TWI446758B - Quadrature modulation rotating training sequence - Google Patents

Quadrature modulation rotating training sequence Download PDF

Info

Publication number
TWI446758B
TWI446758B TW097108424A TW97108424A TWI446758B TW I446758 B TWI446758 B TW I446758B TW 097108424 A TW097108424 A TW 097108424A TW 97108424 A TW97108424 A TW 97108424A TW I446758 B TWI446758 B TW I446758B
Authority
TW
Taiwan
Prior art keywords
transmitting
complex value
calibration
sequence
modulation
Prior art date
Application number
TW097108424A
Other languages
Chinese (zh)
Other versions
TW200901692A (en
Inventor
Rabih Chrabieh
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/684,566 external-priority patent/US8428175B2/en
Priority claimed from US11/755,719 external-priority patent/US8290083B2/en
Priority claimed from US11/853,808 external-priority patent/US8064550B2/en
Priority claimed from US11/853,809 external-priority patent/US8081695B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200901692A publication Critical patent/TW200901692A/en
Application granted granted Critical
Publication of TWI446758B publication Critical patent/TWI446758B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/05Electric or magnetic storage of signals before transmitting or retransmitting for changing the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0016Stabilisation of local oscillators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmitters (AREA)

Description

旋轉調校序列之正交調變Orthogonal modulation of the rotation adjustment sequence

本發明大體而言係關於通信之調變,且更特定而言係關於用於產生一旋轉調校信號之正交調變以供用於接收器頻道估計值之調校之系統及方法。The present invention relates generally to modulation of communications, and more particularly to systems and methods for generating quadrature modulation of a rotational tuning signal for adjustment of receiver channel estimates.

圖1係一習用接收器前端(先前技術)之示意性方塊圖。一習用之無線通信接收器包含一天線,該天線將一輻射信號轉換為一傳導信號。在某些起始濾波之後,放大該傳導信號。假設給出一足夠之功率位準,則該信號之載波頻率可藉由混合該信號與一本機振盪器信號(降頻轉換)來轉換。由於所接收信號係經正交調變,則藉由在組合I及Q路徑之前將其分離來對該信號解調變。於頻率轉換之後,可利用一類比-數位轉換器(ADC)將該類比信號轉換為一數位信號以供基頻處理之用。該處理可包含一快速傅立葉變換(FFT)。Figure 1 is a schematic block diagram of a conventional receiver front end (prior art). A conventional wireless communication receiver includes an antenna that converts a radiation signal into a conductive signal. After some initial filtering, the conduction signal is amplified. Assuming a sufficient power level is given, the carrier frequency of the signal can be converted by mixing the signal with a local oscillator signal (downconverting). Since the received signal is quadrature modulated, the signal is demodulated by separating it before combining the I and Q paths. After frequency conversion, the analog signal can be converted to a digital signal by a analog-to-digital converter (ADC) for baseband processing. The process can include a Fast Fourier Transform (FFT).

存在大量可被引入接收器而不利地影響頻道估計及所意欲信號之恢復之誤差。誤差可自混合器、濾波器及諸如電容器等被動組件引入。該等誤差可在其導致I路徑與Q路徑之間的不平衡時惡化。於一估計該頻道及因此消除某些該等誤差之努力中,通信系統可利用一包含一調校序列之訊息格式,該調校序列可係一重複或預定之資料符號。舉例而言,藉由利用一正交分頻多工(OFDM)系統,可針對每一副載波重複傳輸同一IQ星座點。There are a large number of errors that can be introduced into the receiver to adversely affect channel estimation and recovery of the intended signal. Errors can be introduced from mixers, filters, and passive components such as capacitors. These errors can deteriorate as they cause an imbalance between the I path and the Q path. In an effort to estimate the channel and thus eliminate some of these errors, the communication system may utilize a message format that includes a calibration sequence that may be a repeating or predetermined data symbol. For example, by utilizing an orthogonal frequency division multiplexing (OFDM) system, the same IQ constellation point can be repeatedly transmitted for each subcarrier.

於一保存便攜式電池運作裝置之功率之努力中,某些OFDM系統僅使用一單個調變符號以供調校。舉例而言,激發該星座圖中一獨特方向(例如,I路徑),而不激發另一方向(例如,Q路徑)。同一類型之單向調校亦可藉助導頻頻調來使用。應注意,將一單個調變頻道置亂±1並不旋轉該星座點,且不為正交頻道提供供能量給。In an effort to preserve the power of portable battery operating devices, some OFDM systems use only a single modulation symbol for tuning. For example, a unique direction (eg, an I path) in the constellation is excited without exciting the other direction (eg, the Q path). One-way tuning of the same type can also be used with pilot tones. It should be noted that scrambling a single modulated channel ±1 does not rotate the constellation point and does not provide an energy supply for the orthogonal channel.

在出現正交路徑非平衡(其在大帶寬系統中較流行)時,上文提及之功率保存調校序列會導致一偏差頻道估計值。一偏差頻道估計值可以一個方向(亦即I路徑)將該IQ星座圖對準,但以直交方向提供正交非平衡。較佳可將任何非平衡相等地分佈於兩個頻道之間。The power save tuning sequence mentioned above results in a bias channel estimate when quadrature path imbalance occurs, which is more popular in large bandwidth systems. A bias channel estimate can align the IQ constellation in one direction (i.e., the I path) but provide orthogonal unbalance in the orthogonal direction. Preferably, any non-equilibrium can be equally distributed between the two channels.

圖2係一圖解說明接收器側之正交非平衡(先前技術)之示意圖。儘管未顯示,但發射器側非平衡乃為相似。假設Q路徑為參照物。衝擊波形係cos(wtθ ),其中θ係頻道相位。藉助-sin(wt )將Q路徑降頻轉換。藉助(l+2ε )cos(wt +2△φ )將I路徑降頻轉換。2△φ 及2ε 係硬體非平衡,其分別係一相位誤差及一振幅誤差。每一路徑之低通濾波器HI 及HQ 不同。該等濾波器會引入額外振幅及相位失真。然而,此等額外失真在2△φ 及2ε 內移動。應注意:此兩個濾波器係實際的,且以一完全相同方式影響+w 及-wFigure 2 is a schematic diagram illustrating orthogonal non-equilibrium (prior art) on the receiver side. Although not shown, the transmitter side imbalance is similar. Assume that the Q path is a reference. The impact waveform is cos( wt + θ ), where θ is the channel phase. The Q path is downconverted with -sin( wt ). The I path is downconverted by means of (l+2 ε )cos( wt +2Δ φ ). 2 △ φ and 2 ε are hard unbalanced, which are respectively a phase error and an amplitude error. The low pass filters H I and H Q of each path are different. These filters introduce additional amplitude and phase distortion. However, these additional distortions move within 2Δ φ and 2 ε . It should be noted that these two filters are practical and affect + w and - w in exactly the same way.

假設該等誤差較小: Assume that these errors are small:

等式右手側之第一組分cos(wt )係經輕微比例縮放之理想I路徑。第二組分-2△φ .sin(wt )係來自Q路徑之小洩漏。於 衝擊波形之降頻轉換後:在I路徑中:(1+2ε )cos(θ )+2ε .sin(θ )。The first component cos( wt ) on the right hand side of the equation is a slightly scaled ideal I path. The second component -2 Δ φ .sin( wt ) is a small leak from the Q path. After down-conversion of the impulse waveform: in the I path: (1+2 ε )cos( θ )+2 ε .sin( θ ).

在Q路徑中:sin(θ )。In the Q path: sin( θ ).

該等誤差導致正交調變星座圖中之符號定位誤解,這又會導致未正確解調變之資料。These errors lead to misunderstanding of symbol positioning in the quadrature modulation constellation, which in turn leads to incorrect demodulation of the changed data.

無線通信接收器易於出現因與混合器、放大器及濾波器相關聯之硬體組件中缺乏容差而導致之誤差。於正交解調變器中,此等誤差亦可導致I路徑與Q路徑之間的非平衡。Wireless communication receivers are prone to errors due to lack of tolerance in hardware components associated with mixers, amplifiers, and filters. In quadrature demodulator, these errors can also cause an imbalance between the I path and the Q path.

一調校信號可用於校準接收器頻道誤差。然而,一不能同時激發I路種及Q路徑二者之調校信號不能解決該兩個路徑之間的非平衡問題。A calibration signal can be used to calibrate the receiver channel error. However, a calibration signal that cannot simultaneously excite both the I path and the Q path cannot solve the imbalance problem between the two paths.

因此,提供一種用於傳輸一經正交調變之旋轉調校序列。一正交調變發射器產生一旋轉調校信號。該旋轉調校信號包含經由一同相(I)調校路徑發送之調校資訊,以及經由一正交(Q)調變路徑發送之調校資訊。經正交調變之通信資料係與調校信號同時產生,或在調校信號之後產生。傳輸該旋轉調校信號及經正交調變之通信資料。Accordingly, a rotational tuning sequence for transmitting a quadrature modulation is provided. A quadrature modulation transmitter produces a rotational tuning signal. The rotation adjustment signal includes calibration information transmitted via an in-phase (I) calibration path, and calibration information transmitted via a quadrature (Q) modulation path. The quadrature modulated communication data is generated simultaneously with the calibration signal or after the calibration signal. Transmitting the rotation adjustment signal and the orthogonally modulated communication data.

舉例而言,該旋轉調校信號可藉由首先經由該I調變路徑發送調校資訊、且然後經由Q調變路徑發送調校資訊來產生。更明確地,經由I調變路徑發送之調校資訊可包含一具有一參考相位之第一符號(例如,0∘或180∘)。然後,經由Q調變路徑發送之調校資訊將包含一第二符號,該第二符號具有一與該參考相位相差±90∘之相位。For example, the rotation adjustment signal can be generated by first transmitting the calibration information via the I modulation path and then transmitting the calibration information via the Q modulation path. More specifically, the calibration information transmitted via the I modulation path may include a first symbol (eg, 0∘ or 180∘) having a reference phase. Then, the calibration information transmitted via the Q modulation path will include a second symbol having a phase that is ±90 相 out of phase with the reference phase.

下文提供上述方法、一種用於產生一旋轉調校信號之系統、及本發明之其他變化形式之其他細節。Further details of the above method, a system for generating a rotational tuning signal, and other variations of the invention are provided below.

現在將參照該等圖式來闡述各種實施例。在下文中,為便於解釋,陳述了大量具體細節,以便達成對一個或多個實施例之透徹瞭解。然而,顯而易見地,可在沒有此等具體細節之情形下實施此等實施例。在其他示例中,以方塊圖形式顯示習知之結構及裝置,以便於闡述此等實施例。Various embodiments will now be described with reference to the drawings. In the following, a number of specific details are set forth in order to provide a thorough understanding of one or more embodiments. However, it is apparent that such embodiments may be practiced without such specific details. In other instances, well-known structures and devices are shown in block diagrams in order to illustrate the embodiments.

本申請案中所用術語"組件"、"系統"及類似術語係指一與電腦相關之實體,其既可係硬體、韌體、硬體與軟體之組合、軟體、亦可係執行中之軟體。舉例而言,一組件可係(但不限於)一於一處理器上運行之方法、一處理器、一對象、一可執行檔、一執行緒、一程式、及/或一電腦。舉例而言,一運行於一計算裝置上之應用程式及該裝置自身二者均可係一組件。一個或多個組件可駐存在一處理及/或一執行緒內,而一組件可侷限於一個電腦上及/或分散在兩個或更多個電腦之間。此外,此等組件可自各種其上儲存有各種資料結構之電腦可讀媒體上執行。該等組件可藉由本端及/或遠端過程來進行通信,例如根據一具有一個或多個資料封包之信號來進行通信(例如,來自一個與一本端系統、分散式系統中之另一組件互動、及/或藉由信號跨越一網路(例如網際網路)與其他系統互動之組件之資料)。The terms "component", "system" and similar terms used in this application refer to a computer-related entity that can be a combination of hardware, firmware, hardware and software, software, or implementation. software. For example, a component can be, but is not limited to, a method running on a processor, a processor, an object, an executable file, a thread, a program, and/or a computer. For example, an application running on a computing device and the device itself can be a component. One or more components can reside within a process and/or a thread, and a component can be limited to one computer and/or distributed between two or more computers. In addition, such components can execute from various computer readable media having various data structures stored thereon. The components can communicate by the local and/or remote process, for example, based on a signal having one or more data packets (eg, from one and the other, a decentralized system) Component interaction, and/or information about components that interact with other systems by means of signals across a network (eg, the Internet).

下文將藉由可包含大量組件、模組及諸如此類之系統來 提供各種實施例。應瞭解及知道,不同之系統可包括其他組件、模組等,及/或可並不包括結合該等圖式所論述之所有組件、模組等。亦可使用此等方法之一組合。The following will be done by a system that can contain a large number of components, modules, and the like. Various embodiments are provided. It should be understood and appreciated that different systems may include other components, modules, etc., and/or may not include all of the components, modules, etc. discussed in connection with the drawings. You can also use one of these methods to combine.

圖3係一無線通信裝置300之示意性方塊圖,該無線通信裝置具有一用於傳輸一旋轉調校序列之系統。系統302包括一射頻(RF)發射器304,其在線路306a及306b上具有一用以接受資訊之輸入端、一同相(I)調變路徑308、一正交(Q)調變路徑310、及一用於組合分別來自I調變路徑308及Q調變路徑310之信號之組合器312。儘管使用一RF發射器作為圖解說明本發明之實例,但應瞭解,本發明適用於任一能夠攜載經正交調變之資訊之通信媒體(例如,無線、有線、光學)。I路徑及Q路徑可替代地稱為I頻道及Q頻道。在線路318上將經組合信號供應給放大器320,並最終供應給天線322,在天線322處輻射該等信號。發射器304可經啟用以發送一具有一旋轉調校信號之訊息。一旋轉調校信號(其亦可稱為一經正交平衡之調校信號、平衡調校信號、平衡調校序列、或非偏差調校信號)包含經由I調變路徑308發送之調校資訊及經由Q調變路徑發送之調校資訊。發射器304亦發送經正交調變(非預定)之通信資料。於一態樣中,在發送該旋轉調校序列之後發送該經正交調變之通信資料。於另一態樣中,以導頻信號之形式同時發送該調校信號及該通信資料。該系統並不限於該調校信號與該經正交調變之通信資料之間的任何特定暫時關係。3 is a schematic block diagram of a wireless communication device 300 having a system for transmitting a rotational tuning sequence. The system 302 includes a radio frequency (RF) transmitter 304 having an input for receiving information, an in-phase (I) modulation path 308, and an orthogonal (Q) modulation path 310 on lines 306a and 306b. And a combiner 312 for combining signals from the I modulation path 308 and the Q modulation path 310, respectively. Although an RF transmitter is used as an illustration of an example of the present invention, it should be appreciated that the present invention is applicable to any communication medium (e.g., wireless, wireline, optical) capable of carrying orthogonally modulated information. The I path and the Q path are alternatively referred to as an I channel and a Q channel. The combined signals are supplied to amplifier 320 on line 318 and ultimately to antenna 322 where they are radiated. Transmitter 304 can be enabled to transmit a message having a rotational tuning signal. A rotational tuning signal (which may also be referred to as a quadrature balanced tuning signal, a balanced tuning signal, a balanced tuning sequence, or a non-deviation tuning signal) includes calibration information transmitted via the I modulation path 308 and Tuning information sent via the Q modulation path. Transmitter 304 also transmits orthogonally modulated (unscheduled) communication material. In one aspect, the orthogonally modulated communication data is transmitted after transmitting the rotational tuning sequence. In another aspect, the calibration signal and the communication data are simultaneously transmitted in the form of a pilot signal. The system is not limited to any particular temporal relationship between the calibration signal and the orthogonally modulated communication material.

圖4A至4D係繪示一具有經正交調變之通信資料之調校 信號之圖示。考量圖3及4A,於一態樣中,發射器304藉由首先經由I調變路徑308發送調校資訊然後經由Q調變路徑310發送調校資訊來發送旋轉調校信號。亦即,該調校信號包含資訊,諸如一僅經由I調變路徑308發送之符號或一重複之符號系列,其後接續一僅經由Q調變路徑310發送之符號或重複符號系列之傳輸。作為另一選擇但未顯示,可起始經由Q調變路徑310且隨後經由I調變路徑308來發送調校資訊。4A to 4D illustrate a calibration of communication data having orthogonal modulation Graphical representation of the signal. Considering FIGS. 3 and 4A, in one aspect, the transmitter 304 transmits the rotational tuning signal by first transmitting the calibration information via the I modulation path 308 and then transmitting the calibration information via the Q modulation path 310. That is, the calibration signal contains information, such as a symbol transmitted only via the I modulation path 308 or a series of repeated symbols, followed by transmission of a symbol or series of repeated symbols transmitted only via the Q modulation path 310. As an alternative but not shown, tuning information may be initiated via the Q modulation path 310 and then via the I modulation path 308.

在透過I及Q路徑交替發送單個符號符號之情形中,發射器更有可能經由I及Q調變路徑發送一具有預定調校資訊之旋轉調校信號。舉例而言,第一符號可以總是為(1,0),且第二符號可以總是為(0,1)。In the case of alternately transmitting a single symbol symbol through the I and Q paths, the transmitter is more likely to transmit a rotational tuning signal with predetermined tuning information via the I and Q modulation paths. For example, the first symbol can always be (1, 0) and the second symbol can always be (0, 1).

上文提及之旋轉調校信號(其起始地經由(僅)I調變路徑發送旋轉調校信號)可藉由供能量給I調變路徑308但不供能量給Q調變路徑310來實現。然後,在經由I調變路徑發送調校資訊之後,發射器藉由供能量給Q調變路徑來經由Q調變路徑發送一旋轉調校信號。The rotation adjustment signal mentioned above (which initially transmits the rotation adjustment signal via the (only) I modulation path) can be supplied to the I modulation path 308 but not to the Q modulation path 310. achieve. Then, after transmitting the calibration information via the I modulation path, the transmitter transmits a rotation adjustment signal via the Q modulation path by supplying energy to the Q modulation path.

圖5A及5B係如一正交星座圖中所呈現之旋轉調校符號之圖示。考量圖3、4A及5A,發射器304藉由經由I調變路徑308發送一具有一參考相位之第一符號來產生旋轉調校信號,並經由Q調變路徑310發送一第二符號,該第二符號具有一係(參考相位+90∘)或(參考相位-90∘)之相位。舉例而言,該第一符號之參考相位可係0∘,於此情形中第二符號之相位可係90∘(如圖所示)或-90∘(未顯示)。5A and 5B are illustrations of rotational adjustment symbols as presented in an orthogonal constellation. Considering FIGS. 3, 4A and 5A, the transmitter 304 generates a rotation adjustment signal by transmitting a first symbol having a reference phase via the I modulation path 308, and transmits a second symbol via the Q modulation path 310. The second symbol has a phase (reference phase + 90 ∘) or (reference phase - 90 ∘) phase. For example, the reference phase of the first symbol can be 0 ∘, in which case the phase of the second symbol can be 90 ∘ (as shown) or -90 ∘ (not shown).

然而,並不必要僅如上文所述透過調變路徑308/310來交替符號傳輸以獲得符號旋轉。舉例而言,第一符號可透過(僅)I(或Q)調變路徑來發送,且發射器可同時透過I及Q調變路徑來發送調校資訊,並組合I及Q調變信號以供應第二符號。作為另一實例,發射器可同時透過I及Q調變路徑發送調校資訊,並組合I及Q調變信號以供應第一符號,而藉由使用僅Q(或I)調變路徑來獲得第二符號。However, it is not necessary to alternate symbol transmission through the modulation path 308/310 as described above to obtain symbol rotation. For example, the first symbol can be transmitted through the (only) I (or Q) modulation path, and the transmitter can simultaneously transmit the calibration information through the I and Q modulation paths, and combine the I and Q modulation signals to Supply the second symbol. As another example, the transmitter can simultaneously transmit the calibration information through the I and Q modulation paths, and combine the I and Q modulation signals to supply the first symbol, and obtain the Q (or I) modulation path by using only the Q (or I) modulation path. The second symbol.

見圖4B,亦可藉由各自藉助I及Q組件來供應符號來旋轉調校符號,如通常與正交調變相關聯。亦即,發射器304可同時透過I及Q調變路徑308/310來發送調校資訊,並組合I及Q調變信號以在線路318上供應第一符號。舉例而言,第一符號可佔據該星座圖中位於45∘處之位置,見圖5B。同樣,發射器將同時透過I及Q調變路徑308/310發送調校資訊,並組合I及Q調變信號以供應第二符號。舉例而言,第二符號將被旋轉至一-45∘處之位置,該位置與第一符號直交(45∘)。Referring to Figure 4B, the tuned symbols can also be rotated by supplying the symbols by means of I and Q components, respectively, as is typically associated with quadrature modulation. That is, the transmitter 304 can simultaneously transmit the calibration information through the I and Q modulation paths 308/310 and combine the I and Q modulation signals to supply the first symbol on the line 318. For example, the first symbol can occupy a position at 45 该 in the constellation, see FIG. 5B. Similarly, the transmitter will simultaneously transmit tuning information through the I and Q modulation paths 308/310 and combine the I and Q modulation signals to supply the second symbol. For example, the second symbol will be rotated to a position of -45 ,, which is orthogonal to the first symbol (45 ∘).

因此,於一態樣中,一旋轉調校符號最低限度地包含一具有兩個相位差為90∘之符號之序列。然而,該系統並不限於一僅使用兩個符號之系統。一般而言,偶數個符號係較佳,以便該等符號之一半可藉由使用I調變路徑而產生,且另一半藉由使用Q調變路徑而產生。然而,在長於兩個符號之序列中,無需在每一符號之間執行一90∘之旋轉。亦即,在符號之間不存在特定次序之相位。於一態樣中,一半之符號係平均起來與另一半之符號相差90∘。例 如,一超寬頻(UWB)系統利用在傳輸通信資料或一信標信號之前傳輸之6個符號。因此,可在I調變路徑上產生3個連續符號,然後在Q調變路徑上產生3個連續符號。使用此過程,僅需在Q頻道返回休眠之前短暫激活該Q頻道持續3個符號。Thus, in one aspect, a rotational tuning symbol minimally contains a sequence of two symbols having a phase difference of 90 。. However, the system is not limited to a system that uses only two symbols. In general, an even number of symbols is preferred so that one half of the symbols can be generated by using an I modulation path and the other half is generated by using a Q modulation path. However, in a sequence longer than two symbols, there is no need to perform a 90 rotation between each symbol. That is, there is no phase of a particular order between the symbols. In one aspect, half of the symbols are on average 90 degrees from the other half. example For example, an ultra-wideband (UWB) system utilizes six symbols transmitted prior to transmission of communication data or a beacon signal. Therefore, 3 consecutive symbols can be generated on the I modulation path, and then 3 consecutive symbols are generated on the Q modulation path. Using this procedure, it is only necessary to briefly activate the Q channel for 3 symbols before the Q channel returns to sleep.

圖6係一繪示一用於攜載一具有一旋轉調校信號之訊息之實例性框架之圖示。考量圖3及6,於一態樣中,根據OSI模型來運作發射器304。於此典型之7層模型中,發射器係與實體層(PHY)相關聯。如圖顯示,發射器304發送一包含一前置項602、標頭604及有效負載606之實體層(PHY)信號600。該發射器在PHY標頭604中發送旋轉調校信號,並在PHY有效負載606中發送經正交調變之通信資料。6 is a diagram showing an exemplary framework for carrying a message having a rotational tuning signal. Considering Figures 3 and 6, in one aspect, the transmitter 304 is operated in accordance with the OSI model. In this typical 7-layer model, the transmitter is associated with a physical layer (PHY). As shown, the transmitter 304 transmits a physical layer (PHY) signal 600 including a preamble 602, a header 604, and a payload 606. The transmitter transmits a rotational tuning signal in the PHY header 604 and transmits the quadrature modulated communication data in the PHY payload 606.

許多通信系統以相對慢之經正交調變之通信資料速率傳輸信標資訊,同時為(非預定)資訊之傳送保留較高之資料速率。根據IEEE 802.11協定來運作之網路係此等系統之一實例。由於許多無線通信裝置係電池運作,合意之情形係此等單元在並未實際傳送資訊時以一"休眠"模式運作。舉例而言,主控單元或存取點可廣播相對簡單、低資料速率信標信號直至一休眠單元做出響應。Many communication systems transmit beacon information at relatively slow orthogonally modulated communication data rates while preserving higher data rates for (non-predetermined) transmission of information. A network operating in accordance with the IEEE 802.11 protocol is an example of such a system. Since many wireless communication devices operate on batteries, it is desirable that such units operate in a "sleep" mode when the information is not actually transmitted. For example, a master unit or access point can broadcast a relatively simple, low data rate beacon signal until a sleep unit responds.

導頻信號可被視為調校信號之一具體情形。儘管通常係利用每一副載波(通信頻寬中之所有N個頻率)在資料之前傳輸調校信號,但導頻頻調係與經正交調變之通信資料一起在一子組(所保留)頻率上傳輸。在利用OFDM之系統(例如UWB)中,此保留組由導頻頻調構成。亦即,導頻頻調 係與P個頻率相關聯,且資料係與剩餘之N-P個頻率相關聯。The pilot signal can be considered as one of the tuning signals. Although the calibration signal is typically transmitted before the data using each subcarrier (all N frequencies in the communication bandwidth), the pilot tone is associated with the quadrature modulated communication data in a subset (reserved) Transfer on frequency. In systems utilizing OFDM (e.g., UWB), this reserved set consists of pilot tones. Pilot tone The system is associated with P frequencies, and the data is associated with the remaining N-P frequencies.

調校信號與導頻信號之類似處在於所傳輸資料之資訊內容通常係預定或"習知"資料,其准許接收器校準及進行頻道量測。當接收通信(非預定)資料時,存在3點未知:資料本身、頻道、及雜訊。接收器不能針對雜訊來校準,乃因雜訊會隨機改變。頻道係一般與延時及多路徑相關聯之量測。針對相對短之時間週期,可在使用預定資料(例如調校或導頻信號)時量測因多路徑導致之誤差。一旦頻道已知,則這一量測值可用於移除所接收通信(非預定)資料中之誤差。因此,某些系統供應一調校信號以在資料解碼開始之前量測一頻道。The calibration signal is similar to the pilot signal in that the information content of the transmitted data is typically predetermined or "preferred" data that permits the receiver to calibrate and perform channel measurements. When receiving communication (unscheduled) data, there are 3 unknowns: the data itself, the channel, and the noise. The receiver cannot be calibrated for noise, as the noise will change randomly. Channels are typically measured in association with delay and multipath. For relatively short time periods, errors due to multipath can be measured when using predetermined data, such as tuning or pilot signals. Once the channel is known, this measurement can be used to remove errors in the received communication (unscheduled) data. Therefore, some systems supply a calibration signal to measure a channel before data decoding begins.

然而,舉例而言,該頻道可隨發射器或接收器在空間移動或時鐘漂移而改變。因此,許多系統繼續發送更多"已知"資料以及"未知"資料,以追蹤頻道中之緩慢變化。出於闡述本系統之目的,將假設導頻信號係一子組更一般類別之調校信號。亦即,如本文使用,調校信號係關於一起始調校序列,以及於一UWB或802.11系統中稱為導頻頻調之追蹤調校序列。另一選擇為,術語"起始調校"及"追蹤調校"或"導頻頻調"係所有類型之調校信號。However, for example, the channel may change as the transmitter or receiver moves in space or clock drifts. As a result, many systems continue to send more "known" and "unknown" data to track slow changes in the channel. For the purposes of illustrating the system, it will be assumed that the pilot signals are a subset of the more general calibrated signals. That is, as used herein, the tuning signal is related to an initial tuning sequence and a tracking adjustment sequence called pilot tones in a UWB or 802.11 system. Another option is that the terms "start tuning" and "tracking tuning" or "pilot tuning" are all types of tuning signals.

然後,於一態樣中,在旋轉調校信號之後,發射器304以一信標資料速率發送一其中經正交調變之通信資料係一信標信號之訊息。亦即,由許多通信系統使用之信標信號可與一旋轉調校信號一起傳輸。此外,在一旋轉調校信號 之後,發射器304可替代地或另外地以一大於該信標資料速率之通信資料速率發送一具有經正交調變之通信資料之訊息。Then, in one aspect, after the tuning signal is rotated, the transmitter 304 transmits a message in which the quadrature modulated communication data is a beacon signal at a beacon data rate. That is, beacon signals used by many communication systems can be transmitted with a rotational tuning signal. In addition, a rotation adjustment signal Thereafter, transmitter 304 may alternatively or additionally transmit a message having orthogonally modulated communication data at a communication data rate greater than the beacon data rate.

於一態樣中,發射器可發送一訊息與旋轉及非旋轉調校信號之組合。舉例而言,在一不平衡訊息之後,發射器304可包含一經平衡訊息之發送多叢發訊息。為簡潔起見,短語"經平衡訊息"用於闡述一包含一旋轉調校信號及經平衡調變之通信資料之訊息。一不平衡訊息係一包括一非旋轉調校信號之訊息,其中經由I調變路徑發送調校資訊但(例如)不經由Q調變路徑來發送。於此態樣中,不平衡訊息亦包含一訊息格式信號,其嵌入到(例如)標頭中,指示在該不平衡訊息之後發送一經平衡訊息(具有一旋轉調校信號)。該不平衡訊息包含經正交調變之通信資料,其可在訊息格式信號之後在有效負載中發送。然而,該系統不限於調校信號、訊息格式信號及經正交調變資料之間的任一特定暫時關係。舉例而言,該不平衡訊息可係一信標信號或起始調校訊息。另一選擇為,該不平衡訊息可在經平衡訊息之後發送,或不平衡訊息可藉助經平衡訊息來點綴。In one aspect, the transmitter can send a message in combination with a rotating and non-rotating tuning signal. For example, after an unbalanced message, the transmitter 304 can include a multi-cluster message with a balanced message. For the sake of brevity, the phrase "balanced message" is used to describe a message that includes a rotational tuning signal and balanced modulation communication data. An unbalanced message is a message comprising a non-rotating calibration signal, wherein the calibration information is transmitted via the I modulation path but is transmitted, for example, via the Q modulation path. In this aspect, the unbalanced message also includes a message format signal embedded in, for example, a header indicating that a balanced message (having a rotational tuning signal) is sent after the unbalanced message. The unbalanced message contains orthogonally modulated communication material that can be transmitted in the payload after the message format signal. However, the system is not limited to any particular temporal relationship between the calibration signal, the message format signal, and the quadrature modulated data. For example, the unbalanced message can be a beacon signal or an initial calibration message. Alternatively, the unbalanced message can be sent after the balanced message, or the unbalanced message can be dotted with the balanced message.

考量圖4C,諸如順從IEEE 802.11及UWB之許多通信系統利用複數個同時傳輸之副載波。於此態樣中,旋轉調校信號可以導頻信號之形式啟用。舉例而言,可產生P個旋轉導頻符號,以及(N-P)個經正交調變之通信資料符號。每一旋轉導頻符號均包含每符號改變90∘之調校資訊。因 此,藉由同時傳輸N個符號來發送一具有一旋轉調校信號之經平衡訊息。於其他態樣中,利用少於P個旋轉導頻符號,因為某些導頻符號係非旋轉符號。Considering Figure 4C, many communication systems, such as compliant IEEE 802.11 and UWB, utilize a plurality of simultaneously transmitted subcarriers. In this aspect, the rotational tuning signal can be enabled in the form of a pilot signal. For example, P rotated pilot symbols can be generated, and (N-P) orthogonally modulated communication data symbols. Each rotated pilot symbol contains a calibration information that changes 90 degrees per symbol. because Thus, a balanced message having a rotational tuning signal is transmitted by simultaneously transmitting N symbols. In other aspects, less than P rotated pilot symbols are utilized because some of the pilot symbols are non-rotating symbols.

考量圖4D,於一多副載波系統之一不同態樣中,旋轉調校信號包含利用經由I調變路徑而非Q調變路徑為i 個副載波發送之調校資訊為複數個副載波同時產生之符號。此外,該調校信號為j 個副載波使用經由Q調變路徑而非I調變路徑發送之調校資訊。然後,在產生調校資訊之後,為ij 副載波產生經IQ調變之通信資料。於一態樣中,該子組i 個副載波包含"成對副載波"或"成對頻調",其係一對頻率為-f及頻率為+f 之頻調。同樣,子組j 中之頻調亦可成對。該-f 及+f 處之頻調成對會有助於實現I頻道調校、Q頻道調校及旋轉調校。Considering FIG. 4D, in one of the different subcarrier systems, the rotation calibration signal includes adjusting the subcarriers for the i subcarriers by using the I modulation path instead of the Q modulation path. The symbol produced. In addition, the calibration signal uses calibration information transmitted via the Q modulation path instead of the I modulation path for the j subcarriers. Then, after the calibration information is generated, the IQ modulated communication data is generated for the i and j subcarriers. In one aspect, the subset of subcarriers comprising i "paired subcarrier" or "tone pair", a system which is a frequency of a frequency + f and -f of the tone. Similarly, the tones in subgroup j can also be paired. The pairing of the -f and + f will help to achieve I channel tuning, Q channel tuning and rotational tuning.

若透過任一特定副載波之調校符號序列並不旋轉90∘,則此系統將仍被視為產生一旋轉調校信號,此乃因一頻道估計值平均技術可用於接收器處以將相鄰副載波平均化。然後,利用相鄰之非旋轉I及Q調校符號之總效應係一旋轉調校信號。於一態樣中,設計該調校信號,以便該奇數編號之副載波利用透過I調變路徑(頻道X)發送之非旋轉調校符號,而偶數編號之副載波利用Q調變路徑(頻道X+90∘)。If the sequence of tuned symbols through any particular subcarrier is not rotated 90 ∘, then the system will still be considered to generate a rotational tuning signal, since a channel estimation averaging technique can be used at the receiver to be adjacent Subcarrier averaging. Then, the total effect of the adjacent non-rotating I and Q tuning symbols is used to rotate the tuning signal. In one aspect, the calibration signal is designed such that the odd-numbered subcarriers utilize non-rotating calibration symbols transmitted through the I modulation path (channel X), and the even-numbered subcarriers utilize Q modulation paths (channels) X+90∘).

於本發明之另一態樣中,圖3之無線通信裝置300可被視為包括一用於利用I及Q調變路徑旋轉一調校信號之構件308/310,及一用於產生經正交調變之通信資料之構件308/310。如上文,調校信號可係與通信資料同時發送之 導頻符號,或該通信資料可在旋轉調校信號之後發送。此外,裝置300包含一用於傳輸為一RF通信之構件320/322。In another aspect of the present invention, the wireless communication device 300 of FIG. 3 can be considered to include a component 308/310 for rotating a calibration signal using the I and Q modulation paths, and a method for generating a positive Intermodulation of the components of communication data 308/310. As mentioned above, the calibration signal can be sent simultaneously with the communication data. The pilot symbol, or the communication data, can be sent after the tuning signal is rotated. In addition, device 300 includes a component 320/322 for transmission as an RF communication.

同樣,可產生一不平衡訊息,其中正交調變構件308/310用於產生以下:一非旋轉調校信號,其具有經由I調變路徑發送之調校資訊但不具有經由Q調變路徑發送之調校資訊;一訊息格式信號,其指示將要在不平衡訊息之後發送一經平衡訊息(具有一旋轉調校信號);及正交調變通信資料。Similarly, an unbalanced message can be generated, wherein the quadrature modulation component 308/310 is used to generate the following: a non-rotating calibration signal having calibration information transmitted via the I modulation path but not having a Q-modulated path The adjustment information sent; a message format signal indicating that a balanced message (having a rotation adjustment signal) is to be transmitted after the unbalanced message; and the quadrature modulation communication data.

圖7係一繪示一用於傳輸一正交調變旋轉調校序列之處理裝置之示意性方塊圖。處理裝置700包括一I路徑調變模組702,其在線路704上具有一用以接受資訊之輸入端,及在線路706上具有一用以接受I控制信號之輸入端。I路徑調變模組702在線路708上具有一輸出端以供應經I調變資訊。一Q路徑調變模組710在線路712上具有一用以接受資訊之輸入端,及在線路714上具有一用以接受Q控制信號之輸入端。Q路徑調變模組710在線路716上具有一用以供應經Q調變資訊之輸出端。FIG. 7 is a schematic block diagram showing a processing apparatus for transmitting a quadrature modulation rotation tuning sequence. The processing device 700 includes an I path modulation module 702 having an input for receiving information on line 704 and an input for receiving an I control signal on line 706. The I path modulation module 702 has an output on line 708 to supply the I modulated information. A Q path modulation module 710 has an input for receiving information on line 712 and an input for receiving a Q control signal on line 714. The Q path modulation module 710 has an output on line 716 for supplying Q modulated information.

一組合器模組718在線路708及716上具有輸入端以分別接受該經I及Q調變資訊,及在線路720上具有一用以供應一經正交調變之RF信號之輸出端。一控制器模組722在線路706及714上具有輸出端以分別供應I及Q控制信號。控制器模組722利用I及Q控制信號以產生一具有一旋轉調校信號之訊息,該旋轉調校信號包含經由I調變路徑發送之調校資訊及經由Q調變路徑發送之調校資訊,以及經正交調 變之通信資料。由上文提及之模組執行之功能類似於由圖3所示裝置執行之彼等功能,且為簡潔起見而將不在此處重複。A combiner module 718 has inputs on lines 708 and 716 for receiving the I and Q modulation information, respectively, and an output at line 720 for supplying a quadrature modulated RF signal. A controller module 722 has outputs on lines 706 and 714 to supply I and Q control signals, respectively. The controller module 722 uses the I and Q control signals to generate a message having a rotation adjustment signal, the rotation adjustment signal including the calibration information transmitted via the I modulation path and the calibration information transmitted via the Q modulation path. And orthogonal Change the communication data. The functions performed by the modules mentioned above are similar to those performed by the apparatus shown in FIG. 3 and will not be repeated here for the sake of brevity.

功能說明Function Description

如上文闡述,本發明之旋轉調校信號可用於修改僅利用I調變路徑供在保存功率之努力中用於調校之習用系統。此種系統可藉由在調校序列之第二部分期間暫時啟用Q調變路徑來修改。此解決方案僅使用稍微多之功率,而在調校序列期間供能量給I及Q頻道二者。As explained above, the rotational tuning signal of the present invention can be used to modify a conventional system for tuning only in the effort of conserving power using an I modulation path. Such a system can be modified by temporarily enabling the Q modulation path during the second portion of the calibration sequence. This solution uses only a little more power, while supplying energy to both the I and Q channels during the tuning sequence.

另一選擇為,具有非旋轉調校信號之不平衡訊息可用於一信標,而具有旋轉調校信號之經平衡訊息用於高資料速率。此解決方案可能要求一接收器經程式化以使具有高資料速率之旋轉調校信號訊息與具有信標之不平衡訊息相關聯。為消除一接收器"猜測"所要接收之調校信號類型之需要,可將資訊嵌入到前置項中以通知接收器後隨調校序列之類型。Alternatively, an unbalanced message with a non-rotating calibration signal can be used for a beacon, and a balanced message with a rotational tuning signal for a high data rate. This solution may require a receiver to be programmed to associate a spin-tuning signal message with a high data rate with a beacon-unbalanced message. To eliminate the need for a receiver to "guess" the type of tuning signal to be received, the information can be embedded in the preamble to inform the receiver of the type of calibration sequence.

於另一變化形式中,一習用之不平衡訊息可用作一多叢發傳輸中之第一叢發。藉助多叢發傳輸,可容易地在每一叢發中通知發射器將要出現在後隨叢發中之調校序列類型。然後,通常,第一叢發可係一不平衡訊息,其中所有後續叢發均係經平衡訊息。此等訊息可視需要地啟動,僅在(例如)其由發射器及接收器二者支援之情況下使用。以此方式,可使得本發明與現有裝置反向相容。In another variation, a conventional unbalanced message can be used as the first burst in a multi-cluster transmission. With multi-cluster transmission, it is easy to inform each transmitter of the type of calibration sequence that will appear in the following bursts in each burst. Then, usually, the first burst can be an unbalanced message, in which all subsequent bursts are balanced messages. Such messages can be initiated as needed, only if, for example, they are supported by both the transmitter and the receiver. In this way, the invention can be made backward compatible with existing devices.

另一解決方案(其並非反向相容)係修改所有調校序列, 包含信標之調校序列,以便調校序列總是平衡。於此變化形式中,接收器並不必須運作於兩個不同類型之調校信號上。Another solution (which is not backward compatible) is to modify all tuning sequences, Contains the tuning sequence of the beacon so that the tuning sequence is always balanced. In this variation, the receiver does not have to operate on two different types of calibration signals.

舉例而言,在下文提供對該等改進之分析,此等改進可在一習用UWB-OFDM系統中藉由用旋轉調校信號添加到經平衡訊息中來獲得。通常,調校序列係一重複之OFDM符號。此意味著針對每一副載波重複傳輸相同之星座點。激發該星座圖中一獨特方向(例如,I路徑),而不激發另一方向(例如,Q路徑)。上文已在先前技術部分中呈現與此種系統相關聯之誤差。For example, an analysis of such improvements is provided below, which can be obtained in a conventional UWB-OFDM system by adding a rotational tuning signal to the balanced message. Typically, the calibration sequence is a repeating OFDM symbol. This means that the same constellation point is repeatedly transmitted for each subcarrier. A unique direction (eg, an I path) in the constellation is excited without exciting the other direction (eg, the Q path). The errors associated with such systems have been presented above in the prior art section.

圖8係一繪示針對圖2所示衝擊波形之2個不同相位θ 之理想及非平衡星座圖之圖示。該相位非平衡係2△φ =10∘(不具有振幅非平衡)。應注意,在該等角度為0∘及90∘時非平衡最強,且在角度為45∘及135∘時幾乎消失。此乃因在衝擊波形之相位位於I及Q路徑之間的中途時,非平衡在45∘附近進行自補償。該衝擊波形之角度相依於資料及頻道二者,且可採取0與360∘之間的任一值。FIG. 8 is a diagram showing an ideal and unbalanced constellation diagram for two different phases θ of the impulse waveform shown in FIG. This phase unbalanced system 2 Δ φ = 10 ∘ (without amplitude non-equilibrium). It should be noted that the non-equilibrium is the strongest when the angles are 0∘ and 90∘, and almost disappears when the angles are 45∘ and 135∘. This is because the unbalance is self-compensating around 45 在 when the phase of the shock waveform is in the middle between the I and Q paths. The angle of the shock waveform depends on both the data and the channel, and can take any value between 0 and 360 。.

舉例而言,假設衝擊波形之角度使得所有調校符號均與I方向對齊(θ =0),則I方向將被準確估計,誤差為0∘。但Q方向將偏離10∘。平均而言,在高斯雜訊(AWGN)的情形中,此會導致位於Q方向之星座點之過量誤差。另一方面,若衝擊波形之角度為θ =45∘(I及Q之間的中途),則該非平衡近乎消失。For example, assuming that the angle of the impact waveform is such that all the calibration symbols are aligned with the I direction ( θ = 0), the I direction will be accurately estimated with an error of 0 ∘. However, the Q direction will deviate by 10∘. On average, in the case of Gaussian noise (AWGN), this can result in excessive errors in the constellation points in the Q direction. On the other hand, if the angle of the impact waveform is θ = 45 ∘ (the middle between I and Q), the non-equilibrium almost disappears.

圖9係一將相位非平衡繪示為該衝擊波形上之相位之函 數之圖示。下圖上之實線顯示在出現一重複調校序列之情形中之相位非平衡。虛線顯示旋轉調校序列之情形。於AWGN中,且針對BER為10-5 之未編碼QPSK,在0∘與10∘之間變化之非平衡具有0 dB與1.5 dB之間的損失(相依於衝擊波形之相位)。Figure 9 is a graphical representation of phase imbalance as a function of phase on the impact waveform. The solid line on the graph below shows the phase imbalance in the case of a repeating calibration sequence. The dotted line shows the situation of the rotation adjustment sequence. In AWGN, and for uncoded QPSK with a BER of 10 -5 , the unbalanced variation between 0 ∘ and 10 具有 has a loss between 0 dB and 1.5 dB (depending on the phase of the impulse waveform).

分析可開始於時域調變之較簡單問題,例如AWGN中之分時多重進接(TDMA)或分碼多重進接(CDMA)。假設一調校序列之所有符號均位於I軸(I頻道)上。在透過一AWGN頻道進行傳輸之後,該軸可在正交2D平面內旋轉至一方向X(相依於頻道相位)。藉由使所有調校符號均與一方向X對準,會正確地估計方向X,且彼方向上之任一資料符號均位於該正確之軸上(在旋轉後)。然而,直交方向Y上之符號將與理想位置偏離2△φ ∘。其將導致明顯更大之誤差。Analysis can begin with simpler problems of time domain modulation, such as time division multiple access (TDMA) or code division multiple access (CDMA) in AWGN. Assume that all symbols of a tuning sequence are located on the I axis (I channel). After transmission through an AWGN channel, the axis can be rotated in a quadrature 2D plane to a direction X (depending on the channel phase). By aligning all the adjustment symbols with a direction X, the direction X is correctly estimated, and any data symbol in the direction is located on the correct axis (after rotation). However, the sign in the orthogonal direction Y will deviate from the ideal position by 2 Δ φ ∘. It will result in significantly larger errors.

由於所有調校符號均位於X軸上,則頻道估計值係H=角(X)。Since all the adjustment symbols are on the X-axis, the channel estimate is H = angle (X).

X方向上之誤差係角(X)-H=0。The error in the X direction is the angle (X) - H = 0.

Y方向上之誤差係(Y)-90∘-H=2△φThe error in the Y direction is (Y) - 90 ∘ - H = 2 Δ φ .

此分析假設調校序列以恆定方式旋轉,以便均等地激活I及Q頻道。於此情形中,平均頻道具有一不再專門與X方向對準之相位。其在一半時間內亦將與Y方向對準。This analysis assumes that the calibration sequence is rotated in a constant manner to equally activate the I and Q channels. In this case, the average channel has a phase that is no longer specifically aligned with the X direction. It will also align with the Y direction in half the time.

頻道估計值現為H=[角(X)+角(Y)-90∘]/2。The channel estimate is now H = [angle (X) + angle (Y) - 90 ∘] / 2.

X方向上之誤差係角(X)-H=-2△φ /2。The error angle in the X direction is (X) - H = -2 Δ φ /2.

Y方向上之誤差係角(Y)-90∘-H=2△φ /2。The error angle in the Y direction is (Y) - 90 ∘ - H = 2 Δ φ /2.

該圖示中之虛曲線顯示每一方向上之相位非平衡。虛曲 線大致為實曲線之0.5倍。The dashed curve in the illustration shows the phase imbalance in each direction. Virtual music The line is roughly 0.5 times the solid curve.

現在,每一方向X及Y均共享一半之正交非平衡負荷。損失對應於每一軸上之5∘最大非平衡而係0至0.5 dB。增益在0至1 dB之間變化。應注意,在存在一LOS頻道(AWGN)時,多數載波可在同一相位處對準,且針對重複之調校序列情形而降級1.5 dB。於同一情形中,旋轉調校序列之降級僅係0.5 dB,其增益為1 dB。然而,由於相位雜訊及/或頻率偏置剩餘會改變衝擊波形之相位,則相位非平衡會在0至10∘之間變化。將誤差部分平滑化。但對於高資料速率而言,分集可能不足以補償規則命中該等副載波之過量誤差。對高資料速率之影響更重要。Now, each direction X and Y share half of the orthogonal unbalanced load. The loss corresponds to a maximum unbalance of 5 每一 on each axis and is 0 to 0.5 dB. The gain varies from 0 to 1 dB. It should be noted that in the presence of a LOS channel (AWGN), most carriers can be aligned at the same phase and degraded by 1.5 dB for repeated tuning sequence situations. In the same situation, the rotation tuning sequence is degraded only 0.5 dB with a gain of 1 dB. However, since the phase noise and/or frequency offset remaining will change the phase of the impulse waveform, the phase imbalance will vary from 0 to 10 。. Smooth the error portion. However, for high data rates, the diversity may not be sufficient to compensate for the excessive error of the rules hitting the subcarriers. The impact on high data rates is more important.

一旋轉調校序列之實施方案並不必要地暗示一接收器或發射器中之任何較大硬體複雜性。於接收器處,在累積之前旋轉90∘係藉由交換I及Q頻道並對其一者進行符號反轉來執行。此運作可在時域(若所有頻率以相同方式旋轉)或傅立葉域(其係更一般之情形)中完成。An implementation of a rotational tuning sequence does not necessarily imply any large hardware complexity in a receiver or transmitter. At the receiver, rotating 90 turns before accumulation is performed by exchanging the I and Q channels and signing one of them. This operation can be done in the time domain (if all frequencies are rotated in the same way) or in the Fourier domain (which is more general).

利用Jan Tubbax等人在2003 IEEE出版物中之"OFDM系統中之IQ非平衡補償(Compensation of IQ imbalance in OFDM systems)",作者提及I及Q頻道之間的中途處之非平衡,以便在每一I及Q上各獲得一非平衡△φ及ε,而不是在I頻道上具有一非平衡2△φ 及2εUtilizing the "Compensation of IQ imbalance in OFDM systems" by Jan Tubbax et al. in the 2003 IEEE publication, the authors refer to the imbalance between the I and Q channels in order to Instead of having an unbalanced 2Δ φ and 2 ε on the I channel, each of I and Q obtains an unbalanced Δφ and ε .

在不存在任何頻道及雜訊之情況下,正交非平衡失真接收之信號可利用所傳輸信號表達為yαxβx 其中x係複合傳輸信號,x 係其複數共軛,y係複合接收信號,且α1及β0係將正交非平衡失真特徵化之複量。其由下式給出α =cos△φ .sin△φ βε .cos△φj sin△φ 在其分別等於1及0時,所接收信號與所傳輸信號一致。In the absence of any channel and noise, the signal received by the orthogonal unbalanced distortion can be expressed as y = αx + βx * where x is a composite transmission signal, x * is its complex conjugate, y is Composite received signal, and α 1 and β 0 is a complex of characterization of orthogonal unbalanced distortion. Which is given by α = cos △ φ + jε .sin △ φ β = ε .cos △ φ - j sin △ φ consistent respectively equal to 0 and 1, the received signal to the transmitted signal.

將利用此一更正式說明來回顧在AWGN中之時域調變情形。在不出現雜訊但出現一具有係數c 之AWGN頻道之情況下,非平衡之前的所接收信號係cx ,且在非平衡之後其為yαcxβc x A more formal description will be used to review the time domain modulation scenarios in AWGN. But does not appear in the noise occurs where c is a coefficient having the AWGN channel, the received signal based cx prior to non-equilibrium and non-equilibrium after it is y = αcx + βc * x *

經偏差之調校序列 若發送一由符號±u 構成之調校序列,亦即總是與2D平面中u 之獨特方向對準,則獲得2個可能之所接收符號yαcuβc u y =-αcuβc u 為簡便起見而不失一般性,假設向量u 係單式,以估計頻道,分別對+u 及-u 應用一數位解旋以獲得頻率估計值αcβc u *2 If the deviation over the training sequence transmitted by a training sequence of symbols composed of a ± u, i.e. 2D plane is always aligned with the unique direction of u, it is possible to obtain the two received symbols y = αcu + βc * u * y = - αcu - βc * u * for simplicity without loss of generality, it is assumed unitary vector u system to estimate the channel, respectively, and + u * - u * a numerical solution applied spin frequency estimates to obtain Cc + βc * u *2

於該加法運算子左手側,獲得頻道(或近似),但在右手側發生一雜訊或偏差。此雜訊並不隨越來越多之調教符號被平均化而消失:其保持為就像僅白色雜訊消失一樣。因此,若傳輸一與符號u 大致對準之調校序列,則頻道之估計值發生偏差。On the left hand side of the addition, the channel (or approximation) is obtained, but a noise or deviation occurs on the right hand side. This noise does not disappear as more and more tuning symbols are averaged: it remains as if only white noise disappeared. Therefore, if a calibration sequence that is substantially aligned with the symbol u is transmitted, the estimated value of the channel deviates.

當資料x 之傳輸開始時,藉由將頻道之複數共軛(頻道之匹配濾波器)乘以所接收信號來獲得進入一Viterbi解碼器之度量值。因此,度量值=[α cβ c u *2 ] y[α cβ c u *2 ] [α cxβ c x ]且在消除某些二級項之後度量值=|α | 2 |c | 2 xαβ |c | 2 x αβ c 2 u 2 x When the transmission of the data x begins, the metric value entering a Viterbi decoder is obtained by multiplying the complex conjugate of the channel (the matched filter of the channel) by the received signal. Therefore, the metric = [ α c + β c * u *2 ] * y = [α c + β c * u *2 ] * [α cx + β c * x * ] and after eliminating some secondary terms Measure =| α | 2 | c | 2 x + αβ | c | 2 x * + αβ * c 2 u 2 x

上述度量公式中之第一組分在理想情況下係一與頻道能量成比例之正實數純量,其增加原始星座點。但彼公式之第二及第三組分係由偏差創建之不合意雜訊。其雜訊方差一致,且等於|α | 2 |β | 2 |c | 4 |x | 2 在不出現其他雜訊源之情況下,信雜比(SNR)係 The first component of the above metric is ideally a positive real scalar proportional to the channel energy, which increases the original constellation point. However, the second and third components of the formula are undesired noises created by the deviation. The noise variance is consistent and equal to | α | 2 | β | 2 | c | 4 | x | 2 , without any other noise sources, the signal-to-noise ratio (SNR)

此雜訊並未分佈有白色高斯雜訊,但若自不同之獨立頻道ci 得出各種符號(CDMA中之多路徑,或交錯,等),在組合該等符號之後,獲得對白色高斯雜訊之緩慢會聚。此SNR可能約係10至20 dB。對於以低SNR運行之資料速率,此額外雜訊可能不成問題。但對於以高SNR運行之高資料速率,此額外雜訊具有一顯著影響。This noise is not distributed with white Gaussian noise, but if different symbols are obtained from different independent channels c i (multipath in CDMA, or interlaced, etc.), after combining the symbols, the white Gaussian is obtained. The news is slowly gathering. This SNR may be approximately 10 to 20 dB. For additional data rates running at low SNR, this additional noise may not be a problem. However, for high data rates operating at high SNR, this additional noise has a significant impact.

非偏差調校序列 若以與u 之直交方向對準之方向(標示為v )傳輸一半符號,而不是與u 之獨特方向對準地發送整個調校序列,則 獲得頻道估計值之平均值為:αcβc (u 2 v 2 )=αc 由於在該兩個單式向量直交時u 2 v 2 =0,則右手側偏差消失。現在,度量值為度量值=|α | 2 |c | 2 xαβ |c | 2 x 正交非平衡雜訊之一半已消失。該SNR(在不出現雜訊時)改進3dB。The non-perpendicular to the alignment direction of the deviation of the training sequence In terms of the direction u (denoted v) half the transmission symbols, instead of sending the entire training sequence is aligned with the unique direction of u, an average value is obtained for the channel estimated value : αc + βc * ( u * 2 + v * 2 ) = αc Since u * 2 + v * 2 =0 when the two simplex vectors are orthogonal, the right-hand side deviation disappears. Now, the metric is metric =| α | 2 | c | 2 x + αβ | c | 2 x * One of the orthogonal unbalanced noises has disappeared. This SNR (when no noise is present) improves by 3 dB.

OFDM 在OFDM中,所接收符號之公式被輕微改變,但整個OFDM符號必須被視為一符號向量,y=FFT{α IFFT(c·x)+β[IFFT(c·x)] }其中向量以粗體標示,且其中(.)運算係兩個向量之間的元素級乘積。頻道c係頻道之傅立葉域版本。此等式可被重寫為y=αc.x+β (c·x)m =αc·x+β (cm ·xm )其中索引m 標示在副載波上成鏡像之向量。對頻率為+f 之所接收符號之僅有貢獻者係均衡頻率+f 及-f 處之頻道及符號。兩個均衡副載波+f 及-f 可被隔離,且副載波+f 之所接收符號被寫作yαcxβc m x m 其中索引m 標示頻率為-f 之頻道或符號。此公式與TDMA或 CDMA之公式之間的主要差異係失真現由位於不同頻率處(即頻率-f )之頻道及信號創建。若均衡頻率具有一大得多的頻道或強得多的信號,則此可對一特定接收符號具有顯著影響。因此,在OFDM中可能更有問題。 OFDM In OFDM, the formula of the received symbol is slightly changed, but the entire OFDM symbol must be treated as a symbol vector, y = FFT { α IFFT(c·x) + β[IFFT(c·x)] * } where vector Indicated in bold, and where the (.) operation is the element-level product between the two vectors. Channel C is the Fourier domain version of the channel. This equation can be rewritten as y=αc. x+ β (c·x) m * = αc·x+ β (c m * · x m * ) where index m denotes a vector mirrored on the subcarrier. Only a frequency of + f + f contributors based equalization and the frequency of the received symbols - symbol at f and the channels. Balancing two subcarriers and + f - f can be isolated, and the sub-carriers of the received symbol + f is written y = αcx + βc m * x m * where the index m is designated frequency - f of the channel or symbols. The main difference between this formula and the formula for TDMA or CDMA is that the distortion is now created by channels and signals at different frequencies (ie, frequency -f ). If the equalization frequency has a much larger channel or a much stronger signal, this can have a significant impact on a particular received symbol. Therefore, it may be more problematic in OFDM.

經偏差調校序列 假設以頻率+f傳輸之導頻頻調係u,且以頻率一f傳輸之導頻頻調係um ,則一偏差調校序列並不正確地旋轉該等導頻頻調,因此在頻道估計值中引入一偏差。 The deviation adjustment sequence assumes that the pilot tone system u transmitted at frequency +f and the pilot tone system u m transmitted at frequency one f, then a deviation adjustment sequence does not correctly rotate the pilot tones, thus A deviation is introduced in the channel estimate.

αcβc m u m u 然後,頻率+f處之接收度量值可被寫作度量值(+f )=|α | 2 |c | 2 xα βc c m x m αβ cuc m u m x +|β |2 |c m |2 u m u x m 上述公式中之第四(帶雜訊)項不可以再被忽略,乃因頻道|c m |2 可能極強。帶雜訊項現在可能相依於頻率為-f 之頻道之強度,且可能顯著。頻率-f 充當一可混淆Viterbi解碼器之干擾器,其有時可解譯一具有足量干擾之弱度量值以作為一好的度量值。 Αc + βc m * u m * u * Then, the received metric at the frequency +f can be written as a metric (+ f ) = | α | 2 | c | 2 x + α * βc * c m * x m * + Ββ * cuc m u m x +| β | 2 | c m | 2 u m ux m * The fourth (with noise) term in the above formula can no longer be ignored, because channel | c m | 2 may be extremely Strong. The noise-bearing item may now be dependent on the strength of the channel with a frequency of -f and may be significant. The frequency -f acts as a jammer that can confuse the Viterbi decoder, which can sometimes interpret a weak metric with sufficient interference as a good metric.

非偏差調校序列 對於非偏差調校序列而言,頻道估計值係α c ,且自該等式消除2個帶雜訊項以獲得度量(+f )=|α |2 |c |2 xα βc c m x m 改進係顯而易見。然而,很難在於一實際頻道模型中進行模擬之前評定UWB-OFDM中每秒(Mbps)資料速率480百萬位元組之裨益。應注意,對於此等高資料速率,期望該等裝置具有一LOS或一近似LOS,且因此不期望頻率為+f 及-f處之頻道變化形式太大。但頻道強度中之一3 dB或更大差異極為可能。 Non-deviation tuning sequence For a non-deviation tuning sequence, the channel estimate is α c and two noise terms are removed from the equation to obtain the metric (+ f )=| α | 2 | c | 2 x The improvement of + α * βc * c m * x m * is obvious. However, it is difficult to assess the benefits of a 480 megabit per second (Mbps) data rate in UWB-OFDM prior to simulation in an actual channel model. It should be noted that for such high data rates, it is desirable for such devices to have a LOS or an approximate LOS, and therefore the channel variations at frequencies of + f and -f are not expected to be too large. However, a difference of 3 dB or more in the channel strength is extremely possible.

發射器之正交非平衡 正交非平衡亦出現於發射器側,且添加至失真。若將α'及β'標示為發射器側之非平衡係數,則發射器之輸出可寫作zα'xβ'x Transverse Unbalanced Transmitter Orthogonal unbalance also appears on the transmitter side and is added to distortion. If α' and β' are labeled as the unbalanced coefficients on the transmitter side, the output of the transmitter can be written as z = α'x + β'x *

且在頻道c及失真α,β之後,接收器獲得yαczβc z (αα'cββ' c )x(αβ'cα' βc )x a(c,c )xb(c,c )x 上述分析適用於TDMA/CDMA,但若用c m 置換c 及用x m 置換x (亦即,頻率-f 處之值)則亦適用於OFDM。And c after channel distortion and α, β, receiver obtains y = αcz + βc * z * = (αα'c + ββ '* c *) x + (αβ'c + α' * βc *) x * = a(c,c * )x + b(c,c * )x * The above analysis applies to TDMA/CDMA, but if c m * is substituted for c * and x m * is substituted for x * (that is, frequency - f The value is also applicable to OFDM.

發射器及接收器二者處之正交非平衡問題仍然維持與先前研究相同,但針對作為頻道函數之非平衡係數而具有不同值。若忽略二級量,並假設c m 並不過量地強於或弱於c ,則 增加來自失真之雜訊。利用非偏差調校序列會幫助消除在度量上對雜訊有益之某些項,如上文解釋。The orthogonal imbalance problem at both the transmitter and the receiver remains the same as in previous studies, but has different values for the unbalanced coefficients as a function of the channel. If the secondary quantity is ignored, and assuming that c m * is not excessively stronger or weaker than c , then Increase noise from distortion. Utilizing non-deviation tuning sequences will help eliminate certain items that are beneficial to noise in metrics, as explained above.

傳輸一非偏差調校序列可藉由利用I路徑傳輸調校序列之第一部分及利用Q路徑傳輸第二部分而在一習用UWB系統中實現。即使使用一非偏差(無旋轉調校信號)用於信標,以藉由關閉Q頻道來保存功率,一嵌入前置項中之特 定信號亦可通知接收器調校序列之類型。另一選擇為,接收器可自動檢測所傳輸之調校序列。此並非一困難任務,乃因查看少量強的副載波以決定該傳輸是一致還是旋轉90∘已足夠。Transmitting a non-deviation tuning sequence can be accomplished in a conventional UWB system by transmitting the first portion of the tuning sequence using the I path and transmitting the second portion using the Q path. Even if a non-biased (no rotation tuning signal) is used for the beacon to save power by turning off the Q channel, a special embedded in the preamble The fixed signal can also inform the receiver of the type of calibration sequence. Alternatively, the receiver can automatically detect the transmitted calibration sequence. This is not a difficult task, as it is sufficient to look at a small number of strong subcarriers to determine whether the transmission is consistent or rotated by 90 。.

如先前提及,導頻頻調被視為調校信號之一特定情形,此乃因許多習用系統均使用以一獨特方向在複數平面內傳輸之導頻。在追蹤該等導頻頻調時,會沿彼方向恆定地引導一偏差。藉由將導頻每OFDM符號改變90∘,或在同一OFDM符號中,參照其他成對副載波(不同頻率上)將某些成對(±f)副載波旋轉90∘,會獲得更好之導頻。此導頻頻調變化簡單且幾乎零成本。隨發射器與接收器之間的時鐘漂移,導頻頻調可具有補償某些偏差之可能,該等偏差係在使用一不平衡調校信號時藉助起始之偏差調校序列而導入。換言之,產生僅旋轉導頻頻調、同時保持一偏差(非旋轉)調校序列會在多數情形中減少偏差。As mentioned previously, pilot tones are considered a particular case of tuning signals, as many conventional systems use pilots that are transmitted in a complex plane in a complex direction. When tracking the pilot tones, a deviation is constantly directed in the direction of the pilot. Better by rotating the pilots by 90 turns per OFDM symbol, or by rotating some pairs of (±f) subcarriers by 90 参照 with reference to other pairs of subcarriers (on different frequencies) in the same OFDM symbol. Pilot. This pilot tone change is simple and almost zero cost. Depending on the clock drift between the transmitter and the receiver, the pilot tones may have the potential to compensate for certain deviations that are introduced by the initial offset adjustment sequence when an unbalanced calibration signal is used. In other words, generating a spin-only pilot tone while maintaining a bias (non-rotation) tuning sequence will reduce the bias in most cases.

已運行仿真以量測具有及不具有一經平衡調校序列之正交非平衡之效果。對於TX側上振幅為10%(0.4 dB)且相位為10∘之非平衡,且對於接收器側上之等量非平衡,最高資料速率(480 Mbps)之增益接近1 dB。若引入更多類型之損失,此導致需要更高之SNR,則可期望甚至更大之增益。SNR越高,利用一經平衡調校序列可獲得之增益越大。The simulation has been run to measure the effects of orthogonal unbalance with and without a balanced calibration sequence. For an unbalanced amplitude of 10% (0.4 dB) on the TX side with a phase of 10 ,, and for an equal amount of unbalance on the receiver side, the maximum data rate (480 Mbps) gain is close to 1 dB. If more types of losses are introduced, which results in a higher SNR, an even larger gain can be expected. The higher the SNR, the greater the gain that can be obtained with a balanced calibration sequence.

圖10係一圖解說明一種用於傳輸一通信調校序列之方法之流程圖。儘管為清楚起見在圖中將該方法繪示為一系列帶編號之步驟,然而該編號方式未必指定各步驟之次序。 應瞭解,可跳過、並行實施該等步驟中之某些步驟,或者在實施該等步驟中的某些步驟時無需保持一嚴格順序。該方法開始於步驟1000。Figure 10 is a flow chart illustrating a method for transmitting a communication tuning sequence. Although the method is illustrated in the figures as a series of numbered steps for clarity, this numbering does not necessarily specify the order of the steps. It will be appreciated that some of these steps may be skipped, performed in parallel, or there may be no need to maintain a strict sequence when implementing some of the steps. The method begins in step 1000.

步驟1002於一正交調變發射器中產生一旋轉調校信號。通常,將預定或習知資訊作為調校信號來發送。步驟1002a經由一I調變路徑發送調校資訊,且步驟1002b經由一Q調變路徑發送調校資訊。步驟1004產生經正交調變之通信資料。步驟1004可在步驟1002之後執行,或與步驟1002之性能同時執行。於一態樣中,步驟1004以一信標資料速率產生一信標信號。另一選擇為,步驟1004以一大於該信標資料速率之通信資料速率產生資訊。步驟1006傳輸該旋轉調校信號及經正交調變之通信資料。通常,符號或資訊之產生及傳輸幾乎同時發生。Step 1002 generates a rotational tuning signal in a quadrature modulation transmitter. Typically, predetermined or conventional information is sent as a calibration signal. Step 1002a sends the calibration information via an I modulation path, and step 1002b sends the calibration information via a Q modulation path. Step 1004 produces orthogonally modulated communication data. Step 1004 can be performed after step 1002 or concurrently with the performance of step 1002. In one aspect, step 1004 generates a beacon signal at a beacon data rate. Alternatively, step 1004 generates information at a communication data rate greater than the beacon data rate. Step 1006 transmits the rotation adjustment signal and the orthogonally modulated communication data. Usually, the generation and transmission of symbols or information occurs almost simultaneously.

於一態樣中,在步驟1006中傳輸旋轉調校信號包含首先經由I調變路徑發送調校資訊,且隨後經由Q調變路徑發送調校資訊。舉例而言,首先經由I調變路徑產生調校資訊(步驟1002a)可包含供能量給I調變路徑,但不供能量給Q調變路徑。然後,在經由I調變路徑產生調校資訊之後,經由Q調變路徑產生調校資訊包含供能量給Q調變路徑。另一選擇為,可以相反次序發送調校資訊。更精確地,在步驟1002a中經由I調變路徑產生調校資訊可包含產生一具有一參考相位之第一符號。然後,在步驟1002b中經由Q調變路徑產生調校資訊包含產生一具有一相位為參考相位+90∘或參考相位-90∘之第二符號。In one aspect, transmitting the rotational tuning signal in step 1006 includes first transmitting the calibration information via the I modulation path, and then transmitting the calibration information via the Q modulation path. For example, first generating the calibration information via the I modulation path (step 1002a) may include supplying energy to the I modulation path, but not supplying energy to the Q modulation path. Then, after the calibration information is generated via the I modulation path, the calibration information generated via the Q modulation path includes the energy supply to the Q modulation path. Alternatively, the calibration information can be sent in reverse order. More precisely, generating the calibration information via the I modulation path in step 1002a can include generating a first symbol having a reference phase. Then, generating the calibration information via the Q modulation path in step 1002b includes generating a second symbol having a phase of reference phase +90 ∘ or a reference phase of -90 。.

於另一態樣中,步驟1002b利用以下子步驟(未顯示)經由Q調變路徑產生調校資訊。步驟1002b1同時透過I及Q調變路徑產生調校資訊,且步驟1002b2組合經I及Q調變信號以供應第二符號。或者或另外,經由I調變路徑產生調校資訊可包含子步驟(未顯示)。步驟1002a1同時透過I及Q調變路徑產生調校資訊,且步驟1002a2組合經I及Q調變信號以供應第一符號。In another aspect, step 1002b utilizes the following sub-steps (not shown) to generate tuning information via the Q modulation path. Step 1002b1 simultaneously generates calibration information through the I and Q modulation paths, and step 1002b2 combines the I and Q modulation signals to supply the second symbol. Alternatively or additionally, generating the tuning information via the I modulation path may include sub-steps (not shown). Step 1002a1 simultaneously generates calibration information through the I and Q modulation paths, and step 1002a2 combines the I and Q modulation signals to supply the first symbol.

於一不同態樣中,傳輸(步驟1006)包含子步驟。步驟1006a組織一包含一前置項、標頭、及有效負載之實體層(PHY)信號。應注意,此組織通常作為對接收將以一對應MAC格式傳輸之資訊之響應而發生。步驟1006b在PHY標頭中傳輸旋轉調校信號,且步驟1006c在PHY副載波中傳輸經IQ調變通信資料。In a different aspect, the transmission (step 1006) includes sub-steps. Step 1006a organizes a physical layer (PHY) signal containing a preamble, a header, and a payload. It should be noted that this organization typically occurs as a response to receiving information that will be transmitted in a corresponding MAC format. Step 1006b transmits a rotational tuning signal in the PHY header, and step 1006c transmits the IQ modulated communication data in the PHY subcarrier.

於另一態樣中,步驟1001a發送一多叢發傳輸,其具有一不平衡訊息(步驟1001b)其後接續旋轉調校信號(步驟1006)。該不平衡或非平衡訊息包含一非旋轉調校信號,該非旋轉調校信號具有經由I調變路徑發送之調校資訊(步驟1001b1),但不具有經由Q調變路徑發送之調校資訊(步驟1001b2)。該不平衡訊息包含一所產生訊息格式信號(步驟1001b3),其指示在該不平衡訊息之後發送一旋轉調校信號。在步驟1001b4中產生經正交調變之通信資料。於一不同態樣中,在步驟1002中產生一旋轉調校信號包含產生P個旋轉導頻符號,且在步驟1004中產生經正交調變之通信資料包含產生(N-P)個通信資料符號。然後,在步驟 1006中進行傳輸包含同時傳輸N個符號。In another aspect, step 1001a transmits a multi-plex transmission having an unbalanced message (step 1001b) followed by a rotation adjustment signal (step 1006). The unbalanced or unbalanced message includes a non-rotational calibration signal having calibration information transmitted via the I modulation path (step 1001b1), but without calibration information transmitted via the Q modulation path ( Step 1001b2). The unbalanced message includes a generated message format signal (step 1001b3) indicating that a rotational tuning signal is transmitted after the unbalanced message. The quadrature modulated communication data is generated in step 1001b4. In a different aspect, generating a rotational tuning signal in step 1002 includes generating P rotating pilot symbols, and generating quadrature modulated communication data in step 1004 includes generating (N-P) communication data. symbol. Then, at the step Transmitting in 1006 involves transmitting N symbols simultaneously.

於另一變化形式中,在步驟1002中產生一旋轉調校信號包含為複數個副載波同時產生符號。更明確地,步驟1002a為i 個副載波使用經由I調變路徑而非經由Q調變路徑發送之調校資訊。步驟1002b為j 固副載波使用經由Q調變路徑而非I調變路徑發送之調校資訊。然後,在步驟1004中產生經正交調變之通信資料包含在產生調校資訊之後為該ij 個副載波產生經正交調變之通信資料。於一態樣中,每一i 副載波均毗鄰一j 副載波。In another variation, generating a rotational tuning signal in step 1002 includes simultaneously generating symbols for a plurality of subcarriers. More specifically, step 1002a uses tuning information transmitted via the I modulation path instead of via the Q modulation path for the i subcarriers. Step 1002b uses calibration information transmitted via the Q modulation path instead of the I modulation path for the j -subcarrier. Then, generating the quadrature modulated communication data in step 1004 includes generating quadrature modulated communication data for the i and j subcarriers after the calibration information is generated. In one aspect, each i subcarrier is adjacent to a j subcarrier.

更正式地,由副載波i 估計之頻道係αcβc m u m u (1) 毗鄰副載波j 藉助一90∘旋轉導頻來估計幾乎同一頻道為αcβc m ju m ju αcβc m u m u (2) 應注意,等式中針對複數j 之符號不應與子組j 混淆。然後,在對該等副載波進行平均之後,亦即在對(1)及(2)之結果進行平均化之後,自動清除偏差。More formally, the sub-carrier i of the channel estimation based αc + βc m * u m * u * (1) by means of adjacent subcarriers j αc + βc m * ju m 90∘ a rotating pilots to estimate the channel is almost the same * Ju * = αc - βc m * u m * u * (2) It should be noted that the sign for the complex number j in the equation should not be confused with the subgroup j . Then, after averaging the subcarriers, that is, after averaging the results of (1) and (2), the deviation is automatically cleared.

上述流程圖亦可解譯為一其中儲存有用於傳輸一正交調變旋轉調校序列之指令之機器可讀媒體之表達法。用於傳輸一旋轉調校信號之指令應對應於步驟1000至1006,如上文解釋。The above flow diagram can also be interpreted as an expression of a machine readable medium having stored therein instructions for transmitting a quadrature modulated rotational tuning sequence. The instructions for transmitting a rotational tuning signal should correspond to steps 1000 through 1006, as explained above.

本文已提供系統、方法、裝置及處理器來實現經正交調變之旋轉調校信號於一無線通信裝置發射器中之傳輸。已給出特定通信協定及格式之實例來例示本發明。然而,本發明並不僅限於這些實例。熟習此項技術者將構想出本發 明之其他變化形式及實施例。Systems, methods, apparatus, and processors have been provided herein to effect the transmission of a quadrature modulated rotational tuning signal in a wireless communication device transmitter. Examples of specific communication protocols and formats have been given to illustrate the invention. However, the invention is not limited to these examples. Those who are familiar with this technology will conceive of this issue. Other variations and embodiments of the invention.

300‧‧‧無線通信裝置300‧‧‧Wireless communication device

302‧‧‧系統302‧‧‧System

304‧‧‧射頻(RF)發射器304‧‧‧RF (RF) transmitter

306a‧‧‧線路306a‧‧‧ lines

306b‧‧‧線路306b‧‧‧ lines

308‧‧‧同相(I)調變路徑308‧‧‧In-phase (I) modulation path

310‧‧‧正交(Q)調變路徑310‧‧‧Orthogonal (Q) modulation path

312‧‧‧組合器312‧‧‧ combiner

318‧‧‧線路318‧‧‧ lines

320‧‧‧放大器320‧‧‧Amplifier

322‧‧‧天線322‧‧‧Antenna

600‧‧‧實體層(PHY)信號600‧‧‧ Physical layer (PHY) signal

602‧‧‧前置項602‧‧‧Previous items

604‧‧‧標頭604‧‧‧ Header

606‧‧‧有效負載606‧‧‧ payload

700‧‧‧處理裝置700‧‧‧Processing device

702‧‧‧1路徑調變模組702‧‧1 Path Modulation Module

704‧‧‧線路704‧‧‧ lines

706‧‧‧線路706‧‧‧ lines

708‧‧‧線路708‧‧‧ lines

710‧‧‧Q路徑調變模組710‧‧‧Q path modulation module

712‧‧‧線路712‧‧‧ lines

714‧‧‧線路714‧‧‧ lines

716‧‧‧線路716‧‧‧ lines

718‧‧‧組合器模組718‧‧‧ combiner module

720‧‧‧線路720‧‧‧ lines

722‧‧‧控制器模組722‧‧‧Controller Module

圖1係一習用接收器前端(先前技術)之示意性方塊圖。Figure 1 is a schematic block diagram of a conventional receiver front end (prior art).

圖2係一圖解說明接收器側之正交非平衡(先前技術)之示意圖。Figure 2 is a schematic diagram illustrating orthogonal non-equilibrium (prior art) on the receiver side.

圖3係一無線通信裝置之示意性方塊圖,該無線通信裝置具有一用於傳輸一旋轉調校序列之系統。3 is a schematic block diagram of a wireless communication device having a system for transmitting a rotational tuning sequence.

圖4A至4D係繪示一具有經正交調變之通信資料之調校信號之圖示。4A to 4D are diagrams showing a calibration signal having orthogonally modulated communication data.

圖5A及5B係如一正交星座圖中所展示之旋轉調校符號之圖示。5A and 5B are diagrams of rotational adjustment symbols as shown in an orthogonal constellation diagram.

圖6係一繪示一用於攜載一具有一旋轉調校信號之訊息之實例性框架之圖示。6 is a diagram showing an exemplary framework for carrying a message having a rotational tuning signal.

圖7係一繪示一用於傳輸一正交調變旋轉調校序列之處理裝置之示意性方塊圖。FIG. 7 is a schematic block diagram showing a processing apparatus for transmitting a quadrature modulation rotation tuning sequence.

圖8係一繪示圖2所示衝擊波形之2個不同相位θ之理想及非平衡星座圖之圖式。FIG. 8 is a diagram showing an ideal and non-equilibrium constellation diagram of two different phases θ of the impulse waveform shown in FIG.

圖9係一將相位非平衡繪示為衝擊波形上之相位之函數之圖示。Figure 9 is a graphical representation of phase imbalance as a function of phase on a shock waveform.

圖10係一圖解說明一種用於傳輸一通信調校序列之方法之流程圖。Figure 10 is a flow chart illustrating a method for transmitting a communication tuning sequence.

300‧‧‧無線通信裝置300‧‧‧Wireless communication device

302‧‧‧系統302‧‧‧System

304‧‧‧射頻(RF)發射器304‧‧‧RF (RF) transmitter

306a‧‧‧線路306a‧‧‧ lines

306b‧‧‧線路306b‧‧‧ lines

308‧‧‧同相(I)調變路徑308‧‧‧In-phase (I) modulation path

310‧‧‧正交(Q)調變路徑310‧‧‧Orthogonal (Q) modulation path

312‧‧‧組合器312‧‧‧ combiner

318‧‧‧線路318‧‧‧ lines

320‧‧‧放大器320‧‧‧Amplifier

322‧‧‧天線322‧‧‧Antenna

Claims (18)

一種用於傳輸一通信調校序列之方法,該方法包括:於一正交調變發射器中產生一調校序列,該調校序列代表至少一代表一第一複數值之第一符號、緊接其後之一代表一第二複數值之第二符號、緊接其後之一代表一第三複數值之第三符號,其中該第一複數值及該第二複數值定義一第一角度,其中該第二複數值及該第三複數值定義一第二角度,且其中該第一角度與該第二角度相等且小於180度;以在一第一時間供能量給一同相(I)調變路徑但不供能量給一正交(Q)調變路徑,及在不同於該第一時間之一第二時間供能量給該Q調變路徑但不供能量給該I調變路徑的方式傳輸該調校序列;產生含有資料之一不平衡訊息;在傳輸該調校序列之前、之後、或同時傳輸該不平衡訊息,該不平衡訊息包含一訊息格式信號,其指示該調校序列相對於該不平衡訊息係如何被發送。 A method for transmitting a communication adjustment sequence, the method comprising: generating a calibration sequence in an orthogonal modulation transmitter, the calibration sequence representing at least one first symbol representing a first complex value, tight One of the following represents a second sign of the second complex value, and the next one represents a third sign of the third complex value, wherein the first complex value and the second complex value define a first angle Wherein the second complex value and the third complex value define a second angle, and wherein the first angle is equal to the second angle and less than 180 degrees; providing energy to an in-phase (I) at a first time Modulating the path but not supplying energy to an orthogonal (Q) modulation path, and supplying energy to the Q modulation path at a second time different from the first time but not supplying energy to the I modulation path Transmitting the calibration sequence; generating an unbalanced message containing data; transmitting the unbalanced message before, after, or simultaneously transmitting the calibration sequence, the unbalanced message including a message format signal indicating the calibration sequence How is the unbalanced message sent? . 如請求項1之方法,其中傳輸該調校序列包含在不同的時間經由該同相調變路徑傳輸調校資訊及經由該正交調變路徑傳輸調校資訊。 The method of claim 1, wherein transmitting the calibration sequence comprises transmitting the calibration information via the in-phase modulation path at different times and transmitting the calibration information via the orthogonal modulation path. 如請求項1之方法,其進一步包含產生經正交調變之通信資料及傳輸該經正交調變之通信資料,其中產生該經正交調變之通信資料包含產生選自一由以下組成之群組之資料:以一信標資料速率產生之信標信號,及以一大 於該信標資料速率之通信資料速率產生之通信資料。 The method of claim 1, further comprising generating the orthogonally modulated communication data and transmitting the orthogonally modulated communication data, wherein generating the orthogonally modulated communication data comprises generating a component selected from the group consisting of Group information: a beacon signal generated at a beacon data rate, and a large Communication data generated at a communication data rate of the beacon data rate. 如請求項1之方法,其中產生一調校序列包含為複數個副載波產生符號。 The method of claim 1, wherein generating a calibration sequence comprises generating symbols for the plurality of subcarriers. 如請求項1之方法,其中產生一調校序列包含:為同相及正交調變路徑二者產生調校資訊;及為該等同相及正交調變路徑二者組合該調校資訊以產生該調校序列。 The method of claim 1, wherein generating a calibration sequence comprises: generating calibration information for both in-phase and quadrature modulation paths; and combining the calibration information for both the equivalent phase and the quadrature modulation path to generate The calibration sequence. 如請求項1之方法,其進一步包含產生經正交調變之通信資料及傳輸該經正交調變之通信資料,其中傳輸該調校信號及經正交調變之通信資料包含:組織一包含一前置項、標頭、及有效負載之實體層(PHY)信號;在該PHY標頭中傳輸該調校信號;及在該PHY有效負載中傳輸該經正交調變之通信資料。 The method of claim 1, further comprising: generating the orthogonally modulated communication data and transmitting the orthogonally modulated communication data, wherein transmitting the calibration signal and the orthogonally modulated communication data comprises: organization one a physical layer (PHY) signal including a preamble, a header, and a payload; transmitting the calibration signal in the PHY header; and transmitting the quadrature modulated communication data in the PHY payload. 如請求項1之方法,其中該調校序列具有偶數個符號。 The method of claim 1, wherein the calibration sequence has an even number of symbols. 如請求項1之方法,其中該第一角度係90度。 The method of claim 1, wherein the first angle is 90 degrees. 一種用於傳輸一通信調校序列之處理裝置,該處理裝置包括:一產生模組,其經組態以產生一調校序列,該調校序列代表至少一代表一第一複數值之第一符號、緊接其後之一代表一第二複數值之第二符號、緊接其後之一代表一第三複數值之第三符號,其中該第一複數值及該第二複數值定義一第一角度,其中該第二複數值及該第三複數值定義一第二角度,且其中該第一角度與該第二角度 相等且小於180度;一傳輸模組,其用於以在一第一時間供能量給一同相(I)調變路徑但不供能量給一正交(Q)調變路徑,及在不同於該第一時間之一第二時間供能量給該Q調變路徑但不供能量給該I調變路徑的方式傳輸該調校序列;其中該產生模組係經組態以產生含有資料之一不平衡訊息;及其中在傳輸該調校序列之前、之後、或同時傳輸該不平衡訊息,該不平衡訊息包含一訊息格式信號,其指示該調校序列相對於該不平衡訊息係如何被發送。 A processing apparatus for transmitting a communication adjustment sequence, the processing apparatus comprising: a generation module configured to generate a calibration sequence, the calibration sequence representing at least one representing a first complex value The symbol, one of the following represents a second symbol of the second complex value, and the next one represents a third symbol of the third complex value, wherein the first complex value and the second complex value define a a first angle, wherein the second complex value and the third complex value define a second angle, and wherein the first angle and the second angle Equal and less than 180 degrees; a transmission module for supplying energy to an in-phase (I) modulation path at a first time but not supplying energy to an orthogonal (Q) modulation path, and different from Transmitting the calibration sequence in a manner that one of the first time supplies energy to the Q modulation path but does not supply energy to the I modulation path; wherein the generation module is configured to generate one of the contained data Unbalanced message; and wherein the unbalanced message is transmitted before, after, or simultaneously with the adjustment sequence, the unbalanced message including a message format signal indicating how the calibration sequence is transmitted relative to the unbalanced message system . 一種用於傳輸一通信調校序列之系統,該系統包括:一處理器,其經組態以產生一調校序列,該調校序列代表至少一代表一第一複數值之第一符號、緊接其後之一代表一第二複數值之第二符號、緊接其後之一代表一第三複數值之第三符號,其中該第一複數值及該第二複數值定義一第一角度,其中該第二複數值及該第三複數值定義一第二角度,且其中該第一角度與該第二角度相等且小於180度;及一發射器,其經組態以在一第一時間供能量給一同相(I)調變路徑但不供能量給一正交(Q)調變路徑,及在不同於該第一時間之一第二時間供能量給該Q調變路徑但不供能量給該I調變路徑的方式傳輸該調校序列;其中該產生器係經組態以產生含有資料之一不平衡訊息;及 其中該傳輸器係經組態以在傳輸該調校序列之前、之後、或同時傳輸該不平衡訊息,該不平衡訊息包含一訊息格式信號,其指示該調校序列相對於該不平衡訊息係如何被發送。 A system for transmitting a communication adjustment sequence, the system comprising: a processor configured to generate a calibration sequence, the calibration sequence representing at least one first symbol representing a first complex value, tight One of the following represents a second sign of the second complex value, and the next one represents a third sign of the third complex value, wherein the first complex value and the second complex value define a first angle Wherein the second complex value and the third complex value define a second angle, and wherein the first angle is equal to the second angle and less than 180 degrees; and a transmitter configured to be in the first The time supply energy to an in-phase (I) modulation path but does not supply energy to an orthogonal (Q) modulation path, and provides energy to the Q modulation path at a second time different from the first time but not Transmitting the calibration sequence in a manner that energizes the I modulation path; wherein the generator is configured to generate an imbalance message containing data; Wherein the transmitter is configured to transmit the unbalanced message before, after, or simultaneously with transmitting the calibration sequence, the unbalanced message including a message format signal indicating the adjustment sequence relative to the unbalanced message system How to be sent. 如請求項10之系統,其中該發射器藉由在不同的時間經由該同相調變路徑傳輸調校資訊及經由該正交調變路徑傳輸調校資訊以傳輸該調校序列。 The system of claim 10, wherein the transmitter transmits the calibration sequence by transmitting the calibration information via the in-phase modulation path at different times and transmitting the calibration information via the quadrature modulation path. 如請求項10之系統,其中該處理器進一步經組態以產生經正交調變之通信資料,其中該發射器進一步經組態以傳輸該經正交調變之通信資料,及其中該經正交調變之通信資料包含產生選自一由以下組成之群組之資料:以一信標資料速率產生之信標信號,及以一大於該信標資料速率之通信資料速率產生之通信資料。 The system of claim 10, wherein the processor is further configured to generate quadrature modulated communication data, wherein the transmitter is further configured to transmit the quadrature modulated communication data, and wherein the The orthogonally modulated communication data includes generating data selected from the group consisting of: a beacon signal generated at a beacon data rate, and a communication data generated at a communication data rate greater than the beacon data rate . 如請求項10之系統,其中該處理器進一步經組態以藉由為複數個副載波產生符號來產生一旋轉調校信號。 The system of claim 10, wherein the processor is further configured to generate a rotational tuning signal by generating symbols for the plurality of subcarriers. 如請求項10之系統,其中該處理器經組態以藉由為同相及正交調變路徑二者產生調校資訊及為該等同相及正交調變路徑二者組合該調校資訊來產生該調校序列。 The system of claim 10, wherein the processor is configured to generate calibration information for both in-phase and quadrature modulation paths and to combine the calibration information for both the equivalent phase and the quadrature modulation path. This tuning sequence is generated. 如請求項10之系統,其中該處理器進一步經組態以產生經正交調變之通信資料,其中該發射器進一步經組態以傳輸該經正交調變之通信資料,及其中該調校序列及該經正交調變之通信資料係經由一實體層(PHY)信號傳輸,該實體層(PHY)信號包含一前置項、標頭、及有效負載,其具有在該PHY之標頭中之該調校序列及在該 PHY之有效負載中之該經正交調變之通信資料。 The system of claim 10, wherein the processor is further configured to generate quadrature modulated communication data, wherein the transmitter is further configured to transmit the quadrature modulated communication data, and wherein the modulation The calibration sequence and the orthogonally modulated communication data are transmitted via a physical layer (PHY) signal, the physical layer (PHY) signal including a preamble, a header, and a payload having a standard at the PHY The adjustment sequence in the head and the The quadrature modulated communication data in the payload of the PHY. 如請求項10之系統,其中該調校序列具有偶數個符號。 The system of claim 10, wherein the tuning sequence has an even number of symbols. 如請求項10之系統,其中該第一角度係90度。 The system of claim 10, wherein the first angle is 90 degrees. 一種非過渡機器可讀媒體,其上儲存有用於傳輸一通信調校序列之指令,該等指令包括:於一正交調變發射器中產生一調校序列,該調校序列代表至少一代表一第一複數值之第一符號、緊接其後之一代表一第二複數值之第二符號、緊接其後之一代表一第三複數值之第三符號,其中該第一複數值及該第二複數值定義一第一角度,其中該第二複數值及該第三複數值定義一第二角度,且其中該第一角度與該第二角度相等且小於180度;以在一第一時間供能量給一同相(I)調變路徑但不供能量給一正交(Q)調變路徑,及在不同於該第一時間之一第二時間供能量給該Q調變路徑但不供能量給該I調變路徑的方式傳輸該調校序列;產生含有資料之一不平衡訊息;及在傳輸該調校序列之前、之後、或同時傳輸該不平衡訊息,該不平衡訊息包含一訊息格式信號,其指示該調校序列相對於該不平衡訊息係如何被發送。 A non-transition machine readable medium having stored thereon instructions for transmitting a communication tuning sequence, the instructions comprising: generating a tuning sequence in an orthogonal modulation transmitter, the tuning sequence representing at least one representative a first symbol of a first complex value, a second symbol followed by a second complex value, and a third symbol immediately following a third complex value, wherein the first complex value And the second complex value defines a first angle, wherein the second complex value and the third complex value define a second angle, and wherein the first angle is equal to the second angle and less than 180 degrees; The first time supplies energy to an in-phase (I) modulation path but does not supply energy to an orthogonal (Q) modulation path, and supplies energy to the Q modulation path at a second time different from the first time. But transmitting the calibration sequence without supplying energy to the I modulation path; generating an unbalanced message containing the data; and transmitting the unbalanced message before, after, or simultaneously transmitting the calibration sequence, the unbalanced message Contains a message format signal indicating the tone Sequences relative to how the system is unbalanced message sent.
TW097108424A 2007-03-09 2008-03-10 Quadrature modulation rotating training sequence TWI446758B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/684,566 US8428175B2 (en) 2007-03-09 2007-03-09 Quadrature modulation rotating training sequence
US11/755,719 US8290083B2 (en) 2007-03-09 2007-05-30 Quadrature imbalance mitigation using unbiased training sequences
US11/853,808 US8064550B2 (en) 2007-03-09 2007-09-11 Quadrature imbalance estimation using unbiased training sequences
US11/853,809 US8081695B2 (en) 2007-03-09 2007-09-11 Channel estimation using frequency smoothing

Publications (2)

Publication Number Publication Date
TW200901692A TW200901692A (en) 2009-01-01
TWI446758B true TWI446758B (en) 2014-07-21

Family

ID=39760329

Family Applications (2)

Application Number Title Priority Date Filing Date
TW097108424A TWI446758B (en) 2007-03-09 2008-03-10 Quadrature modulation rotating training sequence
TW097108425A TWI393399B (en) 2007-03-09 2008-03-10 Quadrature imbalance mitigation using unbiased training sequences

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW097108425A TWI393399B (en) 2007-03-09 2008-03-10 Quadrature imbalance mitigation using unbiased training sequences

Country Status (7)

Country Link
EP (2) EP2130341A2 (en)
JP (3) JP5123324B2 (en)
KR (2) KR101109797B1 (en)
BR (2) BRPI0808669A2 (en)
CA (3) CA2790073C (en)
TW (2) TWI446758B (en)
WO (2) WO2008112585A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8385387B2 (en) * 2010-05-20 2013-02-26 Harris Corporation Time dependent equalization of frequency domain spread orthogonal frequency division multiplexing using decision feedback equalization
GB2492168A (en) 2011-06-24 2012-12-26 Penny & Giles Controls Ltd Inductive position sensor with datum adjustment
IL214096A (en) 2011-07-14 2016-02-29 Gideon Mor System for detection of meconium in amniotic fluid
US8971465B2 (en) 2012-03-30 2015-03-03 Qualcomm Incorporated Receiver-side estimation of and compensation for signal impairments
US9143365B2 (en) 2013-01-30 2015-09-22 Qualcomm Incorporated Channel estimation using averaging and interpolation
US9781612B2 (en) 2014-03-31 2017-10-03 Intel IP Corporation Correlation-based self-interference suppression

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3055085B2 (en) * 1994-04-22 2000-06-19 株式会社アドバンテスト Digital modulation analyzer
JP3682853B2 (en) * 1995-09-25 2005-08-17 日本ビクター株式会社 Orthogonal frequency division multiplex signal transmission system, transmitter and receiver
JPH11136302A (en) * 1997-10-29 1999-05-21 Fujitsu Ltd Distortion compensation circuit
JP3166705B2 (en) * 1998-04-16 2001-05-14 松下電器産業株式会社 Wireless device and transmission method
JP2001016283A (en) * 1999-07-01 2001-01-19 Fujitsu General Ltd Digital radio equipment
WO2001031867A1 (en) * 1999-10-27 2001-05-03 Nokia Corporation Dc offset correction in a mobile communication system
JP2002252663A (en) * 2001-02-26 2002-09-06 Fujitsu General Ltd Digital radio device
US6825229B2 (en) * 2002-03-07 2004-11-30 Blanchette Rockefeller Neurosciences Institute Methods for Alzheimer's Disease treatment and cognitive enhancement
US7248625B2 (en) * 2002-09-05 2007-07-24 Silicon Storage Technology, Inc. Compensation of I-Q imbalance in digital transceivers
DE10241676A1 (en) * 2002-09-09 2004-03-18 Infineon Technologies Ag Estimation method for RF signals distortion caused by IQ-asymmetries, requires using sub-carriers arranged symmetrically to one another in transmission spectrum
US7529306B2 (en) * 2002-09-09 2009-05-05 Infineon Technologies Ag Estimation of asymmetries between inphase and quadrature branches in multicarrier transmission systems
TWI222279B (en) * 2002-11-20 2004-10-11 Realtek Semiconductor Corp Estimation/compensation method and device for in-phase/quadrature-phase unbalance
US7385617B2 (en) * 2003-05-07 2008-06-10 Illinois Institute Of Technology Methods for multi-user broadband wireless channel estimation
WO2004107697A1 (en) * 2003-05-30 2004-12-09 Koninklijke Philips Electronics N.V. Method and device for estimating i/q imbalance
JP4141973B2 (en) * 2004-03-03 2008-08-27 日本電信電話株式会社 Error compensator for quadrature modulator and demodulator
US7477683B2 (en) * 2004-03-29 2009-01-13 Stmicroelectronics Ltd. Periodic DMT signals with cyclic extension
US20050281239A1 (en) * 2004-06-22 2005-12-22 Texas Instruments Incorporated System and method for signaling modes
JP4312705B2 (en) * 2004-12-27 2009-08-12 日本電信電話株式会社 Quadrature demodulation error compensation method and quadrature demodulation error compensation circuit
JP4599192B2 (en) * 2005-03-02 2010-12-15 株式会社日立製作所 Wireless data communication system and wireless data communication method
EP2793439B1 (en) * 2005-08-05 2018-10-10 Panasonic Corporation System for transmitting and receiving modulated data
US7551648B2 (en) * 2005-08-22 2009-06-23 Nec Laboratories America, Inc. Superimposed training for multiple antenna communications
JP4702883B2 (en) * 2005-08-23 2011-06-15 国立大学法人東京工業大学 Transmitting apparatus, receiving apparatus, MIMO-OFDM communication system, and IQ imbalance compensation method in MIMO-OFDM communication system
JP2007142674A (en) * 2005-11-16 2007-06-07 Matsushita Electric Ind Co Ltd Multicarrier transmitter, multicarrier receiver, and communication method
JP4406398B2 (en) * 2005-12-26 2010-01-27 株式会社東芝 OFDM signal transmission method and transmitter, and OFDM signal receiver
JP4550746B2 (en) * 2006-02-01 2010-09-22 株式会社東芝 Wireless communication method using OFDM, OFDM transmitter and OFDM receiver
JP4983365B2 (en) * 2006-05-16 2012-07-25 ソニー株式会社 Wireless communication device
JP4213734B2 (en) * 2006-07-05 2009-01-21 株式会社東芝 Wireless communication method and OFDM receiver using OFDM
US8064550B2 (en) 2007-03-09 2011-11-22 Qualcomm, Incorporated Quadrature imbalance estimation using unbiased training sequences
WO2008112588A1 (en) * 2007-03-09 2008-09-18 Qualcomm Incorporated Quadrature imbalance estimation using unbiased training sequences

Also Published As

Publication number Publication date
WO2008112587A3 (en) 2009-02-05
CA2790073A1 (en) 2008-09-18
KR20090119002A (en) 2009-11-18
TW200901692A (en) 2009-01-01
TWI393399B (en) 2013-04-11
CA2678592C (en) 2013-06-18
JP5123324B2 (en) 2013-01-23
KR101109797B1 (en) 2012-04-06
WO2008112587A2 (en) 2008-09-18
JP2013176085A (en) 2013-09-05
KR20090118114A (en) 2009-11-17
CA2678126C (en) 2013-06-25
KR101075288B1 (en) 2011-10-19
EP2130340A2 (en) 2009-12-09
BRPI0808676A2 (en) 2014-08-12
WO2008112585A3 (en) 2009-02-05
BRPI0808669A2 (en) 2014-08-26
CA2790073C (en) 2016-01-12
WO2008112585A2 (en) 2008-09-18
JP2010521124A (en) 2010-06-17
CA2678592A1 (en) 2008-09-18
EP2130341A2 (en) 2009-12-09
JP2010521123A (en) 2010-06-17
TW200904093A (en) 2009-01-16
CA2678126A1 (en) 2008-09-18
JP5726939B2 (en) 2015-06-03
JP5290209B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
US8428175B2 (en) Quadrature modulation rotating training sequence
US8526543B2 (en) Quadrature imbalance estimation using unbiased training sequences
US8081695B2 (en) Channel estimation using frequency smoothing
US8290083B2 (en) Quadrature imbalance mitigation using unbiased training sequences
TWI446758B (en) Quadrature modulation rotating training sequence
EP2137918B1 (en) Quadrature imbalance estimation using unbiased training sequences
WO2014015700A1 (en) Method, device and system for estimating in-phase component and quadrature component iq imbalances
US8335247B2 (en) Method and apparatus for measuring signal phase shifts
RU2451413C2 (en) Quadrature modulation rotating training sequence

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees