TWI460422B - 從裝置一側作鎖相熱雷射激發並從另一側取得鎖相熱發散影像 - Google Patents

從裝置一側作鎖相熱雷射激發並從另一側取得鎖相熱發散影像 Download PDF

Info

Publication number
TWI460422B
TWI460422B TW100137995A TW100137995A TWI460422B TW I460422 B TWI460422 B TW I460422B TW 100137995 A TW100137995 A TW 100137995A TW 100137995 A TW100137995 A TW 100137995A TW I460422 B TWI460422 B TW I460422B
Authority
TW
Taiwan
Prior art keywords
dut
phase
frequency
locked
thermal
Prior art date
Application number
TW100137995A
Other languages
English (en)
Other versions
TW201229504A (en
Inventor
Herve Deslandes
Rudolf Schlangen
Prasad Sabbineni
Antoine Reverdy
Wolf Ingrid De
Original Assignee
Dcg Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dcg Systems Inc filed Critical Dcg Systems Inc
Publication of TW201229504A publication Critical patent/TW201229504A/zh
Application granted granted Critical
Publication of TWI460422B publication Critical patent/TWI460422B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0096Radiation pyrometry, e.g. infrared or optical thermometry for measuring wires, electrical contacts or electronic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/311Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • H04N23/23Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only from thermal infrared radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Toxicology (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electroluminescent Light Sources (AREA)

Description

從裝置一側作鎖相熱雷射激發並從另一側取得鎖相熱發散影像
本案主張美國臨時申請案第61/406,060號(申請日2010年10月22日)之優先權,該案的揭示內容全部作為本案的參考。
本發明是屬於半導體裝置及校正裝置及其他需要作瑕疵定位分析之技術領域。
在半導體裝置的設計及驗證階段,測試晶片設計中可能會導致瑕疵的各種故障或有問題的區域是非常重要的。其中一等級的瑕疵就是造成該晶片局部發熱的因素。在測試階段時,能判斷出這些瑕疵很重要。有一個方法可以判斷局部發熱的瑕疵,叫做鎖相熱學影像法(Lock In Thermography-LIT)。一現今可購得之產品稱為ELITETM 的技術,是由本案申請人美商DCG系統公司(DCG Systems,Inc.,Fremont,California)所提供,就是使用這種技術。所稱之LIT意指一非破壞性技術,利用一鎖相放大器,探測整個樣本上的微小熱能變化。該系統能判斷和定位,也就是提供一在晶片內,因瑕疵造成的局部發熱的位置座標。
另一種在設計驗證階段完成的測試,稱為熱雷射激發技術(Thermal Laser Stimulation-TLS或SLS,代表static laser stimulation)。一現今可購得之產品稱為MERIDIANTM 或TriVisionTM ,是由本案申請人所提供,就是使用這種技術。所稱之TLS意指使用一雷射(例如:1,340毫微米的波長)在半導體積體電路上產生局部發熱,以測試加熱對積體電路性能的影響。在此一系統中,該積體電路與一測試機有電性耦合,並提供電路測試信號給該積體電路。使用一雷射源產生局部發熱,該測試機用於分析積體電路對此種加熱的電性響應。就是將該積體電路在雷射加熱下,與未以雷射加熱下,對於一電性測試信號的響應,透過檢驗積體電路的電性輸出來作比較。在傳統的TLS中,是使用一連續波雷射,引發待測裝置發熱。該技術使用於檢測裝置內的短路。
隨著電子裝置朝向複雜的晶粒堆疊發展,利用傳統技術來測試這種裝置變得越為困難。同時,一種近代的晶粒堆疊結構中,需要使用稱為矽直通孔(Through-Silicon Via-TSV)的架構。因TSV有較高的高度-截面積比(aspect ratio),在TSV中很難平均的填充導電性材料。然而,不當地填充TSV將會導致裝置性能降低或甚至發生故障。於是,需要新改良的技術和裝置來輔助測試這種裝置。
以下對發明內容的簡述提供作為對本發明數種面向及技術特徵之基本理解。發明簡述並非對本發明之廣泛介紹,也因此並非用來特別指出本發明之關鍵性或是重要元件,也非用來界定本發明之範圍。其唯一目的僅在以簡單之方式展示本發明之數種概念,並作為以下發明詳細說明之前言。
根據本發明的數種面向,可利用一光束控制注入晶粒堆疊內的熱量,且可利用一熱感應器從晶粒另一邊測量熱的傳導。所得的熱學影像包含的特性可用來校正一已知堆疊層的相位偏移 ,也可以用來辨別存在晶粒堆疊內的瑕疵。將該過程對該堆疊中的每一個晶粒重複執行,產生可供未來測試之參考值。對該熱學影像加以研判,可以找出瑕疵故障處,例如孔洞(如TSV)內的空隙。
根據本發明的數種面向,乃是在提供一種分析一待測裝置(DUT)的系統,該系統包括:一支持該DUT的測試台;一熱源,設置於可傳送一規定值的能量從該DUT一側進到一既定點的位置;一熱學影像系統,設置於可產生DUT另一側影像的位置;及一控制器,用以啟動上述該熱源,以傳送該規定值的能量,並接收該熱學影像系統的輸出信號。該熱源可能包括一光源,如:雷射光源。根據已揭示的實施例,該控制器使該光源在鎖相頻率f 1下操作,並使該熱學影像系統在鎖相頻率f 2下操作。該鎖相頻率f 2可為該鎖相頻率f 1至少四倍以上。該熱學影像系統可包括一紅外光攝影機,且該熱源可另包括:一可動平台;一光學掃描機耦接到該可動平台,該光學掃描器接收該光源輸出結果,並導引該輸出到該DUT上的一定點;及一物鏡,以將該輸出集中在該DUT上的定點。
根據本發明其他的數種面向,是揭示一DUT的分析系統,該系統包括:一測試台,用以支持該DUT;一鎖相雷射光源,在一鎖相頻率f 1下操作,且設置於可從該DUT的一側傳送一脈衝雷射光束到該DUT的位置;一鎖相熱學影像系統,在一鎖相頻率f 2下操作,且設置於可使該DUT的另一側成像的位置;和一控制器,使該熱源在該鎖相頻率f 1下操作且使該熱學影像系統在該鎖相頻率f 2下操作。在已揭示的實施例中,該控制器輸出一鎖相頻率f 1觸發信號到該鎖相雷射光源,並輸出一鎖相頻率f 2觸發信號到該鎖相熱學影像系統,其中,該鎖相頻率f 2至少為該鎖相頻率f 1之四倍以上。該鎖相雷射源可包括:一激發源,用以接收該鎖相頻率f 1觸發信號並產生脈衝雷射光束;一掃描單元,用以接收和導引該脈衝雷射光束到該DUT上的一定義位置;及一物鏡,用以將該脈衝雷射光束集中到該定義位置。該鎖相熱學影像系統可能包括一紅外光攝影機。
根據本發明進一步的面向,乃是提供一種測試一DUT的方法。該方法包括:把該DUT置於一測試台上;照射該DUT一側上的一定義點;取得該DUT另一側的熱學影像;及分析該熱學影像,以將該DUT內的熱傳導特性化。照射一定義點的步驟可包括傳送一系列的雷射光脈衝,頻率為f 1,且取得一成像熱學影像的步驟可包括在一頻率f 2下取得一系列的影像。該方法可能更包括將頻率f 1和頻率f 2同步化的步驟,其中頻率f 2至少為頻率f 1之四倍以上。該方法可能更包括將此一系列脈衝聚焦於該DUT內一預先定義深度的步驟。該定義的點可包含至少一個TSV(矽直通孔),且該方法可能更包括將該熱學影像與一參考熱學影像做比較,以研判該TSV內的故障的步驟。該方法可能更包括組合出該DUT各材料層內的熱傳導的參考資料庫的步驟。
本發明的實施例利用一微米級點尺寸熱源進行熱學瑕疵分析,並創新積體電路和晶粒堆疊分析的校正方法。根據本發明的實施例,乃是使用光源(例如:雷射、雷射二極體等),在晶粒內部產生局部發熱。並使用例如從該晶粒反面側所取得的熱發散影像,進行研判。
根據本發明的實施例,在檢驗該機體電路設計時,是將鎖相熱雷射激發與鎖相熱發散(thermal emission)結合。前者的技術在裝置的一側作用,而另一種技術在相反側同時且同步作用。
根據本發明一實施例,是將雷射脈衝(例如:1,340nm波長,也就是矽的帶隙,或任何高於1064nm的波長)導引到一積體電路的給定區域,並具有給定的鎖相頻率,藉此在積體電路內部產生局部發熱。可以使用光學系統,也就是物鏡等,將該光束聚焦到該積體電路內的任何深度。再從反面側利用熱能(例如紅外光)攝影機偵測熱。該熱能攝影機也是以鎖相模式操作。該攝影機的操作頻率為該雷射鎖相頻率至少4倍以上(根據奈奎斯特取樣定理Nyquist-Shannon sampling theorem)。兩種系統在鎖相模式下運作,可提供較高的靈敏度。
本發明的技術可使用於對熱通過晶粒堆疊的傳播的校正過程,且特別適用在相位偏移分析。在傳統LIT測試中,該激發源是一種電源供應,提供電性信號給該積體電路。如果有物理瑕疵存在,所得的局部發熱會產生在晶粒堆疊內部,並由LIT系統利用一熱感應器從積體電路的表面偵測到。該熱波經由該積體電路各層傳導,會產生相對於該電源供應相位的相位偏移。相位偏移量將會視該瑕疵和該表面之間的材料形態,以及該瑕疵在位於該積體電路內的深度而變化。然而,相位偏移量與材料種類以及瑕疵深度的相關性,並無法得知。因此,利用已知技術難以判定該瑕疵在該積體電路內的深度。
根據本發明方法的實施例,是對晶粒堆疊注入控制量的熱,並利用熱能攝影機測量它的熱傳導,就可用來校正從給定的堆疊層所得的相位偏移。可以對堆疊中的各個晶粒,逐一量測,以產生參考值供未來測試用。也可以以物理方式,每次移除一個晶粒,並在每次移除後進行本發明的相位量測,以得到各種組合的數值。
第1圖描繪本發明一實施例,顯示一種用來測試待測積體電路裝置DUT 105的裝置100。該裝置100包含一測試台117,用以支持該DUT 105,一光學熱源110,設置於能從一側照亮到該DUT 105的位置,以及一熱學成像系統150,設置於能形成該DUT 105的另一側影像的位置。該光學熱源110利用一光源112,例如雷射,雷射二極體等,以傳送一預定值的能量到該DUT 105內一選定的位置。在第一圖的描繪中,該光源112傳送光脈衝到掃描機116,每一脈衝都是一定時間長及一定強度,該時間長與強度值是預先計算,用來傳送所需值的能量。該掃描機116用於導引光脈衝到該DUT 105上一選定的位置。換言之,該掃描機116不是在掃描模式下操作,也就是,並不掃描該DUT 105,而是以統計模式操作,以導引該光脈衝到單一的選定位置。該光脈衝藉由該物鏡118集中到該DUT 105上。
當該光脈衝聚焦到該DUT 105上一選定位置時,該DIT 105內將會產生一熱點。該熱點傳導到該DUT 105其他表面的速度,是依據該熱點位置與該DUT 105背面之間所存在的不同材料層的材質及厚度而定。一旦該熱傳導到背面表面,熱學感應器(例如IR攝影機) 118可將熱發散145形成影像。該IR攝影機118是由處理器152控制,並於鎖相模式下操作。為提高準確度,在此實施例中,該攝影機118的鎖相頻率140是設成至少為光源112的鎖相頻率315之四倍以上。之後可分析該熱能影像,以得知該DUT 105內的熱傳導特性。該特性化的結果可用於定位該DUT 105內的熱點,這些熱點是瑕疵或是該DUT 105的錯誤設計造成的。舉例來說,在進行該DUT 105表面的熱成像的同時,可將電性測試信號施用於該DUT 105。該電性測試信號將會使瑕疵處產生熱點,而產生的熱點可利用熱能成像來顯示其影像。該特性化的結果可用於判定該DUT 105內所存瑕疵的精確深度。
第2圖顯示對有8個晶粒的堆疊進行實驗的結果。第2圖描繪的曲線顯示每一材料層的校正後相位與鎖相頻率的關係。這些曲線能用於對具有相似結構的裝置作LIT測試。
根據本發明另一實施例,如第1圖所示的系統,可應用於定位有瑕疵的矽直通孔(through silicon via,TSV)。在製造中,所有在裝置上的TSV需用導電性材料適當的填充,以達到適當地傳導電性信號的目的。TSV內存在的任何空隙都必須能偵測到,因為空隙會提高該TSV的電阻,而降低其性能或使積體電路的故障。碰巧的是,存在TSV內任何的空隙都會減緩或阻斷熱從一瑕疵或激發源112的傳導。因此,根據本發明的實施例,使用激發源112在晶粒的一側產生熱點,以造成熱傳導到另一側,而在該另一側則設置一熱發散攝影機,以形成該晶粒表面的影像。在結構正常的TSV內的熱傳導,可以設定為一參考TSV,用來與一待測的TSV內的熱傳導相比較。若熱傳導比較緩慢或熱轉換率比較低,也就是所得的熱學影像比較昏暗,就表示一TSV有瑕疵。
第3圖描繪一實施例,是在該熱傳導特性已經建立完成後,測試DUT 300的系統。電性激發源305產生的電性激發信號330,頻率為f 0,激發DUT 300。在本發明一實施例中,該激發信號330為一方波,其振幅電壓(amplitude voltage)與該DUT之工作電壓相同,例如為12V,鎖相頻率為f 0 。該激發信號之頻率f 0 是由處理器315的頻率選擇器部份320所設定及改變。該處理器315產生一同步信號335,送到該激發源305。最簡單的方法是將該同步信號335的頻率設為與該頻率f 0 相同,但也可為其他的頻率,只要能夠提供使激發源305產生頻率為f 0 之電路激發信號330即可。使用一紅外光攝影機310攝取該DUT 300選定區域的紅外光影像。該攝影機310的取像頻率通常是但不限於高於該頻率f 0 。在本實例中取像頻率是設成至少為該頻率f 0 的4倍以上。該操作也可以由一ATE(自動化測試儀器)來處理,亦即,由該ATE送出驅動信號到該DUT,同時送出一觸發信號到該控制器與該攝影機。
在第3圖的架構中,該DUT 300是由激發源305一再地激發,而該激發信號的頻率f 0 則是根據該頻率選擇器320提供的同步信號335而變化。這種作法可以提供對一熱點位置更佳且更精確的判定,特別是其在該電子裝置內的深度(Z方向的深度)。此外,第3圖的架構並不會輸出單一的信號相位資料點,而是提供可以在監視器325上畫出整個響應曲線的資料。由於能夠獲得全部的響應曲線,故可用來進行近一步的分析,例如作曲線擬合(curve fitting),以對該DUT內熱擴散的時間解析有更多的瞭解。值得一提的是,從上述可以看出,不同於一般的標準除錯方法,例如OBIC、LVP、TREM等,需要將裝置除封裝,並將晶片背面磨薄才能執行,在第3圖的架構下,測試時並不需要將該晶片的封裝除去。
在對已堆疊晶粒的集積裝置內作三維熱點定位時,也就是一系統封裝元件(system in package,SiP),必須要考慮到第二種影響的因素。產生在該熱點位置的熱波必須要在不同材料層,例如矽、封裝材料、晶粒黏貼帶等當中傳播,每層材料層都有不同的厚度。如此一來,由於該熱點在該有瑕疵裝置中不同晶粒的軸向位置不定,不但熱點距該裝置表面的距離不同,其熱擴散長度也不同。因此,在該堆疊內較下方的晶粒中,熱點所產生的熱波必須通過額外的材料層,而與位在靠近該裝置表面的熱點所產生的熱波不同。這種熱傳播行為可以用來判定該熱點的深度,其方法是計算不同熱點位置在特定頻率範圍所產生的理論相位偏移量。另一方面,利用該系統和上述方法,就能產生一不同材料層或不同裝置的熱傳導特性的資料庫,並利用該資料庫當作參考以判定一已測試裝置內的瑕疵位置深度。
如上述所理解的,已揭示的實施例能夠使用LIT做量化和熱點非破壞性三維定位,該熱點是因為電子裝置內電路結構或故障所產生。所使用的鎖相頻率與相位偏移之間的關係,可以利用熱在不同的已測試裝置和材料層內的傳導特性,加以決定。即使是深埋於厚度未知的單一材料層下的熱點,或埋藏在一晶粒堆疊裝置內晶粒數未知的結構下,仍可判定其熱點位置。本發明揭示的方法能夠定位所有埋藏的熱點的三個維度,甚至在封裝材料的厚夾層下的熱點,也可適用。
不但如此,屬系統封裝元件架構的不同晶粒層也可量測出來,顯示出明確的相位偏移量差異,可以用來精確的判定整個封裝內有瑕疵晶粒的位置。由於晶粒堆疊裝置內有非均質材料堆疊,會形成複雜的熱學特定,故需建立一熱傳導特性的資料庫,使在這些複雜裝置內的瑕疵定位能更精確。本發明的實施例使得上述獲得實驗結果及分析實驗結果,以計算熱點深度的目的,可以達成。
必須說明的是,以上所述之方法及技術本質上並不限於任何特定之裝置,且可以任何適用之元件組合加以達成。此外,各種態樣之泛用性裝置也可適用在所述之發明中。也可以使用特製的裝置,以執行上述之發明方法步驟,而獲得更多優勢。
本發明既已根據特定實施例說明如上,該說明無論如何均只在例示本發明,不得用以限制其範圍。習於此藝之人均可利用各種不同之硬體、軟體、韌體之結合,實施本發明。此外,本發明之其他實施方式,也可由此行業之人根據本發明之專利說明書加以達成,完成實施。本案之說明書及所舉之實施例,目的只是在展示,而本發明之專利真正範圍及精神,只能由以下申請專利範圍限定。
100...裝置
105...DUT
107...X-Y-Z平台
110...裝置
112...激發源
116...掃描機
117...測試台
118...熱學感應器
125...控制器
130...鎖相頻率
135...鎖相頻率
140...鎖相頻率
145...熱發散
150...熱學成像系統
152...處理器
154...頻率選擇器
300...DUT
305...電性激發源
310...紅外光攝影機
315...處理器
320...頻率選擇器部份
325...監視器
330...激發信號
335...同步信號
340...鎖相頻率
345...熱發散
本發明的其他面向及特徵從詳細說明中可獲得清楚的理解。詳細說明時乃是參考下列圖式。必須說明,該詳細說明及圖式提供本發明各種實施例的各種非限制例子,本發明的範圍應由所附的申請專利範圍來界定。
附隨之圖式為本說明書所包含並構成本說明書之一部份,該等圖式例示本發明之實施例,並與發明說明共同解釋並描述本發明之原理。該等圖式之目的在於以圖表之形式描述例示實施例之主要特徵。該等圖式並非用以描述實際實施例之每一特徵或所描述各該構件之相對尺寸比,亦非按照比例描繪。
第1圖描繪本發明一實施例,顯示測試積體電路裝置的設置。
第2圖顯示對一有8個晶粒的堆疊的實驗結果。
第3圖描繪在完成該熱傳導特性化後測試該DUT的實施例。
100...裝置
105...DUT
107...X-Y-Z平台
110...裝置
112...激發源
116...掃描機
117...測試台
118...熱學感應器
125...控制器
130...鎖相頻率
135...鎖相頻率
140...鎖相頻率
145...熱發散
150...熱學成像系統
152...處理器
154...頻率選擇器

Claims (18)

  1. 一種分析一待測裝置(DUT)的系統,包括:一支持該DUT的測試台;一熱源,設置於可傳送一規定值的能量從該DUT一側進到一定義點的位置;其中該定義點包含至少一個TSV(矽直通孔);一熱學影像系統,設置於可產生DUT另一側影像的位置;及一控制器,用以啟動該熱源,以傳送該規定值的能量,包括傳送一系列的雷射光脈衝,頻率為f 1,並接收該熱學影像系統的輸出信號,及將該熱學影像與一參考熱學影像做比較,以研判該TSV內的故障。
  2. 如申請專利範圍第1項的系統,其中該熱源包括一光源。
  3. 如申請專利範圍第2項的系統,其中該光源為一雷射光源。
  4. 如申請專利範圍第2項的系統,其中該控制器使該光源在鎖相頻率f 1下操作,並使該熱學影像系統在鎖相頻率f 2下操作。
  5. 如申請專利範圍第4項的系統,其中該鎖相頻率f 2至少為該鎖相頻率f 1之四倍以上。
  6. 如申請專利範圍第5項的系統,其中該熱學影像系統包括一紅外光攝影機。
  7. 如申請專利範圍第6項的系統,其中該熱源另包括:一可動平台;一光學掃描機,耦接到該可動平台,該光學掃描器接收該光源輸出,並導引該輸出到該DUT上的一定點;及一物鏡,以將該輸出集中到該DUT上的定點。
  8. 一種待測裝置(DUT)的分析系統,包括:一測試台,用以支持該DUT;一鎖相雷射光源,在一鎖相頻率f 1下操作,且設置於可從該DUT的一側傳送一脈衝雷射光束到該DUT,達到一定義點的位置;其中該定義 點包含至少一個TSV(矽直通孔);一鎖相熱學影像系統,在一鎖相頻率f 2下操作,且設置於可使該DUT的另一側成像的位置;和一控制器,使該鎖相雷射光源在該鎖相頻率f 1下操作且使該熱學影像系統在該鎖相頻率f 2下操作,並將該熱學影像系統產生之熱學影像與一參考熱學影像做比較,以研判該TSV內的故障。
  9. 如申請專利範圍第8項的系統,其中該控制器輸出一鎖相頻率f 1觸發信號到該鎖相雷射光源,並輸出一鎖相頻率f 2觸發信號到該鎖相熱學影像系統。
  10. 如申請專利範圍第9項的系統,其中該鎖相頻率f 2至少為該鎖相頻率f 1四倍以上。
  11. 如申請專利範圍第8項的系統,其中該鎖相雷射源包括:一激發源,用以接收該鎖相頻率f 1觸發信號並產生脈衝雷射光束;一掃描單元,用以接收和導引該脈衝雷射光束到該DUT上的一定義位置;及一物鏡,用以將該脈衝雷射光束集中到該定義位置。
  12. 如申請專利範圍第11項的系統,其中該鎖相熱學影像系統包括一紅外光攝影機。
  13. 一種測試一待測裝置(DUT)的方法,包括:把該DUT置於一測試台上;照射該DUT一側上的一定義點,包括傳送一系列的雷射光脈衝,頻率為f 1;取得該DUT另一側的熱學影像;及分析該熱學影像,以將該DUT內的熱傳導特性化;其中該定義點包含至少一個TSV(矽直通孔);且該方法更包括將該熱學影像與一參考熱學影像做比較,以研判該TSV內的故障的步驟。
  14. 如申請專利範圍第13項的方法,其中該取得熱學影像的步驟包括在一頻率f 2下取得一系列的成像影像。
  15. 如申請專利範圍第14項的方法,更包括將頻率f 1和頻率f 2同步化的步驟。
  16. 如申請專利範圍第15項的方法,其中頻率f 2至少為頻率f 1的四倍以上。
  17. 如申請專利範圍第13項的方法,更包括將該系列脈衝聚焦於該DUT內一預先定義深度的步驟。
  18. 如申請專利範圍第13項的方法,更包括組合出該DUT各材料層內的熱傳導的參考資料庫的步驟。
TW100137995A 2010-10-22 2011-10-19 從裝置一側作鎖相熱雷射激發並從另一側取得鎖相熱發散影像 TWI460422B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US40606010P 2010-10-22 2010-10-22

Publications (2)

Publication Number Publication Date
TW201229504A TW201229504A (en) 2012-07-16
TWI460422B true TWI460422B (zh) 2014-11-11

Family

ID=44970947

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100137995A TWI460422B (zh) 2010-10-22 2011-10-19 從裝置一側作鎖相熱雷射激發並從另一側取得鎖相熱發散影像

Country Status (5)

Country Link
US (3) US9025020B2 (zh)
EP (1) EP2444795A1 (zh)
JP (2) JP2012093355A (zh)
SG (1) SG180133A1 (zh)
TW (1) TWI460422B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322715B2 (en) 2010-06-08 2016-04-26 Dcg Systems, Inc. Three-dimensional hot spot localization

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2444795A1 (en) 2010-10-22 2012-04-25 DCG Systems, Inc. Lock in thermal laser stimulation through one side of the device while acquiring lock-in thermal emission images on the opposite side
JP5710385B2 (ja) * 2011-06-02 2015-04-30 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 超音波スキャンに基づくシリコン貫通配線(tsv)におけるボイドの存在の推定
JP5743855B2 (ja) 2011-11-07 2015-07-01 浜松ホトニクス株式会社 発熱点検出方法及び発熱点検出装置
JP2014066527A (ja) * 2012-09-24 2014-04-17 National Institute Of Advanced Industrial & Technology 積層lsiの接続状態の検査方法
JP2014070895A (ja) * 2012-09-27 2014-04-21 Denso Corp 半導体装置の検査方法および検査装置
TW201423096A (zh) * 2012-12-07 2014-06-16 Ind Tech Res Inst 中介層測試裝置及其方法
US20140191111A1 (en) * 2012-12-10 2014-07-10 Dcg Systems, Inc. Accumulating optical detector with shutter emulation
US20140210992A1 (en) * 2013-01-31 2014-07-31 United Technologies Corporation Infrared thermography with laser
US9041919B2 (en) 2013-02-18 2015-05-26 Globalfoundries Inc. Infrared-based metrology for detection of stress and defects around through silicon vias
TWI486583B (zh) * 2013-06-25 2015-06-01 矽品精密工業股份有限公司 半導體基板之檢測方法
EP2840385A1 (en) * 2013-08-23 2015-02-25 DCG Systems, Inc. Lock-in thermography method and system for determining material layer parameters of a sample
EP2840387A1 (en) * 2013-08-23 2015-02-25 DCG Systems, Inc. Lock-in thermography method and system for hot spot localization
EP2840408B1 (en) * 2013-08-23 2016-02-10 DCG Systems, Inc. LIT method for identifying hot spots at different depth localizations
TWI500927B (zh) * 2013-10-14 2015-09-21 Nat Univ Tsing Hua 非接觸式中介層檢測方法與裝置
KR102399493B1 (ko) * 2014-01-23 2022-05-19 삼성전자주식회사 반도체 칩 표면검사 장치 및 이를 이용한 반도체 칩의 표면검사 방법
EP2952884B1 (en) * 2014-06-04 2019-07-03 DCG Systems GmbH Method for examination of a sample by means of the lock-in thermography
DE102014218136B4 (de) * 2014-09-10 2019-07-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermographische Untersuchungseinrichtung sowie Verfahren zur zerstörungsfreien Untersuchung einer oberflächennahen Struktur an einem Prüfobjekt
DE102016101452B4 (de) * 2016-01-27 2018-10-11 Infineon Technologies Ag Inspektion elektronischer Chips durch Rückseitenbeleuchtung
US9588174B1 (en) * 2016-03-08 2017-03-07 International Business Machines Corporation Method for testing through silicon vias in 3D integrated circuits
CN106158688B (zh) * 2016-05-20 2019-03-01 江苏师范大学 一种tsv封装缺陷检测装置及其检测方法
KR20190041678A (ko) * 2017-10-13 2019-04-23 삼성전자주식회사 반도체 칩 검사 장치
CN108051093A (zh) * 2017-12-02 2018-05-18 北京工业大学 用于探测功率循环实验中igbt模块温度场的红外热成像测温方法
WO2019185498A1 (en) * 2018-03-26 2019-10-03 Koninklijke Philips N.V. Automatic fault detection in hybrid imaging
US11662346B2 (en) * 2019-10-17 2023-05-30 C2Sense, Inc. Systems and methods for sensing using consumer electronic devices
KR20210055539A (ko) * 2019-11-07 2021-05-17 삼성전자주식회사 반도체 패키지 검사장치 및 이를 구비하는 반도체 패키지 제조 시스템
CN113406146B (zh) * 2021-07-23 2022-02-22 中国航空综合技术研究所 用于蜂窝夹层结构的红外锁相热成像缺陷识别方法
KR102441670B1 (ko) * 2022-04-20 2022-09-08 큐알티 주식회사 지능형 빔 세기 계산 시스템, 및 이의 계산 방법
CN115361174B (zh) * 2022-07-26 2024-02-23 电子科技大学 一种基于热成像的辅助认证方法
CN116124837A (zh) * 2023-04-17 2023-05-16 广东科翔电子科技股份有限公司 一种pcb外观检测方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557607A (en) * 1980-09-01 1985-12-10 Carl-Zeiss-Stiftung, Heidenheim/Brenz Method and device for structural, superficial and deep analysis of a body
US6840667B2 (en) * 2000-08-25 2005-01-11 Photon Dynamics, Inc. Method and apparatus for detection of defects using thermal stimulation
US20070021670A1 (en) * 2005-07-18 2007-01-25 Andreas Mandelis Method and apparatus using infrared photothermal radiometry (PTR) and modulated laser luminescence (LUM) for diagnostics of defects in teeth

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352048A (ja) * 1986-08-22 1988-03-05 Osaka Gas Co Ltd 材料の非破壊検査方法
US4950897A (en) * 1989-01-04 1990-08-21 University Of Toronto Innovations Foundation Thermal wave sub-surface defect imaging and tomography apparatus
JP2653532B2 (ja) * 1989-12-26 1997-09-17 株式会社東芝 表層欠陥検査装置
DE4203272C2 (de) 1992-02-05 1995-05-18 Busse Gerd Prof Dr Rer Nat Hab Verfahren zur phasenempfindlichen Darstellung eines effektmodulierten Gegenstandes
JP2518533B2 (ja) * 1993-09-24 1996-07-24 日本電気株式会社 半導体集積回路内部相互配線の検査装置
US5652658A (en) * 1993-10-19 1997-07-29 View Engineering, Inc. Grid array inspection system and method
CA2126481C (en) * 1994-06-22 2001-03-27 Andreas Mandelis Non-contact photothermal method for measuring thermal diffusivity and electronic defect properties of solids
IT1297697B1 (it) 1997-10-21 1999-12-20 Antonio Salerno Termografia ad impulso costante.
DE19835616C2 (de) 1998-08-06 2002-02-28 Wacker Siltronic Halbleitermat Verfahren zur Lokalisierung und Bestimmung der lokalen Dichte von Gateoxid Defekten in MIS-Kondensatoren
DE19837889C1 (de) * 1998-08-20 2000-12-21 Siemens Ag Thermowellen-Meßverfahren
WO2001020303A1 (en) 1999-09-16 2001-03-22 Wayne State University Miniaturized contactless sonic ir device for remote non-destructive inspection
US6593574B2 (en) 1999-09-16 2003-07-15 Wayne State University Hand-held sound source gun for infrared imaging of sub-surface defects in materials
GB9924425D0 (en) * 1999-10-16 1999-12-15 British Aerospace Material analysis
US7724925B2 (en) 1999-12-02 2010-05-25 Thermal Wave Imaging, Inc. System for generating thermographic images using thermographic signal reconstruction
US6751342B2 (en) 1999-12-02 2004-06-15 Thermal Wave Imaging, Inc. System for generating thermographic images using thermographic signal reconstruction
GB0001181D0 (en) 2000-01-20 2000-03-08 British Aerospace Material analysis
GB0022612D0 (en) 2000-09-15 2000-11-01 Univ Warwick Non-destructive testing apparatus
DE10053112A1 (de) 2000-10-26 2002-05-16 Bosch Gmbh Robert Vorrichtung und Verfahren zur thermografischen Analyse von Prüflingen
DE10059854A1 (de) 2000-11-30 2002-06-13 Gerd Busse Bildgebendes Verfahren zur Darstellung eines temperaturmodulierten Gegenstandes mittels der Phase
DE10150633C5 (de) * 2001-10-12 2014-09-04 Thermosensorik Gmbh Verfahren und Vorrichtung zur berührungslosen, zerstörungsfreien automatischen Prüfung von Materialverbindungen, insbesondere der Qualitätskontrolle von Schweißverbindungen
WO2003062809A1 (en) 2002-01-23 2003-07-31 Marena Systems Corporation Infrared thermography for defect detection and analysis
JP3940335B2 (ja) 2002-08-05 2007-07-04 ▲隆▼英 阪上 欠陥検査方法およびその装置
US7186981B2 (en) 2003-07-29 2007-03-06 Thermal Wave Imaging, Inc. Method and apparatus for thermographic imaging using flash pulse truncation
US20060140445A1 (en) 2004-03-22 2006-06-29 Cusack Francis J Jr Method and apparatus for capturing digital facial images optimally suited for manual and automated recognition
JP3854986B2 (ja) * 2004-03-30 2006-12-06 財団法人北九州産業学術推進機構 プラスチックの識別方法および識別装置
WO2006023212A2 (en) 2004-07-26 2006-03-02 Thermal Wave Imaging Infrared camera measurement correction for pulsed excitation with subframe duration
EP1852697B1 (en) 2004-10-04 2010-12-22 Siemens Aktiengesellschaft Method for determing material parameters of an object from temperature-versus-time (t-t) data
US7429735B2 (en) 2005-03-15 2008-09-30 Mass Institute Of Technology (Mit) High performance CCD-based thermoreflectance imaging using stochastic resonance
CN1696674B (zh) 2005-06-24 2010-06-02 首都师范大学 红外热波检测层析图像的重建方法
US20100062550A1 (en) 2005-06-30 2010-03-11 Koninklijke Philips Electronics, N.V. Method for reducing occurrence of short-circuit failure in an organic functional device
DE102005053203A1 (de) 2005-11-08 2007-05-10 Ircam Gmbh Verfahren zur Synchronisation von elektrischer Signalerfassung und einer Infrarot-Kamera
US7272207B1 (en) 2006-03-24 2007-09-18 Richard Aufrichtig Processes and apparatus for variable binning of data in non-destructive imaging
WO2007147158A2 (en) * 2006-06-16 2007-12-21 Worcester Polytechnic Institute Infrared defect detection system and method for the evaluation of powdermetallic compacts
JP2008016778A (ja) * 2006-07-10 2008-01-24 Nec Electronics Corp 半導体検査装置および半導体検査方法
DE102006043339B4 (de) 2006-09-15 2010-11-11 Siemens Ag Verfahren und Vorrichtung zur Bestimmung von Bauteilwandstärken mittels Thermographie
US7444260B2 (en) 2006-09-25 2008-10-28 Raad Peter E Thermography measurement system for conducting thermal characterization of integrated circuits
DE102006061794B3 (de) 2006-12-21 2008-04-30 Thermosensorik Gmbh Verfahren zur automatischen Prüfung einer Schweißverbindung
WO2008137848A2 (en) 2007-05-04 2008-11-13 Masschusetts Institute Of Technology (Mit) Optical characterization of photonic integrated circuits
EP2162734A1 (de) 2007-07-04 2010-03-17 Thermosensorik Gmbh Verfahren zur automatischen inspektion einer schweissnaht mittels wärmefluss-thermographie
DE102007037377B4 (de) 2007-08-08 2018-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Detektion von durch Unterbrechungen charakterisierbare Fehlstellen in Leitbahnnetzwerken
DE102007058566B4 (de) 2007-11-29 2020-10-15 Infratec Gmbh Vorrichtung und Verfahren zur berührungslosen und zerstörungsfreien Prüfung von Bauteilen mittels Wärmeflussthermografie
US20100074515A1 (en) 2008-02-05 2010-03-25 Kla-Tencor Corporation Defect Detection and Response
US7709794B2 (en) * 2008-02-05 2010-05-04 Kla-Tencor Corporation Defect detection using time delay lock-in thermography (LIT) and dark field LIT
US20090297017A1 (en) 2008-03-25 2009-12-03 Hudgings Janice A High resolution multimodal imaging for non-destructive evaluation of polysilicon solar cells
WO2010099964A2 (en) 2009-03-05 2010-09-10 Oerlikon Solar Ag, Trübbach Method and apparatus for measurement of ohmic shunts in thin film modules with the voc-ilit technique
SG186207A1 (en) 2010-06-08 2013-01-30 Dcg Systems Inc Three-dimensional hot spot localization
EP2444795A1 (en) 2010-10-22 2012-04-25 DCG Systems, Inc. Lock in thermal laser stimulation through one side of the device while acquiring lock-in thermal emission images on the opposite side

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557607A (en) * 1980-09-01 1985-12-10 Carl-Zeiss-Stiftung, Heidenheim/Brenz Method and device for structural, superficial and deep analysis of a body
US6840667B2 (en) * 2000-08-25 2005-01-11 Photon Dynamics, Inc. Method and apparatus for detection of defects using thermal stimulation
US20070021670A1 (en) * 2005-07-18 2007-01-25 Andreas Mandelis Method and apparatus using infrared photothermal radiometry (PTR) and modulated laser luminescence (LUM) for diagnostics of defects in teeth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322715B2 (en) 2010-06-08 2016-04-26 Dcg Systems, Inc. Three-dimensional hot spot localization

Also Published As

Publication number Publication date
EP2444795A1 (en) 2012-04-25
US9098892B2 (en) 2015-08-04
US20120098957A1 (en) 2012-04-26
JP6367871B2 (ja) 2018-08-01
TW201229504A (en) 2012-07-16
SG180133A1 (en) 2012-05-30
JP2016188874A (ja) 2016-11-04
US20140210994A1 (en) 2014-07-31
JP2012093355A (ja) 2012-05-17
US20150338458A1 (en) 2015-11-26
US9025020B2 (en) 2015-05-05

Similar Documents

Publication Publication Date Title
TWI460422B (zh) 從裝置一側作鎖相熱雷射激發並從另一側取得鎖相熱發散影像
TWI468677B (zh) 熱點之三維定位
TWI623746B (zh) 光學聲音基體評估系統及方法
US10761039B2 (en) Method for examination of a sample by means of the lock-in thermography
TW201514482A (zh) 用以辨認熱點位置的鎖相熱成像方法及系統
US20030206292A1 (en) Optical technique for detecting buried defects in opaque films
TW201618208A (zh) 用於空洞偵測的非破壞性聲學計量技術
TW201512653A (zh) 用以在不同深度位置辨認熱點的鎖相熱成像方法
US9411002B2 (en) System and method for gradient thermal analysis by induced stimulus
Liu et al. High resolution 3D X-ray microscopy for streamlined failure analysis workflow
JP2010281785A (ja) 被測定物の欠陥検出装置及び方法
KR101551609B1 (ko) 웨이퍼 홀 특성 분석 장치 및 그 제어 방법
Cao et al. Lock-in thermography for flip-chip package failure analysis
US8907691B2 (en) Integrated circuit thermally induced noise analysis
Li et al. Imaging-based NDT methods for electronic devices
CN117491427A (zh) 一种基于透射激光锁相的多层晶圆气泡缺陷层析方法
Matsui et al. Fault localization of IDDQ failure using External trigger Synchronous LIT technique
JP2006337037A (ja) 故障箇所特定方法および装置
Hunt et al. 2.5 D and 3D Packaging Failure Analysis Techniques
Lin et al. Study of Phase Shift of Lock-In Thermography and Its Application in 2.5 D IC Package
CN117491384A (zh) 晶圆检测系统及检测方法
JP2518162B2 (ja) 半導体集積回路故障検査装置
JP2007298424A (ja) 半導体デバイスの非破壊検査方法