same structure, that is, the light-emitting units 56 are connected to each other by the wires 85.
選擇性地,導線85可以彼此連接相鄰之發光單元56的下半導體層55或上半導體層59。如此一來,發光單元56可以彼此連接成串聯或是並聯形式。Alternatively, the wires 85 may be connected to each other to the lower semiconductor layer 55 or the upper semiconductor layer 59 of the adjacent light-emitting unit 56. In this way, the light emitting units 56 can be connected to each other in series or in parallel.
導線85可以由導電材料所形成,其例如是金屬,或是矽摻雜材料,像是多晶矽。特別的是,導線85可以形成多層結構。The wire 85 may be formed of a conductive material such as a metal or a germanium doped material such as a polysilicon. In particular, the wires 85 may form a multilayer structure.
第二介電層87覆蓋導線85和第一介電層83。第二介電層87利用與第一介電層83相同的聚合物來形成。因此, 可以增加第一介電層83和第二介電層87之間的接合力。此外,第二介電層87可以比第一介電層83更薄,該第一介電層填滿發光單元56之間的空間。The second dielectric layer 87 covers the wires 85 and the first dielectric layer 83. The second dielectric layer 87 is formed using the same polymer as the first dielectric layer 83. therefore, The bonding force between the first dielectric layer 83 and the second dielectric layer 87 can be increased. In addition, the second dielectric layer 87 may be thinner than the first dielectric layer 83, which fills the space between the light emitting units 56.
另一方面,第二介電層87可以含有磷光劑。因此,能提供發光二極體具有晶片級之轉換波長的能力。On the other hand, the second dielectric layer 87 may contain a phosphor. Therefore, it is possible to provide the ability of the light-emitting diode to have a wafer-level conversion wavelength.
在本實施例中,由於第一介電層是由聚合物所形成,因此導線85和第二介電層87就可以在相對平坦的第一介電層83上形成,藉此可以增進導線的可靠度。In this embodiment, since the first dielectric layer is formed of a polymer, the wire 85 and the second dielectric layer 87 can be formed on the relatively flat first dielectric layer 83, thereby enhancing the wire. Reliability.
圖11到圖13繪示為依照本發明另一實施例之發光二極體之製程方法的剖面圖。11 to 13 are cross-sectional views showing a method of fabricating a light emitting diode according to another embodiment of the present invention.
請參照圖11,在基板51上,可以形成多個彼此分離的發光單元56和透明電極層61,就如以上圖3到圖5中所述。而每一發光單元56包括下半導體層55、主動層57、和上半導體層59。透明電極層61具有多個開口61a,而上半導體層59可以透過這些開口61a而暴露出來。Referring to FIG. 11, on the substrate 51, a plurality of light-emitting units 56 and transparent electrode layers 61 separated from each other may be formed as described above in FIGS. 3 to 5. Each of the light emitting units 56 includes a lower semiconductor layer 55, an active layer 57, and an upper semiconductor layer 59. The transparent electrode layer 61 has a plurality of openings 61a through which the upper semiconductor layer 59 can be exposed.
請參照圖12,形成第一介電層83覆蓋在發光單元56和透明電極層61上。第一介電層83是用聚合物來形成,並且當覆蓋發光單元56整個表面時,填滿發光單元56之間的空間。Referring to FIG. 12, a first dielectric layer 83 is formed overlying the light emitting unit 56 and the transparent electrode layer 61. The first dielectric layer 83 is formed of a polymer and fills the space between the light emitting units 56 when covering the entire surface of the light emitting unit 56.
請參照圖13,第一介電層83利用蝕刻移除部分並且將透明電極層61裸露出來。接著,在第一介電層83和發光單元56上形成導線85。導線85可以利用前述圖7所敘述的任何材料來形成。Referring to FIG. 13, the first dielectric layer 83 removes portions by etching and exposes the transparent electrode layer 61. Next, a wire 85 is formed on the first dielectric layer 83 and the light emitting unit 56. Conductor 85 can be formed using any of the materials described above with respect to FIG.
接著,第二介電層87(如圖10所繪示)形成覆蓋在導 線85和第一介電層83上。第二介電層87利用與第一介電層83相同的聚合物來形成,並且可以含有磷光劑。Next, the second dielectric layer 87 (shown in FIG. 10) is formed to cover Line 85 and first dielectric layer 83. The second dielectric layer 87 is formed using the same polymer as the first dielectric layer 83, and may contain a phosphor.
另一方面,當第二介電層87比第一介電層83還厚時,會降低光穿透度,並且在外部撞擊時,第一介電層83或第二介電層87會從發光單元56開始形成分離。因此,第二介電層87需要比第一介電層83還薄(在此,第一介電層83的厚度是在發光單元56之間的空間)。On the other hand, when the second dielectric layer 87 is thicker than the first dielectric layer 83, the light transmittance is lowered, and when externally impacted, the first dielectric layer 83 or the second dielectric layer 87 is removed from the external dielectric layer 87. The illumination unit 56 begins to form a separation. Therefore, the second dielectric layer 87 needs to be thinner than the first dielectric layer 83 (here, the thickness of the first dielectric layer 83 is the space between the light-emitting units 56).
在本實施例中,是將磷光劑加入第二介電層87中,但是也可以加入第一介電層83中。另外,在第二介電層87上,還可以形成增加的磷光層。In the present embodiment, the phosphor is added to the second dielectric layer 87, but may also be added to the first dielectric layer 83. In addition, an increased phosphor layer can also be formed on the second dielectric layer 87.
依照所揭露的本實施例,第一和第二介電層是用相同的材料來形成,並且第一介電層會形成比第二介電層還厚,藉此來增強第一和第二介電層之間的接合力,以防止第二介電層的產生分裂。此外,第二介電層覆蓋了導線和發光單元,藉以保護發光二極體的潮氣侵入,並且在外部撞擊時可以保護導線和發光單元。According to the disclosed embodiment, the first and second dielectric layers are formed of the same material, and the first dielectric layer is formed thicker than the second dielectric layer, thereby enhancing the first and second Bonding forces between the dielectric layers to prevent splitting of the second dielectric layer. In addition, the second dielectric layer covers the wires and the light-emitting unit, thereby protecting the moisture intrusion of the light-emitting diodes, and protecting the wires and the light-emitting unit from external impact.
此外,提供來作為導線的下層和上層的Cr層或Ti層,與對應之介電層之間展現了高度的接合力,還可以增進導線與介電層之間的接合力,藉此在保護第二介電層發生分裂。In addition, the Cr layer or the Ti layer provided as the lower layer and the upper layer of the wire exhibits a high bonding force with the corresponding dielectric layer, and can also promote the bonding force between the wire and the dielectric layer, thereby protecting The second dielectric layer splits.
另外,第二介電層含有磷光劑,或是在第二介電層上形成磷光層,以在晶片級獲得白光或是其它的顏色的光,藉此使封裝製程單純化。In addition, the second dielectric layer contains a phosphor or a phosphor layer is formed on the second dielectric layer to obtain white light or other colors of light at the wafer level, thereby simplifying the packaging process.
雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the invention has been disclosed above by way of example, it is not intended to be limiting The scope of the present invention is defined by the scope of the appended claims, and the scope of the invention is defined by the scope of the appended claims. Prevail.
51‧‧‧基板51‧‧‧Substrate
53‧‧‧緩衝層53‧‧‧buffer layer
55、59‧‧‧半導體層55, 59‧‧‧ semiconductor layer
56‧‧‧發光單元56‧‧‧Lighting unit
57‧‧‧主動層57‧‧‧Active layer
61‧‧‧透明電極層61‧‧‧Transparent electrode layer
61a、63a、63b‧‧‧開口61a, 63a, 63b‧‧‧ openings
63、67、83、87‧‧‧介電層63, 67, 83, 87‧‧‧ dielectric layers
65、85‧‧‧導線65, 85‧‧‧ wires
65a‧‧‧下層65a‧‧‧Under
65b‧‧‧中層65b‧‧‧ Middle
65c‧‧‧上層65c‧‧‧Upper
69‧‧‧磷光層69‧‧‧phosphor layer
圖1繪示為依照本發明之一實施例的一種發光二極體的剖面圖。1 is a cross-sectional view of a light emitting diode in accordance with an embodiment of the present invention.
圖2繪示為第一和第二介電層之沉積溫度與可靠度通過率的可靠性測試。2 is a graph showing reliability tests of deposition temperatures and reliability pass rates for the first and second dielectric layers.
圖3到圖9繪示為依照本發明之一實施例的一種發光二極體之製程方法的剖面圖。3 to 9 are cross-sectional views showing a method of fabricating a light emitting diode according to an embodiment of the present invention.
圖10繪示為依照本發明另一實施例之發光二極體的剖面圖。FIG. 10 is a cross-sectional view showing a light emitting diode according to another embodiment of the present invention.
圖11到圖13繪示為依照本發明另一實施例之發光二極體之製程方法的剖面圖。11 to 13 are cross-sectional views showing a method of fabricating a light emitting diode according to another embodiment of the present invention.
51‧‧‧基板51‧‧‧Substrate
53‧‧‧緩衝層53‧‧‧buffer layer
55、59‧‧‧半導體層55, 59‧‧‧ semiconductor layer
56‧‧‧發光單元56‧‧‧Lighting unit
57‧‧‧主動層57‧‧‧Active layer
61‧‧‧透明電極層61‧‧‧Transparent electrode layer
63、67‧‧‧介電層63, 67‧‧‧ dielectric layer
65‧‧‧導線65‧‧‧Wire
65a‧‧‧下層65a‧‧‧Under
65b‧‧‧中層65b‧‧‧ Middle
65c‧‧‧上層65c‧‧‧Upper
69‧‧‧磷光層69‧‧‧phosphor layer
Claims (28)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080128522A KR20100076083A (en) | 2008-12-17 | 2008-12-17 | Light emitting diode having plurality of light emitting cells and method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201025558A TW201025558A (en) | 2010-07-01 |
TWI483381B true TWI483381B (en) | 2015-05-01 |
Family
ID=41683199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098128710A TWI483381B (en) | 2008-12-17 | 2009-08-26 | Light emitting diode having plurality of light emitting cells and method of fabricating the same |
Country Status (6)
Country | Link |
---|---|
US (2) | US7709849B1 (en) |
EP (2) | EP2200085B1 (en) |
JP (2) | JP4663810B2 (en) |
KR (1) | KR20100076083A (en) |
CN (1) | CN101752399B (en) |
TW (1) | TWI483381B (en) |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9142740B2 (en) | 2003-07-04 | 2015-09-22 | Epistar Corporation | Optoelectronic element and manufacturing method thereof |
US20090309114A1 (en) * | 2008-01-16 | 2009-12-17 | Luminus Devices, Inc. | Wavelength converting light-emitting devices and methods of making the same |
KR101017395B1 (en) * | 2008-12-24 | 2011-02-28 | 서울옵토디바이스주식회사 | Light emitting device having plurality of light emitting cells and method of fabricating the same |
KR101533817B1 (en) | 2008-12-31 | 2015-07-09 | 서울바이오시스 주식회사 | Light emitting device having plurality of non-polar light emitting cells and method of fabricating the same |
KR101557362B1 (en) | 2008-12-31 | 2015-10-08 | 서울바이오시스 주식회사 | Light emitting device having plurality of non-polar light emitting cells and method of fabricating the same |
JP5195452B2 (en) * | 2009-01-22 | 2013-05-08 | ソニー株式会社 | Light emitting element |
EP2367203A1 (en) * | 2010-02-26 | 2011-09-21 | Samsung LED Co., Ltd. | Semiconductor light emitting device having multi-cell array and method for manufacturing the same |
WO2011145794A1 (en) * | 2010-05-18 | 2011-11-24 | 서울반도체 주식회사 | Light emitting diode chip having wavelength conversion layer and manufacturing method thereof, and package including same and manufacturing method thereof |
US8193546B2 (en) * | 2010-06-04 | 2012-06-05 | Pinecone Energies, Inc. | Light-emitting-diode array with polymer between light emitting devices |
KR20120013827A (en) | 2010-08-06 | 2012-02-15 | 삼성전자주식회사 | Controller chip and image forming device for performing color mis-registration correction, and methods thereof |
CN102376864B (en) * | 2010-08-10 | 2014-12-31 | 晶元光电股份有限公司 | Light emitting element |
US9070851B2 (en) | 2010-09-24 | 2015-06-30 | Seoul Semiconductor Co., Ltd. | Wafer-level light emitting diode package and method of fabricating the same |
KR101142965B1 (en) * | 2010-09-24 | 2012-05-08 | 서울반도체 주식회사 | Wafer-level light emitting diode package and method of fabricating the same |
CN102110705B (en) * | 2010-12-14 | 2013-03-20 | 武汉迪源光电科技有限公司 | Alternating current light emitting diode |
CN102623480A (en) * | 2011-02-01 | 2012-08-01 | 绿种子能源科技股份有限公司 | Light emitting diode array and manufacture method thereof |
US10243121B2 (en) * | 2011-06-24 | 2019-03-26 | Cree, Inc. | High voltage monolithic LED chip with improved reliability |
KR101791175B1 (en) | 2011-06-30 | 2017-10-27 | 엘지이노텍 주식회사 | Light emitting device and light emitting device package including the same |
CN103650171B (en) * | 2011-07-15 | 2018-09-18 | 亮锐控股有限公司 | Semiconductor device is attached to the method for supporting substrate |
CN102916028B (en) * | 2011-08-05 | 2015-07-08 | 展晶科技(深圳)有限公司 | LED (light emitting diode) array and manufacturing method thereof |
CN106058000B (en) * | 2011-09-16 | 2019-04-23 | 首尔伟傲世有限公司 | Light emitting diode and the method for manufacturing the light emitting diode |
JP5902908B2 (en) | 2011-10-19 | 2016-04-13 | スタンレー電気株式会社 | Semiconductor light emitting device and vehicle lamp |
DE102011056220A1 (en) * | 2011-12-09 | 2013-06-13 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component |
CN103208489A (en) * | 2012-01-13 | 2013-07-17 | 华夏光股份有限公司 | Light emitting diode array and manufacturing method thereof |
JP5992695B2 (en) | 2012-02-29 | 2016-09-14 | スタンレー電気株式会社 | Semiconductor light emitting element array and vehicle lamp |
TWI549278B (en) * | 2012-03-12 | 2016-09-11 | 晶元光電股份有限公司 | Light-emitting diode device |
WO2013168929A1 (en) * | 2012-05-11 | 2013-11-14 | Seoul Opto Device Co., Ltd. | Light emitting diode having plurality of light emitting elements and method of fabricating the same |
CN203277485U (en) * | 2012-05-29 | 2013-11-06 | 璨圆光电股份有限公司 | Light-emitting device, light-emitting diode chip for forming multi-directional light emission and sapphire substrate thereof |
US9166116B2 (en) | 2012-05-29 | 2015-10-20 | Formosa Epitaxy Incorporation | Light emitting device |
KR102160072B1 (en) * | 2014-05-26 | 2020-10-15 | 서울바이오시스 주식회사 | Light emitting diode array on wafer level and method of forming the same |
CN103579431A (en) * | 2012-08-07 | 2014-02-12 | 华夏光股份有限公司 | Semiconductor light emitting structure and manufacturing method thereof |
US10388690B2 (en) | 2012-08-07 | 2019-08-20 | Seoul Viosys Co., Ltd. | Wafer level light-emitting diode array |
KR101892213B1 (en) * | 2012-08-07 | 2018-08-28 | 서울바이오시스 주식회사 | Light emitting diode array on wafer level and method of forming the same |
US10804316B2 (en) | 2012-08-07 | 2020-10-13 | Seoul Viosys Co., Ltd. | Wafer level light-emitting diode array |
KR101949505B1 (en) * | 2012-08-28 | 2019-02-18 | 서울바이오시스 주식회사 | Light emitting diode array on wafer level and method of forming the same |
WO2014025195A1 (en) * | 2012-08-07 | 2014-02-13 | 서울바이오시스 주식회사 | Wafer level light-emitting diode array and method for manufacturing same |
US20140042470A1 (en) | 2012-08-09 | 2014-02-13 | Epistar Corporation | Method of making light emitting device and light emitting device made thereof |
US20140048824A1 (en) | 2012-08-15 | 2014-02-20 | Epistar Corporation | Light-emitting device |
US9356070B2 (en) | 2012-08-15 | 2016-05-31 | Epistar Corporation | Light-emitting device |
JP2014038989A (en) * | 2012-08-20 | 2014-02-27 | Toshiba Corp | Semiconductor light-emitting device and lighting device |
CN103681723A (en) * | 2012-08-30 | 2014-03-26 | 旭明光电股份有限公司 | Light emitting diode |
DE202013012470U1 (en) * | 2012-09-07 | 2017-01-12 | Seoul Viosys Co., Ltd. | Light-emitting diode array on WAFER level |
CN103681725A (en) * | 2012-09-11 | 2014-03-26 | 旭明光电股份有限公司 | Light-emitting diode |
KR20140073351A (en) * | 2012-12-06 | 2014-06-16 | 엘지이노텍 주식회사 | Light Emitting Device |
US8963121B2 (en) | 2012-12-07 | 2015-02-24 | Micron Technology, Inc. | Vertical solid-state transducers and high voltage solid-state transducers having buried contacts and associated systems and methods |
WO2014098510A1 (en) | 2012-12-21 | 2014-06-26 | Seoul Viosys Co., Ltd. | Light emitting diode and method of fabricating the same |
US9356212B2 (en) | 2012-12-21 | 2016-05-31 | Seoul Viosys Co., Ltd. | Light emitting diode and method of fabricating the same |
WO2014106306A1 (en) * | 2013-01-05 | 2014-07-10 | 海立尔股份有限公司 | High-voltage flip chip led structure and manufacturing method therefor |
CN103915530A (en) * | 2013-01-05 | 2014-07-09 | 海立尔股份有限公司 | High-voltage flip-chip LED structure and manufacturing method thereof |
KR20150115811A (en) | 2013-02-06 | 2015-10-14 | 캘리포니아 인스티튜트 오브 테크놀로지 | Miniaturized implantable electrochemical sensor devices |
DE102013101260A1 (en) | 2013-02-08 | 2014-08-14 | Osram Opto Semiconductors Gmbh | Device with at least one optoelectronic semiconductor component |
TWI532215B (en) * | 2013-12-26 | 2016-05-01 | 隆達電子股份有限公司 | Light-emitting diode elements |
JP2015188039A (en) * | 2014-03-27 | 2015-10-29 | 株式会社東芝 | Semiconductor light-emitting device and manufacturing method therefor |
DE102014112750A1 (en) * | 2014-09-04 | 2016-03-10 | Osram Opto Semiconductors Gmbh | Method for producing an optoelectronic semiconductor component and optoelectronic semiconductor component |
US9620559B2 (en) * | 2014-09-26 | 2017-04-11 | Glo Ab | Monolithic image chip for near-to-eye display |
US10157960B2 (en) * | 2014-12-16 | 2018-12-18 | Episky Corporation (Xiamem) Ltd | Light-emitting device with electrode extending layer |
CN106328798B (en) * | 2015-06-15 | 2023-12-22 | 晶宇光电(厦门)有限公司 | Light-emitting diode chip |
CN104538522B (en) * | 2014-12-31 | 2017-08-29 | 杭州士兰明芯科技有限公司 | A kind of high-voltage chip LED structure and preparation method thereof |
US10658546B2 (en) | 2015-01-21 | 2020-05-19 | Cree, Inc. | High efficiency LEDs and methods of manufacturing |
TW201631808A (en) * | 2015-02-25 | 2016-09-01 | 隆達電子股份有限公司 | LED chip package |
KR102323250B1 (en) * | 2015-05-27 | 2021-11-09 | 삼성전자주식회사 | Fabrication method of semiconductor light emitting device |
US9653435B2 (en) | 2015-07-14 | 2017-05-16 | SemiLEDs Optoelectronics Co., Ltd. | Light emitting diode (LED) package having short circuit (VLED) die, lens support dam and same side electrodes and method of fabrication |
US10368788B2 (en) | 2015-07-23 | 2019-08-06 | California Institute Of Technology | System and methods for wireless drug delivery on command |
CN105679886A (en) * | 2016-01-20 | 2016-06-15 | 杨秀静 | Manufacturing method of light-emitting diode |
CN205944139U (en) | 2016-03-30 | 2017-02-08 | 首尔伟傲世有限公司 | Ultraviolet ray light -emitting diode spare and contain this emitting diode module |
KR20170127841A (en) * | 2016-05-13 | 2017-11-22 | 주식회사 루멘스 | Light emitting diode |
KR101852343B1 (en) * | 2016-06-10 | 2018-06-12 | 주식회사 옵토웰 | laser diode having parallel stack structure and method of manufacturing the same |
TWI646651B (en) * | 2017-01-26 | 2019-01-01 | 宏碁股份有限公司 | Light-emitting diode display and manufacturing method thereof |
KR102543183B1 (en) | 2018-01-26 | 2023-06-14 | 삼성전자주식회사 | Semiconductor light emitting device |
CN111933771B (en) * | 2018-07-28 | 2023-02-17 | 厦门三安光电有限公司 | Micro light emitting diode and display device thereof |
KR102122847B1 (en) * | 2019-02-11 | 2020-06-15 | 서울바이오시스 주식회사 | Light emitting diode array on wafer level |
CN113454857A (en) * | 2019-02-26 | 2021-09-28 | 新唐科技日本株式会社 | Semiconductor laser device and semiconductor laser element |
JP7431110B2 (en) | 2020-06-11 | 2024-02-14 | 新光電気工業株式会社 | light emitting device |
TWI736334B (en) | 2020-06-23 | 2021-08-11 | 隆達電子股份有限公司 | Light emitting diode |
US20230049123A1 (en) * | 2021-08-10 | 2023-02-16 | Innolux Corporation | Electronic device and manufacturing method and inspection method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050093929A1 (en) * | 2003-11-05 | 2005-05-05 | Xerox Corporation | Ink jet apparatus |
TW200717846A (en) * | 2005-10-20 | 2007-05-01 | Epistar Corp | Light emitting device and method of forming the same |
TW200746477A (en) * | 2006-04-21 | 2007-12-16 | Philips Lumileds Lighting Co | Semiconductor light emitting device with integrated electronic components |
US20080083929A1 (en) * | 2006-10-06 | 2008-04-10 | Iii-N Technology, Inc. | Ac/dc light emitting diodes with integrated protection mechanism |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US725248A (en) * | 1902-09-23 | 1903-04-14 | Bourne Henry Engineering Company Ltd | Washing-machine. |
JPS55124274A (en) * | 1980-02-04 | 1980-09-25 | Sanyo Electric Co Ltd | Solar battery |
JPH03284886A (en) * | 1990-03-30 | 1991-12-16 | Kyocera Corp | Semiconductor element and forming method therefor |
DE19640003B4 (en) | 1996-09-27 | 2005-07-07 | Siemens Ag | Semiconductor device and method for its production |
JPH11312824A (en) * | 1998-04-27 | 1999-11-09 | Kyocera Corp | Semiconductor light-emitting device |
JP2001102626A (en) * | 1999-07-28 | 2001-04-13 | Canon Inc | Led chip, led chip array, led array head and imaging apparatus |
US6547249B2 (en) | 2001-03-29 | 2003-04-15 | Lumileds Lighting U.S., Llc | Monolithic series/parallel led arrays formed on highly resistive substrates |
US7067916B2 (en) | 2001-06-20 | 2006-06-27 | International Business Machines Corporation | Extension of fatigue life for C4 solder ball to chip connection |
JP2003031840A (en) * | 2001-07-11 | 2003-01-31 | Hitachi Cable Ltd | Light emitting diode array |
US6635902B1 (en) | 2002-05-24 | 2003-10-21 | Para Light Electronics Co., Ltd. | Serial connection structure of light emitting diode chip |
KR100891403B1 (en) | 2002-08-01 | 2009-04-02 | 니치아 카가쿠 고교 가부시키가이샤 | Semiconductor light-emitting device, method for manufacturing same and light-emitting apparatus using same |
EP2149905A3 (en) | 2002-08-29 | 2014-05-07 | Seoul Semiconductor Co., Ltd. | Light-emitting device having light-emitting diodes |
US6957899B2 (en) | 2002-10-24 | 2005-10-25 | Hongxing Jiang | Light emitting diodes for high AC voltage operation and general lighting |
US7213942B2 (en) | 2002-10-24 | 2007-05-08 | Ac Led Lighting, L.L.C. | Light emitting diodes for high AC voltage operation and general lighting |
TWI220798B (en) | 2003-03-07 | 2004-09-01 | Hitachi Cable | Light-emitting diode array |
WO2005008792A1 (en) | 2003-07-18 | 2005-01-27 | Sanyo Electric Co., Ltd. | Light emitting diode |
JP2005064104A (en) | 2003-08-08 | 2005-03-10 | Hitachi Cable Ltd | Light emitting diode array |
JP4160881B2 (en) * | 2003-08-28 | 2008-10-08 | 松下電器産業株式会社 | Semiconductor light emitting device, light emitting module, lighting device, and method for manufacturing semiconductor light emitting device |
JP2007511065A (en) * | 2003-11-04 | 2007-04-26 | 松下電器産業株式会社 | Semiconductor light emitting device, lighting module, lighting device, and method of manufacturing semiconductor light emitting device |
US7285801B2 (en) | 2004-04-02 | 2007-10-23 | Lumination, Llc | LED with series-connected monolithically integrated mesas |
EP1787336B1 (en) * | 2004-06-30 | 2016-01-20 | Seoul Viosys Co., Ltd | Light emitting element comprising a plurality of electrically connected light emitting cells and method of manufacturing the same |
KR100961483B1 (en) * | 2004-06-30 | 2010-06-08 | 서울옵토디바이스주식회사 | Luminous element having arrayed cells and method of manufacturing thereof and luminous apparatus using the same |
TW200501464A (en) | 2004-08-31 | 2005-01-01 | Ind Tech Res Inst | LED chip structure with AC loop |
DE102004050371A1 (en) * | 2004-09-30 | 2006-04-13 | Osram Opto Semiconductors Gmbh | Optoelectronic component with a wireless contact |
US7221044B2 (en) | 2005-01-21 | 2007-05-22 | Ac Led Lighting, L.L.C. | Heterogeneous integrated high voltage DC/AC light emitter |
US7525248B1 (en) | 2005-01-26 | 2009-04-28 | Ac Led Lighting, L.L.C. | Light emitting diode lamp |
US7535028B2 (en) * | 2005-02-03 | 2009-05-19 | Ac Led Lighting, L.Lc. | Micro-LED based high voltage AC/DC indicator lamp |
US7474681B2 (en) | 2005-05-13 | 2009-01-06 | Industrial Technology Research Institute | Alternating current light-emitting device |
KR100721515B1 (en) * | 2006-01-09 | 2007-05-23 | 서울옵토디바이스주식회사 | Light emitting diode having ito layer and method for manufacturing the same diode |
KR100758542B1 (en) | 2006-03-14 | 2007-09-13 | 서울옵토디바이스주식회사 | Light emitting diode with ito layer for ac operation and method for fabricating the same |
WO2007081092A1 (en) * | 2006-01-09 | 2007-07-19 | Seoul Opto Device Co., Ltd. | Del à couche d'ito et son procédé de fabrication |
KR100757800B1 (en) | 2006-06-30 | 2007-09-11 | 서울옵토디바이스주식회사 | Light emitting diode for ac operation with insulation passivation layer and method of fabricating the same |
JP5008911B2 (en) | 2006-07-04 | 2012-08-22 | ローム株式会社 | Semiconductor light emitting device and manufacturing method thereof |
JP2010521807A (en) * | 2007-03-13 | 2010-06-24 | ソウル オプト デバイス カンパニー リミテッド | AC drive type light emitting diode |
KR100974923B1 (en) | 2007-03-19 | 2010-08-10 | 서울옵토디바이스주식회사 | Light emitting diode |
-
2008
- 2008-12-17 KR KR1020080128522A patent/KR20100076083A/en active Search and Examination
-
2009
- 2009-08-26 TW TW098128710A patent/TWI483381B/en active
- 2009-10-26 EP EP09013481.8A patent/EP2200085B1/en active Active
- 2009-11-18 US US12/620,887 patent/US7709849B1/en active Active
- 2009-11-19 EP EP09014469.2A patent/EP2200086B1/en active Active
- 2009-11-27 JP JP2009270778A patent/JP4663810B2/en active Active
- 2009-11-27 CN CN2009102248585A patent/CN101752399B/en active Active
- 2009-12-01 JP JP2009273134A patent/JP5706082B2/en not_active Expired - Fee Related
- 2009-12-08 US US12/633,603 patent/US7846755B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050093929A1 (en) * | 2003-11-05 | 2005-05-05 | Xerox Corporation | Ink jet apparatus |
TW200717846A (en) * | 2005-10-20 | 2007-05-01 | Epistar Corp | Light emitting device and method of forming the same |
TW200746477A (en) * | 2006-04-21 | 2007-12-16 | Philips Lumileds Lighting Co | Semiconductor light emitting device with integrated electronic components |
US20080083929A1 (en) * | 2006-10-06 | 2008-04-10 | Iii-N Technology, Inc. | Ac/dc light emitting diodes with integrated protection mechanism |
Also Published As
Publication number | Publication date |
---|---|
EP2200086B1 (en) | 2015-02-25 |
JP5706082B2 (en) | 2015-04-22 |
US20100151604A1 (en) | 2010-06-17 |
JP2010147463A (en) | 2010-07-01 |
JP4663810B2 (en) | 2011-04-06 |
CN101752399A (en) | 2010-06-23 |
CN101752399B (en) | 2013-05-22 |
US7709849B1 (en) | 2010-05-04 |
JP2010147462A (en) | 2010-07-01 |
EP2200085B1 (en) | 2014-07-16 |
EP2200086A1 (en) | 2010-06-23 |
US7846755B2 (en) | 2010-12-07 |
KR20100076083A (en) | 2010-07-06 |
EP2200085A1 (en) | 2010-06-23 |
TW201025558A (en) | 2010-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI483381B (en) | Light emitting diode having plurality of light emitting cells and method of fabricating the same | |
US10340309B2 (en) | Light emitting device | |
KR101115535B1 (en) | Light emitting diode with a metal reflection layer expanded and method for manufacturing the same | |
KR100635346B1 (en) | Light emitting diode chip having a color converting layer for ac power operation and method of fabricating the same | |
KR100757800B1 (en) | Light emitting diode for ac operation with insulation passivation layer and method of fabricating the same | |
KR20140060474A (en) | Light emitting diode having plurality of light emitting cells and method of fabricating the same | |
KR101761856B1 (en) | Light emitting diode having plurality of light emitting cells and method of fabricating the same | |
KR101040140B1 (en) | Semiconductor light emitting device array and manufacturing method thereof | |
KR101601073B1 (en) | Light emitting diode having plurality of light emitting cells and method of fabricating the same | |
KR101456270B1 (en) | Light emitting diode having plurality of light emitting cells and method of fabricating the same | |
JP2012009625A (en) | Light-emitting element | |
KR100599014B1 (en) | Light emitting device having repetition of foreign type semiconductor layers and method of fabricating the same | |
KR101165255B1 (en) | High efficiency light emitting diode and method of fabricating the same | |
KR100823089B1 (en) | Method of fabricating light emitting diode having wavelength converting layer | |
KR20140081638A (en) | Light emitting diode and method of fabricating the same |