TWI450494B - 功率放大器系統 - Google Patents

功率放大器系統 Download PDF

Info

Publication number
TWI450494B
TWI450494B TW098117954A TW98117954A TWI450494B TW I450494 B TWI450494 B TW I450494B TW 098117954 A TW098117954 A TW 098117954A TW 98117954 A TW98117954 A TW 98117954A TW I450494 B TWI450494 B TW I450494B
Authority
TW
Taiwan
Prior art keywords
transmission line
crlh
mtm
power
input
Prior art date
Application number
TW098117954A
Other languages
English (en)
Other versions
TW201004138A (en
Inventor
Alexandre Dupuy
Raul Alidio
Ajay Gummalla
Maha Achour
Cheng Jung Lee
Can Zheng
Original Assignee
Hollinworth Fund L L C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hollinworth Fund L L C filed Critical Hollinworth Fund L L C
Publication of TW201004138A publication Critical patent/TW201004138A/zh
Application granted granted Critical
Publication of TWI450494B publication Critical patent/TWI450494B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0294Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using vector summing of two or more constant amplitude phase-modulated signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/255Amplifier input adaptation especially for transmission line coupling purposes, e.g. impedance adaptation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/331Sigma delta modulation being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/351Pulse width modulation being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/423Amplifier output adaptation especially for transmission line coupling purposes, e.g. impedance adaptation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/543A transmission line being used as coupling element between two amplifying stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Description

功率放大器系統
本發明係關於放大射頻(RF)訊號之功率放大裝置、系統及技術。
功率放大器(Power Amplifier,PA)為借由將直流電源轉換成射頻電源而放大射頻訊號之裝置,常用於各種RF裝置和系統。許多應用於收發器系統的功率放大器佔用較大的晶片或主機板空間、使用較高的直流電源、並需要排除操作期間產生之熱。在無線通訊或其他射頻應用中,必需使用具備良好效率及線性度的功率放大器。許多目標在高通訊處理量的無線電通訊標準採用複雜的調變模式來產生兼具振幅及相位成份之射頻訊號。這樣的模式必須要求系統之功率放大器具備嚴謹的線性度。此外,功率放大器亦需操作於適當之效率水準,以使電池的功率損耗及發熱率最小化。
本發明提供一功率放大器系統,用以放大一射頻訊號,包括一輸入埠,用以接收一輸入射頻訊號;一功率分配器,包括一輸入傳輸線,耦接至該輸入埠以接收該輸入射頻訊號;複數個輸出分路傳輸線,耦接至該輸入傳輸線,用以將所接收之該輸入射頻訊號分成複數個分路射頻訊號,並將該等分路射頻訊號分別傳輸於該等輸出分路傳輸線上;複數個功率放大器,分別耦接至該功率分配器之該等輸出分路傳輸線,各功率放大器接收並放大一各別的分路射頻訊號以產生一放大的分路射頻訊號;以及一功率合併器,包括複數個輸入分路傳輸線,分別耦接至該等功率放大器,用以接收由該功率放大器所產生之該等放大的分路射頻訊號;以及一輸出傳輸線,耦接至該等輸入分路傳輸線,用以將該放大的分路射頻訊號合併成一合併的輸出射頻訊號,其中該功率分配器和該功率合併器中至少一者包括一右左手複合型(Composite Right and Left Handed,CRLH)超穎物質(Metamaterial)結構。
本發明另提供一個以右左手複合型(CRLH)超穎物質(MTM)結構為基礎之裝置,包括一第一傳輸線,包括一右左手複合型(CRLH)超穎物質(MTM)結構、終止於一第一阻抗的一第一端、以及一第二端;複數個CRLH MTM結構之第二傳輸線,耦接於該第一傳輸線之第二端,用以分別在該等第二傳輸線上將接收於該第一傳輸線之第二端的一輸入射頻訊號分成複數個輸出射頻訊號,或者將該第二傳輸線上的複數個輸入射頻訊號合併成該第一傳輸線之第二端上的一輸出射頻訊號,各該第二傳輸線具有耦接至該第一傳輸線之第二端的一第一端,以及終止於一各別的第二阻抗的一第二端,其中該第一傳輸線和該第二傳輸線設計成能夠在該第一傳輸線之第一端與各該第二傳輸線之各別的第二阻抗之間提供阻抗匹配,以及其中該第一傳輸線及該第二傳輸線設計成:一第一組態,其中該第一傳輸線為一CRLH MTM傳輸線,其電氣長度具有一±m90°之相位延遲,其中m為一正奇數,而各該第二傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一零相位延遲或一±n180°之相位延遲,其中n為一正整數;或一第二組態,其中該第一傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一零相位延遲或一±m180°之相位延遲,其中m為一正整數,而各該第二傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一±n90°之相位延遲,其中n為一正奇數。
本發明另提供一功率放大器系統,包括一射頻輸入埠,用以接收一輸入射頻訊號;一波包偵測器,耦接至該射頻輸入埠,接收該輸入射頻訊號之一第一部分以擷取該輸入射頻訊號之一振幅包絡之資訊而產生一波包訊號;一差和調變器,耦接至該波包偵測器以將該波泡訊號轉換成一第一訊號;一限制器電路,耦接至該射頻輸入埠,接收該輸入射頻訊號之一第二部分以消除該輸入射頻訊號之振幅調變成份而產生一保有該輸入射頻訊號之相位的一第二訊號,一時間延遲電路,耦接至該限制器電路,並在該第二放大器輸入訊號中造成一延遲而與該第一訊號同步;一調變器,接收該第一及第二訊號,並將所接收之該第一及第二訊號合併成一第三訊號;以及一功率放大器,耦接至該調變器以接收並放大該第三訊號成一輸出射頻訊號,而該輸出射頻訊號與該輸入射頻訊號成呈正比,其中該功率放大器為一右左手複合型(CRLH)超穎物質(MTM)結構功率放大器。
本發明另提供一功率放大器系統,包括一射頻輸入埠,用以接收一輸入射頻訊號;一波包偵測器,耦接至該射頻輸入埠,接收該輸入射頻訊號之一第一部分以擷取該輸入射頻訊號之一振幅包絡之資訊而產生一波包訊號;一差和調變器,耦接至該波包偵測器以將該波泡訊號轉換成一第一訊號;一限制器電路,耦接至該射頻輸入埠,接收該輸入射頻訊號之一第二部分以消除該輸入射頻訊號之振幅調變成份而產生一保有該輸入射頻訊號之相位的一第二訊號,一時間延遲電路,耦接至該限制器電路,並在該第二放大器輸入訊號中造成一延遲而與該第一訊號同步;一功率放大器,耦接並接收該第一及第二訊號以產生一輸出射頻訊號,而該輸出射頻訊號與該輸入射頻訊號成呈正比;以及一濾波器,耦接至該功率放大器以過濾該輸出射頻訊號,該濾波器具有一右左手複合型(CRLH)超穎物質(MTM)結構。
本發明另提供一功率放大器系統,用以放大一射頻訊號,包括一輸入埠,用以接收一輸入射頻訊號;複數個以右左手複合型(CRLH)超穎物質(MTM)結構為基礎之傳輸線,串接該輸入埠並接收該輸入射頻訊號,各傳輸線具有一CRLH MTM結構,用以在一操作頻率下產生一零相位延遲或一n360之相位延遲,其中n為一正整數或一負整數,並且具有一分路輸出埠,用以將該射頻訊號之一部分分成各別傳輸線之一分路射頻訊號,並且不同之傳輸線產生各不同之分路射頻訊號;數個功率放大器,分別耦接至該等傳輸線之分路輸出埠,各功率放大器接收並放大一個別的分路射頻訊號以產生一放大的分路射頻訊號;及一以CRLH MTM結構為基礎之功率放大器,耦接並接收自該等功率放大器而來之該放大的分路射頻訊號,並將所接收的該等放大的分路射頻訊號合併成一合併的輸出射頻訊號。
本發明另提供一功率放大系統,用以放大一射頻訊號,包括具有右左手複合型(CRLH)超穎物質(MTM)結構之一第零階共振器功率放大器,接收一輸入射頻訊號,並將所接收之該輸入射頻訊號在與彼此相關之相位中分成複數個該等分路射頻訊號;複數個電晶體,耦接至該第零階共振器功率分配器以分別接收該等分路射頻訊號,並將所接收之該等分路射頻訊號放大;以及以CRLH MTM結構為基礎之一第零階共振天線,耦接至該等電晶體以接收放大的分路射頻訊號。
本發明另提供一功率放大器系統,包括一射頻輸入,用以接收一輸入射頻訊號;以右左手複合型(CRLH)超穎物質(MTM)結構為基礎之一第一正交耦合器,具有一第一輸入埠、一第二輸入埠、一第一輸出埠及一第二輸出埠,其中該第一輸入埠耦接至該射頻輸入以接收該輸入射頻訊號,該第二輸入埠為終端,該第一正交耦合器將該輸入射頻訊號分至在該第一輸出埠上的一第一射頻訊號、在該第二輸出埠上之一第二射頻訊號,其中該第二輸出埠具有相對該第一輸出埠偏移90度之相位;一第一功率放大器,耦接至該第一輸出埠以接收並放大該第一射頻訊號;一第二功率放大器,耦接至該第二輸出埠以接收並放大該第二射頻訊號;以及以右左手複合型(CRLH)超穎物質(MTM)結構為基礎之一第二正交耦合器,具有一第一輸入埠、一第二輸入埠、一第一輸出埠及一第二輸出埠,其中該第一輸入埠接收自該第一功率放大器而來之該等放大的第一射頻訊號,該第二輸入埠接收自該第二功率放大器而來之該等放大的第二射頻訊號,該第一輸出埠為終端,而該第二輸出埠用以產生一射頻輸出訊號,該第二正交耦合器將接收於該第一輸入埠及該具90度相位偏移的第二輸入埠之訊號合併以產生該射頻輸出訊號。
下文為介紹本發明之最佳實施例。各實施例用以說明本發明之原理,但非用以限制本發明。本發明之範圍當以後附之權利要求項為準。
多種功率放大器架構可用於射頻裝置和射頻系統之設計上。本說明書中所描述的某些實施方式、裝置或系統皆可包含上述功率放大器架構之特徵。
AB級(Class AB)功率放大器廣泛應用於射頻裝置中,同時,其他功率放大器架構也被使用著,例如運用於全球行動通信系統(Global System for Mobile communications,GSM)、整體封包無線電服務(General Packet Radio Service,GPRS)以及通訊系統及增強數據率GSM演進(Enhanced Data rates for GSM Evolution,EDGE),而其中部分系統使用高斯最小移頻鍵控(Gaussian Minimum Shift Keying,GMSK)模組。一般而言,A級(Class A)功率放大器為了達成良好的線性度需消耗高直流電源,因此導致低效率。AB級功率放大器則在效率及線性度上取得良好之平衡。比較後可發現,AB級放大器相對A級放大器有較高之效率。
很多功率放大器設計成當操作於產生其最大功率時亦達成其最大效率。許多目標在高通訊處理量的無線電通訊標準借由操作振幅及相位成份等複雜的調變模式來產生射頻訊號。這些技術必須仰賴系統中具有嚴謹的線性度的功率放大器。在此同時,功率放大器亦需操作於適當之效率位準,以使電池的功率損耗及發熱率最小化。因此,能夠達成良好效率及線性度之功率放大器的設計為無線電通訊系統所需。除了操作於線性區的同時要維持適當之效率外,目前的無線電系統尚需能夠支援多重頻寬的裝置。在某些實施例中,操作於不同單頻的功率放大器會被封包於單一模組中以提供多重頻寬操作。
某些運用於無線系統之調變方法,例如具有正交分頻多重進接(Orthogonal Frequency Division Multiple Access,OFDMA)或分碼多重進接(Code-Division Multiple Access,CDMA)之正交振幅調制(Quadrature Amplitude Modulation,QAM)會產生有高(舉例而言,在7-15Db之範圍)峰值與平均值之比(Peak to Average Power Ration,PARK)之射頻訊號。為避免上述情況,功率放大器會被設定成輸出低於其峰值輸出功率之功率,直到符合線性需求為止。如此操作稱之為“功率補償”,其在需要達到最大效率或接近最大功率位準的場合中會顯著降低功率放大器之效率。傳統上,對OFDM訊號(802.11a/g,n,WiMax)之功率附加效率(Power Added Efficient,PAE)值為15%至20% @ 3% RMS EVM,或是<10% @ 2%RMS EVM,其中EVM表示錯誤向量大小(Error Vector Magnitude)。在一射頻功率放大器中,PAE定義為輸出射頻功率與輸入射頻功率間之差值,對直流功率損耗之比值,而其中能量轉換效率(drain efficiency)則定義為輸出功率對直流功率損耗之比值。
在許多功率放大器的設計中,線性度與高效率不會同時滿足。為了與功率放大器之效率妥協,功率放大器之輸出功率常避開其最大功率以符合線性度需求。
為了增加功率放大器之輸出功率,無論是功率放大器的電壓擺幅或電流擺幅皆需被調高。一般來說,為了提高電流擺幅,該裝置之尺寸亦隨之增加。裝置尺寸之增加雖然增加了其最大功率,但也降低其最佳負載阻抗,兩者難以兼顧。本發明中揭露之架構可採用各種現有之技術。例如將設計印刷於一傳統之材質為Duroid之FR-4印刷電路板,並且使用以氧化鋁(alumina)或低溫共燒陶瓷(Low Temperature Co-fired Ceramic,LTCC)為基礎之薄/厚膜陶瓷技術。又例如使用單石製造(monolithic fabrication)。本文所述之架構同樣適用於大部分之單石微波積體電路(Monolithic Microwave Integrated Circuit,MMIC)半導體製程技術。此外尚包括砷化鎵基(GaAs-)、磷化銦鎵基(InGaP-)、鍺矽基(SiGe-)、氮化鎵(GaN)、磷化銦(InP)、矽基(Si-)製程或其他。在不同的架構上可依據適當之裝置處理技術採用FET、pHEMT、HBT、CMOS、LDMOS及BiCMOS等電晶體。
為增強效率及線性度而設計之功率放大器,其架構包括多厄悌放大器(Doherty amplifier)、波包消除重建技術(Envelope Elimination and Restoration,EER)及使用非線性元件之線性放大技術(Linear Amplification using Non-linear Componets,LINC)。分散式放大器架構可用於寬頻放大操作。使用這些方法及其他技術與架構可將不同級之放大器予以整合。這些放大器為A/B/AB/C/D/E/F/F-1/J級放大器或其組合。依據不同之運算需求,不同級的放大器會呈現出各種優點或缺點。
該多厄悌大器使用兩個或兩個以上之放大器,並操作於補償區間(back-off region)以使其維持良好之線性度及效率。多厄悌架構具有易於實施之優點,並且不需使用高功率調制器(high-power modulator)來限制其寬頻需求。以多厄悌為基礎之功率放大器系統包括兩個放大器:一載波功率放大器或稱主功率放大器,以及一峰值功率放大器或稱輔功率放大器。此兩功率放大器可對稱地或不對稱地饋送輸入功率,並且可操作於上述任一級放大器中。部分實施例中,多厄悌功率放大器以AB級功率放大器作為其載波功率放大器,而以C級功率放大器作為其峰值功率放大器。
在一多厄悌功率放大器系統之操作中,當輸入之功率低時,則該峰值功率放大器截止,而該載波功率放大器開啟,作用為一控制電流源,看到兩倍的最佳電阻值。在此狀態下,該載波功率放大器已達到其最大電流值及最大電壓值之一半。當該輸入功率增加至一特定位準,則該峰值功率放大器會開啟而成為一受控電流源,而該載波功率放大器則作為一受控電壓源。當該峰值功率放大器之電流增加時,則由該載波功率放大器所看到之阻抗將減低。因此,輸出電壓保持穩定。當該輸入功率達到其最大值時,則兩功率放大器有最佳阻抗值,其大小等於四分之一波長的特性阻抗。電流將達到最大值。峰值放大器可調變訊號高峰時期之負載,以避免該載波功率放大器飽和。此外,不對稱的饋入多厄悌功率放大器的方式同樣可行,其可借由施加比載波功率放大器更大之功率至峰值功率放大器,以使該負載阻抗完全調變至其最大功率時之最佳阻抗值。相較於分配兩功率放大器不同功率之作法,此作法有較高之輸出功率。反多厄悌架構則改善低位準時(峰值功率放大器截止)之載波單元效率。此情況下,主要的任務在設計出能夠與四分之一波長匹配之輸出。
分散式功率放大器架構可以增益、群組延遲(group delay)及阻抗匹配(impedance matching)來表示其寬頻特性。平衡的功率放大器可採用一相差耦合器(phase quadrature coupler)將一輸入訊號分配至至兩完全相同之功率放大器,並採用另一相差耦合器將該等功率放大器的兩個輸出重新合併。使用相差耦合器之優點在於:任何功率放大器所造成之不匹配反射(mismatch reflection)可顯示於反相,且不影響整體系統之輸入或輸出。平衡組態可因此加強該功率放大器之穩定性,並且對負載不匹配保持不敏感。
除上述功率放大器架構外,本文中所描述之技術、裝置和系統皆可以不同之電路結構實施。在大部分之材質中,電磁波之傳遞(在(E,H,β)向量場)是遵守之右手法則的,其中E表示電場,H表示磁場,而β表示波之向量。相速(phase velocity)方向與訊號能量傳遞(group velocity,群速)之方向是相同的,而折射系數為一正數。此種材料稱之為“右手型(Right Handed,RH)”材料。大部分自然材料皆為RH材料。人工材料也同樣可以是RH材料。超穎物質(metamateral,MTM)為一人工結構。當結構平均單位晶胞尺寸p遠小於由該超穎物質所導引之電磁能波長時,該超穎物質對所導引之電磁能如同一均質媒介。與RH材料不同,該超穎物質可以負數之折射系統、並同時以負數之介電常數ε及透磁率μ來表示,而其相速方向與訊號能量傳遞之方向相反,是以其(E,H,β)向量場之相關方向遵守左手定則。有負數之折射系數並同時有負數介電常數ε及透磁率μ的超穎物質為純“右手型(Left Handed,LH)”超穎物質。許多超穎物質為LH超穎物質與RH超穎物質之混和物,稱之為右/左手複合型(Composite Right and Left Handed,CRLH)超穎物質。一CRLH超穎物質可在低頻時為LH超穎物質,而在高頻時為RH超穎物質。多種CRLH超穎物質之性質與設計可參照Caloz與Itoh所著之“電磁超穎物質:傳輸線理論與徵波應用(Electromagnetic Metamaterials:Transmission Line Theory and Microwave Application”(John Wiley & Sons(2006)出版)。CRLH超穎物質及其他於天線中之應用則可參照Tatsuo Itoh所著之“特約論文:超穎物質之前景(Invited paper:Prospects for Metamaterials)”(Electronics Letters,Vol.40,No.16(August,2004)出版)。
CRLH超穎物質展現之電磁特性可為特殊場合所運用,尤其是在那些難以運用其他材料實現的場合。此外,CRLH超穎物質可發展出新的應用並建構出RH物質無法實現的新裝置。關於MTM之天線、傳輸線、RF功率分配器或上述組合可參照:申請於2007年4月27日之美國專利申請案(No.11/741,674)“以超穎物質結構為基礎之天線、裝置及系統(Antennas,Devices and Systems Based on Metamaterial Structures)”(美國專利公開號US20080258981)、申請於2007年8月24日之美國專利請案(No.11/844,982)“以超穎物質結構為基礎之天線(Antennas Based on Metamaterial Structures)”(美國專利公開號US20080048917)、申請於2007年12月21日之美國專利請案(No.11/963,710)“以右/左手複合型超穎物質結構為基礎之功率合併器及分配器(Power Combiners and Deviders Based on Composite Right and Left Handed Metamaterial Structures)”(美國專利公開號US___)、申請於2008年12月20日之美國專利請案(No.12/340,657)“具方向耦合器之多超穎材質天線系統天線(Multi-Metamaterial-Antenna Systems with Directional Couplers)”(美國專利公開號US___),上述資料皆參照為本發明所揭露之部分。本發明之功率放大器架構中之電路可以RH材質或CRLH MTM材質為結構基礎。舉例而言,使用於本發明功率放大器架構中之傳輸線可由CRLH材質傳輸線或電路元件所實施,使其能夠在配合阻抗及相位匹配狀況的微型裝置中達成多頻帶或寬頻帶操作。考慮一簡單例子,一維結構之CRLH MTM元件包括複數個MTM單位晶胞,而各單位晶胞具有晶格並聯電感(LL)、晶格並聯電容(CR)、晶格串聯電感(LR)及晶格串聯電容(CL)。這些參數及MTM單位晶胞之數量決定其共振頻率、對應頻寬、輸入及輸出阻抗匹配及電路結構與尺寸。MTM結構之LH性質使MTM結構之維度小於RH材質所製之等效電路之維度,舉例而言,小λ/2,其中λ表示一射頻訊號在自由空間中傳播時之波長。在操作訊號頻率時,CRLH傳輸線可被設計成具有對應至不同相位值之電性長度,包括相位零度、180度或180度之倍數、90度或90度之倍數。CRLH結構也可設計成能夠操作於兩個或兩個以上頻帶或操作於寬頻。CRLH MTM結構也可用於功率放大器系統,以提供多頻帶操作、達成高效率、產生可變之輸出功率、並配合阻抗及相位匹配狀況而微型化。本文中所舉實施例包括:(1)多功率放大器系統,可以是在不同組態下使用MTM技術之多厄悌功率放大器架構,例如:單頻帶MTM功率放大器系統、多頻帶MTM功率放大器、MTM威爾金生(Wilkinson)功率合併器或分配器、MTM功率合併器或分配器、及MTN反多厄悌功率放大器;(2)波包消除重建(EER)功率放大器,其包括EER功率放大器,能夠驅動一MTM功率放大器的汲偏壓(drain bias),並且在饋送訊號進一MTM功率放大器前先混合數位訊號;(3)在多頻帶和寬頻組態中之MTM平衡功率放大器系統;以及(4)MTM之使用非線性元件之線性放大器(LINC)。
純左手式(LH)對三向量(E,H,β)遵守左手法則,而相速方向與訊號能量傳遞方向相反。其中,LH材質中之介電常數與透磁率皆為負數。右/左手複合式(CRLH)可依照操作頻率的方式表現出左手電磁傳遞模式或右手電磁傳遞模式。在某些情況下,在一訊號之波動向量(wave vector)為零時,一CRLH材質所表現之群速並非為零。飽和發生於當左手模式與右手模式達成平衡時。在非平衡模式下,存在一頻帶間隙使其中電磁波之傳遞受到阻絕。在平衡的情況下,分散曲線未顯示出介於左手模式或右手模式間的傳遞常數β(ω0 )=0的轉變點上出現任何不連續,其中導波波長為無限λg =2π/|β|→∞,其中群速為正: 此狀態對應至LH區中傳輸線上(TL)的第零階模式m=0。在操控近端輻射型態時,該CRHL結構的分散關係可支持低頻率得到良好的頻譜,該分散關係位於負β拋物線區,而該區之特性使得小型裝置在操控近端發射型態時仍具有大且獨特之電磁能力。當使用該TL作為第零階共振器(Zeroth Order Resonator,ZOR)時,其允許常數之振幅和相位共振遍及整個共振器。該ZOR模式可用以建構以MTM為基礎之功率合併器和功率分配器或分離器、方向耦合器、匹配網路及漏波天線。以MTM為基礎之功率合併器及分配器參照下文所述。
在RH TL共振器中,共振頻率對應至電氣長度(electrical length)θmm 1=mπ(m=1,2,3,…),其中1為該TL之長度。該TL長度應當足夠長,以使其共振頻率之頻譜能延伸得更低更廣。純LH材質之操作頻率為低頻。一CRLH材質結構與RH材質和LH材質相當不同,其可用以同時達到RH材質和LH材質之高與低的射頻頻寬間距(spectral range)。在CRLH的情況中,θmm 1=mπ,其中1為該CRLH TL之長度,而參數m=0,±1,±2,±3,…,±∞。
第1A圖表示MTM傳輸線101與單位晶胞103之等效電路,其中不同之單位晶胞可彼此重覆串連。該等效電路之各單位晶胞103包括右手式(RH)之串聯電感LR 與並聯電容CR ,以及左手式(LH)之串聯電容CL 與並聯電感LL 。該並聯電感LL 與該串聯電容CL 之組成可提供該單位晶胞103左手式之性質。此CRLH TL可以分散之電路元件、集總電路元件,或是兩者之組合來實施。各單位晶胞101較λ/10為小,其中λ為傳輸至該CRLH TL之電磁訊號的波長。CRLH TL具有有趣之相位特徵,例如:反平行(anti-parallel)相位、群速、非線性相位斜率,以及在零頻率時之相位偏移。
第1B圖表示具有第1A圖中單位晶胞之一平衡CRLH材質的分散曲線圖。該CRLH結構可支持在低頻率有良好頻譜,並產生包括轉變點之較高頻率,而該轉變點m=0乃對應至無限波長。此可用以整合CRLH天線元件例如(但不限於)方向耦合器、匹配網路、放大器、濾波器、及功率合併器與分離器。在部分實施例中,射頻或微波電路和裝置可由CRLH MTM結構製成,例如(但不限於)方向耦合器、匹配網路、放大器、濾波器、及功率合併器與分離器。
參照第1A圖,在LR CL ≠LL CR 此不平衡的狀況下,存在兩相異之共振頻率ωse及ωsh,其支持無限波長,可由下式得出: 頻率ωse 及ωsh 時群速(Vg =dω/dβ)為零而相速為(Vp =ω/β)為無限大。當串聯與並聯共振相等時,例如LR CL =LL CR ,則此結構稱為已平衡,而該共振頻率一致:ωsesh0 (4)在平衡之情況中,相位響應可由下式近似之: 其中N為單位晶胞之數目。相位之斜率可由下式得之: 其中特徵阻抗可由下式得之: 可選擇及控制電感和電容值以對所選擇之頻率建立一理想之斜率。此外,相位可被設定成在直流時具有正的相位偏差。此兩個因子可作為本文中設計多頻帶及其他MTM功率合併和分配結構之用。
下文中將介紹決定多頻帶模式MTM結構的MTM參數之實例,相似的技巧同樣可用來決定具三個或三個以上頻帶之MTM參數。
在多頻帶MTM結構中,兩頻帶之訊號頻率f1 、f2 分別具有不同之相位值ψ1 與ψ2 。在此實例中,N為單位晶胞在該CRLH TL之數目,而Zt 為特徵阻抗。參數值LR 、CR 、LL 及CL 可由下式計算: 在不平衡的情況下,傳播常數則由下式得之: 其中, 在平衡的情況下: 一CRLH TL具有實際長度d及N個單位晶胞,而各單位晶胞具有長度關係:p:d=N.p。訊號相位值為ψ=-βd。因此,
可選擇兩不同頻率f1 及f2 的兩不同相位ψ1 及ψ2 分別為:
非MTM之RH微條傳輸線(microstrip transmission line)可表示成下式之分散關係: 請參照在Pozar所著“微波工程(Microwave Engineering”(第三版)第370頁及在Collin所著“導波之場論(Field Theory of Guided Waves”((1990年12月1日),Wiley-IEEE Press出版,第二版)第623頁。
多頻帶CRLH TL裝置可依照美國專利申請案(案號11/844,982)之矩陣方法設計。在該矩陣方法中,各1D CRLH傳輸線包括N個有相同並聯(LL 、CR )和串聯(LR 、CL )參數之晶胞。這五個參數,LL 、CR 、LR 、CL 、及N決定了N個共振頻率及相位曲線(phase curve)、對應頻寬、以及輸入/輸出TL阻抗對共振頻率的變化。
借由讓N個CRLH晶胞結構以nπ傳播相位長度共振(其中n=1,±1,…±(N-1))而驅動該散布等式可決定其頻帶為何。換句話說,一零或2π相位共振可由3個(N=3)CRLH晶胞來達成。此外,三頻段(tri-band)功率合併器和分離器則可採用5個(N=5)CRLH晶胞來設計,而其中零、2π、及4π晶格則用以產生共振。
N=0模式共振於ω0sh ,而較高頻率可由下式得出,對應不同之M值分別列於下表1:
第2圖表示一結合RH元件的相位與LH元件的相位之CRLH TL的相位響應。CRLH傳輸線、RH傳輸線和LH傳輸線之相位曲線皆繪示於該圖上。值得注意的是,該CRLH相位曲線在穿越零相位軸時,與零頻率間發生頻率偏移。該頻率偏移使得該CRLH曲線可在任意之頻率對(pair of frequencies)上取出一理想之相位對(pair of phases)。可經由選擇或控制該LH和RH之電感值和電容值而產生理想之斜率,使得其在零頻率(值流)上具有一正偏移。在第2圖之實例中可知,第一頻率f1 上所選取之相位為零度,而在第二頻率f2 上所選取之相位為-360度。此外,CRLH TL可以以較RH傳輸線小甚多之足印(footprint)以取得等效相位。
因此,CRLH功率合併器和分配器可依阻抗匹配狀況設計成對兩個或兩個以上不同之頻率訊號進行合併和分配,借此可製造較傳統合併器和分配器小之裝置。參照第1A圖,各CRLH單位晶胞103可依照CRLH功率合併器和分配器中之不同單元組態而設計。材質之特性使雙頻乃至多頻帶系統之設計成為可能。
具CRLH MTM結構、並用以放大射頻訊號之功率放大器系統可設計成具有功率分配器、並行連接之多功率放大器、以及功率合併器。該功率分配器和該功率合併器中兩者(或兩者之一)可採用CRLH MTM結構以達成某些技術特徵。在此系統中具有一輸入埠以接收一輸入射頻訊號。該功率分配器包括(1)一輸入CRLH傳輸線耦接至該輸入埠以接收該輸入射頻訊號;(2)多個輸出CRLH傳輸線連接至該輸入CRLH傳輸線以將所接收之輸入射頻訊號分配至不同分路(branch)。該等功率放大器分別耦接至該功率分配器的該輸出分路傳輸CRLH線。各功率放大器接收並放大一射頻訊號以產生一放大的射頻訊號。在此系統之功率合併器具有多個輸入CRLH傳輸線,其分別耦接至該功率放大器以接收由該功率放大器所產生之放大的射頻訊號。該功率合併器之各輸入CRLH傳輸線連接至一功率放大器。該合併器也包括耦接至該輸入CRLH傳輸線之一輸入CRLH傳輸線以將所接收之放大的分路射頻訊號合併成一合併的輸出射頻訊號。
上述以MTM為基礎之多功率放大器系統可實施成一MTM加強型多厄悌功率放大器系統。該多厄悌技術可在補償區間達成高效率。同時,借由該MTM之特性,其線性度可被強化。一非MTM多厄悌功率放大器由於在支持單頻帶的微條上具有四分之一波長轉換器,故其佔用大尺寸。MTM加強型多厄悌功率放大器可以更小巧之多頻帶MTM四分之一波長轉換器置換該單頻帶之四分之一波長轉換器。輸入埠的功率分配器可由微型MTM多頻帶功率分配器實施。該輸入/輸出匹配網路可整合於該功率合併器以求更佳效率。一N路功率合併/分配器中各分路可匹配理想之阻抗。MTM元素有控制相位斜率之能力,故使用MTM元素可增加操作頻寬。此外,舉例而言,該MTM性質有助於具不良電壓駐波比(Voltage Standing Wave Ratio,VSWR)之天線相連接。
在上述以MTM為基礎之多功率放大器系統中,該功率分配器或合併器可設計成具有一第一傳輸線(其中該第一傳輸線又具有一CRLH MTM結構)和耦接至該第一傳輸線之一端的多個CRLH MTM結構之第二傳輸線,並且,當其設定為一功率分配器時,可從該第一傳輸線上所接收之一輸入射頻訊分成該等第二傳輸線上之多個輸出射頻訊號,並在當其設定為一功率合併器時,將該等第二傳輸線上之輸入射頻訊號合併成該第一傳輸線上之一輸出射頻訊號。該第一傳輸線和第二傳輸線皆具有兩種組態。在該第一組態中,該第一傳輸線為一CRLH MTM傳輸線,其電氣長度具有±m90°之相位延遲,其中m為正整數,各個第二傳輸線為一CRLH MTM傳輸線,其電長長度具有零相位延遲或±n180°的相位延遲,其中n為一正整數。在該第二組態中,該第一傳輸線為一CRLH MTM傳輸線,其電氣長度具有零相位延遲或±m180°的相位延遲,其中m為一正整數,其中m為正整數,各個第二傳輸線為一CRLH MTM傳輸線,其電長長度具有±n90°之相位延遲,其中n為一正整數。傳輸線可設計成具有一單一射頻頻率或兩個以上不同之射頻頻率。
第3A及3B圖表示兩不同單頻帶N路MTM功率合併/分配器之實施例。這兩個MTM功率合併/分配器可相對非MTM功率合併/分配器而有更小之尺寸。
在第3A圖所示之一實施例中,各個四分之一波長(Φ12 )CRLH-TL 301以一端連接至其對應之阻抗303,並以一端連接至零度(Φ11 )CRLH TL 305。該相位Φ11 為電氣長度所造成之相位延遲,其在0°、±180°、±360°、…、或在180°之倍數(例如:n180°,其中n為正整數或負整數),而相位Φ12 為電氣長度所造成之相位延遲,其在±90°、±270。、…、或在90°之倍數(例如:n90°,其中n為正或負的奇數)。在此應用中,該“四分之一波長”指一四分之一波長的奇數倍數,例如:(2n+1)×λ/4,其中n=1、2、3、…。如上所述,該四分之一波長(Φ12 )CRLH-TL 301以其各自之阻抗Z1 、Z2 、…及ZN 為終點。
該四分之一波長(Φ12 )CRLH-TL 301及該零度(Φ11 )CRLH TL 305用以在該零度(Φ11 )CRLH TL 305之終端提供介於各阻抗Z1 、Z2 、…及ZN 與阻抗307(例如圖中所示之50Ω)間之阻抗匹配。關於這點,各個四分之一波長(Φ12 )CRLH-TL用來轉變其對應阻抗以配合該阻抗307(如圖示之50Ω)。埠之數量,N,可依照特定用途之需求來作選擇。如第3A圖所示之實施例,該零度(Φ11 )CRLH TL 305連接於其一端之阻抗307與其另一端上之四分之一波長(Φ12 )CRLH-TL 301之間。在另一實施例中,該該四分之一波長(Φ12 )CRLH-TL 301可直接連接至該50-ohm阻抗307而不透過零度(Φ11 )CRLH TL 305。在阻抗307為50 ohm之實例中,各四分之一波長(Φ12 )CRLH-TL 301的阻抗定義為: 其中,在不同之組態中,J=1、…、或N。
第3B圖表示另一實施例,其中各零度(Φ11 )CRLH TL 321以一端連接至阻抗Z1 323,並以另一端連接至四分之一波長(Φ12 )CRLH-TL 325。具有相同阻值Z1 323之N個並聯阻抗被該四分之一波長(Φ12 )CRLH-TL 325轉換至50 ohm 327。在阻抗327為50 ohm之實例中,四分之一波長(Φ12 )CRLH-TL 325之阻抗定義為:
第4A及4B圖中分別表示兩個多頻帶N路MTM功率合併/分配器,用以合併或分配功率於多厄悌架構或其他功率放大器架構。
在第4A圖所示之實施例中,各個四分之一波長(Φ12 、Φ22 )CRLH-TL 401以一端連接至其對應之阻抗403(例如Z1 、Z2 、…及ZN 之一者)並以一端連接至零度(Φ11 、Φ21 )CRLH TL 405,其中該相位Φ11 及Φ21 為0°、±180°、±360°、…、n180°(其中n為正整數或負整數),而相位Φ12 和Φ22 為在±90°、±270°、…、±(2n+1)90°,其中n為正整數或負整數而(2n+1)為一奇數。各四分之一波長(Φ12 、Φ22 )CRLH-TL 401在頻率f1 提供相位Φ12 ,而在另一頻率f2 時提供相位Φ22 。該零度(Φ11 、Φ21 )CRLH TL 405在頻率f1 時提供一相位Φ11 ,而在另一頻率f2 時提供一相位Φ21 。各四分之一波長(Φ12 、Φ22 )CRLH-TL 401用以轉換其對應阻抗至50 ohm 407,其中埠之數目N可為任一數。各四分之一CRLH-TL 401之阻抗定義為,其中對Φ12 和Φ22 兩者,j=1、…、N。
在第4B圖所示之另一實施例中,各個零相位(Φ11 、Φ21 )CRLH-TL 421以一端連接至其對應之阻抗Z1 423並以一端連接至四分之一波長(Φ12 、Φ22 )CRLH TL 425。具有相同阻值Z1 423之N個並聯阻抗被該四分之一波長(Φ12 、Φ22 )CRLH-TL 425轉換至50 ohm 427。對Φ12 和Φ22 兩者而言,該四分之一波長(Φ12 、Φ22 )CRLH-TL 425之阻抗定義為
在另一實施例中,在第1A圖之等效電路中的串聯電容CL可以一可變電容置換。該可變電容之偏壓可被調整以控制其阻抗,使其與該CRLH-TL相匹配,進而使操作於ON狀態之多個CRLH-TL的數目所導致之阻抗變化可因此獲得補償。
威金生(Wilkinson)功率放大器和分配器也可依照MTM結構設計。一威金生功率分配器,舉例而言,可包括一第一CRLH MTM傳輸線作為該功率分配器之輸入傳輸線,也包括一第二CRLH MTM傳輸線作為該功率分配器之分路輸出傳輸線,其具有一第一端及一第二端,其中該第一端耦接至該第一CRLH MTM傳輸線。一第三CRLH MTM傳輸線作為另一個分路輸出傳輸線,其有一第一端及一第二端,其中該第一端耦接至該第一CRLH MTM傳輸線。一電阻器耦接該第二及第三CRLH MTM傳輸線之間(以第一端耦接至該第二CRLH MTM傳輸線之第二端,並以第二端耦接至該第三CRLH MTM傳輸線之第二端)而作為一橋接器。此威金生功率分配器同樣包括一第四CRLH MTM傳輸線耦接於該第三CRLH MTM之第二端,也包括一第五CRLH MTM傳輸線耦接至該第三CRLH MTM之第二端。第四及第五傳輸線提供該威金生功率分配器之輸出。
威金生功率合併器具有與該功率分配器相反之設計。此一合併器位處功率放大器之下游以接收該功率放大器之輸出。在兩個功率放大器之實例中,該合併器包括一第一CRLH MTM傳輸線,其具有一第一端耦接至一第一功率放大器以接收一第一放大射頻訊號,又具有一第二端用以輸出該第一放大射頻訊號,該合併器也包括一第二CRLH MTM傳輸線,其具有一第一端耦接至一第二功率放大器以接收一第二放大射頻訊號,又具有一第二端用以輸出該第二放大射頻訊號。一電阻器以其第一端耦接至該第一CRLH MTM傳輸線之第二端,並以其第二端耦接至該第二CRLH MTM傳輸線之第二端。此外,一第三CRLH MTM傳輸線耦接至該第一CRLH MTM傳輸線之第二端,而一第四CRLH MTM傳輸線耦接至該第四CRLH MTM傳輸線之第二端。該合併器更包括一第五CRLH MTM傳輸線,其形成該輸出傳輸線,並耦接至該第三及第四CRLH MTM傳輸線以使多個輸出合併成一單一輸出。
第5A圖表示一2路MTM威金生功率分配/合併器之實例。在此實施例中,一多頻帶輸入射頻訊號於一輸入埠501上被接收,其中,以該輸入埠501具有頻率f1 及f2 為例。該輸入訊號可被平均地或不均地分配至兩個分路。各CRLH-TL 503可以一端連接至其對應電阻器505,例如R,並以另一端連接至一CRLH-TL 507,其中各CRLH-TL 503之阻抗可由下列式子中阻抗Z0,1 所定義:k2 =P3 /P2 ,其中k為預設不均功率比,而P2和P3則分別為輸出埠2和輸出埠3上之輸出,Z0,3 =Z0,1 √(1+k2 )/k3 Z0,2 =K2 Z0,3 R=Z0,1 (k+1/k)對應至各CRLH-TL 503之二阻抗(阻值Z0,2 及Z0,3 )經對應CRLH-TL 511而被轉換至50 ohm 509。
第5B圖表示一N路MTM威金生功率分配/合併器之實施例。在該實施例中,一多頻帶輸入射頻訊號於一輸入埠521上被接收,舉例而言,該輸入埠521具有頻率f1 及f2 。該輸頻輸入訊號可被平均或不均地分配至N個分路。各CRLH-TL 523以一端連接至其對應之電阻器525,例如電阻R1 、R2 、…、及RN 之一,並以另一端連接至CRLH-TL 527,其中各CRLH-TL 523之阻抗由該輸入阻抗Z0,1 所定義。在此威金生設計中,各對應電阻器525之另一端互相連接以在N個電阻器間形成一單一連接。在此實例中,對應至各CRLH-TL 523之N個阻抗(具阻值Z0,N )可由該對應CRLH-TL 531轉換至該阻抗529(其值可為50 ohms)。
依照上述以MTM為基礎之功率合併器或分配器,第6A圖為具有N路功率分配器601和N路功率合併器603之一單頻帶或多頻帶功率放大器系統。裝置601與603中至少一個為CRLH MTM之設計。操作上,該功率放大器系統借由將直流電源轉換成射頻電源,可將一輸入埠上低輸入功率的射頻訊號予以放大成高位準輸出功率而傳輸出一輸出埠。舉例而言,在連接至N路分配器601之輸入埠600上將一輸入訊號予以接收,其中該輸入訊號平均或不均地分配至N個分路而形成多輸出訊號。N路功率分配器601之各個輸出訊號連接至各功率放大器PAn 605,其中n=1、2、…N。各個功率放大器PAn 605之輸出連接至N路功率合併器603之各個輸入,其中n=1、2、…N。該N路功率合併器603之輸出將經過放大並合併之輸入訊號傳輸至一輸出埠607。
第6A圖及上述功率放大器功率分配/合併器系統可以多種方式實施。舉例而言,一MTM功率分配器可用於第6A圖以縮減尺寸,並可依照微晶片基體之尺寸而整合於微晶片上。該MTM結構可用於執行多頻帶操作。前述該MTM對功率分配器之應用,亦可套用於具有相似體積優點及多頻帶特性的系統輸出上的功率合併器。
文中之系統範例可採用如多厄悌功率放大器、平衡式功率放大器(例如:MTM平衡式功率放大器及非MTM平衡式功率放大器)、以及其他MTM與非MTM功率放大器。第6A圖表示實施於功率放大器系統的N路分配器及N路合併器的各種型式與組合。舉例而言,各N路功率分配器601和N路功率合併器603可採用MTM結構或傳統結構。第6A圖所示之N路功率分配器601和N路功率合併器603的各種組合包括:傳統分配器/MTM合併器、MTM分配器/傳統合併器、及MTM分配器/MTM合併器。此外,這些系統可將MTM結構與傳統結構傳作於不同之頻帶範圍,例如,操作於一個或一個以上之頻帶。
該多厄悌架構可包括兩個平均接收輸入功率之功率放大器,其又可操作於各級,如A/B/AB/C/D/E/F/F-1/J級。同樣也可採用不均勻地的方式,例如將較多的功率施加於該峰值功率放大器而將較少的功率施加於載波功率放大器,以使負載阻抗可完全調變。相較於以相同量之功率驅動該等功率放大器的方法而言,此方法能有較大之輸出功率。
第6B圖表示第6A圖所示功率放大器系統之一實施例。該MTM多厄悌功率放大器系統包括兩個功率放大器617、619,其連接至如第3A至3B圖及4A至4B圖所示之一2路MTM功率分配器613及一2路MTM功率合併器615。該二功率放大器包括:一“主功率放大器”617或“載波功率放大器”、以及一“輔功率放大器”619或“峰值功率放大器”。這些MTM功率合併/分配器具有小之足印與低損耗,因此具有高效率。此外,這些MTM功率合併/分配器可支持如前文所述之多頻帶頻率,且可將輸入匹配網路(input matching network,IMN)及/或輸出匹配網路(output matching network,OMN)予以整合。
第6C圖表示第6A圖中功率放大器系統之其他實施例。在第6C圖中,一N路MTM多厄悌功率放大器系統包括N個功率放大器629、631,以其輸入端連接至一N路MTM功率分配器623並以其輸出端連接至一N路MTM功率合併器625,其中N路MTM功率合併器/分配器如第3A至3B圖及4A至4B圖所示。在此實例中,該功率放大器包括一單一主放大器(載波放大器)629及(N-l)個峰值放大器(輔放大器)631。N路多厄悌功率放大器在維持高效率與高線性度的同時仍有較佳之補償能力。在該多厄悌功率放大器中使用MTM技術,使得該MTM多厄悌功率放大器系統可建構於微型裝置,且具有多頻帶性質。當以不平均的方式驅動此架構,則此系統之輸出功率會因為不均的驅動分配而增加輸出功率。舉例而言,該輔放大器(峰值放大器)631以一開關放大器實施時,唯有當一特定功率施加於該開關放大器631時,其始開啟。當該輸入功率低時,則該開關放大器631被關閉。因此,使用不平均的方式驅動分配器623時,該輔放大器631可較該平均驅動的方式提早或延後開啟。借由選擇CRLH之參數或設計該功率放大器之輸入阻抗,該功率分配器623之各分路阻抗得以匹配。同樣可類推於該輸出上之功率合併器625。該功率合併器625之各分路可與該功率放大器629、631之輸出阻抗相匹配。同樣可如第14圖中所示,於各功率放大器629-631之輸出上使用一串列90°線。差別僅在其使用90°和270°代替0°與360°。
在第6A圖所示功率放大器的另一實施例中,第6A圖中之N路功率分配/合併器可以一第5A圖之2路MTM威金生分配/合併器置換。然而,此設計可延伸成如第4A-4B圖所示之N路分配/合併器,並可以該第5B圖所示之N路MTM威金生分配/合併器為基礎。採用第5A圖所示之2路MTM威金生功率分配/合併器的各種功率放大器架構表示於第7-10圖,並將於後文中詳述。
在第7圖所示之MTM多厄悌功率放大器系統中,該MTM多厄悌功率放大器系統之輸入級包括如第5A圖之一2路MTM威金生分配器701,其已描述於前文。在此實施例中,該威金生分配器可使用平均分配之方式,其中k=1。兩功率放大器705、707連接至該MTM威金生分配器701之輸出埠,其中,功率是平均地分配至主放大器705之輸入與輔放大器707之輸入。或者,各放大器可被饋以任意量之輸入功率,其可採用選擇或分割輸入至該功率放大器705、707的輸入訊號等方式。該經各放大器705、707放大之訊號被饋入一輸出功率合併器709之輸出,該輸出功率合併器709之輸出級可使用傳統之RH元件(713和717)。
第8圖所示MTM多厄悌悌功率放大器系統使用與第7圖相同之分配器701與二功率放大器705及707,其已描述於前文。在此實施例中,該輸出功率合併器709可置換成具有CRLH-TL之一MTM輸出功率合併器801。與傳統情況相反,在該輸出級上之MTM元件由於較平緩之相位斜率而可提供多厄悌放大器增加的頻寬。
第9圖所示之MTM多厄悌功率放大器系統也使用對第7圖相同之分配器701與兩功率放大器705及707,其已描述於前文。在此實施例中,該具有+90度相位之傳統RH元件709於輸出級上被置換成MTM四分之一波長元件901。由於該MTM元件901在輸出級上的支持,使得該反相多厄悌之頻寬亦獲增加。
在另一實施例中,第10圖所示之MTM多厄悌功率放大器系統包括第7圖相同MTM威金生分配器701與兩功率放大器705及707,其已描述於前文。在此組態中,由主放大器705而來之一訊號與由輔放大器707而來之另一訊號耦接至、並被饋送至一MTM威金生合併器1001之對應輸入埠。
建立具有強化之效率及線性度之功率放大器的一個技術就是波包消除重建技術(Envelope Elimination and Restoration,EER)。第11A圖表示一EER系統1100之範例。在該EER系統1100中,輸入埠600之一射頻訊號被分成兩個路徑:上路徑1101與下路徑1103。在上路徑1101中,輸入埠600之射頻訊號被饋入一波包偵測器1105上以偵測該輸入訊號之波包。該波包偵測器1105串聯至一脈寬調節器(pulse width modulation,PWM)1107以將自該偵測器1105而來之波包訊號予以數位化。該PWM 1107耦接至一S級調變器1109,其將自該PWM 1107所接收之數位化波包訊號予以放大。一低通濾波器(low pass filter,LPF)1111,其耦接至該S級調變器1109之輸出,用以使理想之頻率範圍復原成一傳統功率放大器1117之該偏壓輸入。在該下路徑1103中,位於該輸入埠600之射頻訊號被饋送至一限制器1113以消除其振幅調變部分並保留該訊號之相位部分。該限制器1113更耦接至一時間延遲1115,其用以補償在上路徑1101中被調變之訊號的延遲。在時間延遲1115之輸出埠上,經時間補償之訊號會被饋入傳統之功率放大器1117以進行放大,並於該輸出埠607上產生一輸出訊號,該輸出訊號正比於輸入埠600之該射頻輸入訊號。
第11A圖中之EER架構可能存在一些缺點。缺點之一,由該S級調變器1109所致之開關耗損(switching loss)會隨頻率的增加而增加。另一個缺點是發生於脈寬調節器(PWM)1107之截波(clipping)問題,該波包偵測器1005的輸出部分會使波包大幅變動並造成非線性的結果。解決波包大幅變動之問題的方法之一,是將該脈寬調節器(PWM)1107、該S級調變器1109、以及該低通濾波器1111以一差和調變器(delta-sigma modulator)取代,該差和調變器同樣可將所關心頻帶以外之雜訊予以排除。此外,由於該波包差和調變(envelope delta-sigma modulated,EDSM)架構具有MTM濾波器,該帶通濾波器可達到一理想之頻寬,且較傳統之濾波器有較小之損耗。再者,此EER架構也可採用低通MTM濾波器。舉例而言,F級、反相F級、或J級之MTM功率放大器可包括一整合濾波器作為該功率放大器之輸出匹配網路(output matching network,OWM)的一部分。此設計可降低當連接至一傳統濾波器之所發生之損耗。將濾波器連接至功率放大器的輸出可達成高效率。配置一諧波調諧器(harmonic tuner)於此型MTM濾波器可改善放大器之線性度。
第11B-11D圖中所示之實施例中,一MTM功率放大器或其他MTM電路元件被整合於該波包消除重建(EER)系統以增強之。
舉例而言,第11B圖中之EER系統中,一射頻訊號於一輸入埠600上分別進入兩路徑:一上路徑1121及一下路徑1123。在上路徑1121中,輸入埠600上之射頻訊號被饋入一波包偵測器1105以偵測該輸入訊號之波包。該波包偵測器1105串聯至一差和調變器1125而將自該偵測器1105而來之波包訊號予以數位化。該差和調變器1125耦接至一調變器1127,該調變器1127結合兩路徑,而使該差和調變器之輸出重新和低路徑1123上之訊號重新組合。在該低路徑1123中,於該輸入埠600之射頻訊號被饋送至一限制器1113以消除其振幅調變部分並保留該訊號之相位部分。該限制器1113更耦接至一時間延遲1115,其用以補償在上路徑1121中被調變之訊號的延遲,使得在兩路徑上之訊號能在該調變器1127上被同步化於一相位。在時間延遲1115之輸出埠上,經時間補償之訊號會被饋入調變器1127並與上路徑1121中之波包訊號重新組合。在此實施例中,於調變器1127上之輸出訊號被饋入一MTM功率放大器以進行化大,並於該輸出埠607上產生一輸出訊號,該輸出訊號正比於輸入埠600之該射頻輸入訊號。在另一實施例中,該MTM功率放大器1129可整合一諧波調諧器及一帶通濾波器,作為該功率放大器輸出匹配網路之部分。藉由將其他的MTM元件整合於該功率放大器,該功率放大器之整體電路尺寸可被縮減,同時也改善了該功率放大器之效能。
第11C圖表示第11A圖之傳統EER系統之一實施例。在該實施例中,產生於該功率放大器1117之輸出端上、經放大的射頻訊號可耦接至一MTM濾波器1137。使第11A圖之EER系統具有MTM濾波器可使該帶通濾波器得到一理想之頻寬。在此實例中,該調變架構可如第11A圖所示為一波包差和調變(EDSM)1125或PWM/S級/LPF調變架構(1107、1109、1111)。
在第11D圖中,第11C圖中之功率放大器1117及MTM濾波器1137被置換成一MTM功率放大器1141。該MTM功率放大器1141為具有一CRLH MTM結構之功率放大器,用以強化功率放大器之性能並減少功率放大器之尺寸。該MTM功率放大器1141也可包括一整合之濾波器。因為該等MTM功率放大器被設計成一區塊,故該MTM功率放大器1141可全部使用MTM元件以進行最佳化。此設計整合方法可具有數個優點,例如可降低電路尺寸以及改善功率放大器的整體效能。該MTM功率放大器可以F級、反相F級、或J級功率放大器來設計。
以MTM為基礎之多功率放大器系統也可包括一輸入埠用以接收一輸入射頻訊號,並包括多個以CRLH MTM結構為基礎之傳輸線,該等傳輸線互相串聯並從該輸入埠接收該輸入射頻訊號。在給定操作頻率或共振頻率的情況下,各個傳輸線會以其具有的CRLH MTM結構產生一零相位延遲或一n360°之相位延遲,其中n為一非零整數,其又包括一分路輸出埠,用以將該射頻訊號之一部分分成一各別分路射頻訊號,而在不同之傳輸線上產生不同之各別分路射頻訊號。此系統包括多個功率放大器,其分別耦接至該等傳輸線之分路輸出埠,其中各功率放大器接收並放大一各別分路射頻訊號並產生一放大的分路射頻訊號。以CRLH MTM結構為基礎之功率合併器,自功率放大器上接收該放大的分路射頻訊號,並將接收之放大的分路射頻訊號予以合併,產生合併的輸出射頻訊號。
第12圖表示一系統,其中一串列饋入並列合併分散式放大器包括零度CRLH TL 1203。在各電晶體1209之輸入上有一零度CRLH TL 1203。所有零度CRLH TL形成一串列式零度CRLH TL,並以一負載1205為終端。一MTM功率合併器1207耦接至電晶體1209之輸出,用以將放大的輸出合併至一單一輸出訊號。可設計該零度CRLH TL 1203及該MTM功率合併器1209而使其能夠提供多頻帶操作,並使多頻帶中之匹配及功率傳輸得以最佳化。此外,由資特徵阻抗可為訊號頻率之函數,故該零度CRLH TL 1203可供2階及3階諧波頻率之濾波。因此,相較於其他功率放大器結構而言,第12圖所示結構的效率可被強化。
在第13圖所示之另一實施例中,一串列饋入並列合併分散式放大器包括第零階共振器。在此實施例中,在輸入600上有一零階共振器,其可於輸入600上提供一駐波(stationary wave),其具有濾波效應(filtering effect),使負載1205上不會出現能量發散,與先前所述之情況一般。較佳之效率及線性度可因而達成。
第14及15圖所示之實施例中分別描述第12及13圖中之零度CRLH TL及第零階共振器。在此設計下,雙頻帶及多頻帶主CRLH傳輸線至少可以在第一訊號頻率f1上之一第一相位以及在第二訊號頻率f2上之一第二相位表示。此主CRLH傳輸線包括串聯之CRLH單位晶胞,而各CRLH單位晶胞在第一訊號頻率下具有一第一電氣長度,其為±180度之倍數,並且在第二訊號頻率下具有一不同的第二電氣長度,其為±180度之不同倍數。兩個或兩個以上之分路CRLH饋線連接於該CRLH傳輸線的不同處,用以將該CRLH饋線中之訊號合併至該CRLH傳輸線,或者,將該CRLH傳輸線中之一訊號分成不同之訊號而送至該CLRH饋線。各分路CRLH饋線包括至少一CRLH單位晶胞,其可以在第一訊號頻率上之一第三電氣長度以及在第二訊號頻率上之一不同的第四電氣長度表示,其中該第三電氣長度為±90°之奇數倍數,而該第四電氣長度為±90°之不同奇數倍數。如同上述,各CRLH饋線102連接至介於兩相鄰CRLH單位晶胞之間,或連接於一CRLH單位晶胞之一側。
第14圖之裝置包括一雙頻帶主CRLH傳輸線1410及雙頻帶CRLH TL單位晶胞1412和分路CRLH饋線1420。各單位晶胞1412設計成具有一電氣長度,在該第一訊號頻率f1下,該電氣長度相同於一零度之相位,而在該第二訊號頻率f2下,該電晶氣度相同於一360度之相位。各分路CRLH饋線1420包括一個或一個以上CRLH單位晶胞,並具有一雙頻帶CRLH TL四分之一波長轉換器之組態。透過在兩個不同頻率f1及f2上長度為L的一CRLH TL四分之一波長轉換器1420而轉換該理想阻抗。在一此特例中,各CRLH饋線1420設計成在該第一訊號頻率f1上具有90°之相位(λ/4)[Π模],並在該第二訊號頻率f2上具有270°(3λ/4)[Π模]。在不同埠間,此裝置在一頻率下具有零度相位,並在另一頻率下具有360度之相位。
第15圖之裝置表示一雙頻帶共振器串聯功率合併/分配器。該雙頻帶CRLH TL使其一端不連接而形成一共振器。該輸出/輸入埠(埠1-N)可匹配至50Ω,而其他端則匹配至理想阻抗。透過在兩個不同頻率f1及f2上長度為L的一CRLH TL四分之一波長轉換器1420而轉換這些理想阻抗。其中f1具有具有90°之相位(λ/4),而f2上具有270°(3λ/4)。
這兩個訊號頻率f1及f2之間不具諧波頻率關係。這些特徵可因應各種標準下之頻率,例如在Wi-Fi應用中之2.4GHz頻帶及5.8GHz頻帶。在此組態中,由於各埠間f1為零度而f2為360度的關係,在雙頻帶CRLH TL 1410上埠的位置以及埠的數目皆可依照理想狀況作選擇。
第16圖所示之另一實施例中,一MTM放大天線包括位在各電晶體1605輸入端之一串聯第零階共振器功率放大器1601及位在各電晶體1605之輸出端之一第零階共振天線1603。因此,在此架構上,無需使用功率合併器,即可在該第零階共振天線將輸入訊號予以合併。美國專利7,482,983及7,33,090揭露了零階共振天線以及可用以實施第16中設計之功率分配器之實例,這些實施以提述方式納入本發明而作為揭露之部分。在其他實施例中,天線1603可以一漏波天線實施。
使用該MTM技術可在微型裝置中提供頻寬或多頻帶功率合併/分配器。某些實施方式使用3dB功率合併/分配器以減少在該MTM平衡式功率放大器中之損耗,因此改善系統之整體效率。
在第17圖中所示之實例中,一平衡式功率放大器包括一正交耦合器(quadrature coupler),例如一MTM分路耦合器(branch line coupler)1701;兩相同的功率放大器1702、1703;以及一MTM分路耦合器1705。射頻訊號接收於該MTM分路耦合器1701之輸入埠600,並被平均並配至具有90度相位差之兩輸出1711。在兩輸出端1711上之訊號被饋入功率放大器1701及功率放大器1703。該MTM分路耦合器1701之另一輸入端以一電阻R 1701為終端。該等功率放大器1702與1703之輸出連接至該MTM分路耦合器1705之兩輸入端1713。該MTM分路耦合器1705之一輸出作為該射頻輸出607,而另一輸出則以一電阻R 1709作為終端。
在輸入端上使用正交耦合器之優點在於:因阻抗不匹配而在功率放大器上之輸入端上造成之反射訊號,會以反相回到該射頻輸入埠。因此,該反射訊號將被抵消,故相對不使用正交耦合器者有較佳之輸入電壓駐波比(Voltage Standing Wave Ratio,VSWR)。
同理,本發明亦可在該等放大器之輸出端上使用一正交耦合器。由於使用正交耦合器,如微波分路耦合器(microwave branch line coupler)或藍吉耦合器(Lange coupler),該輸出VSWR可獲得改善。然而,傳統之微波分路耦合器僅提供窄小之頻寬,且通常具有大體積,而藍奇耦合器則需要複雜的製造程序,例如使用無引線接合法(wireless bonding)或微波電橋法(microwave bridge)。
該功率放大器系統也可設計成能夠支持廣操作頻寬,或支持至少兩個頻帶。
在第18圖所示之實例中,多頻帶MTM分路耦合器包括四個CRLH-TL分路,其中CRLH-TL1 1801、1803之兩端連接至該CRLH-TL2 1805、1807,而CRLH-TL2 1805、1807之兩端則連接至CRLH-TL1 1801、1803。CRLH-TL1 1801、1803在f1上有相位θ1而在f2上有相位θ2,CRLH-TL2 1805、1807在f1上有相位θ3而在f2上有相位θ4。其中θ1、θ2、θ3、θ4滿足第18圖表列之相位需求,目的在提供一3dB功率分配以及兩輸出間之正交相位。此外,該CRLH-TL1 1801、1803及CRLH-TL2 1805、1807之特徵阻抗分別為35.5Ω與50Ω。藉由使用MTM技術,這些分路耦合器可製造得比傳統分路耦合器小。
第19圖表示一CRLH-TL之分散曲線圖,其為一非線性之曲線並且在非直流頻率上具有零相位延遲。因此,θ1和θ2之相位超前/延遲可在頻率f1和f2上任意選擇。
功率放大器系統具有廣操作頻寬者可使用具有廣頻寬之分路耦合器。第20A圖表示一實例,其中一寬頻分路耦合器包括四個CRLH-TL 2011、2013、2015及2017,相連而形成四埠耦合器。在一實施例中,P1 2001為輸入,P2 2002及P3 2003為兩輸出,而P4 2004則用來處理訊號反射或用來隔離他埠。由於該分路耦合器呈對稱關係,該輸入及輸出埠可用以可彼此替換。藉由選定θ1=-90°,並選定θ2=+90°,分路耦合器可提供較傳統分路耦合器更加寬廣的頻寬。
第20B圖為寬頻MTM分路耦合器與傳統分路耦合器兩者在回損(return loss)及插損(insertion loss)之比較示意圖。相較於傳統,MTM分路耦合器在回損和插損響應上皆涵蓋較寬廣之頻率範圍。從第20C圖,更能說明|S21|與|S31|間相位差的頻寬在MTM分路耦合器中較傳統分路耦合器寬廣。
第21圖表示該MTM寬頻耦合器(或稱平面MTM前向波方向耦合器)之另一實施例。這種MTM寬頻耦合器之實例在美國專利(申請號12/340,657)中亦有說明,其以提述方式納入本發明而作為揭露之部分。此平面MTM前向波方向耦合器可採用將兩個耦合超穎晶胞水平串接的方式來實施。藉由將兩個超穎單位晶胞(舉例而言,2100-1及2100-2)平行化可實現該耦合超穎晶胞,其具有之額外電感Lm1 連接於兩晶胞間。
各超穎單位晶胞2100包括兩傳輸線、兩串聯電容2CL 以及一並聯電感LL 。在第21圖所示之實施例中,對應輸入埠1 2101之兩傳輸線表示為2105及2107。對應輸入埠22102之兩傳輸線表示為2115及2117。對應輸入埠4 2104之兩傳輸線表示為2111及2113。對應輸入埠3 2103之兩傳輸線表示為2109及2119。當各單位晶胞中之兩傳輸線接近彼此時,將誘發互感Lm 與互容Cm 。以傳輸線2107及2109為例。此兩傳輸線在沿線部分具有內部串聯電感值LR ,且在線與地之間具有並聯電容值CR 。此平面MTM前向波方向耦合器可在各輸出埠提供寬廣的回損頻帶及3dB插損。在平衡式功率放大器中,前述平面MTM前向波方向耦合器可作為其輸入部或輸出部。
第22A-22B圖表示耦合器(又稱為垂直MTM前向波方向耦合器)之另一實施例。此垂直MTM前向波方向耦合器之實施例在美國專利(申請號12/340,657)中亦有說明。在該實施例中,該前向波耦合器由兩個耦接超穎晶胞串接而成。建構該耦合超穎晶胞的方法,包括使兩個超穎傳輸線2201、2203平行,並在兩超穎傳輸線之間垂直連接一額外電感Lm1 2231,其指出一超穎傳輸線2201位在基質之頂部,而另一超穎則位在基質之底部。此MTM前向波耦合器之截面圖表示於第22B圖中。各超穎傳輸線2201、2203包括兩超穎單位晶胞。各單位晶胞包括傳輸線的兩個部分,兩個串聯電容2CL 及一並聯電感LL 。垂直耦接的傳輸線提供互感Lm 及互容Cm 。此外,該超穎耦接線之各埠透過一CPW接結連接至該50Ω CPW 2221。在此實施例中,一共有四個CPW線2221及四個CPW接結2209。在此實施例中,該MTM前向波耦接器可在各輸出埠提供寬廣的回損頻帶及3dB插損。垂直MTM前向波耦合器可用於平衡式放大器之輸入部分及輸出部分。
使用非線性元件之線性放大技術(Linear Amplification using Non-linear Componets,LINC)是對兩訊號進行向量加總而達成功率放大的效果。在第23圖所示之實施例中,一LINC架構包括MTM LINC(非線性)功率放大器2305,其在輸入級與一N路MTM功率分配器2301耦接,並在輸出級與N路MTM功率合併器2303耦接。也可採用傳統LINC功率放大器替代。MTM功率放大器可支持多頻帶射頻訊號具有微型尺寸,並提供低損耗,進而產生高效率。傳統LINC的缺點之一在於硬體之複雜度;某些應用需要大量訊號處理量,此皆導致LINC架構笨重且昂貴。MTM功率放大器降少了硬體複雜性,且提供寬頻高效率。MTM可使相位在某些頻率範圍中達成平坦之斜率。換句話說,不同頻率上可達成相同之相位,將使得合併之功率放器之相位匹配獲得改善。
第24圖所示之相位合併系統的實施例中,不同的訊號及不同之相位被饋入不同之MTM非線性功率放大器2303,不同的相位可在N路MTM功率合併器2405合併,或者合併於其他功率放大器,例如前述第5A-5B圖的MTM威金生功率合併器。各功率放大器被饋以一射頻輸入訊號。在此組態中,使用MTM結構,並將其設計成能夠允許特定頻率通過,並同時阻擋其他頻率。因此,當輸入訊號具有不同之頻帶或具有一單一頻帶時,可使用第24圖之功率放大器架構。
本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
101...MTM傳輸線
103...單位晶胞
LR ...右手式串聯電感
CR ...右手式並聯電容
CL ...左手式串聯電容
LL ...左手式並聯電感
501...輸入埠
503...CRLH-TL
505...電阻器
507...CRLH-TL
509...阻抗
511...CRLH-TL
521...輸入埠
523...CRLH-TL
525...電阻器
527...CRLH-TL
529...阻抗
531...CRLH-TL
600...輸入埠
607...輸出埠
601...功率分配器
603...功率合併器
605...功率放大器
613...2路MTM功率分配器
615...2路MTM功率合併器
617...功率放大器
619...功率放大器
623...N路MTM功率分配器
625...N路MTM功率合併器
629...主放大器或載波放大器
631...輔放大器或峰值放大器
701...2路MTM威金生分配器
705...主放大器或載波放大器
707...輔放大器或峰值放大器
709...輸出功率合併器
711...補償線
713...RH元件
715...補償線
717...RH元件
701...2路MTM威金生分配器
705...主放大器或載波放大器
707...輔放大器或峰值放大器
801...MTM輸出功率合併器
701...2路MTM威金生分配器
705...主放大器或載波放大器
707...輔放大器或峰值放大器
901...MTM四分之一波長元件
701~2...路MTM威金生分配器
705...主放大器或載波放大器
707...輔放大器或峰值放大器
1001~MTM...威金生合併器
1101...上路徑
1103...下路徑
1105...波包偵測器
1107...脈寬調節器
1109~S...級調變器
1111...低通濾波器
1113...限制器
1115...時間延遲
1117...功率放大器
1121...上路徑
1123...下路徑
1125...差和調變器
1137~MTM...濾波器
1105...波包偵測器
1203...零度CRLH TL
1205...負載
1207~MTM...功率合併器
1209...電晶體
1410...雙頻帶主CRLH傳輸線
1412...雙頻帶CRLH TL單位晶胞
1420...分路CRLH饋線
1410...雙頻帶主CRLH傳輸線
1412...雙頻帶CRLH TL單位晶胞
1601...第零階共振器功率放大器
1603...第零階共振天線
1605...電晶體
1701...MTM分路耦合器
1702...功率放大器1
1703...功率放大器2
1705...MTM分路耦合器
1707...電阻
1709...電阻
1711...輸出端
1713...輸入端
1801...CRLH-TL1
1803...CRLH-TL1
1805...CRLH-TL2
1807...CRLH-TL2
2011...CRLH-TL
2013...CRLH-TL
2015...CRLH-TL
2017...CRLH-TL
2100-1...超穎單位晶胞
2100-2...超穎單位晶胞
2101...輸入埠1
2102...輸入埠2
2103...輸入埠3
2104...輸入埠4
2105...傳輸線
2107...傳輸線
2109...傳輸線
2111...傳輸線
2113...傳輸線
2115...傳輸線
2117...傳輸線
2119...傳輸線
2CL ...串聯電容
LL ...並聯電感
Lm1 ...額外電感
2201...超穎傳輸線
2203...超穎傳輸線
2209...CPW接結
2211...埠1
2212...埠2
2213...埠3
2214...埠4
2221...CPW
2231...額外電感
2301...N路MTM功率分配器
2303...N路MTM功率合併器
2305...MTM非線性功率放大器
2403...MTM非線性功率放大器
2405...N路MTM功率合併器
第1A圖表示MTM傳輸線與單位晶胞之等效電路;第1B圖表示具有第1A圖中單位晶胞之一平衡CRLH材質的分散曲線圖;第2圖表示結合RH元件的相位與LH元件的相位之CRLH TL的相位響應;第3A圖表示一單頻帶N路MTM功率合併/分配器之實施例;第3B圖表示一單頻帶N路MTM功率合併/分配器之實施例;第4A圖中表示一多頻帶N路MTM功率合併/分配器;第4B圖中表示一多頻帶N路MTM功率合併/分配器;第5A圖表示一2路MTM威金生功率分配/合併器之實例;第5B圖表示一N路MTM威金生功率分配/合併器之實施例;第6A圖為具有N路功率分配器601和N路功率合併器之一單頻帶或多頻帶功率放大器系統;第6B圖表示第6A圖所示功率放大器系統之一實施例;第6C圖表示第6A圖中功率放大器系統之其他實施例;第7圖為具有MTM威金生及傳統元件之一MTM多厄悌功率放大器;第8圖為一MTM多厄悌功率放大器及一MTM威金生;第9圖為一MTM反多厄悌功率放大器及一MTM威金生;第10圖為一MTM多厄悌功率放大器及二MTM威金生;第11A圖為一EER系統之範例示意圖;第11B-D圖為整合MTM功率放大器於EER系統之示意圖;第12圖為具有零度CRLH TL之一串列饋入並列合併分散式放大器;第13圖為具有第零階共振器之一串列饋入並列合併分散式放大器;第14圖為一N埠多頻帶零度CRLH TL;第15圖為一N埠多頻帶第零階共振器;第16圖為一MTM放大天線;第17圖為一MTM平衡式功率放大器;第18圖為一多頻帶MTM分路耦合器;第19圖為CRLH-TL之分散曲線圖;第20A圖為一寬頻MTM分路耦合器;第20B圖為寬頻MTM分路耦合器與傳統分路耦合器兩者在回損及插損之比較示意圖;第20C圖為|S21|與|S31|間相位差之示意圖;第21圖為一平面MTM前向波方向耦合器;第22A圖為一垂直MTM前向波方向耦合器;第22B圖為第22A圖中垂直MTM前向波方向耦合器之剖面視圖;第23圖為一MTM LINC功率放大器;以及第24圖為一處理不同訊號之MTM LINC功率放大器。
600...輸入埠
607...輸出埠
601...功率分配器
603...功率合併器
605...功率放大器

Claims (33)

  1. 一功率放大器系統,用以放大一射頻訊號,包括:一輸入埠,用以接收一輸入射頻訊號;一功率分配器,包括:一輸入傳輸線,耦接至該輸入埠以接收該輸入射頻訊號;複數個輸出分路傳輸線,耦接至該輸入傳輸線,用以將所接收之該輸入射頻訊號分成複數個分路射頻訊號,並將該等分路射頻訊號分別傳輸於該等輸出分路傳輸線上;複數個功率放大器,分別耦接至該功率分配器之該等輸出分路傳輸線,各功率放大器接收並放大一各別的分路射頻訊號以產生一放大的分路射頻訊號;以及一功率合併器,包括:複數個輸入分路傳輸線,分別耦接至該等功率放大器,用以接收由該功率放大器所產生之該等放大的分路射頻訊號;以及一輸出傳輸線,耦接至該等輸入分路傳輸線,用以將該放大的分路射頻訊號合併成一合併的輸出射頻訊號,其中該功率分配器和該功率合併器中至少一者包括一右左手複合型(Composite Right and Left Handed,CRLH)超穎物質(Metamaterial,MTM)結構;以及其中該等輸入分路傳輸線及該功率分配器之該輸出分路傳輸線為CRLH MTM傳輸線,且在二不同之射頻頻率上有至少二個不同之共振頻率,且該功率放大器及該功率合併器被設計成操作 於該二不同之射頻頻率上。
  2. 如申請專利範圍第1項所述之功率放大器系統,其中:該輸入傳輸線及該功率分配器之該等輸出分路傳輸線為CRLH MTM傳輸線,且該等輸出分路傳輸線至少二個被設計成具有不同之阻抗。
  3. 如申請專利範圍第1項所述之功率放大器系統,其中:該輸入傳輸線及該功率分配器之該等輸出分路傳輸線為CRLH MTM傳輸線,且該等輸出分路傳輸線至少二個被設計成具有大體相同之阻抗。
  4. 如申請專利範圍第1項所述之功率放大器系統,其中:該輸入傳輸線及該功率分配器之該等輸出分路傳輸線為CRLH MTM傳輸線,且設計成使至少二輸出分路傳輸線中之分路射頻訊號具有不同之功率位準。
  5. 如申請專利範圍第1項所述之功率放大器系統,其中:該輸入傳輸線及該功率分配器之該等輸出分路傳輸線為CRLH MTM傳輸線,且設計成使所有輸出分路傳輸線中之分路射頻訊號在功率上大體相同。
  6. 如申請專利範圍第1項所述之功率放大器系統,其中: 該功率分配器之該輸入傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一零相位延遲或一±m180°之相位延遲,其中m為一正整數,以及該功率分配器之各輸出分路傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一±n90°之相位延遲,其中n為一正奇數。
  7. 如申請專利範圍第1項所述之功率放大器系統,其中:該功率分配器之該輸入傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一±m90°之相位延遲,其中m為一正奇數,以及該功率分配器之各輸出分路傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一零相位延遲或一±n180°之相位延遲,其中n為一正整數。
  8. 如申請專利範圍第1項所述之功率放大器系統,其中:該等輸入分路傳輸線及該功率合併器之該等輸出傳輸線為CRLH MTM傳輸線,且該等輸入分路傳輸線至少二個被設計成具有不同之阻抗。
  9. 如申請專利範圍第1項所述之功率放大器系統,其中:該等輸入分路傳輸線及該功率合併器之該等輸出分路傳輸線為CRLH MTM傳輸線,且該等輸入分路傳輸線被設計成具有大體相同之阻抗。
  10. 如申請專利範圍第1項所述 之功率放大器系統,其中:該功率合併器之該等輸入分路傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一零相位延遲或一±m180°之相位延遲,其中m為一正整數,以及該功率合併器之該輸出傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一±n90°之相位延遲,其中n為一正奇數。
  11. 如申請專利範圍第1項所述之功率放大器系統,其中:該功率合併器之該等輸入分路傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一±m90°之相位延遲,其中m為一正奇數,以及該功率合併器之該輸出傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一零相位延遲或一±n180°之相位延遲,其中n為一正整數。
  12. 如申請專利範圍第1項所述之功率放大器系統,其中:該等輸入分路傳輸線及該功率分配器之該輸出分路傳輸線為CRLH MTM傳輸線,且在二不同之射頻頻率上有至少二個不同之共振頻率,且該功率放大器及該功率分配器被設計成操作於該二不同之射頻頻率上。
  13. 如申請專利範圍第1項所述之功率放大器系統,其中: 該功率分配器為由複數個右左手複合型(CRLH)超穎物質(MTM)傳輸線所構成之一威金生(Wilkinson)功率分配器。
  14. 如申請專利範圍第13項所述之功率放大器系統,其中:該威金生功率分配器包括:一第一CRLH MTM傳輸線,作為該輸入傳輸線;一第二CRLH MTM傳輸線,作為該等輸出分路傳輸線之一,具有耦接至該第一CRLH MTM傳輸線的一第一端、以及一第二端;一第三CRLH MTM傳輸線,作為該等輸出分路傳輸線之另一者,具有耦接至該第一CRLH MTM傳輸線的一第一端、以及一第二端;一電阻器,具有耦接至該第二CRLH MTM傳輸線之第二端的一第一端、以及耦接至該第三CRLH MTM傳輸線之第二端的一第二端;一第四CRLH MTM傳輸線,耦接至該第二CRLH MTM傳輸線之第二端;以及一第五CRLH MTM傳輸線,耦接至該第三CRLH MTM傳輸線之第二端。
  15. 如申請專利範圍第1項所述之功率放大器系統,其中:該功率合併器為由複數個右左手複合型(CRLH)超穎物質(MTM) 傳輸線所構成之一威金生功率合併器。
  16. 如申請專利範圍第15項所述之功率放大器系統,其中:該威金生功率合併器包括:一第一CRLH MTM傳輸線,具有耦接至一第一放大器並用以接收一第一放大的射頻訊號之一第一端、以及用以輸出該第一放大射頻訊號之一第二端;一第二CRLH MTM傳輸線,具有耦接至一第二放大器並用以接收一第二放大的射頻訊號之一第一端、以及用以輸出該第二放大射頻訊號之一第二端;一電阻器,具有耦接至該第一CRLH MTM傳輸線之第二端的一第一端、以及耦接至該第二CRLH MTM傳輸線之第二端的一第二端;一第三CRLH MTM傳輸線,耦接至該第一CRLH MTM傳輸線之第二端而作為輸入分路傳輸線之一;以及一第四CRLH MTM傳輸線,耦接至該第二CRLH MTM傳輸線之第二端而作為該輸入分路傳輸線之另一者;以及一第五CRLH MTM傳輸線,形成該輸出傳輸線,並耦接至該第三及第四CRLH MTM傳輸線。
  17. 如申請專利範圍第1項所述之功率放大器系統,其中:該功率分配器及該功率合併器中至少一者由右手型(right handed)元件所構成,而不具複數個右左手複合型(CRLH)超穎物質(MTM)結構。
  18. 如申請專利範圍第1項所述之功率放大器系統,其中:該功率放大器具有提供線性放大之非線性元件。
  19. 如申請專利範圍第1項所述之功率放大器系統,其中:各該功率放大器包括提供線性放大之非線性元件,且具有一右左手複合型(CRLH)超穎物質(MTM)結構。
  20. 一個以右左手複合型(CRLH)超穎物質(MTM)結構為基礎之裝置,包括:一第一傳輸線,包括一右左手複合型(CRLH)超穎物質(MTM)結構、終止於一第一阻抗的一第一端、以及一第二端;複數個CRLH MTM結構之第二傳輸線,耦接於該第一傳輸線之第二端,用以分別在該等第二傳輸線上將接收於該第一傳輸線之第二端的一輸入射頻訊號分成複數個輸出射頻訊號,或者將該第二傳輸線上的複數個輸入射頻訊號合併成該第一傳輸線之第二端上的一輸出射頻訊號,各該第二傳輸線具有耦接至該第一傳輸線之第二端的一第一端,以及終止於一各別的第二阻抗的一第二端,其中該第一傳輸線和該第二傳輸線設計成能夠在該第一傳輸線之第一端與各該第二傳輸線之各別的第二阻抗之間提供阻抗匹配,以及 其中該第一傳輸線及該第二傳輸線設計成:一第一組態,其中該第一傳輸線為一CRLH MTM傳輸線,其電氣長度具有一±m90°之相位延遲,其中m為一正奇數,而各該第二傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一零相位延遲或一±n180°之相位延遲,其中n為一正整數;或一第二組態,其中該第一傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一零相位延遲或一±m180°之相位延遲,其中m為一正整數,而各該第二傳輸線為一CRLH MTM傳輸線,且其電氣長度具有一±n90°之相位延遲,其中n為一正奇數。
  21. 如申請專利範圍第20項所述之裝置,其中:該等第二傳輸線具有不同之阻抗。
  22. 如申請專利範圍第20項所述之裝置,其中:該等第二傳輸線具有大體相同之阻抗。
  23. 如申請專利範圍第20項所述之裝置,其中:該第一傳輸線在兩個或兩個以上不同的射頻頻率上具有共振頻率;以及各該第二傳輸線設計成在該第一傳輸線的兩個或兩個以上不同的射頻頻率上具有共振頻率。
  24. 一功率放大器系統,用以放大一射頻訊號,包括: 一輸入埠,用以接收一輸入射頻訊號;複數個以右左手複合型(CRLH)超穎物質(MTM)結構為基礎之傳輸線,串接該輸入埠並接收該輸入射頻訊號,各傳輸線具有一CRLH MTM結構,用以在一操作頻率下產生一零相位延遲或一n360之相位延遲,其中n為一正整數或一負整數,並且具有一分路輸出埠,用以將該射頻訊號之一部分分成各別傳輸線之一分路射頻訊號,並且不同之傳輸線產生各不同之分路射頻訊號;複數個功率放大器,分別耦接至該等傳輸線之分路輸出埠,各功率放大器接收並放大一個別的分路射頻訊號以產生一放大的分路射頻訊號;及一以CRLH MTM結構為基礎之功率放大器,耦接並接收自該等功率放大器而來之該放大的分路射頻訊號,並將所接收的該等放大的分路射頻訊號合併成一合併的輸出射頻訊號。
  25. 如申請專利範圍第24項所述之系統,其中:該等以CRLH MTM為基礎之傳輸線在頻率中具有一第一共振頻率及一第二共振頻率,其中各該傳輸線設計成在該第一共振頻率上產生一第一相位延遲並在該第二共振頻率上產生一第二相位延遲,而該第一及第二相位延遲為從零至n360°中選取之兩不同值,其中n為一正整數或負整數。
  26. 如申請專利範圍第24項所述之系統,其中: 該功率合併器包括複數個輸入CRLH MTM傳輸線及一CRLH MTM輸出傳輸線,其中該等輸入CRLH MTM傳輸線分別耦接至該等功率放大器以接收該等功率放大器所產生之放大的分路射頻訊號,而該CRLH MTM輸出傳輸線則耦接收該等輸入CRLH MTM傳輸線以將所接收的該等放大的分路射頻訊號合併至該合併的輸出射頻訊號。
  27. 如申請專利範圍第24項所述之系統,其中:該功率分配器為一威金生功率分配器,其由複數個右左手複合型(CRLH)超穎物質(MTM)傳輸線所構成,用以接收由該等功率放大器所產生之放大的分路射頻訊號,並將所接收的該等放大的分路射頻訊號合併至該合併的輸出射頻訊號。
  28. 一功率放大系統,用以放大一射頻訊號,包括:具有右左手複合型(CRLH)超穎物質(MTM)結構之一第零階共振器功率放大器,接收一輸入射頻訊號,並將所接收之該輸入射頻訊號在與彼此相關之相位中分成複數個該等分路射頻訊號;複數個電晶體,耦接至該第零階共振器功率分配器以分別接收該等分路射頻訊號,並將所接收之該等分路射頻訊號放大;以及以CRLH MTM結構為基礎之一第零階共振天線,耦接至該等電晶體以接收放大的分路射頻訊號。
  29. 一功率放大器系統,包括: 一射頻輸入,用以接收一輸入射頻訊號;以右左手複合型(CRLH)超穎物質(MTM)結構為基礎之一第一正交耦合器,具有一第一輸入埠、一第二輸入埠、一第一輸出埠及一第二輸出埠,其中該第一輸入埠耦接至該射頻輸入以接收該輸入射頻訊號,該第二輸入埠為終端,該第一正交耦合器將該輸入射頻訊號分至在該第一輸出埠上的一第一射頻訊號、在該第二輸出埠上之一第二射頻訊號,其中該第二輸出埠具有相對該第一輸出埠偏移90度之相位;一第一功率放大器,耦接至該第一輸出埠以接收並放大該第一射頻訊號;一第二功率放大器,耦接至該第二輸出埠以接收並放大該第二射頻訊號;以及以右左手複合型(CRLH)超穎物質(MTM)結構為基礎之一第二正交耦合器,具有一第一輸入埠、一第二輸入埠、一第一輸出埠及一第二輸出埠,其中該第一輸入埠接收自該第一功率放大器而來之該等放大的第一射頻訊號,該第二輸入埠接收自該第二功率放大器而來之該等放大的第二射頻訊號,該第一輸出埠為終端,而該第二輸出埠用以產生一射頻輸出訊號,該第二正交耦合器將接收於該第一輸入埠及該具90度相位偏移的第二輸入埠之訊號合併以產生該射頻輸出訊號。
  30. 如申請專利範圍第29項所述之功率放大器系統,其中: 該第一及第二正交耦合器其中一者為由四CRLH MTM傳輸線所構成之一CRLH MTM分路耦合器。
  31. 如申請專利範圍第30項所述之功率放大器系統,其中:該第一及第二正交耦合器具有CRLH MTM結構,其在兩個或兩個以上之頻率上共振。
  32. 如申請專利範圍第29項所述之功率放大器系統,其中:該第一及第二正交耦合器其中一者為具有CRLH MTM結構之一平面前向波方向耦合器,其複數個單位晶胞在一基質之一平面上不同的水平區域內複數個共同金屬層(metallization layers)中形成。
  33. 如申請專利範圍第29項所述之功率放大器系統,其中:該第一及第二正交耦合器其中一者為具有CRLH MTM結構之一垂直前向波方向耦合器,其複數個單位晶胞在一與一基質之一平面垂直的方向上之不同金屬層中形成。
TW098117954A 2008-05-28 2009-06-01 功率放大器系統 TWI450494B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5682608P 2008-05-28 2008-05-28
US12/474,270 US8180303B2 (en) 2008-05-28 2009-05-28 Power amplifier architectures

Publications (2)

Publication Number Publication Date
TW201004138A TW201004138A (en) 2010-01-16
TWI450494B true TWI450494B (zh) 2014-08-21

Family

ID=41379050

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098117954A TWI450494B (zh) 2008-05-28 2009-06-01 功率放大器系統

Country Status (3)

Country Link
US (2) US8180303B2 (zh)
TW (1) TWI450494B (zh)
WO (1) WO2009151973A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632769B (zh) * 2017-04-17 2018-08-11 國立暨南國際大學 Multiple power amplifier circuit
TWI793954B (zh) * 2021-01-11 2023-02-21 美商惠普發展公司有限責任合夥企業 流體晶粒及其形成方法

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE523955T1 (de) * 2006-04-14 2011-09-15 Nxp Bv Doherty-verstärker
CN102439789B (zh) * 2008-12-24 2014-08-06 豪沃基金有限责任公司 Rf前端模块和天线系统
WO2010090202A1 (ja) * 2009-02-04 2010-08-12 日本電気株式会社 高周波電力増幅器
US8154340B2 (en) * 2009-02-18 2012-04-10 Hollinworth Fund, LLC Metamaterial power amplifier systems
US8223885B2 (en) 2009-02-19 2012-07-17 Research In Motion Limited Mobile wireless communications device with separate In-phase (I) and Quadrature (Q) phase power amplification and power amplifier pre-distortion and IQ balance compensation
EP2234454B1 (en) * 2009-03-24 2010-11-10 Alcatel Lucent A method for data transmission using an envelope elimination and restoration amplifier, an envelope elimination and restoration amplifier, a transmitting device, a receiving device and a communication network therefor
US8837629B2 (en) * 2011-05-11 2014-09-16 Fadhel M Ghannouchi Extended bandwidth digital Doherty transmitter
CA2704522C (en) 2009-05-14 2017-02-14 Seyed Aidin Bassam Multi-cell processing architectures for modeling and impairment compensation in multi-input multi-output systems
US8285231B2 (en) * 2009-06-09 2012-10-09 Broadcom Corporation Method and system for an integrated leaky wave antenna-based transmitter and on-chip power distribution
US8320856B2 (en) * 2009-06-09 2012-11-27 Broadcom Corporation Method and system for a leaky wave antenna as a load on a power amplifier
US8141784B2 (en) 2009-09-25 2012-03-27 Hand Held Products, Inc. Encoded information reading terminal with user-configurable multi-protocol wireless communication interface
US8786383B2 (en) 2010-04-12 2014-07-22 Hollinworth Fund L.L.C. Metamaterial diplexers, combiners and dividers
US8588114B2 (en) 2010-04-21 2013-11-19 Hollinworth Fund, L.L.C. Differential power amplifier architectures
US9064712B2 (en) * 2010-08-12 2015-06-23 Freescale Semiconductor Inc. Monolithic microwave integrated circuit
US8422539B2 (en) * 2010-08-19 2013-04-16 Industrial Technology Research Institute Multi-carrier receiver, multi-carrier transmitter and multi-carrier transceiver system
KR101731321B1 (ko) 2011-01-06 2017-05-02 삼성전자주식회사 도허티 증폭기에서 효율을 향상시키기 위한 장치 및 방법
JP5605271B2 (ja) * 2011-03-01 2014-10-15 富士通株式会社 合成型増幅器、送信機、及び合成型増幅器制御方法
US8556178B2 (en) 2011-03-04 2013-10-15 Hand Held Products, Inc. RFID devices using metamaterial antennas
KR101283850B1 (ko) * 2011-05-17 2013-07-08 광운대학교 산학협력단 전력 발진기
US8476979B1 (en) 2011-07-07 2013-07-02 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration High-efficiency power module
US10013588B2 (en) 2011-08-17 2018-07-03 Hand Held Products, Inc. Encoded information reading terminal with multi-directional antenna
US8596533B2 (en) 2011-08-17 2013-12-03 Hand Held Products, Inc. RFID devices using metamaterial antennas
US8779898B2 (en) 2011-08-17 2014-07-15 Hand Held Products, Inc. Encoded information reading terminal with micro-electromechanical radio frequency front end
US8718580B2 (en) * 2011-11-11 2014-05-06 Hbc Solutions, Inc. Broadband high efficiency amplifier system incorporating dynamic modulation of load impedance
EP2608400B1 (en) 2011-12-20 2014-08-13 Nxp B.V. N way Doherty amplifier
US8514007B1 (en) * 2012-01-27 2013-08-20 Freescale Semiconductor, Inc. Adjustable power splitter and corresponding methods and apparatus
US8744378B2 (en) 2012-02-09 2014-06-03 Texas Instruments Incorporated LINC transmitter with improved efficiency
US8989683B2 (en) * 2012-03-27 2015-03-24 Bae Systems Information And Electronic Systems Integration Inc. Ultra-wideband high power amplifier architecture
US8854127B2 (en) * 2012-05-15 2014-10-07 Intel Mobile Communications GmbH DC-DC converter for envelope tracking
US8824984B2 (en) * 2012-06-29 2014-09-02 Intel Corporation Outphasing power combining by antenna
US9425756B2 (en) 2012-07-05 2016-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Amplifier device and corresponding radio base station and mobile communication terminal
WO2014019071A1 (en) * 2012-07-31 2014-02-06 Fadhel Ghannouchi Extended bandwidth digital doherty transmitter
US9143366B2 (en) 2012-09-07 2015-09-22 The Aerospace Corporation Galvanic isolation interface for high-speed data link for spacecraft electronics, and method of using same
US9431969B2 (en) 2012-12-11 2016-08-30 Rf Micro Devices, Inc. Doherty power amplifier with tunable impedance load
US8975955B2 (en) * 2012-12-11 2015-03-10 Alcatel Lucent Analysis of Doherty amplifiers
US9083294B2 (en) * 2013-03-13 2015-07-14 Futurewei Technologies, Inc. Apparatus and method for multilevel lossless outphasing power amplifier
US9190967B2 (en) 2013-03-13 2015-11-17 Futurewei Technologies Inc. Apparatus and method for asymmetrically driven partial outphasing power amplifier
US9197465B2 (en) * 2013-03-15 2015-11-24 Futurewei Technologies, Inc. Apparatus and method for a digital transmitter architecture with outphasing power amplifier
US9088059B1 (en) * 2013-05-28 2015-07-21 The United States Of America, As Represented By The Secretary Of The Navy Equal phase and equal phased slope metamaterial transmission lines
US9000865B2 (en) * 2013-06-17 2015-04-07 The United States Of America As Represented By The Secretary Of The Army Power dividing and power combining circuits
KR20140146764A (ko) * 2013-06-18 2014-12-29 한국전자통신연구원 전력 분배기
US9397617B2 (en) * 2013-06-25 2016-07-19 Rf Micro Devices, Inc. Multi-broadband Doherty power amplifier
CN203423656U (zh) * 2013-07-25 2014-02-05 中兴通讯股份有限公司 一种Doherty功放
KR102155371B1 (ko) * 2013-09-09 2020-09-11 삼성전자주식회사 고조파 노이즈 제거를 위한 무선 전력 전송 방법 및 장치
US11082014B2 (en) * 2013-09-12 2021-08-03 Dockon Ag Advanced amplifier system for ultra-wide band RF communication
US9484865B2 (en) 2013-09-30 2016-11-01 Qorvo Us, Inc. Reconfigurable load modulation amplifier
US9948243B2 (en) 2013-09-30 2018-04-17 Qorvo Us, Inc. Reconfigurable load modulation amplifier
US9071202B2 (en) 2013-10-18 2015-06-30 Alcatel Lucent Doherty amplifier with peak branch RF conditioning
US9397616B2 (en) 2013-11-06 2016-07-19 Commscope Technologies Llc Quasi-doherty architecture amplifier and method
JP6176333B2 (ja) * 2013-11-14 2017-08-09 日本電気株式会社 電力増幅器及び電力増幅方法
DE102013226635B4 (de) * 2013-12-19 2023-07-06 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Doherty-Verstärker mit zusätzlichem Verzögerungsglied
US9369095B2 (en) 2014-01-27 2016-06-14 Rf Micro Devices, Inc. Unbalanced linear power amplifier
US9492567B1 (en) 2014-10-17 2016-11-15 Daico Industries, Inc. Combined RF/microwave amplifiers with individual power supplies
US9831837B2 (en) 2014-11-05 2017-11-28 Qualcomm Incorporated Dynamic power divider circuits and methods
US9716471B2 (en) * 2014-12-22 2017-07-25 Raytheon Company Quasi-switched, multi-band, high-power amplifier and method
US9991857B2 (en) * 2015-04-22 2018-06-05 Skyworks Solutions, Inc. Matching network for broadband power amplifier
US9780976B2 (en) * 2015-12-31 2017-10-03 Infineon Technologies Ag Passive equalizers for directional couplers
WO2017119062A1 (ja) * 2016-01-05 2017-07-13 三菱電機株式会社 ドハティ増幅器
US9899976B2 (en) * 2016-06-17 2018-02-20 Infineon Technologies Americas Corp. Compact chireix combiner and impedance matching circuit
WO2018004402A1 (en) * 2016-06-28 2018-01-04 Telefonaktiebolaget Lm Ericsson (Publ) Linear doherty power amplifier
US10122326B2 (en) 2016-11-04 2018-11-06 Qualcomm Incorporated Systems and methods providing loadline modulation of a power amplifier
TWI695579B (zh) * 2017-06-08 2020-06-01 日商村田製作所股份有限公司 功率放大電路
JP6277506B1 (ja) * 2017-08-30 2018-02-14 株式会社レーザーシステム マイクロ波整流回路
US10601375B2 (en) * 2017-10-03 2020-03-24 Sumitomo Electronic Devices Innovations, Inc. Modified three-stage doherty amplifier
US10439575B1 (en) * 2018-05-24 2019-10-08 Speedlink Technology Inc. Wideband distributed differential power amplifier utilizing metamaterial transmission line conception with impedance transformation
US10972055B2 (en) * 2018-06-15 2021-04-06 Skyworks Solutions, Inc. Integrated doherty power amplifier
TWI655843B (zh) * 2018-06-25 2019-04-01 國立暨南國際大學 多路射頻功率放大裝置
US10938358B2 (en) * 2018-10-31 2021-03-02 Kabushiki Kaisha Toshiba Digital power amplifier
CN109687828B (zh) * 2019-02-28 2023-12-19 清华大学 一种射频功率放大器及基站
RU2717898C1 (ru) * 2019-10-23 2020-03-26 Открытое акционерное общество "Межгосударственная Корпорация Развития" (ОАО "Межгосударственная Корпорация Развития") Широкополосный делитель мощности
US11043931B2 (en) 2019-11-04 2021-06-22 Analog Devices International Unlimited Company Power combiner/divider
CN114747136A (zh) * 2019-12-13 2022-07-12 三菱电机株式会社 多尔蒂放大器和通信装置
CN113517862A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 信号处理方法及装置
EP4165720A4 (en) * 2020-09-01 2024-03-06 Telefonaktiebolaget LM Ericsson (publ) RADIO FREQUENCY POWER DIVIDER AND CIRCUIT INCLUDING IT
CN112968675A (zh) * 2021-01-28 2021-06-15 重庆邮电大学 基于变容二极管加载复合左右手传输线的预失真多尔蒂功放
CN113206377B (zh) * 2021-05-06 2022-09-13 安徽大学 一种共面波导馈电的四陷波柔性可穿戴超宽带天线
CN114512779B (zh) * 2021-12-03 2022-09-13 北京邮电大学 一种高选择性宽带ltcc滤波功分器集成芯片
CN114372434B (zh) * 2021-12-13 2024-06-04 杭州电子科技大学 一种基于左右手复合线结构的双频Doherty功率放大器及其设计方法
CN114301400B (zh) * 2021-12-31 2024-06-11 重庆邮电大学 基于变容二极管加载开口谐振环的5g高效率多尔蒂功放
WO2023164529A2 (en) * 2022-02-23 2023-08-31 The Regents Of The University Of Colorado, A Body Corporate Load modulating loop combiner for linear power amplifier
CN118099699B (zh) * 2024-04-26 2024-07-02 四川中久防务科技有限公司 一种基于波导的级联功率合成器的结构参数确定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700444B2 (en) * 2002-01-28 2004-03-02 Cree Microwave, Inc. N-way RF power amplifier with increased backoff power and power added efficiency
US7145387B2 (en) * 2002-01-16 2006-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Composite power amplifier

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006039699A2 (en) * 2004-10-01 2006-04-13 De Rochemont L Pierre Ceramic antenna module and methods of manufacture thereof
US7482893B2 (en) 2006-05-18 2009-01-27 The Regents Of The University Of California Power combiners using meta-material composite right/left hand transmission line at infinite wavelength frequency

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145387B2 (en) * 2002-01-16 2006-12-05 Telefonaktiebolaget Lm Ericsson (Publ) Composite power amplifier
US6700444B2 (en) * 2002-01-28 2004-03-02 Cree Microwave, Inc. N-way RF power amplifier with increased backoff power and power added efficiency

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Dupuy, Alexandre Yuanxun Ethan Wang, "High efficiency power transmitter based on envelope delta-sigma modulation (EDSM)," Vehicular Technology Conference, 2004. VTC2004-Fall. 2004 IEEE 60th , vol.3, no., pp.2092,2095 Vol. 3, 26-29 Sept. 2004 *
Dupuy, Alexandre; Leong, K. M K H; Staraj, R.; Jacquemod, G.; Itoh, T., "Inverse Class-F Power Amplifier Using Composite Right/Left-Handed Transmission Lines as a Harmonic Trap," Microwave Conference, 2006. 36th European , vol., no., pp.360,363, 10-15 Sept. 2006 *
Dupuy, Alexandre; Yuanxun Ethan Wang, "High efficiency power transmitter based on envelope delta-sigma modulation (EDSM)," Vehicular Technology Conference, 2004. -Fall. 2004 IEEE 60th , vol.3, no., pp.2092,2095 Vol. 3, 26-29 Sept. 2004 *
I-Hsiang Lin; DeVincentis, M.; Caloz, C.; Itoh, T., "Arbitrary dual-band components using composite right/left-handed transmission lines," Microwave Theory and Techniques, IEEE Transactions on , vol.52, no.4, pp.1142,1149, April 2004 *
Raab, F.H.; Asbeck, P.; Cripps, S.; Kenington, P.B.; Popovic, Z.B.; Pothecary, N.; Sevic, J.F.; Sokal, N.O., "Power amplifiers and transmitters for RF and microwave," Microwave Theory and Techniques, IEEE Transactions on , vol.50, no.3, pp.814,826, Mar 2002 *
Srirattana, N.; Raghavan, A.; Heo, D.; Allen, P.E.; Laskar, J., "Analysis and design of a high-efficiency multistage Doherty power amplifier for wireless communications," Microwave Theory and Techniques, IEEE Transactions on , vol.53, no.3, pp.852,860, March 2005 *
Upton, D.M.; Maloney, P.R., "A new circuit topology to realize high efficiency, high linearity, and high power microwave amplifiers," Radio and Wireless Conference, 1998. RAWCON 98. 1998 IEEE , vol., no., pp.317,320, 9-12 Aug 1998 *
Youngoo Yang; Jeonghyeon Cha; Bumjae Shin; Kim, Bumman, "A fully matched N-way Doherty amplifier with optimized linearity," Microwave Theory and Techniques, IEEE Transactions on , vol.51, no.3, pp.986,993, Mar 2003 *
Yuanxun Wang, "An improved Kahn transmitter architecture based on delta-sigma modulation," Microwave Symposium Digest, 2003 IEEE MTT-S International , vol.2, no., pp.1327,1330 vol.2, 8-13 June 2003 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632769B (zh) * 2017-04-17 2018-08-11 國立暨南國際大學 Multiple power amplifier circuit
TWI793954B (zh) * 2021-01-11 2023-02-21 美商惠普發展公司有限責任合夥企業 流體晶粒及其形成方法

Also Published As

Publication number Publication date
WO2009151973A3 (en) 2010-03-04
WO2009151973A2 (en) 2009-12-17
US8180303B2 (en) 2012-05-15
US20090295473A1 (en) 2009-12-03
US8346189B2 (en) 2013-01-01
TW201004138A (en) 2010-01-16
US20100176880A2 (en) 2010-07-15
US20120258677A1 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
TWI450494B (zh) 功率放大器系統
US8154340B2 (en) Metamaterial power amplifier systems
US8294533B2 (en) Power combiners and dividers based on composite right and left handed metamaterial structures
TWI766983B (zh) 具有大的射頻及瞬時頻寬的反相杜赫功率放大器
EP2568598B1 (en) Power amplifier for mobile telecommunications
Choi et al. A novel design for a dual-band negative group delay circuit
JP6403801B2 (ja) 電力増幅器
WO2011025562A1 (en) Multi-layer radial power divider/combiner
Wu et al. A 350 W, 790 to 960 MHz wideband LDMOS Doherty amplifier using a modified combining scheme
TW201907661A (zh) 具有大的射頻及瞬時頻寬的反相杜赫功率放大器
US20130293309A1 (en) Doherty amplifier
Palomba et al. A novel hybrid active quasi-circulator for L-band applications
US5966059A (en) Phase shifting power coupler with three signals of equal amplitude
Al-Zayed et al. Seven ports power divider with various power division ratios
CN105024125B (zh) 三等分奇数结构功分/合路器
CN110380691A (zh) 一种基于Doherty功放的功率放大电路及装置
Kaur et al. Recent trends and challenges in microwave power dividers
KR100517946B1 (ko) 밸룬 구조
Choi et al. Dual‐band feedforward linear power amplifier for digital cellular and IMT‐2000 base‐station
Cervantes et al. A wideband quadrature power divider/combiner and its application to an improved balanced amplifier
Khokhar et al. A meta line based miniaturized multi section branch line coupler
Rachakh et al. Microstrip Power Amplifier Design for ISM Band Using Balanced Amplifier Topology.
Holzer Design and Analysis of Increased Data Rate Transmitters Optimized for Efficiency
MARNAT et al. Vivaldi Antenna Push-Pull Power Amplifier Design
Ryu et al. A novel distributed matching circuit for compact microwave amplifier

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees