TW200901692A - Quadrature modulation rotating training sequence - Google Patents

Quadrature modulation rotating training sequence Download PDF

Info

Publication number
TW200901692A
TW200901692A TW097108424A TW97108424A TW200901692A TW 200901692 A TW200901692 A TW 200901692A TW 097108424 A TW097108424 A TW 097108424A TW 97108424 A TW97108424 A TW 97108424A TW 200901692 A TW200901692 A TW 200901692A
Authority
TW
Taiwan
Prior art keywords
modulation
path
signal
modulation path
tuning
Prior art date
Application number
TW097108424A
Other languages
Chinese (zh)
Other versions
TWI446758B (en
Inventor
Rabih Chrabieh
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/684,566 external-priority patent/US8428175B2/en
Priority claimed from US11/755,719 external-priority patent/US8290083B2/en
Priority claimed from US11/853,809 external-priority patent/US8081695B2/en
Priority claimed from US11/853,808 external-priority patent/US8064550B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW200901692A publication Critical patent/TW200901692A/en
Application granted granted Critical
Publication of TWI446758B publication Critical patent/TWI446758B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/05Electric or magnetic storage of signals before transmitting or retransmitting for changing the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • H04L27/3863Compensation for quadrature error in the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0016Stabilisation of local oscillators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se

Abstract

A system and method are provided for transmitting a rotating training sequence. A rotating training signal is generated in quadrature modulation transmitter. The rotating training signal includes training information sent via an in-phase (I) modulation path, as well as training information sent via a quadrature (Q) modulation path. The rotating training signal may be generated by initially sending training information via the I modulation path, and subsequently sending training information via the Q modulation path. The training information sent via the I modulation path may include a first symbol having a reference phase (e. g. , 0 degrees or 180 degrees). Then, the training information sent via the Q modulation path would include a second symbol having a phase that is ?? 90 from the reference phase.

Description

200901692 九、發明說明: 【發明所屬之技術領域】 本發明大體而言係關於通信之調變,且更特定而言係關 於用於產生一旋轉調校信號之正交調變以供用於接收器頻 道估計值之調校之系統及方法。 【先前技術】 圖1係一習用接收器铀端(先如技術)之示意性方塊圖。 一習用之無線通信接收器包含一天線,該天線將一輕射信 號轉換為一傳導信號。在某些起始濾波之後,放大該傳導 信號。假設給出一足夠之功率位準,則該信號之載波頻率 可藉由混合該信號與一本機振盪器信號(降頻轉換)來轉 換。由於所接收信號係經正交調變,則藉由在組合丨及Q路 徑之前將其分離來對該信號解調變。於頻率轉換之後可 利用一類比-數位轉換器(ADC)將該類比信號轉換為一數位 #號以供基頻處理之用。該處理可包含一快速傅立葉變換 (FFT)。 存在大量可被引入接收器而不利地影響頻道估計及所意 欲信號之恢復之誤差。誤差可自混合器、濾波器及諸如電 容器等被動組件引入。該等誤差可在其導致1路徑與卩路徑 之間的不平衡時惡化。於一估計該頻道及因此消除某些該 等誤差之努力中,通信系統可利用一包含一調校序列之訊 息格式,該調校序列可係一重複或預定之資料符號❶舉例 而言,藉由利用一正交分頻多工(〇FDM)系統,可針對每 一副載波重複傳輸同一 IQ星座點。 129716.doc 200901692 於一保存便攜式電 OFDM系統僅使用 乍裝置之功率之努力中’某些 激發該星座圖中—獨調變符號以供調校。舉例而言, 方向(例如,Q路徑)。方向(例如,1路徑),而不激發另― 頻調來使用。應、、主旁' R —類型之單向調校亦可藉助導頻 該星;H /,將—單個調變頻道置亂並不旋 „,且不為正交頻道提供供能量給。不㈣ 在出現正交路徑非 上文提及之功率伴存m 帶寬系統中較流行)時, 午保存调杈序列會導致一 一偏差頻道估計值可以—個方^致偏差頻道估叶值。 對準,但以直交方向描徂 1路徑)將該1Q星座圖 _ , 供正交非平衡。較佳可將任何非平 衡相4地分佈於兩個頻道之間。 $ 2係-圖解說明接收器側之正交非平衡(先前技術)之 不:圖、。儘管未顯示,但發射器侧非平衡乃為相似。假設 Q路仏為參^物。衝擊波形係⑶咖㈣),其中頻道相 位。藉助-sin㈣將Q路徑降頻轉換。藉助(i+2e)c〇s (⑽伽路徑降頻轉換。2Δ_係硬體非平衡,其分 J系相位誤差及-振幅誤差。每—路徑之低通濾波器Η! Q不同該等濾波器會引入額外振幅及相位失真。然 而此等額外失真在2△供及2ε内移動。應注意:此兩個濾 波器係實際的,且以一完全相同方式影響十州及^。 假設該等誤差較小: (l+2e)cos(wi+2A^)«(l+2e)cos(&gt;vi)-2A9.sin(&gt;v〇 等式右手側之第一組分C〇S〇〇係經輕微比例縮放之理想 I路徑。第二組分—2Ap.sin〇i)係來自q路徑之小洩漏。於 129716.doc 200901692 衝擊波形之降頻轉換後: 在I路徑中:(1+2e)c〇s(^)+2e sin(0)。 在Q路徑中:sin(〇。 該等誤差導致正交調變星座圖中之符號定位誤解,這又 會導致未正確解調變之資料。 【發明内容】 無線通信接收器易於出現因與混合器、放大器及濾波器 相關聯之硬體組件中缺乏容差而導致之誤差。於正交解調 變器中,此等誤差亦可導致〗路徑與Q路徑之間的非平衡。 一調校信號可用於校準接收器頻道誤差。然而,一不能 同時激發I路徑及Q路徑二者之調校信號不能解決該兩個路 徑之間的非平衡問題。 因此,提供一種用於傳輸一經正交調變之旋轉調校序 列。一正交調變發射器產生一旋轉調校信號。該旋轉調校 信號包含經由一同相⑴調校路徑發送之調校資訊,以及經 由一正交(Q)調變路徑發送之調校資訊。經正交調變之通 仏 &gt; 料係與調校信號同時產生’或在調校信號之後產生。 傳輸該旋轉調校信號及經正交調變之通信資料。 舉例而言,該旋轉調校信號可藉由首先經由該I調變路 控發送調校資訊、且然後經由q調變路徑發送調校資訊來 產生。更明確地,經由I調變路徑發送之調校資訊可包含 一具有一參考相位之第一符號(例如,〇。或1 8〇。^然後, 經由Q調變路徑發送之調校資訊將包含一第二符號,該第 二符號具有一與該參考相位相差±9〇。之相位。 129716.doc 200901692 ’、述方法、一種用於產生一旋轉調校信號之系 統、及本發明之其他變化形式之其他細節。 【實施方式】 現在將參照該等圖式來闡述各種實施例。在下文中,為 便於解釋,陳述了大量具體細節,以便達成對—個或多個 實施例之透徹瞭解。“,㈣^地,可在沒有此㈠ 體細節之情形下實施此等實施例。在其他示例中,以方塊 圖形式顯示習知之結構及裝置,以便於閣述此等實施例。 本申請案中所用術語”組件&quot;、”系統&quot;及類似術語係指— 與電腦相關之實體’其既可係硬體、執體、硬體與軟體之 組合、軟體、亦可係執行中之軟體。舉例而言,'组件可 係(但不限於卜於-處理器上運行之方法、—處理器、— 對象、-可執行檔、一執行緒、一程式、及/或一電腦。 舉例而言…運行於—計算裝置上之應用程式及該裝置自 身二者均可係—組件…個或多個組件可駐存在-處理及/ 或-執行緒内,而-組件可侷限於—個電腦上及/或分散 在兩個或更多個電腦之間。此外,此等组件可自各種其上 儲存有各種資料結構之電腦可讀媒體上執行。該等組件可 藉由本端及/或遠端過裎央推彡_、2&gt; , 响幻裎來進仃通彳§,例如根據—具有一 個或多個資料封包之信號來進行通信(例如,纟自一個與 -本端系統、分散式系統十之另一組件互動、及/或藉由 信號跨越一網路(例如網際網路)與其他系統互動之組件之 資料)。 下文將藉由可包含大量組件、模組及諸如此類之系統來 129716.doc 200901692 提供各種實施例。應瞭解及知道,不同之系統可包括其他 組件、模乡且等,及/或可並不包括結合該等圖式所論述之 所有組件、模組等。亦可使用此等方法之一組合。 圖3係-無線通信裝置3〇〇之示意性方塊圖,該無線通信 裝置”有用於傳輸—旋轉調校序列之系統。系統搬包 括射頻(RF)發射器304,其在線路3〇6&amp;及3〇61)上具有一 用以接党資讯之輪入端、一同相⑴調變路徑3〇8、一正交 (Q)調變路徑31〇、及—用於組合分別來自〗調變路徑3〇8及 卩調I路徑310之信號之組合器312。儘管使用一 rf發射器 作為圖解說明本發明之實例,但應瞭解,本發明適用於任 月夠攜載經正交調變之資訊之通信媒體(例如,無線、 有線、光學)。I路徑及Q路徑可替代地稱為丨頻道及〇頻 道。在線路318上將經組合信號供應給放大器32〇,並最終 供應給天線322,在天線322處輻射該等信號。發射器3〇4 可經啓用以發送一具有一旋轉調校信號之訊息。一旋轉調 杈L號(其亦可稱為一經正交平衡之調校信號、平衡調校 乜唬、平衡調校序列、或非偏差調校信號)包含經由〗調變 路咎3 08發送之調校資訊及經由q調變路徑發送之調校資 讯。發射器304亦發送經正交調變(非預定)之通信資料。於 心樣中,在發送該叙轉調校序列之後發送該經正交調變 之通信資料。於另一態樣中,以導頻信號之形式同時發送 該調杈信號及該通信資料。該系統並不限於該調校信號與 該經正交調變之通信資料之間的任何特定暫時關係。 圖4A至4D係繪示一具有經正交調變之通信資料之調校 129716.doc 200901692 信號之圖*。考量圖3及4八,於—態樣中 首先經由I調變路徑308發送調校資 ' ° θ ς 1 η菸模π ρ + …後輕由Q調變路徑 =:VT發送旋轉調校信號。亦即,該調校信 说…Λ ’邊如-僅經由旧變路徑3〇8發 重複之符號系列,並後接螬 ^ ”後接續—僅㈣Q調變路㈣0發送之 符號或重複符號系列之傳輸。作為另一選擇但未顯示,可 起始經由⑽變㈣310且隨後㈣路徑⑽來發送調 校資訊。 在透過則路徑交替發送單個符號符號之情形中,發射 器更有可能經由則調變路徑發送一具有預定調校資訊之 旋轉調校信號。舉例而言,第—符號可以總是為(1,0),且 第二符號可以總是為(0,!)。200901692 IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates generally to modulation of communications, and more particularly to orthogonal modulation for generating a rotational tuning signal for use in a receiver System and method for tuning channel estimates. [Prior Art] Fig. 1 is a schematic block diagram of a conventional receiver uranium terminal (prior art). A conventional wireless communication receiver includes an antenna that converts a light-emitting signal into a conductive signal. After some initial filtering, the conduction signal is amplified. Assuming a sufficient power level is given, the carrier frequency of the signal can be converted by mixing the signal with a local oscillator signal (downconverting). Since the received signal is quadrature modulated, the signal is demodulated by separating it before combining the Q and Q paths. The analog signal can be converted to a digit # for a baseband processing after a frequency conversion using a analog-to-digital converter (ADC). The process can include a Fast Fourier Transform (FFT). There are a large number of errors that can be introduced into the receiver to adversely affect channel estimation and recovery of the intended signal. Errors can be introduced from mixers, filters, and passive components such as capacitors. These errors can deteriorate as they cause an imbalance between the 1 path and the 卩 path. In an effort to estimate the channel and thus eliminate some of the errors, the communication system may utilize a message format including a calibration sequence, which may be a repeated or predetermined data symbol, for example, by way of example With an orthogonal frequency division multiplexing (〇FDM) system, the same IQ constellation point can be repeatedly transmitted for each subcarrier. 129716.doc 200901692 In an effort to preserve the power of a portable electric OFDM system using only the 乍 device, some of the excitations in the constellation are individually tuned for calibration. For example, the direction (for example, the Q path). Direction (for example, 1 path) without using another tone to use. Should, the main side of the 'R-type one-way adjustment can also rely on the pilot of the star; H /, will - a single modulation channel is scrambled and not spinning, and does not provide energy for the orthogonal channel. (iv) When the occurrence of an orthogonal path other than the power-carrying m-bandwidth system mentioned above, the noon preservation sequence will result in a one-to-one deviation channel estimate that can be used to estimate the leaf value. Quasi, but trace the 1 path in the direction of the orthogonal direction. The 1Q constellation _ is provided for orthogonal unbalance. It is preferable to distribute any non-equilibrium phase 4 between the two channels. $2 Series-Illustrated Receiver The side of the orthogonal unbalance (previous technique) is not: Fig., although not shown, the transmitter side unbalance is similar. It is assumed that the Q path is a parameter. The impact waveform is (3) coffee (4), where the channel phase The Q path is downconverted by means of -sin(4). With (i+2e)c〇s ((10) gamma path down conversion. 2Δ_ system hard unbalance, which is divided into J system phase error and - amplitude error. Per path Low-pass filters Η! Q different filters will introduce additional amplitude and phase distortion. However, these extra The distortion moves within 2 Δ and 2 ε. It should be noted that the two filters are actual and affect the ten states and ^ in exactly the same way. Suppose the errors are small: (l+2e)cos(wi+ 2A^)«(l+2e)cos(&gt;vi)-2A9.sin(&gt;v〇v The first component of the right-hand side of the equation C〇S〇〇 is a slightly scaled ideal I path. Second The component -2Ap.sin〇i) is a small leak from the q path. After 129716.doc 200901692 After the down-conversion of the impulse waveform: In the I path: (1+2e)c〇s(^)+2e sin( 0) In the Q path: sin (〇. These errors lead to misunderstanding of symbol positioning in the quadrature modulation constellation, which in turn leads to incorrect demodulation of the data. [Invention] Wireless communication receiver is prone to appear Errors due to lack of tolerances in hardware components associated with mixers, amplifiers, and filters. In quadrature demodulator, these errors can also cause unbalance between the path and the Q path. A calibration signal can be used to calibrate the receiver channel error. However, a calibration signal that does not simultaneously excite both the I path and the Q path cannot resolve between the two paths. An unbalanced problem. Accordingly, a rotational tuning sequence for transmitting a quadrature modulation is provided. A quadrature modulation transmitter generates a rotational tuning signal. The rotational tuning signal is transmitted via an in-phase (1) calibration path. Tuning information, and tuning information sent via a quadrature (Q) modulation path. The quadrature modulation is transmitted simultaneously with the calibration signal or generated after the calibration signal. The rotation adjustment signal and the quadrature modulation communication data. For example, the rotation adjustment signal can be sent by first adjusting the calibration information via the I modulation path, and then transmitting and adjusting via the q modulation path. Information is generated. More specifically, the calibration information transmitted via the I modulation path may include a first symbol having a reference phase (eg, 〇. or 18 〇. ^ Then, the calibration information transmitted via the Q modulation path will include a second symbol having a phase that differs from the reference phase by ±9 〇. 129716.doc 200901692 ', a method, a system for generating a rotational tuning signal, and other variations of the invention Other embodiments of the present invention will be described with reference to the drawings. In the following, numerous specific details are set forth in the <RTIgt; The embodiments may be embodied in the form of a block diagram in the form of a block diagram to facilitate the description of such embodiments. The terms "component" and "system" and similar terms are used to refer to a computer-related entity that can be a combination of hardware, firmware, hardware and software, software, or a system. For example, a 'component can be (but is not limited to, a method running on a processor, a processor, an object, an executable file, a thread, a program, and/or a computer) For example, an application running on a computing device and the device itself can be tied to - components ... one or more components can reside in - processing and / or - threads, and - components can be limited a computer and/or distributed between two or more computers. Further, such components can be executed from a variety of computer readable media having various data structures stored thereon. / or remotely push _, 2 &gt;, 裎 裎 仃 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Another component of the decentralized system 10 interacts with, and/or is a component of a component that interacts with other systems via a network (eg, the Internet). The following will include a number of components, modules, and the like. The system to 129716.doc 200901692 Various embodiments. It should be understood and appreciated that different systems may include other components, modules, and the like, and/or may not include all of the components, modules, etc. discussed in connection with the drawings. Figure 3 is a schematic block diagram of a wireless communication device 3" having a system for transmitting-rotating a calibration sequence. The system includes a radio frequency (RF) transmitter 304, which is in the line 3〇6&amp; and 3〇61) have a round entry for the party information, an in-phase (1) modulation path 3〇8, an orthogonal (Q) modulation path 31〇, and – for combination Combiners 312 from the modulated path 3〇8 and the modulated I path 310 respectively. Although an rf transmitter is used as an illustration of an example of the present invention, it should be understood that the present invention is applicable to any month. Communication media for orthogonal modulation information (eg, wireless, wired, optical). The I path and the Q path are alternatively referred to as a 丨 channel and a 〇 channel. The combined signals are supplied to amplifier 32A on line 318 and ultimately to antenna 322, which radiates at antenna 322. Transmitter 3〇4 can be enabled to transmit a message with a rotational tuning signal. A rotary tuning L number (which may also be referred to as an orthogonally balanced tuning signal, balance tuning, balanced tuning sequence, or non-deviation tuning signal) is transmitted via the modulation path 3 08 Tuning information and tuning information sent via the q modulation path. Transmitter 304 also transmits orthogonally modulated (unscheduled) communication material. In the heart sample, the orthogonally modulated communication data is transmitted after the transmission adjustment sequence is transmitted. In another aspect, the chirp signal and the communication data are simultaneously transmitted in the form of a pilot signal. The system is not limited to any particular temporal relationship between the calibration signal and the orthogonally modulated communication material. 4A to 4D are diagrams showing the signal of the 129716.doc 200901692 signal with the quadrature modulation of the communication data. Considering FIG. 3 and FIG. 8 , in the first aspect, the calibration resource is first sent via the I modulation path 308 ' ° θ ς 1 η smoke mode π ρ + ... and then the Q modulation path =: VT sends the rotation adjustment signal . That is to say, the adjustment letter says... Λ 'Bian Ru-- only repeats the symbol series through the old variable path 3〇8, and then connects 螬^” followed by continuation—only (four) Q modulation road (four) 0 transmission symbol or repeat symbol series Transmission. As an alternative but not shown, the calibration information may be sent via (10) variable (four) 310 and then (four) path (10). In the case of transmitting a single symbol symbol alternately through the path, the transmitter is more likely to The variable path sends a rotational tuning signal having predetermined tuning information. For example, the first symbol can always be (1, 0) and the second symbol can always be (0, !).

上文提及之旋轉調校信號(其起始地經由(僅η調變路徑 發送旋轉調校信號)可藉由供能量給m變路徑但不供能 量給q調變路徑310來實現。然後,在經調變路徑發送 調校資訊之後’發射器藉由供能量給〇調變路徑來經的 調變路控發送一旋轉調校信號。 圖5Α及5Β係如—正交星座圖中所呈現之旋轉調校符號 之圖示。考量圖3、4Α及5Α ,發射器304藉由經由ζ調變路 徑308發送一具有一參考相位之第一符號來產生旋轉調校 信號,並經由Q調變路徑3 1〇發送一第二符號,該第二符號 具有一係(參考相位+9〇。)或(參考相位_9〇。)之相位。舉例而 言,該第一符號之參考相位可係〇。,於此情形中第二符號 之相位可係90。(如圖所示)或_9〇。(未顯示)。 129716.doc 10 200901692 然而’並不必要僅如上文所述透過調變路徑3〇8/3丨〇來 父替符號傳輸以獲得符號旋轉。舉例而言’第一符號可透 過(僅)1(或Q)調變路徑來發送,且發射器可同時透過〗及〇 6周變路徑來發送調校資訊,並組合丨及Q調變信號以供應第 一符號。作為另一實例,發射器可同時透過丨及Q調變路徑 發送調校資訊,並組合;1及Q調變信號以供應第一符號,而 藉由使用僅Q(或I)調變路徑來獲得第二符號。 見圖4B,亦可藉由各自藉助I及Q組件來供應符號來旋轉 f&quot;' 凋校符號,如通常與正交調變相關聯。亦即,發射器3 可同時透過I及q調變路徑3〇8/31〇來發送調校資訊,並組 σ I及Q調變彳g號以在線路3丨8上供應第一符號。舉例而 。,第一符號可佔據該星座圖中位於45。處之位置,見圖 、同樣,發射器將同時透過〗及卩調變路徑發送 調校p汛,並組合!及Q調變信號以供應第二符號。舉例而 言’第二符號將被旋轉至〜45。處之位置,該位置與第一 符號直交(45。)。 因)1匕,於一能媒士 、〜、像中’ 一旋轉調校符號最低限度地包含一 具有兩個相位差為90。之符號之序列。然而,肖系統並不 :僅使用兩個符號之系統。一般而言,偶數個符號係 :佳且以便該等符號之一半可藉由使们調變路徑而產 且另一半藉由使用Q調變路徑而產生。 兩個符號之序列中,&amp; + 我於 銼。 …、為在每一符號之間執行一 90。之旋 中 二即’在付號之間不存在特定次序之相位。於一態樣 +之符號係平均起來與另一半之符號相差%。。例 1297I6.doc 200901692 如,-超寬頻(uWB)系統利用在傳輸通信資料或_信標作 號之前傳輸之6個符號。因此,可在 連續符號’然後在Q調變路徑上產生3個連續符號。使用此 過程’僅需在Q頻道返回休眠之前短塹 個符號。 頻道持續3 :6係一縿示一用於攜載—具有-旋轉調校信號之訊息 之實例性框架之圖示。考量圖3及 怨樣中,根據 OSI模型來運作發射器3〇4。於此 、主層模型中,發射 器係與實體層(PHY)相關聯。如圖顯 、, 固”,'貝不,發射器3 04發送一 包含一前置項602、標頭604及有效g恭&amp; 旁欢員栽6〇6之實體層(ρΗγ) 信號綱。該發射器在ΡΗΥ標頭咖中發送旋轉調校信號, 並在ΡΗΥ有效負載_中發送經正交調變之通信資料。 許多通信系統以相對慢之經正办 生正父調變之通信資料速率傳 輸信標資訊,同時為(非預定)資 \ 貝汛之傳送保留較高之資料 速率。根據IEEE 802.1 1協定爽谨你七Α 疋术運作之網路係此等系統之一 實例。由料多無線通信裝置係電池運作,合意之情形係 此等單以並未實際傳送資訊時以_&quot;休眠&quot;模式運作。舉 例而言,主控單元或存取 ,&quot;了廣播相對簡單、低資料速率 信標信號直至一休眠單元做出響應。 導頻信號可被視為調校信轳 — 仪琥之—具體情形。儘管通常係 利用每一副載波(通信頻寬中 〈所有N個頻率)在資料之刖 傳輸調校信號,但導頻頻調係 、 竹興經正交調變之通信資料一 起在一子組(所保留)頻率上僂弘 得輸。在利用OFDM之系統(例 如UWB)中,此保留組由導頻 只頭調構成。亦即,導頻頻調 1297l6.doc 200901692 且資料係與剩餘之N_p個頻率相關 調校信號與導頻信號之類似處在於所傳輸資料之資訊内 容,常係預定或”習知”資料,其料接收器校準及進行頻 道里測。當接收通信(非預定)資料日寺,存在3點未知:資料 本身、頻道、及雜訊。接收器不能針對雜訊來校準,乃因 雜訊會隨機改變。頻道係一般與延時及多路徑相關聯之量The above-mentioned rotational tuning signal (which is initially transmitted via the η modulation path only) can be implemented by supplying energy to the m-path but not supplying energy to the q-modulation path 310. After transmitting the calibration information via the modulation path, the transmitter transmits a rotation adjustment signal by the modulation path through which the energy is supplied to the modulation path. Figure 5Α and 5Β are as in the orthogonal constellation diagram. A graphical representation of the rotated tuning symbols presented. Considering Figures 3, 4A and 5A, the transmitter 304 generates a rotational tuning signal by transmitting a first symbol having a reference phase via the chirping modulation path 308, and via Q tuning The variable path 3 1 〇 transmits a second symbol having a phase (reference phase +9 〇.) or (reference phase _9 〇.). For example, the reference phase of the first symbol can be In this case, the phase of the second symbol can be 90. (as shown) or _9〇. (not shown) 129716.doc 10 200901692 However, it is not necessary to pass the tone only as described above. Variable path 3〇8/3丨〇 to the parent for symbolic transfer to obtain symbol rotation. In fact, the 'first symbol can be transmitted through the (only) 1 (or Q) modulation path, and the transmitter can transmit the calibration information through the 〗 〖 and 〇 6-week change paths, and combine the 丨 and Q modulation signals to The first symbol is supplied. As another example, the transmitter can simultaneously transmit the calibration information through the 丨 and Q modulation paths, and combine the 1 and Q modulation signals to supply the first symbol, and by using only Q (or I) The modulation path is used to obtain the second symbol. As shown in Fig. 4B, the f&quot;' nuisance symbol can also be rotated by supplying symbols by means of I and Q components, respectively, as is usually associated with quadrature modulation. 3 The calibration information can be sent through the I and q modulation paths 3〇8/31〇 at the same time, and the σ I and Q modulation 彳g numbers are set to supply the first symbol on the line 3丨8. For example, the first A symbol can occupy the position of the constellation at 45. As shown in the figure, the transmitter will transmit the adjustment p汛 through both the 〗 and 卩 modulation paths, and combine the ! and Q modulation signals to supply the second symbol. For example, 'the second symbol will be rotated to ~45. The position is orthogonal to the first symbol. 45.). By) a dagger, in a medium can persons, ~, as in 'a rotational adjustment minimally comprises a symbol having a phase difference of 90 two. The sequence of symbols. However, the Xiao system does not: a system that uses only two symbols. In general, an even number of symbol systems are preferred and such that one half of the symbols can be produced by modulating the path and the other half is produced by using a Q modulation path. In the sequence of two symbols, & + I am at 锉. ..., to perform a 90 between each symbol. The second is that there is no phase of a specific order between the payouts. In one aspect, the symbol of the + is on average different from the sign of the other half. . Example 1297I6.doc 200901692 For example, an ultra-wideband (uWB) system utilizes six symbols transmitted prior to transmission of a communication material or _ beacon. Therefore, 3 consecutive symbols can be generated on the continuous symbol 'and then on the Q modulation path. Use this procedure' to simply short the symbols before the Q channel returns to sleep. The channel continues with 3:6 as an illustration of an example framework for carrying messages with a -rotation tuning signal. Considering Figure 3 and the grievances, the transmitter 3〇4 is operated according to the OSI model. Here, in the main layer model, the transmitter is associated with the physical layer (PHY). As shown in the figure, "solid", 'Bei Bu, the transmitter 3 04 sends a physical layer (ρΗγ) signal class containing a pre-position 602, a header 604, and an effective g Gong &amp; The transmitter sends a rotation adjustment signal in the header coffee head, and transmits the orthogonally modulated communication data in the payload _. Many communication systems use a relatively slow communication data that is being processed by the father. Rate transmission of beacon information while preserving a higher data rate for (unscheduled) shipments. The network is operated according to the IEEE 802.1 1 protocol. An example of such a system is one of these systems. It is expected that the wireless communication device is a battery operation. It is desirable that these devices operate in the _&quot;sleep&quot; mode when the information is not actually transmitted. For example, the master unit or access, &quot; broadcast is relatively simple The low data rate beacon signal is responded to by a dormant unit. The pilot signal can be regarded as a tuned signal—the syllabus—in particular, although each subcarrier is typically utilized (all N in the communication bandwidth) Frequency) at the top of the data The tuning signal is transmitted, but the pilot frequency modulation system and the data transmission of the quadrature modulation of Zhu Xing are transmitted together on a subgroup (retained) frequency. In a system using OFDM (for example, UWB), this reservation is retained. The group consists of only the first tone of the pilot. That is, the pilot tone is 1297l6.doc 200901692 and the data is related to the remaining N_p frequencies. The calibration signal is similar to the pilot signal in the information content of the transmitted data, often scheduled. Or "Knowledge" data, the material receiver calibration and channel measurement. When receiving communication (non-scheduled) data day temple, there are 3 unknowns: data itself, channel, and noise. The receiver can not be used for noise. Calibration, because the noise will change randomly. The channel is generally associated with delay and multipath

測。針對相對短之時間週期,可在使用預定資料(例如調 校或導頻信號)時量測因多路徑導致之誤差。一旦頻道已 知^則這-量測值可用於移除所接收通信(非預定)資=中 之誤差。因此,某些系統供應一調校信號以在資料解碼開 始之前量測一頻道。Measurement. For relatively short time periods, errors due to multipath can be measured when using predetermined data (such as tuning or pilot signals). Once the channel is known, this - the measured value can be used to remove the error in the received communication (unscheduled). Therefore, some systems supply a calibration signal to measure a channel before data decoding begins.

係與p個頻率相關聯 聯。 然而,舉例而言,該頻道可隨發射器或接收器在空間移 動或時鐘漂移而改變。因此,許多系統繼續發送更多,,已 知”資料以及&quot;未知”資料,以追蹤頻道中之緩慢變化。出 於闡述本系統之目的,將假設導頻信號係一子組更—般類 別之調校信號。亦即,如本文使用,調校信號係關於一起 始調校序列,以及於—UWB或802 1 1系統t稱為導頻頻調 之追蹤調校序列。另—選擇為,術語,,起始調校,,及”追蹤 調校”或”導頻頻調&quot;係所有類型之調校信號。 然後,於一態樣中,在旋轉調校信號之後,發射器3⑽ 以一信標資料速率發送一其中經正交調變之通信資料係一 信標信號之訊息。亦即,由許多通信系統使用之信標信號 可與一旋轉調校信號一起傳輸。此外,在一旋轉調校信號 129716.doc -13- 200901692 之後,發射器304可替代地或另外地以一大於該信標資料 速率之通仏資料迷率發送—具有經正交調變之通信資料之 、心樣中,發射器可發送一訊息與旋轉及非旋轉調校 “虎之組合。舉例而言,在一不平衡訊息之後,發射器 304可包含一經平衡訊息之發送多叢發訊息。為簡潔起 見,短語”經平衡訊息”用於闡述一包含一旋轉調校信號及 經:衡調變之通信資料之訊息。一不平衡訊息係—包括— 非旋轉調校信號之訊息’其巾經由〗調變路徑發送調校資 訊但(例如)不經由Q調變路徑來發送。於此態樣中,不平 衡訊息亦包含—訊息格式信號,其嵌人到(例如)標頭中, 才曰不在5亥不平衡訊息之後發送一經平衡訊息(具有一旋轉 凋杈偽號)。該不平衡訊息包含經正交調變之通信資料, 其可在訊息格式信號之後在有效負載中發送。然而該系 ’’充不限於調权仏號、訊息格式信號及經正交調變資料之間 的任-特定暫時關係。舉例而言,該不平衡訊息可係一信 標信號或起始調校訊息。另—選擇為,該不平衡訊息可在 經平衡訊息之後發送,或不平衡訊息可藉助經平衡訊息來 點綴。 考量圖4C,諸如順從ΙΕΕΕ 8〇2.11Λυ·之許多通信系 統利用複數個同時傳輸之副載波。於此態樣中,旋轉調校 信號可以導頻信號之形式啓用。舉例而言,可產生ρ個旋 轉導頻符號,以及(Ν-Ρ)個經正交調變之通信資料符號。 每一旋轉導頻符號均包含每符號改變9〇。之調校資訊。因 129716.doc -14· 200901692 此,藉由同時傳輸N個符號來發送_具有一旋轉調校信號 之經平衡訊息。於其他態樣中,利用少於P個旋轉導頻符 號,因為某些導頻符號係非旋轉符號。 考量圖4D,於一多副載波系統之一不同態樣中,旋轉調 校k號包含利用經由Ϊ調變路徑而非Q調變路徑為/個副載 波發送之調校資訊為複數個副载波同時產生之符號。此 - 外,該調校信號為·/個副載波使用經由Q調變路徑而非j調 變路徑發送之調校資訊。然後,在產生調校資訊之後,為 〇 及/·副載波產生經IQ調變之通信資料。於一態樣中,該子 組ζ·個副載波包含,,成對副載波”或&quot;成對頻調&quot;,其係一對頻 率為-f及頻率為+/之頻調。同樣,子組y•中之頻調亦可成 對。戎_/及+/處之頻調成對會有助於實現〗頻道調校、Q頻 道調校及旋轉調校。 若透過任一特定副載波之調校符號序列並不旋轉90。, 則此系統將仍被視為產生一旋轉調校信號,此乃因一頻道 估計值平均技術可用於接收器處以將相鄰副載波平均化。 、然後’利用相鄰之非旋轉丨及Q調校符號之總效應係一旋轉 調校彳^號。於一態樣中,設計該調校信號,以便該奇數編 5虎之副載波利用透過I調變路徑(頻道X)發送之非旋轉調校 、 符5虎’而偶數編號之副載波利用Q調變路徑(頻道X+90。)。 於本發明夕兄 At m另一態樣中,圖3之無線通信裝置300可被視 ^ 用於利用I及Q調變路徑旋轉一調校信號之構件 308/3 10,及—田# ^ 用於產生經正交調變之通信資料之構件 308/3 10 〇 如 μ ★ 7 1文’調校信號可係與通信資料同時發送之 1297l6.doc •15- 200901692 導頻符號,或該通信資料可 在疋轉調权信號之後發送。此 外裝置3〇〇包含一用於傳輸為一 钿為RF通化之構件320/322。It is associated with p frequencies. However, for example, the channel may change as the transmitter or receiver moves in space or clock drifts. As a result, many systems continue to send more, known “data” and “unknown” data to track slow changes in the channel. For purposes of illustrating the system, it will be assumed that the pilot signal is a subset of the more general tuning signals. That is, as used herein, the tuning signal is related to the initial tuning sequence, and the -UWB or 802 1 1 system t is referred to as the pilot tuning sequence of the pilot tones. Another—select, term, start tuning, and “tracking tuning” or “pilot tuning” are all types of tuning signals. Then, in one aspect, after rotating the tuning signal, Transmitter 3 (10) transmits a message in which the quadrature modulated communication data is a beacon signal at a beacon data rate. That is, the beacon signal used by many communication systems can be transmitted with a rotational tuning signal. In addition, after a rotation adjustment signal 129716.doc -13 - 200901692, the transmitter 304 may alternatively or additionally transmit at an overnight data rate greater than the beacon data rate - with quadrature modulation communication In the data, in the heart, the transmitter can send a message with the combination of rotation and non-rotation adjustment "Tiger. For example, after an unbalanced message, the transmitter 304 can include a multi-cluster message with a balanced message. For the sake of brevity, the phrase "balanced message" is used to describe a message that includes a rotational tuning signal and a communication data that is tuned to change. An unbalanced message system - including - a message of a non-rotating calibration signal - sends a calibration message via a modulation path but is transmitted, for example, via a Q modulation path. In this aspect, the unbalanced message also includes a message format signal that is embedded in, for example, a header to send a balanced message (with a rotating falsification) after the 5 Hai unbalanced message. The unbalanced message contains orthogonally modulated communication data that can be transmitted in the payload after the message format signal. However, the system is not limited to any one-specific temporal relationship between the weighted nickname, the message format signal, and the quadrature modulated data. For example, the unbalanced message can be a beacon signal or an initial tuning message. Alternatively—select, the unbalanced message can be sent after the balanced message, or the unbalanced message can be dotted with the balanced message. Considering Figure 4C, many communication systems, such as compliant 〇8〇2.11, utilize a plurality of simultaneously transmitted subcarriers. In this aspect, the rotational tuning signal can be enabled in the form of a pilot signal. For example, ρ rotating pilot symbols can be generated, as well as (Ν-Ρ) orthogonally modulated communication data symbols. Each rotated pilot symbol contains 9 turns per symbol change. Tuning information. Since 129716.doc -14· 200901692, the balanced message with a rotation adjustment signal is transmitted by simultaneously transmitting N symbols. In other aspects, less than P rotated pilot symbols are utilized because some pilot symbols are non-rotating symbols. Considering FIG. 4D, in one of a plurality of subcarrier systems, the rotation adjustment k number includes adjusting the subcarriers by using the Ϊ modulation path instead of the Q modulation path as subcarriers. The symbol produced at the same time. In addition, the calibration signal uses the tuning information transmitted via the Q modulation path instead of the j modulation path for each subcarrier. Then, after the calibration information is generated, the IQ modulated communication data is generated for 〇 and /· subcarriers. In one aspect, the sub-carriers of the sub-group include, paired subcarriers or &quot;paired tones&quot;, which are a pair of frequencies having a frequency of -f and a frequency of +/. The sub-group y• medium tone can also be paired. The 戎_/ and +/ 调 调 pairs will help to achieve the channel adjustment, Q channel adjustment and rotation adjustment. The subcarrier calibration sequence is not rotated by 90. The system will still be considered to generate a rotational tuning signal because a channel estimate averaging technique can be used at the receiver to average adjacent subcarriers. Then, the total effect of the adjacent non-rotating 丨 and Q tuning symbols is rotated and adjusted. In one aspect, the tuning signal is designed so that the odd-numbered 5 subcarriers are transmitted through The non-rotational adjustment of the I modulation path (channel X) is transmitted, and the subcarrier of the even number is used by the Q modulation path (channel X+90.). In another aspect of the present invention, Atm The wireless communication device 300 of FIG. 3 can be viewed as a component 308/3 10 that rotates a calibration signal using I and Q modulation paths, and # ^ Component 308/3 for generating quadrature modulated communication data 10 μ如μ ★ 7 1 text 'tuning signal can be sent simultaneously with the communication data 1297l6.doc •15- 200901692 pilot symbol, or The communication data can be sent after the transfer of the weighting signal. In addition, the device 3A includes a component 320/322 for transmission as a RF pass.

3〇削用交調變構件 用於產生以下:―非旋轉調校信號,其具有經由J 調變路控發送之調校資 、飞仁不具有經由Q調變路徑發送之 調校資訊;-訊息格式信號,其指示將要在不平衡訊自之 後發送-經平衡訊息(具有_旋轉調校信號);及正交調變 通信資料。3 〇 用 交 交 交 用于 交 交 交 交 交 交 交 交 交 交 交 交 交 交 交 交 交 交 ― ― ― ― ― ― ― ― ― ― ― ― ― ― 交 交 交 交 交 交 交 交 交 交 交A message format signal indicating that a balanced message (with a _rotation adjustment signal) will be transmitted after the unbalanced message is received; and the quadrature modulation communication data is to be transmitted.

圖7係一繪示一用於傳輸一正交調變旋轉調校序列之處 理裝置之示意性方塊圖。處理裝置7〇〇包括一丨路徑調變模 組702,其在線路704上具有—用以接受資訊之輸入端及 在線路706上具有一用以接受!控制信號之輸入端。】路徑調 變模組702在線路708上具有一輸出端以供應經〗調變資 訊。一Q路徑調變模組710在線路712上具有一用以接受資 訊之輸入端,及在線路714上具有一用以接受Q控制信號之 輸入端。Q路徑調變模組710在線路716上具有一用以供應 經Q調變資訊之輸出端。 一組合器模組71 8在線路708及71 6上具有輸入端以分別 接受該經I及Q調變資訊,及在線路720上具有一用以供應 一經正交調變之RF信號之輸出端。一控制器模組722在線 路706及714上具有輸出端以分別供應I及Q控制信號。控制 器模組722利用I及Q控制信號以產生一具有一旋轉調校信 號之訊息,該旋轉調校信號包含經由I調變路徑發送之調 校資訊及經由Q調變路徑發送之調校資訊,以及經正交調 129716.doc •16- 200901692 變之通信資料。由上文提及之模組執行之功能類似於由圖 3所示裝置執行之彼等功能’且為簡潔起見而將不在此處 重複。 士上文闡述’本發明之旋轉調校信號可用於修改僅利用 Η周變路徑供在保存功率之努力中詩調校之習用系統。 此種系統可藉由在調校序列之第二部分期間暫時啓用⑽ 變路徑來修改。此解決方案僅使用稍微多之功率,而在調 校序列期間供能量給][及Q頻道二者。 一另選擇為’具有非旋轉調校信號之不平衡訊息可用於 -信標,而具有旋轉調校信號之經平衡訊息用於高資料速 率。此解決方案可能要求一接收器經程式化以使具有高資 料速率之旋轉調校信號訊息與具有信標之不平衡訊息相關 ^ W除-接收器&quot;猜測”所要接收之調校信號類型之需 ’可將資减人到前置項中以通知接收器 之類型。 變化形式中,一習用之不平衡訊息可用作一多叢 Π輪中之第一叢發。藉助多叢發傳輸,可容易地在每一 型二通知發射器將要出現在後隨叢發中之調校序列類 後蟢素, 第η可係-不平衡訊息,其中所有 =叢發均係經平衡訊息。此等訊息可視需要地啓動,僅 此(:如)其由發射器及接收器二者支援之情況下使用。以 式,可使付本發明與現有裝置反向相容。 另—解決方案(其並非反向相容)係修改所有調校序列, 129716.doc 200901692 包3仏標之調校序列’以便調校序列總是平衡。於此變化 形式中’接收器並不必須運作於兩個不同類型之調校信號 舉例而言’在下文提供對該等改進之分析,此等改進可 ^習用uWB_◦胸系統中藉由用旋轉調校信號添加到 ’二平衡说息中來獲得。通常,調校序列係—重複之 符號:此意味著針對每_副載波重複傳輸相同之星座點。Fig. 7 is a schematic block diagram showing a processing device for transmitting a quadrature modulation rotation tuning sequence. The processing device 7A includes a path modulation module 702 having on line 704 - an input for receiving information and a line 706 for receiving! The input of the control signal. The path modulation module 702 has an output on line 708 to supply the modulated information. A Q path modulation module 710 has an input for receiving information on line 712 and an input for receiving a Q control signal on line 714. The Q path modulation module 710 has an output on line 716 for supplying Q modulated information. A combiner module 71 8 has inputs on lines 708 and 71 6 for receiving the I and Q modulation information, respectively, and an output at line 720 for supplying a quadrature modulated RF signal. . A controller module 722 has outputs on lines 706 and 714 to supply I and Q control signals, respectively. The controller module 722 uses the I and Q control signals to generate a message having a rotation adjustment signal, the rotation adjustment signal including the calibration information transmitted via the I modulation path and the calibration information transmitted via the Q modulation path. And the communication data of the 129716.doc •16- 200901692 variants. The functions performed by the modules mentioned above are similar to those performed by the apparatus shown in Figure 3' and will not be repeated here for the sake of brevity. As explained above, the rotary tuning signal of the present invention can be used to modify the conventional system of poetry adjustment in the effort of conserving power using only the perimeter-variable path. Such a system can be modified by temporarily enabling (10) variable paths during the second portion of the tuning sequence. This solution uses only a little more power, while supplying energy to both the [and Q channels during the tuning sequence. Alternatively, an unbalanced message with a non-rotating calibration signal can be used for the beacon, and a balanced message with a rotational tuning signal for the high data rate. This solution may require a receiver to be programmed to correlate a rotationally tuned signal message with a high data rate with a beacon-unbalanced message. The W-receiver &quot;guess&quot; It is necessary to 'subtract the person to the predecessor to inform the receiver of the type. In the variant, a conventional unbalanced message can be used as the first burst in a multi-cluster wheel. With multi-cluster transmission, It can be easily notified in each type 2 that the transmitter will appear in the subsequent bursts of the sequence of the sequence, the η-system-unbalanced message, in which all = clusters are balanced messages. The message can be activated as needed, only if (if) it is supported by both the transmitter and the receiver. The invention can be reversely compatible with existing devices. Another solution (which is not Reverse compatibility) is to modify all calibration sequences, 129716.doc 200901692 package 3 调 calibration sequence 'to adjust the sequence is always balanced. In this variant 'receiver does not have to operate in two different types Tuning signal example 'The analysis of these improvements is provided below. These improvements can be obtained by adding the rotary tuning signal to the 'two-balanced theory' in the uWB_◦ chest system. Usually, the calibration sequence system - the symbol of repetition : This means that the same constellation point is repeatedly transmitted for each_subcarrier.

激發4星座圖中一獨特方向(例如,】路徑卜而不激發另— 向(例如’ Q路径卜上文已在先前技術部分中呈現與此 種系統相關聯之誤差。 圖8係—繪示針對圖2所示衝擊波形之2個不同相位θ之理 及非平衡星座圖之圖示。該相位非平衡係2△㈣『(不具 有振幅非平衡)。應注意,在該等角度為0。及90。時非平衡 最強’且在角度為45。及135。時幾乎消失。此乃因在衝擊 波形=相位位於叫路徑之間的中途時,非平衡在Μ。附 …亍自補傷δ亥衝擊波形之角度相依於資料及頻道二 者,且可採取〇與36〇。之間的任一值。 ]σ 衝冑波形之角度使得所有調校符號均與 向對齊(Θ一〇),則1方向將被準確估計,誤差為0。。但Q :向將偏離Η)。。平均而言,在高斯 中’此會導致位於Q方向之星座點之過量誤差。另一方 面’若衝擊波形之角声 平衡近乎消失。(1及Q之間的中途)’則該非 圖9係一將相位非平衡繪 不為該衝擊波形上之相位之函 129716.doc •18- 200901692 數之圖示。下圖上之實線顯示在出現一重複調校序列之情 形中之相位非平衡。虛線顯示旋轉調校序列之情形。於 AWGN中,且針對BER^1〇-5之未編碼QpsK,在〇〇與1〇〇之 間變化之非平衡具有0 dB與1.5 dB之間的損失(相依於衝擊 波形之相位)。 分析可開始於時域調變之較簡單問題,例如AWGN中之 分時多重進接(TDMA)或分碼多重進接(CDMA)。假設一調 校序列之所有符號均位於〗軸(1頻道)上。在透過一 awgn 頻道進行傳輸之後,該軸可在正交21)平面内旋轉至一方向 χ(相依於頻道相位)。藉由使所有調校符號均與一方向X對 準’會正確i也估計方向X,幻皮方向上之任一資料符號均 位於該正確之軸上(在旋轉後)。然而,直交方向γ上之符 號將與理想位置偏離2Δ&lt;。其將導致明顯更大之誤差。 由於所有調校符號均位於X軸上,則頻道估計值係 (X)。 ’、 X方向上之誤差係角(X)_H=〇。 Υ方向上之誤差係(γ)-90、Η=2△供。 此分析假設調校序列以恆定方式旋轉,以便均等地數舌 I及Q頻道。於此情形中,平均頻道具有— '舌 ,不再專門與X方 向對準之相位。其在一半時間内亦將與γ方向對準。 頻道估s十值現為Η=[角(χ)+角(γ)_9〇°]/2。 X方向上之誤差係角(χ)-Η=-2△供/2。 Υ方向上之誤差係角(Υ)_9〇°-Η=2Δρ/2。 該圖示中之虛曲線顯示每一方向上之 相位非平衡。虛曲 1297i6.doc -19- 200901692 線大致為實曲線之0.5倍。 現在’每一方向…均共享一半之正 損失對應於每一軸上之5。最大韭工^ 衡負何。 最大非平衡而係〇至0.5 dB。擗益 在〇至1 dB之間變化。應注音, 曰 在存在一 L〇s頻道(AWGN) 、,多數載波可在同一相位處對準,且 列情形而降一。於同-情形中,旋轉調校St: 級僅係〇.5犯,其增益為1犯。“, η 頻率偏置剩餘會改變衝擊波形之相位,則相位非平衡 〇至10。之間變化。將誤差部分平滑化。但對於高資料速率 而吕,分集可能不足以補償規則命中該等副載波之過 差。對高資料速率之影響更重要。 % 一旋轉調校序列之實施方案並不必要地暗示_接收器或 發射器中之任何較大硬體複雜性。 ^ 二 慝在累積之 ❹轉901藉由交換別頻道並對其—者進行符號反轉 來執行。此運作可在時域(若所有頻率以相同方式旋轉)或 傅立葉域(其係更一般之情形)♦完成。 3 利用Jan Tubbax等人在2003 IEEE出版物中之系 統中之 IQ 非平衡補償(c〇mpensati〇n 〇f IQ ^ 〇FDM systems)”,作者提及頻道之間的中途處之非平 衡,以便在每一 I及q上各獲得一非平衡Δ(ρ&amp; ε,而不是在I 頻道上具有一非平衡2Δρ及2s。 在不存在任何頻道及雜訊之情況下,正交非平衡失真接 收之信號可利用所傳輸信號表達為 、 本 γ = αχ+βχ 129716.doc -20- 200901692 其中X係複合傳輸信號,X*係其複數共軛,y係複合接收信 號,且αΜ及ββο係將正交非平衡失真特徵化之複量。其由 下式給出 a = cosA^+y'e. sinA^ β^=ε. cosA^-y'sinA^) 在其分別等於1及〇時,所接收信號與所傳輸信號一致。 將利用此一更正式說明來回顧在AWGN中之時域調變情 升y。在不出現雜訊但出現一具有係數c之awgn頻道之情 況下’非平衡之前的所接收信號係cx,且在非平衡之後其 幸 中 y = acx+βο χ 經偏差之調校序列 若發送由符號士 w構成之調校序列,亦即總是與2 〇平面 中w之獨特方向對準,則獲得2個可能之所接收符號 y = acu+ βο* u* y = -acu-fic u 為簡便起見而不失一般性,假設向量w係單式,以估計頻 道,分別對+w*及-應用一數位解旋以獲得頻率估計值 * *2 ac+pc u 於該加法運算子左手側,獲得頻道(或近似),但在右手 側發生一雜訊或偏差。此雜訊並不隨越來越多之調教符號 被平均化而消失:其保持為就像僅白色雜訊消失一樣。因 此,若傳輸一與符號w大致對準之調校序列,則頻道之估 計值發生偏差。 129716.doc •21 · 200901692 當資料χ之傳輸開始時,藉由將頻道之複數共軏(頻道之 匹配渡波器)乘以所接收信號來獲得進入- Viterbi解石馬 之度量值。因此, Π 度量值=[α c+^V2/V=/« cx+AcV] 且在消除某些二級項之後 度量值io^lcl^ + c^HV + c^Wx 上辻·度量A式中之弟一組分在理想情況下係一與頻道能 里成比例之正實數純量,其增加原始星座點。但彼公式之 第一及第二組分係由偏差創建之不合意雜訊。其雜訊方差 一致,且等於 w\2m2\c\4\x\2 在不出現其他雜訊源之情況下,信雜比(SNR)係 SNR=|a|¥|c|4|x|2/2|a|2|yS|2|c|^|^|2 ^\α\2/1\β\2 «0.5/[ε2+△妒2] 此雜訊並未分佈有白色高斯雜訊,但若自不同之獨立頻 ( 道〜得出各種符號(CDMA中之多路徑,或交錯,等),在組 合該等符號之後’獲得對白色高斯雜訊之緩慢會聚。此 • SNR可能約係1 0至20 dB。對於以低SNR運行之資料速率, • 此額外雜訊可能不成問題。但對於以高SNR運行之高資料 速率,此額外雜訊具有一顯著影響。 非偏差調校序列 若以與Μ之直交方向對準之方向(標示為…傳輸一半符 號’而不是與W之獨特方向對準地發送整個調校序列,則 129716.doc -22- 200901692 獲得頻道估計值之平均值為: ac+βο* (u*2 + v*2)=ac 由於在該兩個單式向量直交時,+〜,則右手側偏差消 失。現在,度量值為 度量值=丨α|2丨c|2x + a户|e|2x* 正交非平衡雜訊之—半已消失。該SNR(在不出現雜訊時) 改進3dB。 SNR=|a|2/|^|2 ^\/[ε2+Αφ2]Exciting a unique direction (eg, path) in the constellation diagram of the 4 constellations without inducing another direction (eg, 'Q path' has been presented in the prior art section with errors associated with such systems. Figure 8 is a diagram For the diagram of the two different phases θ of the shock waveform shown in Figure 2 and the non-equilibrium constellation diagram, the phase unbalanced system 2 △ (four) " (does not have amplitude non-equilibrium). It should be noted that at these angles is 0 And 90. The non-equilibrium is the strongest' and almost disappears when the angle is 45. and 135. This is because the impact waveform = the phase is located in the middle between the called paths, the non-equilibrium is in the Μ. The angle of the δ-Hui impact waveform depends on both the data and the channel, and can take any value between 〇 and 36〇.] σ The angle of the waveform is such that all the calibration symbols are aligned with the direction (Θ一〇) , then the 1 direction will be accurately estimated, the error is 0. But Q: the direction will deviate from Η). On average, in Gauss 'this will lead to excessive error in the constellation point in the Q direction. On the other hand The angular balance of the impact waveform almost disappears. (Between the 1 and Q 'The non-Figure 9 is a diagram of the number 129716.doc •18- 200901692 number that the phase unbalance is not plotted on the phase of the impact waveform. The solid line on the lower graph shows the case where a repeat calibration sequence occurs. The phase is unbalanced. The dotted line shows the rotation tuning sequence. In AWGN, and for the uncoded QpsK of BER^1〇-5, the non-equilibrium between 〇〇 and 1〇〇 has 0 dB and 1.5. Loss between dB (depending on the phase of the impulse waveform) Analysis can begin with simpler problems in time domain modulation, such as time division multiple access (TDMA) or code division multiple access (CDMA) in AWGN. All symbols of a calibration sequence are located on the axis (channel 1). After transmission through an aggn channel, the axis can be rotated to a direction 相 (depending on the channel phase) in the orthogonal 21) plane. By aligning all the calibration symbols with a direction X, the direction X is also correctly estimated, and any data symbol in the direction of the phantom is located on the correct axis (after rotation). However, the sign in the orthogonal direction γ will deviate from the ideal position by 2Δ&lt;. It will result in significantly larger errors. Since all the adjustment symbols are on the X-axis, the channel estimate is (X). ', the error angle in the X direction (X)_H = 〇. The error in the Υ direction is (γ)-90, Η=2 Δ. This analysis assumes that the calibration sequence is rotated in a constant manner to equalize the number of I and Q channels. In this case, the average channel has a phase of ''tongue, which is no longer specifically aligned with the X direction. It will also align with the gamma direction in half the time. The channel estimate s ten value is now Η = [angle (χ) + angle (γ) _9 〇 °] / 2. The error angle in the X direction (χ) - Η = -2 △ for /2. The error angle in the Υ direction (Υ)_9〇°-Η=2Δρ/2. The dashed curve in this illustration shows the phase imbalance in each direction.虚曲 1297i6.doc -19- 200901692 The line is roughly 0.5 times the real curve. Now the positive loss in half of each direction ... corresponds to 5 on each axis. The biggest completion ^ balance what. Maximum unbalanced and tied to 0.5 dB. Benefits vary from 〇 to 1 dB. It should be phonetic, 曰 In the presence of an L〇s channel (AWGN), most carriers can be aligned at the same phase, and the column can be lowered by one. In the same situation, the rotation adjustment St: level is only 〇.5 guilty, its gain is 1 guilty. “, η frequency offset residual will change the phase of the impact waveform, then the phase unbalance will change to 10. The error will be smoothed. But for high data rate, the diversity may not be enough to compensate for the rule hits. Carrier overshoot. The effect on high data rate is more important. % The implementation of a rotational tuning sequence does not necessarily imply any large hardware complexity in the receiver or transmitter. Twisting 901 is performed by exchanging other channels and performing symbol reversal on them. This operation can be done in the time domain (if all frequencies are rotated in the same way) or in the Fourier domain (which is more general). Using the IQ imbalance compensation (c〇mpensati〇n 〇f IQ ^ 〇 FDM systems) in Jan Tubbax et al. in the 2003 IEEE publication, the author mentions the imbalance between the channels in order to Each of I and q obtains an unbalanced Δ (ρ &amp; ε instead of having an unbalanced 2 Δρ and 2 s on the I channel. In the absence of any channel and noise, the orthogonal unbalanced distortion is received. letter The transmitted signal can be expressed as, γ = αχ + βχ 129716.doc -20- 200901692 where X is a composite transmission signal, X* is a complex conjugate, y is a composite received signal, and αΜ and ββο are orthogonal The complex of non-equilibrium distortion characterization, which is given by a = cosA^+y'e. sinA^ β^=ε. cosA^-y'sinA^) is received when it is equal to 1 and 分别 respectively The signal is consistent with the transmitted signal. This more formal description will be used to review the time domain volatility y in AWGN. The received signal system cx before the unbalance is in the absence of noise but the awgn channel with the coefficient c, and after the unbalance, it is fortunately y = acx + βο χ the adjustment sequence of the deviation is sent The calibration sequence consisting of the symbol w, that is, always aligned with the unique direction of w in the 2 〇 plane, obtains 2 possible received symbols y = acu+ βο* u* y = -acu-fic u For the sake of simplicity, without loss of generality, suppose the vector w is a simple expression to estimate the channel, and apply a digit to +w* and - respectively to obtain the frequency estimate * *2 ac + pc u in the left hand of the addition operator On the side, the channel (or approximation) is obtained, but a noise or deviation occurs on the right hand side. This noise does not disappear as more and more tuning symbols are averaged: it remains as if only white noise disappeared. Therefore, if a calibration sequence that is substantially aligned with the symbol w is transmitted, the estimated value of the channel deviates. 129716.doc •21 · 200901692 When the transmission of the data is started, the metric of the entry-Viterbi calculus is obtained by multiplying the complex number of channels (the matching wave of the channel) by the received signal. Therefore, Π metric = [α c + ^ V2 / V = / « cx + AcV] and after eliminating some secondary terms metric io ^ lcl ^ + c ^ HV + c ^ Wx upper 度量 metric A A component of the brother is ideally a positive real scalar proportional to the channel energy, which increases the original constellation point. However, the first and second components of the formula are undesired noises created by the deviation. The noise variance is consistent, and is equal to w\2m2\c\4\x\2. In the absence of other noise sources, the signal-to-noise ratio (SNR) is SNR=|a|¥|c|4|x| 2/2|a|2|yS|2|c|^|^|2 ^\α\2/1\β\2 «0.5/[ε2+△妒2] This noise is not distributed with white Gaussian noise However, if different frequencies are used (channels ~ get various symbols (multipath in CDMA, or interlace, etc.), after combining the symbols, 'get a slow convergence of white Gaussian noise. This • SNR may be The system is 10 to 20 dB. For data rates running at low SNR, • this additional noise may not be a problem, but for high data rates operating at high SNR, this additional noise has a significant impact. Non-deviation tuning sequence If the entire calibration sequence is sent in the direction of the orthogonal direction of the ( (labeled as ... transmitting half of the symbol ' instead of aligning with the unique direction of W, then 129716.doc -22- 200901692 obtains the average of the channel estimates For: ac+βο* (u*2 + v*2)=ac Since the two simplex vectors are orthogonal, +~, the right-hand side deviation disappears. Now, the metric is metric = 丨α|2丨c|2x + a household|e|2x* The orthogonal unbalanced noise - half has disappeared. The SNR (when no noise occurs) is improved by 3dB. SNR=|a|2/|^|2 ^\/[ε2+Αφ2]

OFDM 在OFDM中,所接收符號之公式被輕微改變,但整個 OFDM符號必須被視為一符號向量, y=FFT{aIFFT(cx)+^[IFFT(cx)]*} 其中向量以粗體標示,且其中(.)運算係兩個向量之間的元 素級乘積。頻道e係頻冑之傅立葉域版本。此等式可被重 寫為 y=ac-x+^(c.x)m* = aC.x^(Cm'Xm*) 其中索^標示在副載波上成鏡像之向量。對頻率為+/之 所接收符號之僅有貢獻者係均衡頻率+/及處之頻道及符 號兩個均衡副載波及_何被隔離,且副載波V之所接 收符號被寫作 y~(^cx+βCm* x * 其中索引㈣示頻率為_7之頻道^技。此公式與tdma或 129716.doc -23 - 200901692 弋之間的主要差異係失真現由位於不同頻率處 (即頻率_/)之頻道及信號創建。若均衡頻率具有一大得多 :頻道或強得多的信號’則此可對一特定接收符號具有顯 者影響。因此,在OFDM中可能更有問題。 經偏差調校序列 假β又以頻率傳輸之導頻頻調係u,且以頻率傳輸之導 頻頻調係um ’則―偏差調校序列並不正確地旋轉該等導頻 頻調,因此在頻道估計值中引入一偏差。OFDM In OFDM, the formula of the received symbol is slightly changed, but the entire OFDM symbol must be treated as a symbol vector, y = FFT{aIFFT(cx) + ^[IFFT(cx)]*} where the vector is indicated in bold And where the (.) operation is the element-level product between the two vectors. The channel e is the Fourier domain version of the frequency. This equation can be rewritten as y=ac-x+^(c.x)m* = aC.x^(Cm'Xm*) where ^ is the vector that is mirrored on the subcarrier. The only contributors to the received symbols with a frequency of +/ are the equalization frequency +/ and the channel and symbol of the two equalized subcarriers and _ are isolated, and the received symbols of the subcarrier V are written as y~(^ Cx+βCm* x * where index (4) shows the channel with frequency _7. The main difference between this formula and tdma or 129716.doc -23 - 200901692 系 is now at different frequencies (ie frequency _/ Channels and signal creation. If the equalization frequency has a much larger: channel or much stronger signal' then this can have a significant effect on a particular received symbol. Therefore, it may be more problematic in OFDM. The school sequence pseudo-β is also frequency-transmitted by the pilot tone system u, and the pilot tone frequency adjustment system um 'the frequency deviation transmission sequence does not correctly rotate the pilot tone tone, so it is introduced in the channel estimation value. A deviation.

Um*U 然後’頻率+f處之接收度量值可被寫作Um*U then the reception metric at frequency +f can be written

度 s 值(+/)=ia|2|c|2x+a»w 〜miK 上述&amp;式中之第四(帶雜訊)項不可以再被忽略乃因頻道 k «丨2可能極強。帶雜訊項現在可能相依於頻率為之頻道 之強度,且可能顯著。頻率_,充當_可混淆viterbi解碼器 之干擾器,其有時可解譯一具有足量干擾之弱度量值以作 為一好的度量值。 非偏差調校序列 對於非偏差調校序列而言,頻道估計值係a c,且自該 等式消除2個帶雜訊項以獲得 度量(+/Ha|2|c|2x + a&gt;c*Cw*X// 改進係顯而易見。然而,很難在於一實際頻道模型中進行 模擬之前評定UWB-OFDM中每秒(Mbps)資料速率480百萬 位元組之裨益。應注意,對於此等高資料速率,期望該等 裝置具有一 LOS或一近似LOS,且因此不期望頻率為 129716.doc •24- 200901692 但頻道強度中之—3 dB或更 及-f處之頻道變化形式太大 大差異極為可能&quot; 發射器之正交非平衡 正交非平衡亦出現於發射器側,且添加至失 #Degree s value (+/)=ia|2|c|2x+a»w ~miK The fourth (with noise) item in the above &amp; formula can no longer be ignored because the channel k «丨2 may be extremely strong . The noise item may now be dependent on the strength of the frequency channel and may be significant. The frequency_, acting as a jammer for the _ confusing viterbi decoder, can sometimes interpret a weak metric with sufficient interference as a good metric. Non-deviation tuning sequence For the non-deviation tuning sequence, the channel estimate is ac, and 2 noise terms are eliminated from the equation to obtain the metric (+/Ha|2|c|2x + a&gt;c* The Cw*X// improvement is obvious. However, it is difficult to assess the benefits of 480 megabits per second (Mbps) data rate in UWB-OFDM before performing simulations in an actual channel model. It should be noted that for this level Data rate, it is expected that these devices have a LOS or an approximate LOS, and therefore the frequency is not expected to be 129716.doc •24-200901692 but the channel variation of -3 dB or more at -f is too large It is possible that the orthogonal non-equilibrium orthogonal unbalance of the emitter also appears on the transmitter side and is added to the missing #

右將(X 及β,標示為發射器側之非平衡係數,則發射器 叫』馬作 ζ^α'χ+β'χ* 且在頻道c及失真α,β之後,接收器獲得 y = acz+fic*z*Right (X and β, labeled as the non-equilibrium coefficient on the transmitter side, the transmitter is called 马Ma ζ^α'χ+β'χ* and after channel c and distortion α, β, the receiver obtains y = Acz+fic*z*

^(αα,α+ββ'^Ίχ + (αβ'〇 + α&gt;*β〇*)χ* = a(c, c*)x + b(c&gt; 〇*)χ* 上述分析適用於TDMA/CDMA,但若用^置換/及用^ 置換X (亦即,頻率處之值)則亦適用於OFDM。 發射器及接收器二者處之正交非平衡問題仍鋒持盘先 前研究㈣,但針對料料函數之料衡純而具有不 同值。若忽略二級量,並假設心並不過量地強於或弱於 c,貝ij yeaa’cx + (fifc+pc*)x* 旦Λ自失真之雜訊。利用非偏差調校序列會幫助消除在 度量上對雜訊有益之某些項,如上文解釋。 傳輸—非偏㈣校序列可藉由利用!路徑傳輸調校序列 :Ρ刀及利用Q路技傳輸第二部分而在一習用UWB系 a實現即使使用一非偏差(無旋轉調校信號)用於信 …藉由關閉Q頻道來保存功率,一嵌入前置項中之特 129716.doc -25- 200901692 定信號亦可通知接收器調校序列之類型。另一選擇為,接 收器可自動檢測所傳輪之調校序列。此並非一困難任務, 乃因查看少量強的副載波以決定該傳輸是一致還是旋轉 90°已足夠。 r 如先前提及,導頻頻調被視為調校信號之一特定情形, 此乃因許多習用系統均使用以一獨特方向在複數平面内傳 輸之導頻。在追蹤該等導頻頻調時,會沿彼方向恆定地引 導一偏差。藉由將導頻每OFD]V^^號改變9〇。,或在同一 OFDM符號中,參照其他成對副載波(不同頻率上)將某些 成對(土 f)副載波旋轉90。,會獲得更好之導頻。此導頻頻調 變化簡單且幾乎零成本。隨發射器與接收器之間的時鐘;票 移’導頻頻調可具有補償某些偏差之可能,該等偏差係: 使用-不平衡調校信號時藉助起始之偏差調才交序列而導 7。換言之’產生僅旋轉導頻頻調、同時保持—偏差⑽ 旋轉)調校序列會在多數情形中減少偏差。 已運行仿真以量測具有及不具有_經平衡調校序列之正 交非平衡之效果。對於TX側上振幅為叫且相位 為i〇°之非平衡,且對於接m上之#㈣平衡 資料速率(480 Mbps)之增益接近〗dB。若引入更多類型: 損失,此導致需要更高之SNR,則可期望甚至更… 皿。SNR越高,利用一經平衡調校序列可獲得之增益越大。曰 係-圖解說明-種用於傳輸—通信調校序列之 :机程圖。儘管為清楚起見在圖中將該方法繪示為 帶編號之步驟,缺而今·结i t 土 ’、列 W '、、、而忒編唬方式未必指定各步驟之次序。 129716.doc -26- 200901692 應瞭解,可跳過、並行實施該等步驟中之某些步驟,或者 在實施該等步驟中的某些步驟時無需保持一嚴格順序。該 方法開始於步驟1 000。 步驟1002於一正交調變發射器中產生一旋轉調校信號。 通常’將預定或習知資訊作為調校信號來發送。步驟 1002a經由一!調變路徑發送調校資訊,且步驟i〇〇2b經由 一 Q調變路徑發送調校資訊。步驟丨004產生經正交調變之 通仏負料。步驟1 004可在步驟1 002之後執行,或與步驟 1 002之性能同時執行。於—態樣中,步驟丨〇〇4以一信標資 料速率產生一信標信號。另一選擇為’步驟1〇〇4以一大於 δ亥仏彳示 &gt; 料速率之通信資料速率產生資訊。步驟丨傳輸 該旋轉調校信號及經正交調變之通信資料。通常,符號或 資訊之產生及傳輸幾乎同時發生。 於一態樣中,在步驟1006中傳輸旋轉調校信號包含首先 經由I調變路徑發送調校資訊,且隨後經由Q調變路徑發送 调杈資訊。舉例而言,首先經由丨調變路徑產生調校資訊 (步驟1002a)可包含供能量給!調變路徑,但不供能量給卩調 變路徑。然後,在經由I調變路徑產生調校資訊之後,經 由Q調變路徑產生調校資訊包含供能量給(^調變路徑。另 一選擇為,可以相反次序發送調校資訊。更精確地,在步 驟1002a中經由I調變路徑產生調校資訊可包含產生一具有 一參考相位之第一符號。然後,在步驟1〇〇2b中經由Q調變 路徑產生調校資訊包含產生一具有一相位為參考相位+9〇。 或參考相位-90。之第二符號。 129716.doc -27- 200901692 於另一態樣中’步驟l〇〇2b利用以下子步驟(未顯示)經 由Q調變路徑產生調校資訊。步驟1002bl同時透過I及Q調 變路徑產生調校資訊’且步驟1002b2組合經I及Q調變信號 以供應第二符號。或者或另外,經由I調變路徑產生調校 資訊可包含子步驟(未顯示)。步驟l〇〇2ai同時透過I及Q調 變路徑產生調校資訊’且步驟1002a2組合經I及Q調變信號 以供應第一符號。 於一不同態樣中,傳輸(步驟1006)包含子步驟。步驟 1 006a組織一包含一前置項、標頭、及有效負載之實體層 (PHY)信號。應注意,此組織通常作為對接收將以一對應 MAC格式傳輸之資訊之響應而發生。步驟i〇〇6b在ρΗγ標 頭中傳輸旋轉調校信號,且步驟l〇〇6c在PHY副載波中傳 輸經IQ調變通信資料。 於另一態樣中’步驟100 la發送一多叢發傳輸,其具有 一不平衡訊息(步驟1〇〇lb)其後接續旋轉調校信號(步驟 1 〇〇6)。該不平衡或非平衡訊息包含一非旋轉調校信號, 該非旋轉調校信號具有經由I調變路徑發送之調校資訊(步 驟100 lbl),但不具有經由q調變路徑發送之調校資訊(步 驟1001 b2)。該不平衡訊息包含一所產生訊息格式信號(步 驟1001 b3) ’其指示在該不平衡訊息之後發送一旋轉調校 #號°在步驟l001b4中產生經正交調變之通信資料。於一 不同態樣中’在步驟i 〇〇2中產生一旋轉調校信號包含產生 P個旋轉導頻符號,且在步驟丨〇〇4中產生經正交調變之通 信資料包含產生(N_p)個通信資料符號。然後,在步驟 129716.doc -28- 200901692 1006中進行傳輸包含同時傳輸N個符號。 於另-變化形式中’在步驟⑽2中產生一旋轉調校信號 包含為複數個副載波同時產生符號。i明確地,步驟 1〇〇2&amp;為Z•個副載波使用經由1調變路徑而非經由Q調變路徑 發送之調校資訊。步驟⑽2b~•個副載波使用經由q調變 路徑而非1調變路徑發送之調校資訊。然後,在步驟刪 中產生經正交調變之通信資料包含在產生調校資訊之後為 該/幻·個副载波產生經正交調變之通信資料。於—態樣 中,每一 ί副載波均毗鄰一^副载波。 更正式地,由副載波丨估計之頻道係 ac+Pcm*um*u* (1) 毗鄰副載波y藉助一90。旋轉導頻來估計幾乎同一頻道為 ac+ficm jum ju =ac-ficm*um*u* (2) 應注意,#式中針對複數;.之符號不應與子W混清。缺 後,在對該等副載波進行平均之後,亦即在對(1)及(2)之 結果進行平均化之後,自動清除偏差。 上述流程圖亦可解譯為一其中儲存有用於傳輸一正交調 變旋轉調校序列之指令之機器可讀媒體之表達法。用於傳 輸一旋轉調校信號之指令應對應於步驟1〇〇〇至1〇〇6,如上 文解釋。 本文已提供系統、方法、裝置及處理器來實現經正交調 變之旋轉調校信號於一無線通信裝置發射器中之傳輪。已 給出特定通信協定及格式之實例來例示本發明。然而,本 發明並*僅限於這m熟習此項技術者將構想出本發 129716.doc -29- 200901692 明之其他變化形式及實施例。 【圖式簡單說明】 圖1係一習用接收器前端(先前技術)之示意性方塊圖。 圖2係一圖解說明接收器側之正交非平衡(先前技術)之 示意圖。 圖3係一無線通信裝置之示意性方塊圖,該無線通信裝 置具有一用於傳輸一旋轉調校序列之系統。 圖4A至4D係繪示一具有經正交調變之通信資料之調校^(αα,α+ββ'^Ίχ + (αβ'〇+ α&gt;*β〇*)χ* = a(c, c*)x + b(c> 〇*)χ* The above analysis applies to TDMA/ CDMA, but if you use ^ to replace / and use ^ to replace X (that is, the value at the frequency), it is also applicable to OFDM. The orthogonal non-equilibrium problem between the transmitter and the receiver is still in the previous study (4), However, the material balance of the material function has different values. If the secondary quantity is ignored, and the heart is not excessively stronger or weaker than c, it is ij yeaa'cx + (fifc+pc*)x* Self-distortion noise. Using non-deviation tuning sequences will help eliminate certain items that are beneficial to noise in metrics, as explained above. Transmission - Non-biased (four) calibration sequences can be adjusted by using the !path transmission sequence: Knife and Q-path transmission second part and in a conventional UWB system a even use a non-deviation (no rotation adjustment signal) for the letter... by turning off the Q channel to save power, an embedded pre-term 129716.doc -25- 200901692 The signal can also inform the receiver of the type of calibration sequence. Alternatively, the receiver can automatically detect the calibration sequence of the transmitted wheel. Difficult tasks, because it is sufficient to look at a small number of strong subcarriers to determine whether the transmission is consistent or 90°. r As mentioned earlier, pilot tones are considered as one of the tuning conditions, due to many custom systems. The pilots transmitted in a complex plane in a complex direction are used. When tracking the pilot tones, a deviation is constantly guided in the direction of the pilot by changing the pilot per OFD]V^^ by 9〇. Or, in the same OFDM symbol, refer to other pairs of subcarriers (on different frequencies) to rotate certain pairs (earth f) subcarriers by 90. A better pilot will be obtained. This pilot tone change is simple and almost Zero cost. With the clock between the transmitter and the receiver; the ticket shift 'pilot tone' can have the possibility of compensating for some deviations: the use of the unbalanced adjustment signal with the initial deviation The sequence leads to 7. In other words, 'generating only the pilot pilot tone while maintaining the -off (10) rotation) calibration sequence will reduce the bias in most cases. Simulations have been run to measure the effects of orthogonal unbalance with and without a balanced calibration sequence. For the unbalanced amplitude on the TX side and the phase is i〇°, and the gain of the #(四) balanced data rate (480 Mbps) on the connected m is close to 〖dB. If more types are introduced: loss, which leads to the need for a higher SNR, then it can be expected to be even more. The higher the SNR, the greater the gain that can be obtained with a balanced calibration sequence.曰 - Graphical description - used for transmission - communication tuning sequence: machine map. Although the method is illustrated as a numbered step in the figures for clarity, the present invention does not necessarily specify the order of the steps. 129716.doc -26- 200901692 It should be understood that some of these steps may be skipped, performed in parallel, or there may be no need to maintain a strict order in implementing some of the steps. The method begins in step 1 000. Step 1002 generates a rotational tuning signal in a quadrature modulation transmitter. Usually, the predetermined or conventional information is transmitted as a calibration signal. Step 1002a via one! The modulation path sends the calibration information, and step i〇〇2b sends the calibration information via a Q modulation path. Step 丨004 produces a wanted component that is orthogonally modulated. Step 1 004 may be performed after step 1 002 or concurrently with the performance of step 1 002. In the aspect, step 丨〇〇4 generates a beacon signal at a beacon data rate. Another option is to 'step 1 〇〇 4 to generate information at a communication data rate greater than δ 仏彳 &&gt; Step 丨 Transmission The rotation adjustment signal and the orthogonally modulated communication data. Usually, the generation and transmission of symbols or information occurs almost simultaneously. In one aspect, transmitting the rotational tuning signal in step 1006 includes first transmitting the calibration information via the I modulation path, and then transmitting the tuning information via the Q modulation path. For example, first, the calibration information is generated via the 丨 modulation path (step 1002a) may include energy supply! The path is modulated, but no energy is supplied to the path. Then, after the calibration information is generated via the I modulation path, the calibration information generated via the Q modulation path includes the energy supply (^ the modulation path. Another option is that the calibration information can be sent in the reverse order. More precisely, Generating the calibration information via the I modulation path in step 1002a may include generating a first symbol having a reference phase. Then, generating the calibration information via the Q modulation path in step 1〇〇2b includes generating a phase having a phase For reference phase +9〇 or reference phase -90. The second symbol. 129716.doc -27- 200901692 In another aspect, 'step l〇〇2b uses the following substeps (not shown) via Q modulation path The calibration information is generated. Step 1002bb generates the calibration information through the I and Q modulation paths simultaneously, and step 1002b2 combines the I and Q modulation signals to supply the second symbol. Alternatively or additionally, the calibration information is generated via the I modulation path. A sub-step (not shown) may be included. Step l〇〇2ai simultaneously generates calibration information through the I and Q modulation paths' and step 1002a2 combines the I and Q modulation signals to supply the first symbol. In a different aspect ,pass The input (step 1006) includes sub-steps. Step 1 006a organizes a physical layer (PHY) signal containing a preamble, a header, and a payload. It should be noted that this organization will typically transmit as a pair to receive in a corresponding MAC format. The response of the information occurs. Step i〇〇6b transmits the rotational tuning signal in the ρΗγ header, and step l〇〇6c transmits the IQ modulated communication data in the PHY subcarrier. In another aspect, the 'step 100 la sends a multi-cluster transmission with an unbalanced message (step 1 〇〇 lb) followed by a rotation adjustment signal (step 1 〇〇 6). The unbalanced or unbalanced message includes a non-rotating adjustment a signal, the non-rotation calibration signal having calibration information transmitted via the I modulation path (step 100 lbl), but having no calibration information transmitted via the q modulation path (step 1001 b2). The imbalance message includes a Generating a message format signal (step 1001 b3) 'which indicates that a rotational tuning ## is sent after the unbalanced message. The quadrature modulated communication data is generated in step l001b4. In a different aspect, 'in step i Produced in 〇〇2 A rotational tuning signal includes generating P rotated pilot symbols, and generating quadrature modulated communication data in step 包含4 includes generating (N_p) communication data symbols. Then, at step 129716.doc -28 - 200901692 The transmission in 1006 comprises transmitting N symbols simultaneously. In another variant, 'generating a rotation adjustment signal in step (10) 2 comprises simultaneously generating symbols for a plurality of subcarriers. i explicitly, step 1〇〇2&amp; Tuning information transmitted via a modulated path instead of via a Q modulated path is used for Z• subcarriers. Step (10) 2b~• Subcarriers use calibration information transmitted via the q modulation path instead of the 1 modulation path. Then, generating the quadrature modulated communication data in the step of deleting includes generating the orthogonally modulated communication data for the /phan subcarrier after generating the calibration information. In the aspect, each ί subcarrier is adjacent to a subcarrier. More formally, the channel ac+Pcm*um*u* (1) estimated by the subcarrier ( is adjacent to the subcarrier y by a 90. Rotate the pilot to estimate that almost the same channel is ac+ficm jum ju =ac-ficm*um*u* (2) It should be noted that the #式 in the plural; the symbol should not be mixed with the sub-W. After the averaging of the subcarriers, that is, after averaging the results of (1) and (2), the deviation is automatically cleared. The above flow chart can also be interpreted as an expression of a machine readable medium having stored therein instructions for transmitting a quadrature modulated rotational tuning sequence. The instructions for transmitting a rotational tuning signal should correspond to steps 1A through 1〇〇6, as explained above. Systems, methods, apparatus, and processors have been provided herein to implement a quadrature modulated rotational tuning signal in a transmitter of a wireless communication device transmitter. Examples of specific communication protocols and formats have been given to illustrate the invention. However, the present invention and the invention are intended to be limited to the other variations and embodiments of the present invention as disclosed in the 129, 716. doc -29-200901692. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic block diagram of a conventional receiver front end (prior art). Figure 2 is a schematic diagram illustrating orthogonal non-equilibrium (prior art) on the receiver side. Figure 3 is a schematic block diagram of a wireless communication device having a system for transmitting a rotational tuning sequence. 4A to 4D illustrate a calibration of communication data having orthogonal modulation

信號之圖示。 圖5 A及5B係如一正交星座圖中所展示之旋轉調校符號 之圖示。 圖6係一繪示一用於攜栽一具有一旋轉調校信號之訊息 之實例性框架之圖示。 圖7係一繪示一用於傳輪一正交調變旋轉調校序列之處 理裝置之示意性方塊圖。 圖8係-繪示圖2所示衝擊波形之2個+同相位仏理想及 非平衡星座圖之圖式。 圖9係—將相位非平衡繪示為衝擊波形上之相位之函數 之圖不。 圖10係一圖解說明一種用於傳輸一通信調校序列之方法 之流程圖。 ’ 【主要元件符號說明】 3〇〇 無線通信裝f 系統 129716.doc -30· 302 200901692Graphical representation of the signal. Figures 5A and 5B are illustrations of rotational adjustment symbols as shown in an orthogonal constellation. Figure 6 is a diagram showing an exemplary framework for carrying a message having a rotational tuning signal. Fig. 7 is a schematic block diagram showing a processing device for a transmission-orthogonal modulation rotation adjustment sequence. Figure 8 is a diagram showing two + in-phase 仏 ideal and non-equilibrium constellations of the shock waveform shown in Figure 2. Figure 9 is a diagram showing the phase imbalance as a function of the phase on the impact waveform. Figure 10 is a flow chart illustrating a method for transmitting a communication tuning sequence. ’ [Main component symbol description] 3〇〇 Wireless communication device f system 129716.doc -30· 302 200901692

ΰ- 304 射頻(RF)發射器 306a 線路 306b 線路 308 同相⑴調變路徑 310 正交(Q)調變路徑 312 組合器 318 線路 320 放大器 322 天線 600 實體層(PHY)信號 602 前置項 604 標頭 606 有效負載 700 處理裝置 702 I路徑調變模組 704 線路 706 線路 708 線路 710 Q路徑調變模組 712 線路 714 線路 716 線路 718 組合器模組 720 線路 722 控制器模組 1297I6.doc -31 -Ϋ́-304 radio frequency (RF) transmitter 306a line 306b line 308 in phase (1) modulation path 310 orthogonal (Q) modulation path 312 combiner 318 line 320 amplifier 322 antenna 600 physical layer (PHY) signal 602 pre-term 604 Head 606 payload 700 processing device 702 I path modulation module 704 line 706 line 708 line 710 Q path modulation module 712 line 714 line 716 line 718 combiner module 720 line 722 controller module 1297I6.doc -31 -

Claims (1)

200901692 十、申請專利範圍:200901692 X. Patent application scope: 之方法,該方法包括: 一旋轉調校信號,該調校 一種用於傳輸一通信調校序列 於—正交調變發射器中產生 k號包含: 經由-同相(I)調變路徑發送之調校資訊;及 經由一正交(Q)調變路經發送之調校資訊;及 產生經正交調變之通信資料;及The method comprises: a rotation adjustment signal, the adjustment is for transmitting a communication calibration sequence in the quadrature modulation transmitter to generate a k number comprising: transmitting via an in-phase (I) modulation path Tuning information; and tuning information transmitted via an orthogonal (Q) modulation path; and generating orthogonally modulated communication data; 2輪該旋轉調校信號及經正交調變之通信資料。 月求項1之方法,其中傳輪該旋轉調校信號包含: 首先經由該I調變路徑發送調校資訊;及 . 隨後經由該Q調變路徑發送調校資訊。 3月求項1之方法,其中產生 如 勹人 ,、1技王战經止父調變之通信資料 3產生選自一由以下組成之群組之資料 料、去、玄* 15和:貝 '、二產生之信標信號,及以一大於該信標資科速率之 通仏資料速率產生之通信資料。 士 1求項1之方法,其中產生一旋轉調校信號包含為複 數個副載波同時產生符號,如下: 為1個副載波,利用經由該Ϊ調變路徑而非該卩調變路俨 發送之調校資訊; 二 為j個副載波,利用經由該Q調變路徑而非該J 發送之調校資訊;&amp; 工 5. 其中產生經正交調變之通信資料包含在產生該調校資 況之後為該i及j個副載波產生經正交調變之通信資料。 σ s青求項1之方法,其中經由該I調變路徑產生調校資訊 1297I6.doc 200901692 匕3產生—具有一參考相位之第一符號;及 其中經由該Q調變路徑產生調校資訊包含產生一具有 ――自 | 、'由以下參考相位組成之群組之相位之第二符 號·· +9〇。及 _90。。 6.如明求項5之方法’其中經由該卩調變路徑產生調校資訊 包含: 同時透過該I調變路徑及該q調變路徑二者來產生調校 資訊;及2 rounds of the rotation adjustment signal and the orthogonally modulated communication data. The method of claim 1, wherein the rotating the tuning signal comprises: first transmitting the calibration information via the I modulation path; and then transmitting the calibration information via the Q modulation path. In March, the method of claim 1, wherein the communication data 3 generated by the squadron, the squadron, and the squadron are generated from a group of materials consisting of: The second generated beacon signal and the communication data generated at an overnight data rate greater than the rate of the beacon. The method of claim 1, wherein generating a rotation adjustment signal comprises simultaneously generating symbols for a plurality of subcarriers, as follows: for one subcarrier, transmitting by using the chirp modulation path instead of the chirp modulation path Tuning information; second, j subcarriers, using calibration information sent via the Q modulation path instead of the J; &amp; 5. The communication data generated by the quadrature modulation is included in generating the calibration resource The quadrature modulated communication data is generated for the i and j subcarriers. The method of σ s, wherein the calibration information is generated via the I modulation path 1297I6.doc 200901692 匕3 generates a first symbol having a reference phase; and wherein the calibration information is generated via the Q modulation path A second symbol having a phase of - from |, a group consisting of the following reference phases is generated. And _90. . 6. The method of claim 5, wherein generating the calibration information via the chirp modulation path comprises: simultaneously generating calibration information through both the I modulation path and the q modulation path; 以供應該第二符號。 中經由該I調變路徑產生調校資訊 組合經I及Q調變信號 7·如請求項5之方法,其 包含: 5時透過該I調變路控及該Q調變路徑二者產生調校資 訊;及 A 、-且&amp;經1及Q調變信號以供應該第一符號。 长項1之方去’其中傳輸該旋轉調校信號及經正交 調變之通信資料包含: 組織一句冷τςσ 丨 ⑽ν匕3別置項、標頭、及有效負載之實體層 (ΡΗΥ)信號; 在該ΡΗΥ標頭中傳輸該旋轉調校信號;及 在X ΡΗΥ有效負載中傳輪該經正交調變之 9.如請求工酉?夕方、土 . ^ 丨〇 μ ΤΤ / ,八中百先經由該1調變路徑產生調校 肩§fl包含: 供能量給該I調變路徑;但 不供施置給該Q調變路徑; 129716.doc 200901692 其中在經由該I調變路徑產生調校資訊之後,經由該Q 調變路徑產生調校資訊包含供能量給該Q調變路徑。 10·如請求項i之方法,其中產生該旋轉調校信號包含經由 該I調變路徑發送預定調校資訊,及經由該Q調變路徑發 送預定調校資訊。 1 1 .如請求項1之方法,其進一步包括: 發送一多叢發傳輸,其具有一不平衡訊息其後接續該 方疋轉調校信號及經正交調變之通信資料,該不平衡訊息 包含: —非旋轉調校信號,其中: 具有經由該I調變路徑發送之調校資訊; 不具有經由该Q調變路徑發送之調校資訊; &gt;戒息格式信號’其指示在該不平衡訊息之後發送一 旋轉調校信號;及 經正交調變之通信資料。 12.如請求項1之方法 個旋轉導頻符號; 其中產生一旋轉調校信號包含產生p 之通信資料包含產生(N-P)個通信 其中產生經正交調變 資料符號;及 中傳輸該奴轉調校信號及經 合R沾&amp; 土止交調變之通信資料包 3同時傳輸N個符號。 13·種用於傳輸一經正交調變之斿絲 f , _ . 燹之紅轉調校序列之處理裝 置’该處理裝置包括·· 用以接受資訊之輸 同相(I)路徑調變模組,其具有 1297I6.doc 200901692 ^及用以接受1控制信號之輸入端,及一用以供應 經I調變資訊之輪出端; 一正交(Q)路徑調變模組,其具有一用以接受資訊之 輸入端,及—用以接受Q控制信號之輸入端,及一用以 供應經Q調變資訊之輸出端; 組合器模組,其具有用以接受該經I及Q調變資訊之 @入端及—用以供應一經正交調變之信號之輸出端;及 *控制器板組’其具有用以供應該I及Q控制信號之輸 端°亥控制器模組利用該I及Q控制信號來產生: 一h k轉調权信f虎’其包含經由該z調變路徑發送之調 瓦及I由该Q調變路徑發送之調校資訊;及 經正交調變之通信資料。 14.種用於傳輸一經正交調變之旋轉調校序列之通信系 統’該系統包括: i... (IK周:射益’其具有一用以接受資訊之輸入端、-同相 路徑、一正交(Q)調變路徑、及一用於組合來自 二路徑及該Q調變路徑之信號之組合器; 包發射器發送一旋轉調校信號,該旋轉調校信號 3 ‘由該I調變路徑發送次 徑發送之調校資訊,·及 貝訊及經由該Q調變路 校::該發射器發送經正交調變之通信資料及該旋轉調 如吻求項1 4之系統,其中該發射 路徑發送胡h次^ &quot;错由首先經由該I調變 ”胃❹由該Q調變路徑發送調校資 1297I6.doc 200901692 訊來發送該旋轉調校信號 16.如請求項14之系統’其中該發 信資料作為選自一由以下组成之雜:…父調變之通 、-且成之群組之資料.一 標資料速率產生之信標信號,及 ' —^ +之遑率產生之通信資料。 叮疋 17·如凊求項14之系統,其中該 同時產生符Μ Η ^ 是數個副載波 生付號來產生—旋轉調校信號,如下: 為1個副載波利用經由該丨To supply the second symbol. The method for generating a calibration information combination via the I modulation path and the I and Q modulation signal 7 as claimed in claim 5, comprising: 5: generating a tone through both the I modulation path and the Q modulation path School information; and A, -and &amp; 1 and Q modulation signals to supply the first symbol. The long term 1 goes to 'the transmission of the rotation adjustment signal and the orthogonal modulation communication data includes: organizing a cold τ ς σ 10 (10) ν 匕 3 other items, headers, and the physical layer (ΡΗΥ) signal of the payload Transmitting the rotation tuning signal in the header; and passing the quadrature modulation in the X ΡΗΥ payload. 9. If the request is requested?夕方,土. ^ 丨〇μ ΤΤ / , 八中百先The calibration shoulder is generated via the 1 modulation path §fl contains: energy for the I modulation path; but not for the Q modulation path; 129716.doc 200901692 wherein after the calibration information is generated via the I modulation path, generating calibration information via the Q modulation path includes supplying energy to the Q modulation path. 10. The method of claim i, wherein generating the rotational tuning signal comprises transmitting predetermined tuning information via the I modulation path and transmitting predetermined tuning information via the Q modulation path. 1 1. The method of claim 1, further comprising: transmitting a multi-plex transmission having an unbalanced message followed by the modulating signal and the quadrature modulating communication data, the imbalance The message includes: - a non-rotating calibration signal, wherein: having calibration information transmitted via the I modulation path; having no calibration information transmitted via the Q modulation path; &gt; a ring format signal 'indicating After the unbalanced message, a rotation adjustment signal is sent; and the communication data is orthogonally modulated. 12. The method of claim 1, wherein the rotating pilot symbol comprises generating a rotational tuning signal comprising generating a communication data of p comprising generating (NP) communications, wherein the quadrature modulated data symbol is generated; and transmitting the slave The tuning signal and the communication R package & the earth stop transmission communication packet 3 simultaneously transmit N symbols. 13. A processing device for transmitting a quadrature modulated fission f, _. 燹 红 转 转 ' ' 该 该 该 该 该 该 该 该 该 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' , having 1297I6.doc 200901692 ^ and an input for receiving 1 control signal, and a round for supplying I modulated information; an orthogonal (Q) path modulation module having a use The input terminal for receiving information, and the input terminal for receiving the Q control signal, and the output terminal for supplying the Q modulation information; the combiner module having the function of receiving the I and Q modulation The @input terminal of the information and the output terminal for supplying the signal of the quadrature modulation; and the controller board group having the output terminal for supplying the I and Q control signals The I and Q control signals are generated: a hk transfer weight f tiger' which includes the tuning tile transmitted via the z modulation path and the tuning information transmitted by the Q modulation path; and the quadrature modulation communication data. 14. A communication system for transmitting a quadrature modulation rotation adjustment sequence. The system comprises: i... (IK Week: Sheyi) has an input for receiving information, an in-phase path, a quadrature (Q) modulation path, and a combiner for combining signals from the two paths and the Q modulation path; the packet transmitter transmitting a rotation adjustment signal, the rotation adjustment signal 3' by the I The modulation path sends the adjustment information of the secondary path transmission, and the Beixun and the Q-switched road school: the transmitter transmits the orthogonally modulated communication data and the system of the rotation adjustment such as the kiss request item 1 4 , wherein the transmission path transmits Hu h times ^ &quot; wrong by first adjusting the I through the I gastric sputum by the Q modulation path to send the adjustment resource 1297I6.doc 200901692 to send the rotation adjustment signal 16. If the request item The system of 14 'where the transmission information is selected from the following composition: ... the data of the parent modulation, and the group of the information. A beacon signal generated by the data rate, and '-^ + The communication data generated by the rate. 叮疋17·The system of claim 14, wherein The simultaneous generation of the symbol Η ^ is a number of subcarriers to generate a pay-to-spin signal, as follows: for the use of one subcarrier via the 丨 送之調校資訊; ^路&amp;而非该Q調變路徑發 為j個副載波利用經由該Q調變路 送之調校資訊;及 變路仏而非该1調變路徑發 其中該發射器在產生該調校資訊之後為該认』個副載 波產生經正交調變之通信資料。 18·如請014之系統’其中該發射器藉由經由該味變路徑 送具有參考相位之第一符號及經由該Q調變路徑 發送符號來發送該旋轉調校信號,肖第二符號具 有選自一由以下參考相位組成之群組之相位:+9〇。及 -90° 〇 士喷求項1 8之系統,其中該發射器同時透過該丨調變路徑 及及Q調隻路控二者來發送調校資訊,並組合經I及卩調 變k號以供應該第二符號。 20·如凊求項18之系統,其中該發射器同時透過該丨調變路徑 及該Q調變路徑二者發送該調校資訊’並組合經I及Q調 變信號以供應該第一符號。 I29716.doc 200901692 21·如請求項14之系統,其中該發射器發送一包含一前置 項、標頭及有效負載之實體層(PHY)信號,其中在該 PHY標頭中具有該旋轉調校信號’且在該ρΗγ有效負載 中具有該經正交調變之通信資料。 22·如請求項15之系統,其中該發射器藉由供能量給該〗調變 路徑但不供能量給該Q調變路徑而首先經由該〖調變路徑 發送該旋轉調校信號;及 其中在經由該I調變路徑發送調校資訊之後,該發射器 藉由供能量給該Q調變路徑來經由該Q調變路徑發送該旋 轉調校信號。 23·如請求項14之系統,其中該發射器經由該!調變路徑及該 Q調變路徑發送-具有預定調校資訊之旋轉調校信號。 24.如請求項14之系統,其中該發射器發送包含該旋轉調校 仏號及經正交調變之資料之多叢發訊息及一不平衡訊 息’該不平衡訊息具有:Tuning information; ^Road &amp; not the Q modulation path is sent as j subcarriers using the calibration information sent via the Q modulation path; and the change path is not the one modulation path. The transmitter generates orthogonally modulated communication data for the identified subcarriers after generating the calibration information. 18. The system of 014, wherein the transmitter transmits the rotation adjustment signal by transmitting a first symbol having a reference phase via the taste change path and transmitting a symbol via the Q modulation path, and the second symbol is selected The phase of a group consisting of the following reference phases: +9〇. And the system of the -90° gentleman spray solution 18, wherein the transmitter transmits the calibration information through both the 丨 modulation path and the Q-control only path control, and combines the I and 卩 modulation k To supply the second symbol. 20. The system of claim 18, wherein the transmitter simultaneously transmits the calibration information through both the chirp modulation path and the Q modulation path and combines the I and Q modulation signals to supply the first symbol . The system of claim 14, wherein the transmitter transmits a physical layer (PHY) signal including a preamble, a header, and a payload, wherein the rotation adjustment is included in the PHY header The signal 'and has the orthogonally modulated communication material in the ρ Η γ payload. The system of claim 15, wherein the transmitter first transmits the rotational tuning signal via the modulation path by supplying energy to the modulation path but not supplying energy to the Q modulation path; After transmitting the calibration information via the I modulation path, the transmitter transmits the rotation adjustment signal via the Q modulation path by supplying energy to the Q modulation path. 23. The system of claim 14, wherein the transmitter is via the ! The modulation path and the Q modulation path transmission - a rotation adjustment signal having predetermined adjustment information. 24. The system of claim 14, wherein the transmitter transmits a plurality of burst messages and an unbalanced message comprising the rotational tuning nickname and the quadrature modulated data. The unbalanced message has: =非旋轉調校信號,其包含經由該1調變路徑發送之調 权資訊,但不包含經由該Q調變路徑發送之調校資訊; -訊息格式信號,其指示在該不平衡訊息之後發送一 旋轉調校信號;及 &quot; 經正交調變之通信資料。 請求項14之系統,其中該發射器產生p個旋轉導頻符 化及具有(N_P)個通信資料符號之經正交調 料,並同時傳輸N個符號。 β、 26.—種機器可讀媒體,其上儲存有用於 ^ %轉調校信 129716.doc 200901692 號之指令,該等指令包括: 於一經正交調變之發射器中產生一旋轉調校信號,該 旋轉調校信號包含: 經由一同相(I)調變路徑發送之調校資訊;及 ,&amp;由一正交Q調變路徑發送之調校資訊;及 產生經正交調變之通信資料;及 傳輸該旋轉調校信號及經正交調變之通信資料。 27. 種用於傳輸一旋轉調校信號之通信裝置,該裝置包 括: 用於利用同相⑴及正父(Q)調變路徑旋轉一調校信 號之構件;及 用於產生經正交調變之通信資料之構件;及 一用於傳輸之構件。 28. 如π求項27之裝置’其中該旋轉調校信號係首先經由該^ 調變路徑發送,且隨後經由該卩調變路徑發送。 29’如w求項27之裝置’其中該經正交調變之通信資料係作 為選自一由以下組成之群組之資料來傳輸:以一信標資 料速率產生之信標信號,及以_大於該信標資料速率之 速率產生之通信資料。 3〇· 士 π求項27之裝置,其中該旋轉調校信號包含為複數個 副载波同時產生之符號,如下: 為i個副載波,經由該!調變路徑而非利㈣路 之調校資訊; 為j個副載波,經由該Q調變路徑而非該丨調變路徑發送 129716.doc 200901692 之調校資訊;及 其中在產生該調校資訊之 i Φ ^ ^ ^ *1 ^ „ 便為邊1及J個副載波產生經 止父調變之通信資料。 3 1 ·如請求項27之装置,1中 B 令經由该1調變路徑發送之該調校 貝訊包含一具有一夾去^, 百參考相位之第-符號;及 其中經由該Q調變路徑發一 知、之5亥調扠貧訊包含一具有 一選自一由以下參考相位 彳、,且成之群組之相位之第二符 號:+90。及-90。。 32.如請求項31之裝置, 徑及該Q調變路徑二 號。 其中調校資訊係同時透過該j調變路 者發送’且經組合以供應該第二符 月求項29之裝置’其中調校資訊係同時透過該I調變路 m q調變路控二者發送,並經組合以供應該第一符 號。 34. 如印求項27之裝置’其中該旋轉調校信號係於一實體層 (PHY)訊息標頭中發送;及 其中邊經IQ調變通信資料係於一 ρΗγ訊息有效負載中 發送。 35. 如印求項28之裝置,其中調校資訊係首先利用一經供能 里之I調變路徑而非一經供能量之q調變路徑而經由該1調 變路徑發送; 其中調校資訊隨後係利用一經供能量之Q調變路徑而 經由該Q調變路徑發送。 36. 如請求項27之裝置,其中該旋轉調校信號包含經由該I調 129716.doc 200901692 變路徑及該Q調變路徑發送之預定調校資訊。 37如請求項27之裝置,其進一步包括: 一用於產生-不平衡訊息之構件,其包含: 用於產生一非旋轉調校信號之構件,該非旋轉調 ★ 、有、、二由該1調變路徑發送之調校資訊但不具有經 由該Q調變路徑發送之調校資訊; -用於產生—訊息格式信號之構件,該訊息格式信 號指示在該不平衡訊息之後發送一旋轉調校信號;及 用於產生正交調變通信資料之構件。 如明求項27之裝置,其中p個旋轉導頻符號係與(財)個 經正交調變之通信資料符號—起產生,及 其中同時傳輸該N個符號。 129716.doca non-rotational calibration signal comprising the adjustment information transmitted via the 1 modulation path, but excluding the calibration information transmitted via the Q modulation path; - a message format signal indicating that the unbalanced message is sent after a rotation adjustment signal; and &quot; orthogonal modulation communication data. The system of claim 14, wherein the transmitter generates p rotated pilot symbols and orthogonally modulated (N_P) communication data symbols and simultaneously transmits N symbols. </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; a signal, the rotation adjustment signal comprising: calibration information transmitted via an in-phase (I) modulation path; and, &amp; calibration information transmitted by an orthogonal Q modulation path; and generating quadrature modulation Communication data; and transmitting the rotation adjustment signal and the orthogonal modulation communication data. 27. A communication device for transmitting a rotational tuning signal, the device comprising: means for rotating a calibration signal using an in-phase (1) and a positive parent (Q) modulation path; and for generating a quadrature modulation a component of the communication data; and a component for transmission. 28. A device as claimed in π, wherein the rotational tuning signal is first transmitted via the modulated path and subsequently transmitted via the chirped path. 29', wherein the device of claim 27, wherein the orthogonally modulated communication data is transmitted as data selected from the group consisting of: a beacon signal generated at a beacon data rate, and _ Communication data generated at a rate greater than the rate of the beacon data. The device of the π-th item 27, wherein the rotation adjustment signal includes symbols generated simultaneously for a plurality of subcarriers, as follows: for i subcarriers, via this! The tuning information of the modulation path instead of the profit path (4); for the j subcarriers, the calibration information of 129716.doc 200901692 is sent via the Q modulation path instead of the modulation path; and the calibration information is generated i Φ ^ ^ ^ *1 ^ „ generates the communication data of the parental modulation for the side 1 and J subcarriers. 3 1 · If the device of claim 27, 1 B is sent via the 1 modulation path The tuning broadcast includes a first symbol having a clip to the 100-reference phase; and the 5th tuning cross-link via the Q modulation path includes one having a selected from the following The reference phase 彳, and the second symbol of the phase of the group: +90. and -90. 32. The device of claim 31, the path and the Q modulation path No. 2. Transmitting, by the j-switcher, a device that is combined to supply the second lunar item 29, wherein the tuning information is simultaneously transmitted through the I-modulation path mq, and combined Supplying the first symbol. 34. The apparatus of claim 27, wherein the rotation adjustment signal is The physical layer (PHY) message header is sent; and the middle side IQ modulated communication data is transmitted in a ρΗγ message payload. 35. If the apparatus of claim 28 is used, the tuning information system first utilizes the energy supply. The I modulation path is transmitted via the 1 modulation path instead of the energy-modulating q modulation path; wherein the calibration information is then transmitted via the Q modulation path using an energy-provided Q modulation path. The apparatus of claim 27, wherein the rotation adjustment signal comprises predetermined calibration information transmitted via the I 129716.doc 200901692 variable path and the Q modulation path. 37. The apparatus of claim 27, further comprising: A component for generating an unbalanced message, comprising: means for generating a non-rotational tuning signal, the non-rotating tone, having, and two tuning information transmitted by the one modulation path but not having The calibration information sent by the Q modulation path; - means for generating a message format signal, the message format signal indicating sending a rotation adjustment signal after the unbalanced message; and for generating A device for interchanging communication data. The device of claim 27, wherein the p rotating pilot symbols are generated by orthogonally modulated communication data symbols, and wherein the N symbols are simultaneously transmitted 129716.doc
TW097108424A 2007-03-09 2008-03-10 Quadrature modulation rotating training sequence TWI446758B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/684,566 US8428175B2 (en) 2007-03-09 2007-03-09 Quadrature modulation rotating training sequence
US11/755,719 US8290083B2 (en) 2007-03-09 2007-05-30 Quadrature imbalance mitigation using unbiased training sequences
US11/853,809 US8081695B2 (en) 2007-03-09 2007-09-11 Channel estimation using frequency smoothing
US11/853,808 US8064550B2 (en) 2007-03-09 2007-09-11 Quadrature imbalance estimation using unbiased training sequences

Publications (2)

Publication Number Publication Date
TW200901692A true TW200901692A (en) 2009-01-01
TWI446758B TWI446758B (en) 2014-07-21

Family

ID=39760329

Family Applications (2)

Application Number Title Priority Date Filing Date
TW097108424A TWI446758B (en) 2007-03-09 2008-03-10 Quadrature modulation rotating training sequence
TW097108425A TWI393399B (en) 2007-03-09 2008-03-10 Quadrature imbalance mitigation using unbiased training sequences

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW097108425A TWI393399B (en) 2007-03-09 2008-03-10 Quadrature imbalance mitigation using unbiased training sequences

Country Status (7)

Country Link
EP (2) EP2130340A2 (en)
JP (3) JP5290209B2 (en)
KR (2) KR101075288B1 (en)
BR (2) BRPI0808676A2 (en)
CA (3) CA2678592C (en)
TW (2) TWI446758B (en)
WO (2) WO2008112587A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551089B (en) * 2014-03-31 2016-09-21 英特爾智財公司 Correlation-based self-interference suppression

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8385387B2 (en) * 2010-05-20 2013-02-26 Harris Corporation Time dependent equalization of frequency domain spread orthogonal frequency division multiplexing using decision feedback equalization
GB2492168A (en) 2011-06-24 2012-12-26 Penny & Giles Controls Ltd Inductive position sensor with datum adjustment
IL214096A (en) 2011-07-14 2016-02-29 Gideon Mor System for detection of meconium in amniotic fluid
US8971465B2 (en) * 2012-03-30 2015-03-03 Qualcomm Incorporated Receiver-side estimation of and compensation for signal impairments
US9143365B2 (en) 2013-01-30 2015-09-22 Qualcomm Incorporated Channel estimation using averaging and interpolation

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3055085B2 (en) * 1994-04-22 2000-06-19 株式会社アドバンテスト Digital modulation analyzer
JP3682853B2 (en) * 1995-09-25 2005-08-17 日本ビクター株式会社 Orthogonal frequency division multiplex signal transmission system, transmitter and receiver
JPH11136302A (en) * 1997-10-29 1999-05-21 Fujitsu Ltd Distortion compensation circuit
JP3166705B2 (en) * 1998-04-16 2001-05-14 松下電器産業株式会社 Wireless device and transmission method
JP2001016283A (en) * 1999-07-01 2001-01-19 Fujitsu General Ltd Digital radio equipment
WO2001031867A1 (en) * 1999-10-27 2001-05-03 Nokia Corporation Dc offset correction in a mobile communication system
JP2002252663A (en) * 2001-02-26 2002-09-06 Fujitsu General Ltd Digital radio device
US6825229B2 (en) * 2002-03-07 2004-11-30 Blanchette Rockefeller Neurosciences Institute Methods for Alzheimer's Disease treatment and cognitive enhancement
US7248625B2 (en) * 2002-09-05 2007-07-24 Silicon Storage Technology, Inc. Compensation of I-Q imbalance in digital transceivers
DE10241676A1 (en) * 2002-09-09 2004-03-18 Infineon Technologies Ag Estimation method for RF signals distortion caused by IQ-asymmetries, requires using sub-carriers arranged symmetrically to one another in transmission spectrum
US7529306B2 (en) * 2002-09-09 2009-05-05 Infineon Technologies Ag Estimation of asymmetries between inphase and quadrature branches in multicarrier transmission systems
TWI222279B (en) * 2002-11-20 2004-10-11 Realtek Semiconductor Corp Estimation/compensation method and device for in-phase/quadrature-phase unbalance
US7385617B2 (en) * 2003-05-07 2008-06-10 Illinois Institute Of Technology Methods for multi-user broadband wireless channel estimation
WO2004107697A1 (en) * 2003-05-30 2004-12-09 Koninklijke Philips Electronics N.V. Method and device for estimating i/q imbalance
JP4141973B2 (en) * 2004-03-03 2008-08-27 日本電信電話株式会社 Error compensator for quadrature modulator and demodulator
US7477683B2 (en) * 2004-03-29 2009-01-13 Stmicroelectronics Ltd. Periodic DMT signals with cyclic extension
US20050281239A1 (en) * 2004-06-22 2005-12-22 Texas Instruments Incorporated System and method for signaling modes
JP4312705B2 (en) * 2004-12-27 2009-08-12 日本電信電話株式会社 Quadrature demodulation error compensation method and quadrature demodulation error compensation circuit
JP4599192B2 (en) * 2005-03-02 2010-12-15 株式会社日立製作所 Wireless data communication system and wireless data communication method
JP4912311B2 (en) * 2005-08-05 2012-04-11 パナソニック株式会社 Wireless communication apparatus and wireless communication method
US7551648B2 (en) * 2005-08-22 2009-06-23 Nec Laboratories America, Inc. Superimposed training for multiple antenna communications
JP4702883B2 (en) * 2005-08-23 2011-06-15 国立大学法人東京工業大学 Transmitting apparatus, receiving apparatus, MIMO-OFDM communication system, and IQ imbalance compensation method in MIMO-OFDM communication system
JP2007142674A (en) * 2005-11-16 2007-06-07 Matsushita Electric Ind Co Ltd Multicarrier transmitter, multicarrier receiver, and communication method
JP4406398B2 (en) * 2005-12-26 2010-01-27 株式会社東芝 OFDM signal transmission method and transmitter, and OFDM signal receiver
JP4550746B2 (en) * 2006-02-01 2010-09-22 株式会社東芝 Wireless communication method using OFDM, OFDM transmitter and OFDM receiver
JP4983365B2 (en) * 2006-05-16 2012-07-25 ソニー株式会社 Wireless communication device
JP4213734B2 (en) * 2006-07-05 2009-01-21 株式会社東芝 Wireless communication method and OFDM receiver using OFDM
EP2137918B1 (en) * 2007-03-09 2010-09-22 Qualcomm Incorporated Quadrature imbalance estimation using unbiased training sequences
US8064550B2 (en) 2007-03-09 2011-11-22 Qualcomm, Incorporated Quadrature imbalance estimation using unbiased training sequences

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551089B (en) * 2014-03-31 2016-09-21 英特爾智財公司 Correlation-based self-interference suppression
US9781612B2 (en) 2014-03-31 2017-10-03 Intel IP Corporation Correlation-based self-interference suppression

Also Published As

Publication number Publication date
CA2678592C (en) 2013-06-18
TWI393399B (en) 2013-04-11
BRPI0808669A2 (en) 2014-08-26
CA2678592A1 (en) 2008-09-18
JP5726939B2 (en) 2015-06-03
CA2790073C (en) 2016-01-12
JP5290209B2 (en) 2013-09-18
TW200904093A (en) 2009-01-16
EP2130341A2 (en) 2009-12-09
JP2010521123A (en) 2010-06-17
TWI446758B (en) 2014-07-21
CA2790073A1 (en) 2008-09-18
EP2130340A2 (en) 2009-12-09
CA2678126A1 (en) 2008-09-18
WO2008112587A3 (en) 2009-02-05
WO2008112585A2 (en) 2008-09-18
JP2010521124A (en) 2010-06-17
CA2678126C (en) 2013-06-25
WO2008112585A3 (en) 2009-02-05
KR20090118114A (en) 2009-11-17
KR20090119002A (en) 2009-11-18
KR101109797B1 (en) 2012-04-06
WO2008112587A2 (en) 2008-09-18
JP2013176085A (en) 2013-09-05
KR101075288B1 (en) 2011-10-19
JP5123324B2 (en) 2013-01-23
BRPI0808676A2 (en) 2014-08-12

Similar Documents

Publication Publication Date Title
US8428175B2 (en) Quadrature modulation rotating training sequence
US8526543B2 (en) Quadrature imbalance estimation using unbiased training sequences
US8081695B2 (en) Channel estimation using frequency smoothing
US8085876B2 (en) Apparatus and method for sampling frequency offset and carrier frequency offset estimation and correction in a communication system
US8290083B2 (en) Quadrature imbalance mitigation using unbiased training sequences
US8170160B1 (en) Multi-symbol phase offset estimation
US20060285478A1 (en) Apparatus and method for carrier frequency offset estimation and correction in a wireless communication system
TW200901692A (en) Quadrature modulation rotating training sequence
EP2137918B1 (en) Quadrature imbalance estimation using unbiased training sequences
US9755712B1 (en) Composite sounding for MIMO beamforming in a wireless home network

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees