JP4702883B2 - Transmitting apparatus, receiving apparatus, MIMO-OFDM communication system, and IQ imbalance compensation method in MIMO-OFDM communication system - Google Patents

Transmitting apparatus, receiving apparatus, MIMO-OFDM communication system, and IQ imbalance compensation method in MIMO-OFDM communication system Download PDF

Info

Publication number
JP4702883B2
JP4702883B2 JP2005241162A JP2005241162A JP4702883B2 JP 4702883 B2 JP4702883 B2 JP 4702883B2 JP 2005241162 A JP2005241162 A JP 2005241162A JP 2005241162 A JP2005241162 A JP 2005241162A JP 4702883 B2 JP4702883 B2 JP 4702883B2
Authority
JP
Japan
Prior art keywords
mimo
training signal
imbalance
communication system
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005241162A
Other languages
Japanese (ja)
Other versions
JP2007060106A5 (en
JP2007060106A (en
Inventor
啓 阪口
裕之 鎌田
純道 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Tokyo Institute of Technology NUC
Original Assignee
Sharp Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Tokyo Institute of Technology NUC filed Critical Sharp Corp
Priority to JP2005241162A priority Critical patent/JP4702883B2/en
Publication of JP2007060106A publication Critical patent/JP2007060106A/en
Publication of JP2007060106A5 publication Critical patent/JP2007060106A5/ja
Application granted granted Critical
Publication of JP4702883B2 publication Critical patent/JP4702883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Description

本発明は、MIMO−OFDM通信システムにおいて、送信器受信器の双方に含まれるハードウェアの不完全性が引き起こすIQインバランスを補償するための送信装置、受信装置、MIMO−OFDM通信システム及びMIMO−OFDM通信システムにおけるIQインバランス補償方法に関する。 The present invention relates to a transmitter, a receiver , a MIMO-OFDM communication system, and a MIMO- for compensating IQ imbalance caused by hardware imperfections included in both transmitter and receiver in a MIMO-OFDM communication system. The present invention relates to an IQ imbalance compensation method in an OFDM communication system.

近年、無線通信において周波数利用効率を高めることができるMIMO(Multi Input Multi Output)通信システムは盛んに研究されており、その最大の魅力は誤り率低減と伝送容量の増加にある。特に、MIMO−OFDM(Multi Input Multi Output−Orthogonal Frequency Division Multiplexing)通信システムは、次世代の大容量無線通信システムとして、最も注目を浴びている通信方式である。   In recent years, a MIMO (Multi Input Multi Output) communication system capable of increasing frequency use efficiency in wireless communication has been actively researched, and its greatest attraction is reduction in error rate and increase in transmission capacity. In particular, a MIMO-OFDM (Multi-Input Multi-Output-Orthogonal Frequency Division Multiplexing) communication system is a communication method that has received the most attention as a next-generation large-capacity wireless communication system.

しかし、このMIMO−OFDM通信システムにおいては、通信方式や信号処理方式などに関する研究が殆どであり、MIMO−OFDM送受信機に関する研究が少ないことが現状である。   However, in this MIMO-OFDM communication system, most of the researches are related to communication methods and signal processing methods, and there are currently few studies on MIMO-OFDM transceivers.

特に、MIMO−OFDM通信システムの特性を劣化させる要因として、RF系ハードウェアの不完全性が挙げられ、具体的には、IQインバランス、チャネル間偏差、位相ノイズ等が挙げられる。IQインバランス(I/Q Imbalance:In-phase and Quadrature Imbalance)とは、直交変復調器のI/Qチャネルのゲインアンバランスと、直交性誤差により引き起こされるI/Qチャネルの干渉である。
ワイ.ラムルト(Y.lamurto)・エム.トミー(M.Tommi)共著,「フリクエンシ ドメイン IQインバランス コレクション スキーム フォー OFDM システムズ(Frequency Domain IQ Imbalance Correction Scheme for OFDM Systems)」,イン プロク. IEEE ワイヤレス コミューニケイションズ アンド ネットワーキング コンファレンス(in Proc. IEEE Wireless Communications and Networking Conference),p.16-20,2003年3月 ブイ.ケイ.ピー.マ(V.K.P.Ma)・ワイ.ラムルト(Y.lamurto)共著,「アナリシス オフ IQ インバランス オン イニシャル フリクエンシ オフセット エスティメイション イン ダイレクト ダウンコンバージョン レシーバーズ(Analysis of IQ imbalance on initialfrequency offset estimation in direct downconversionreceivers)」,イン プロク. サード ワークショップ オン シグナル プロク. アドバンス イン ワイヤレス コミューニケイション(in Proc. Third Workshop on Signal Proc.Advances in Wireless Communication),p.158-161,2001年3月 エイ.ベイア(A.Baier)著,「クワッドラチュア ミキサ インバランス イン デジタル TDMA モバイル ラジオ レシーバーズ(Quadraturemixer imbalances in digital TDMA mobile radio receivers)」,イン プロク. インターナショナル チューリッヒ セミナ オン デジタル コミューニケイションズ, エレクトロニック サーキットズ アンド システムズ フォー コミューニケイションズ(in Proc. International Zurich Seminaron Digital Communications, Electronic Circuits and Systems forCommunications),p.147-162,1990年3月 シー.エル.リュー(C.L.Liu)著,「インパクトズ オフ I/Q インバランス オン QPSK−OFDM−QAM デテクション(Impactsof I/Q imbalance on QPSK-OFDM-QAM detection)」,IEEE トランス. オン コンシューマー エレクトロニクス(IEEETrans. on Consumer Electronics),第44巻,第3号,p.984-989,1998年8月 鎌田裕之・阪口啓・荒木純道共著,「RF系の不完全性によるMIMO通信システムの特性劣化に関する検討」,信学ソ大,B-5-26,2004年9月 阪口啓・ティンシーホー・荒木純道共著,「MIMO固有モード通信システムの構築と測定実験結果」,信学論(B),第J87-B巻,第9号,p.1454-1466.2004年9月 エイチ.シャフィー(H.Shafiee)・エス.フォウラデファァド(S.Fouladifard)共著,「キャリブレイション オフ IQ インバランス イン OFDM トランシーバーズ(Calibration of IQ imbalance in OFDMtransceivers)」,プロク. 2003 ICC(proc. 2003 ICC),第3巻,p.2081-2085,2003年5月 チーアン リン(Jian Lin)・イー.ツイ(E.Tsui)共著,「ジョイント アダプティブ トランスミッター/レシーバー IQ インバランス コレクション フォー OFDM システムズ(Joint adaptive transmitter/receiver IQimbalance correction for OFDM systems)」,プロク. 2004 IEEE PIMRC(proc. 2004 IEEEPIMRC),第2巻,p.1511-1516,2004年9月
In particular, as a factor that degrades the characteristics of the MIMO-OFDM communication system, imperfection of RF hardware can be cited, and specifically, IQ imbalance, interchannel deviation, phase noise, and the like can be cited. The IQ imbalance (I / Q Imbalance: In-phase and Quadrature Imbalance) is I / Q channel interference caused by the gain imbalance of the I / Q channel of the quadrature modulator / demodulator and the orthogonality error.
Co-authored by Y.lamurto and M.Tommi, "Frequency Domain IQ Imbalance Correction Scheme for OFDM Systems", IMPL. IEEE Wireless Communicator In Proc. IEEE Wireless Communications and Networking Conference, p.16-20, March 2003 Co-authored by VKPMa and Y.lamurto, "Analysis of IQ imbalance on initial frequency offset estimation in direct" downconversionreceivers) ”, In Proc. Third Workshop on Signal Proc. Advances in Wireless Communication, p.158-161, March 2001 A. Baier, "Quadraturemixer imbalances in digital TDMA mobile radio receivers," In Proc. International Zurich Seminar on Digital Communications, Electronic Circuit In Proc. International Zurich Seminaron Digital Communications, Electronic Circuits and Systems for Communications, p.147-162, March 1990 CL Liu, “Impacts of I / Q imbalance on QPSK-OFDM-QAM detection”, IEEE Trans. On Consumer Electronics (IEEETrans on Consumer Electronics), 44, 3, 984-989, August 1998 Hiroyuki Kamada, Kei Sakaguchi, and Junmichi Araki, “Study on characteristic degradation of MIMO communication system due to imperfection of RF system”, Shingaku Sodai, B-5-26, September 2004 Sakaguchi Kei, Tin Shiho, Araki Junmichi, "Construction of MIMO Eigenmode Communication System and Measurement Experiment Results", IEICE Theory (B), Vol.9, No.9, pp.1454-1466. September 2004 H. Shafiee and S. Fouladifard, “Calibration of IQ imbalance in OFDM transceivers”, Proc. 2003 ICC (proc. 2003 ICC), Volume 3, p. 2081-2085, May 2003 Co-authored by Jian Lin and E. Tsui, “Joint adaptive transmitter / receiver IQimbalance correction for OFDM systems”, Proc. 2004 IEEE PIMRC ( proc. 2004 IEEEPIMRC), Volume 2, p. 1511-1516, September 2004

これまでに、OFDM通信システムにおいて、例えば、非特許文献1〜非特許文献4に示されているように、IQインバランスの影響により、上下側波帯サブキャリア間の干渉が発生し特性が劣化するという問題があった。また、例えば、非特許文献5、非特許文献6に示されるように、MIMO通信システムでは、IQインバランスによりストリーム間の干渉が発生し特性が大きく劣化するという問題がある。   Until now, in an OFDM communication system, for example, as shown in Non-Patent Document 1 to Non-Patent Document 4, interference between upper and lower sideband subcarriers has occurred due to the influence of IQ imbalance, resulting in degradation of characteristics. There was a problem to do. For example, as shown in Non-Patent Document 5 and Non-Patent Document 6, there is a problem in the MIMO communication system that interference between streams occurs due to IQ imbalance and the characteristics are greatly degraded.

よって、MIMO−OFDM通信システムでは、IQインバランスの影響によるストリーム間干渉と上下側波帯のサブキャリア間干渉が同時に発生し、特性が著しく劣化するという問題が生じてしまう。   Therefore, in the MIMO-OFDM communication system, inter-stream interference due to the influence of IQ imbalance and inter-subcarrier interference in the upper and lower sidebands occur at the same time, causing a problem that the characteristics are significantly degraded.

しかし、OFDM通信システムにおけるIQインバランスの補償法については、例えば、非特許文献7に示されるようなパイロット信号を用いて推定・補償する方法や、非特許文献8に示されるようなIQインバランス等価器を挿入する方法など、様々な方法が提案されているが、MIMO−OFDM通信システムについて、ハードウェアの不完全性が引き起こすIQインバランスを補償するための補償方法は、研究されていない。   However, the IQ imbalance compensation method in the OFDM communication system is, for example, a method of estimating / compensating using a pilot signal as shown in Non-Patent Document 7, or an IQ imbalance as shown in Non-Patent Document 8. Various methods have been proposed, such as a method of inserting an equalizer, but a compensation method for compensating IQ imbalance caused by hardware imperfection has not been studied for a MIMO-OFDM communication system.

本発明は、上述のような事情よりなされたものであり、本発明の目的は、MIMO−OFDM通信システムの特性を最大限に生かすために、送信器受信器の双方に含まれるハードウェアの不完全性が引き起こすIQインバランスを補償できるようにした送信装置、受信装置、MIMO−OFDM通信システム及びMIMO−OFDM通信システムにおけるIQインバランス補償方法を提供することにある。 The present invention has been made under the circumstances as described above, and an object of the present invention is to eliminate the hardware included in both the transmitter and the receiver in order to make the best use of the characteristics of the MIMO-OFDM communication system. An object of the present invention is to provide a transmitter, a receiver , a MIMO-OFDM communication system, and an IQ imbalance compensation method in a MIMO-OFDM communication system that can compensate for IQ imbalance caused by integrity.

本発明は、MIMO−OFDM通信システムに適用され、送信器受信器の双方に含まれるハードウェアの不完全性が引き起こすIQインバランスを補償するためのMIMO−OFDM通信システムにおけるIQインバランス補償方法に関し、本発明の上記目的は、前記送信器側で、前記IQインバランスの影響を含んだチャネル応答を推定可能なトレーニング信号を送信する第1のステップと、前記受信器側で、送信された前記トレーニング信号に基づいて、前記IQインバランスの影響を含んだ拡張チャネル行列を推定する第2のステップと、前記第2のステップで推定された拡張チャネル行列に基づいて、前記MIMO−OFDM通信システムの受信処理方法で受信処理を行うことによって、前記IQインバランスの補償を実現する第3のステップとを有することにより、或いは、前記トレーニング信号として、下記の数式で表す直交アダマール行列を用い、

Figure 0004702883
ただし、
Figure 0004702883
はOFDMのためのトレーニング信号行列で、
Figure 0004702883
はMIMOのためのトレーニング信号行列で、
Figure 0004702883
はMIMO−OFDMのためのトレーニング信号行列であり、
Figure 0004702883
はクロネッカ積であり、また、hadamard(4)は、4次の直交アダマール行列を表し、hadamard(m)は、m次の直交アダマール行列を表し、前記拡張チャネル行列は、次の数式によって推定され、
Figure 0004702883
ただし、
Figure 0004702883

Figure 0004702883
に対応する受信信号行列で、
Figure 0004702883

Figure 0004702883
の一般逆行列であることにより、或いは、前記受信処理方法として、ZFといった受信処理方法を用い、前記拡張チャネル行列を用いたZF受信処理では、次の数式に基づいて受信処理を行い、
Figure 0004702883
ただし、
Figure 0004702883

Figure 0004702883
の一般逆行列であり、
Figure 0004702883
は送信信号の推定値であることにより、或いは、前記受信処理方法として、MLDといった受信処理方法を用い、前記拡張チャネル行列を用いたMLD受信処理では、次の数式に基づいて受信処理を行い、
Figure 0004702883
ただし、
Figure 0004702883
は前記拡張チャネル行列であり、
Figure 0004702883
は送信信号の推定値であることによって効果的に達成される。 The present invention is applied to a MIMO-OFDM communication system, and relates to an IQ imbalance compensation method in a MIMO-OFDM communication system for compensating IQ imbalance caused by hardware imperfections included in both transmitter and receiver. The first object of the present invention is to transmit, on the transmitter side, a training signal capable of estimating a channel response including the influence of the IQ imbalance, and to transmit the training signal transmitted on the receiver side. A second step of estimating an extended channel matrix including the influence of the IQ imbalance based on a training signal, and an extension channel matrix estimated in the second step, based on the extended channel matrix of the MIMO-OFDM communication system A third method for realizing compensation of the IQ imbalance by performing reception processing by a reception processing method. By a step, or, as the training signal, using an orthogonal Hadamard matrix expressed by the following equation,
Figure 0004702883
However,
Figure 0004702883
Is the training signal matrix for OFDM,
Figure 0004702883
Is a training signal matrix for MIMO,
Figure 0004702883
Is a training signal matrix for MIMO-OFDM,
Figure 0004702883
Is Kronecker product, also, hadamard (4) represents a fourth-order orthogonal Hadamard matrix, hadamard (m t) denotes the m t following the orthogonal Hadamard matrix, the extended channel matrix, by the following formula Estimated
Figure 0004702883
However,
Figure 0004702883
Is
Figure 0004702883
Is a received signal matrix corresponding to
Figure 0004702883
Is
Figure 0004702883
Or a reception processing method such as ZF as the reception processing method, and the ZF reception processing using the extended channel matrix performs reception processing based on the following formula:
Figure 0004702883
However,
Figure 0004702883
Is
Figure 0004702883
Is a general inverse matrix of
Figure 0004702883
Is an estimated value of a transmission signal, or, as the reception processing method, a reception processing method such as MLD is used. In the MLD reception processing using the extended channel matrix, reception processing is performed based on the following equation:
Figure 0004702883
However,
Figure 0004702883
Is the extended channel matrix;
Figure 0004702883
Is effectively achieved by being an estimate of the transmitted signal.

また、本発明の上記目的は、前記送信器側で、時間軸において前記IQインバランスの影響を含んだチャネル応答を推定可能なトレーニング信号を送信するステップ1と、前記受信器側で、送信された前記トレーニング信号に基づいて、前記時間軸上のチャネルを推定するステップ2と、前記時間軸上のチャネル応答から周波数軸上の拡張チャネル行列へ変換するステップ3と、前記ステップ3で変換された拡張チャネル行列に基づいて、前記MIMO−OFDM通信システムの受信処理方法で受信処理を行うことによって、前記IQインバランスの補償を実現するステップ4とを有することにより、或いは、前記トレーニング信号は、(イ)IQチャネル間の直交性、(ロ)ストリーム間の直交性、(ハ)推定誤差の小さな系列、といった3つの条件を満たすことにより、或いは、前記MIMO−OFDM通信システムの送信アンテナ本数はmで、OFDMシンボルに含まれる総サブキャリア数がLの場合、前記トレーニング信号は次の数式によって定義され、

Figure 0004702883
ただし、hadamard(m)は、m次の直交アダマール行列を表し、
Figure 0004702883
は、前記トレーニング信号を用いてチャネル推定を行ったときの推定誤差が小さくなる系列を適用することによってより一層効果的に達成される。 Further, the above object of the present invention is to transmit a training signal capable of estimating a channel response including the influence of the IQ imbalance on the time axis on the transmitter side, and transmitted on the receiver side. Based on the training signal, the step 2 for estimating the channel on the time axis, the step 3 for converting the channel response on the time axis to the extended channel matrix on the frequency axis, and the step 3 Step 4 for realizing compensation of the IQ imbalance by performing reception processing in the reception processing method of the MIMO-OFDM communication system based on the extended channel matrix, or the training signal is ( B) Orthogonality between IQ channels, (b) Orthogonality between streams, (c) A sequence with a small estimation error, etc. One of the condition is satisfied, or number of transmitting antennas of the MIMO-OFDM communication system in m t, if the total number of subcarriers included in OFDM symbols of L s, the training signal is defined by the following formula
Figure 0004702883
However, hadamard (m t) represents the m t following the orthogonal Hadamard matrix,
Figure 0004702883
Is more effectively achieved by applying a sequence that reduces the estimation error when channel estimation is performed using the training signal.

本発明に係るMIMO−OFDM通信システムにおけるIQインバランス補償方法をMIMO−OFDM通信システムに適用すれば、送信器受信器の双方に含まれるハードウェアの不完全性によるIQインバランスの影響を完全に取り除くことができ、誤り率特性をはじめとするMIMO−OFDM通信システムの特性を大幅に改善することができるという優れた効果を奏する。   If the IQ imbalance compensation method in the MIMO-OFDM communication system according to the present invention is applied to the MIMO-OFDM communication system, the influence of IQ imbalance due to hardware imperfections included in both transmitter and receiver is completely eliminated. This provides an excellent effect that the characteristics of the MIMO-OFDM communication system including the error rate characteristics can be greatly improved.

以下、図面を参照しながら、本発明を実施するための最良の形態を詳細に説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

本発明に係るMIMO−OFDM通信システムにおけるIQインバランス補償方法は、MIMO−OFDM通信システムの特性を最大限に生かすために、ハードウェアの不完全性が引き起こすIQインバランスを補償できるようにした補償方法である。   The IQ imbalance compensation method in the MIMO-OFDM communication system according to the present invention is a compensation that can compensate for IQ imbalance caused by hardware imperfections in order to make the best use of the characteristics of the MIMO-OFDM communication system. Is the method.

より詳細に説明すると、本発明の着眼点として、MIMO−OFDM通信システムにおいて、送信器受信器の双方に含まれるハードウェアの不完全性によるIQインバランスの影響を完全に取り除くために、先ず、トレーニング信号の構成を提案し、そして、提案されたトレーニング信号に基づいて、IQインバランス補償を実現する補償アルゴリズム(補償方法)を提案する。

<実施例1>周波数軸推定に基づく本発明の実施例
まず、周波数軸推定に基づく本発明に係るMIMO−OFDM通信システムにおけるIQインバランス補償方法(以下、単に、周波数軸推定に基づく本発明の実施例、或いは、本発明(周波数軸推定)とも称する)について説明する。
More specifically, as a point of view of the present invention, in the MIMO-OFDM communication system, in order to completely remove the influence of IQ imbalance due to hardware imperfection included in both transmitter and receiver, A configuration of a training signal is proposed, and a compensation algorithm (compensation method) for realizing IQ imbalance compensation is proposed based on the proposed training signal.

<Embodiment 1> Embodiment of the present invention based on frequency axis estimation First, an IQ imbalance compensation method in a MIMO-OFDM communication system according to the present invention based on frequency axis estimation (hereinafter simply referred to as the present invention based on frequency axis estimation). Embodiments or the present invention (also called frequency axis estimation) will be described.

図1は、MIMO−OFDM通信システムにおいて、本発明(周波数軸推定)を適用した受信器の構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of a receiver to which the present invention (frequency axis estimation) is applied in a MIMO-OFDM communication system.

図1に示されるように、本発明(周波数軸推定)を適用した受信器は、IQインバランスの影響を含んだ拡張チャネル行列を推定する「拡張チャネル行列推定器」と、IQインバランスの影響を考慮に入れた復調を実現する「拡張受信処理器(つまり、拡張MIMO処理器)」とを備えている。   As shown in FIG. 1, a receiver to which the present invention (frequency axis estimation) is applied includes an “extended channel matrix estimator” that estimates an extended channel matrix including the influence of IQ imbalance, and an influence of IQ imbalance. And an “extended reception processor (that is, an extended MIMO processor)” that realizes demodulation in consideration of the above.

ここで、本発明を適用する「送受信器のIQインバランスの影響を考慮に入れたm×mMIMO−OFDM通信システム」のモデル(以下、単にMIMO−OFDM通信システムモデル、或いは、MIMO−OFDM通信システムとも称する)を図2に示す。 Here, a model of “m t × m r MIMO-OFDM communication system taking into account the influence of IQ imbalance of a transceiver” to which the present invention is applied (hereinafter simply referred to as a MIMO-OFDM communication system model or a MIMO- FIG. 2 shows an OFDM communication system.

本発明(周波数軸推定)では、図2のMIMO−OFDM通信システムモデルにおける入力信号と出力信号が、下記数1のように書き表されることを利用して、IQインバランスの補償を実現するようにしている。   In the present invention (frequency axis estimation), IQ imbalance compensation is realized by using the fact that the input signal and output signal in the MIMO-OFDM communication system model of FIG. I am doing so.

Figure 0004702883
ここで、
Figure 0004702883
は第±kサブキャリアのI−ch、Q−chを独立に表現した送信信号ベクトルで、
Figure 0004702883
は第±kサブキャリアのI−ch、Q−chを独立に表現した受信信号ベクトルで、
Figure 0004702883
はIQインバランスの影響を含んだ第±kサブキャリアの拡張チャネル行列である。以下、この
Figure 0004702883
を単に「拡張チャネル行列」とも称する。また、
Figure 0004702883
は第±kサブキャリアにおける加法性雑音ベクトルである。
Figure 0004702883
here,
Figure 0004702883
Is a transmission signal vector that independently represents I-ch and Q-ch of the ± kth subcarriers,
Figure 0004702883
Is a received signal vector that independently represents I-ch and Q-ch of the ± kth subcarriers,
Figure 0004702883
Is an extended channel matrix of ± kth subcarrier including the influence of IQ imbalance. Hereafter, this
Figure 0004702883
Is also simply referred to as an “extended channel matrix”. Also,
Figure 0004702883
Is an additive noise vector in the ± kth subcarrier.

本発明では、MIMO−OFDM通信システムにおいて、拡張チャネル行列

Figure 0004702883
を学習することにより、IQインバランスの補償を行うようにしている。 In the present invention, in an MIMO-OFDM communication system, an extended channel matrix is used.
Figure 0004702883
By learning this, IQ imbalance is compensated.

以下、本発明において、IQインバランスの影響を含んだチャネル応答を推定可能なトレーニング信号、拡張チャネル行列の推定方法と、拡張チャネル行列を用いた受信処理を詳細に説明する。   Hereinafter, in the present invention, a training signal capable of estimating a channel response including the influence of IQ imbalance, an estimation method of an extended channel matrix, and a reception process using the extended channel matrix will be described in detail.

まず、本発明では、拡張チャネル行列

Figure 0004702883
の次元は4m×4mであるため、この拡張チャネル行列を学習するためには、少なくとも階数4mのトレーニング信号を用いる必要がある。例えば、下記数2、数3及び数4に示すように、直交アダマール行列をトレーニング信号として用いることで、拡張チャネル行列を学習することができる。 First, in the present invention, an extended channel matrix
Figure 0004702883
The dimensions for a 4m r × 4m t, in order to learn the extended channel matrix, it is necessary to use a training signal of at least rank 4m t. For example, as shown in the following equations 2, 3, and 4, the extended channel matrix can be learned by using the orthogonal Hadamard matrix as a training signal.

Figure 0004702883
Figure 0004702883

Figure 0004702883
Figure 0004702883

Figure 0004702883
ただし、
Figure 0004702883
はOFDMのためのトレーニング信号行列で、
Figure 0004702883
はMIMOのためのトレーニング信号行列で、
Figure 0004702883
はMIMO−OFDMのためのトレーニング信号行列であり、
Figure 0004702883
はクロネッカ積である。また、hadamard(4)は、4次の直交アダマール行列を表し、hadamard(m)は、m次の直交アダマール行列を表す。
Figure 0004702883
However,
Figure 0004702883
Is the training signal matrix for OFDM,
Figure 0004702883
Is a training signal matrix for MIMO,
Figure 0004702883
Is a training signal matrix for MIMO-OFDM,
Figure 0004702883
Is the Kronecker product. Further, hadamard (4) represents a fourth-order orthogonal Hadamard matrix, hadamard (m t) represents the m t following the orthogonal Hadamard matrix.

次に、拡張チャネル行列

Figure 0004702883
の推定方法について述べる。
Figure 0004702883
に対応する受信信号行列を
Figure 0004702883
とすると、下記数5により、拡張チャネル行列を最小二乗法で推定することができる。 Next, the extended channel matrix
Figure 0004702883
The estimation method is described.
Figure 0004702883
The received signal matrix corresponding to
Figure 0004702883
Then, the extended channel matrix can be estimated by the least square method according to the following equation (5).

Figure 0004702883
ただし、
Figure 0004702883

Figure 0004702883
の一般逆行列である。
Figure 0004702883
However,
Figure 0004702883
Is
Figure 0004702883
Is the general inverse of

最後に、拡張チャネル行列を用いた受信処理について説明する。   Finally, reception processing using an extended channel matrix will be described.

本発明では、MIMO−OFDM通信システムの受信処理方法(例えば、ZF、MMSE、MLD等の受信処理手法)を各受信器の第±kサブキャリアの信号について拡張チャネル行列を用いて行うことで、IQインバランスの補償を実現するようにしている。   In the present invention, a reception processing method (for example, reception processing techniques such as ZF, MMSE, MLD, etc.) of the MIMO-OFDM communication system is performed on the signals of the ± k subcarriers of each receiver using an extended channel matrix, Compensation for IQ imbalance is realized.

ここでは、具体例として、本発明において、ZFとMLDといった受信処理方法を用いた拡張受信処理を示す。   Here, as a specific example, extended reception processing using reception processing methods such as ZF and MLD is shown in the present invention.

先ず、拡張チャネル行列

Figure 0004702883
を用いたZF受信処理は、下記数6で表すことができる。 First, the extended channel matrix
Figure 0004702883
The ZF reception processing using the can be expressed by the following formula 6.

Figure 0004702883
ここで、
Figure 0004702883

Figure 0004702883
の一般逆行列である。
Figure 0004702883
here,
Figure 0004702883
Is
Figure 0004702883
Is the general inverse of

つまり、拡張チャネル行列を用いたZF受信処理では、拡張チャネル行列を用いて一般逆行列演算を行うことで、送信信号

Figure 0004702883
の推定を行うことができる。 That is, in the ZF reception process using the extended channel matrix, the transmission signal is obtained by performing general inverse matrix calculation using the extended channel matrix.
Figure 0004702883
Can be estimated.

次に、拡張チャネル行列

Figure 0004702883
を用いたMLD受信処理は、下記数7で表すことができる。 Next, the extended channel matrix
Figure 0004702883
The MLD reception process using can be expressed by the following equation (7).

Figure 0004702883
つまり、拡張チャネル行列を用いたMLD受信処理では、拡張チャネル行列を用いて2×m個の送信信号に対するレプリカ信号を生成し、尤度情報を元に送信信号
Figure 0004702883
の推定を行うことができる。
Figure 0004702883
That is, in the MLD reception processing using the extended channel matrix, using the extended channel matrix to generate a replica signal for the 2 × m t number of transmission signal, the transmission signal based on the likelihood information
Figure 0004702883
Can be estimated.

以上をまとめると、本発明(周波数軸推定)を適用したMIMO−OFDM通信システムでは、下記のステップ1、ステップ2、ステップ3に沿って、IQインバランスを補償して受信処理を行うようにしている。
ステップ1:
送信器側で、本発明で提案した「トレーニング信号」を送信する。好適に、トレーニング信号として、数2、数3及び数4に示す直交アダマール行列を用いる。
ステップ2:
拡張チャネル行列推定器では、数5に基づいて、IQインバランスの影響を含んだ拡張チャネル行列を推定する。
ステップ3:
拡張受信処理器(つまり、拡張MIMO処理器)では、IQインバランスの影響を考慮に入れた受信処理を実現し、つまり、ステップ2で推定された拡張チャネル行列に基づいて、MIMO−OFDM通信システムの受信処理方法で受信処理を行うことによって、IQインバランス補償を実現する。具体的な例として、拡張チャネル行列を用いたZF受信処理では、数6に基づいて受信処理を行う。また、拡張チャネル行列を用いたMLD受信処理では、数7に基づいて受信処理を行う。
In summary, in the MIMO-OFDM communication system to which the present invention (frequency axis estimation) is applied, the reception process is performed by compensating for IQ imbalance along the following Step 1, Step 2, and Step 3. Yes.
Step 1:
On the transmitter side, the “training signal” proposed in the present invention is transmitted. Preferably, orthogonal Hadamard matrices shown in Equations 2, 3, and 4 are used as training signals.
Step 2:
The extended channel matrix estimator estimates an extended channel matrix including the influence of IQ imbalance based on Equation 5.
Step 3:
The extended reception processor (that is, the extended MIMO processor) realizes reception processing taking into account the influence of IQ imbalance, that is, based on the extended channel matrix estimated in step 2, the MIMO-OFDM communication system. The IQ imbalance compensation is realized by performing the reception process with the reception process method. As a specific example, in ZF reception processing using an extended channel matrix, reception processing is performed based on Equation 6. In the MLD reception process using the extended channel matrix, the reception process is performed based on Equation 7.

上述した本発明(周波数軸推定)の効果を確認するために、4×4MIMO−OFDM通信システムにおいて、QPSK変調を行い、受信器においてIQインバランス補償無しの従来方法と、本発明(周波数軸推定)をそれぞれ用いて、受信処理を行うことにした。   In order to confirm the effect of the present invention (frequency axis estimation) described above, a conventional method in which QPSK modulation is performed in a 4 × 4 MIMO-OFDM communication system and no IQ imbalance compensation is performed in the receiver, and the present invention (frequency axis estimation). ) To perform reception processing.

図3は、IQインバランス補償無しの従来方法を用いて受信処理を行った場合の受信コンスタレーションの一例を示す図である。そして、図4は、本発明(周波数軸推定)を用いて受信処理を行った場合の受信コンスタレーションの一例を示す図である。   FIG. 3 is a diagram illustrating an example of a reception constellation when reception processing is performed using a conventional method without IQ imbalance compensation. FIG. 4 is a diagram illustrating an example of a reception constellation when reception processing is performed using the present invention (frequency axis estimation).

図3及び図4から、IQインバランス補償無しの従来方法では、干渉の影響によりコンスタレーションが広がってしまっているのに対し、本発明(周波数軸推定)では、コンスタレーションの広がりが抑えられていることがよく分かる。   From FIG. 3 and FIG. 4, the constellation spreads due to the influence of interference in the conventional method without IQ imbalance compensation, whereas in the present invention (frequency axis estimation), the spread of the constellation is suppressed. I can see that

また、IQインバランス補償無しの従来方法と本発明(周波数軸推定)に対して、誤り率特性について計算機シミュレーションを行い、評価を行った。計算機シミュレーションに用いられたパラメータを下記表1にまとめる。   In addition, for the conventional method without IQ imbalance compensation and the present invention (frequency axis estimation), a computer simulation was performed to evaluate the error rate characteristics. The parameters used for the computer simulation are summarized in Table 1 below.

Figure 0004702883
計算機シミュレーションの結果を図5に示す。つまり、図5は、IQインバランス補償無しの従来方法と、本発明(周波数軸推定)をそれぞれ適用した場合の誤り率特性を示す図である。図5から分かるように、IQインバランス補償無しの従来方法では、干渉の影響により誤り率特性が飽和してしまっていたが、本発明(周波数軸推定)では、誤り率特性が改善されている。

<実施例2>時間軸推定に基づく本発明の実施例
次に、時間軸推定に基づく本発明に係るMIMO−OFDM通信システムにおけるIQインバランス補償方法(以下、単に、時間軸推定に基づく本発明の実施例、或いは、本発明(時間軸推定)とも称する)について説明する。
Figure 0004702883
The result of the computer simulation is shown in FIG. That is, FIG. 5 is a diagram showing error rate characteristics when the conventional method without IQ imbalance compensation and the present invention (frequency axis estimation) are applied. As can be seen from FIG. 5, in the conventional method without IQ imbalance compensation, the error rate characteristic was saturated due to the influence of interference, but in the present invention (frequency axis estimation), the error rate characteristic is improved. .

<Embodiment 2> Embodiment of the present invention based on time axis estimation Next, an IQ imbalance compensation method in a MIMO-OFDM communication system according to the present invention based on time axis estimation (hereinafter simply referred to as the present invention based on time axis estimation). Or the present invention (time axis estimation)).

本発明(時間軸推定)は、時間軸においてチャネル推定を行うことにより、実施例1のトレーニング信号より短いトレーニング信号長で、IQインバランスの補償を実現するものである。本発明(時間軸推定)で用いるトレーニング信号は、時間軸においてIQインバランスの影響を含んだチャネル応答を推定可能な「トレーニング信号」である。   The present invention (time axis estimation) realizes IQ imbalance compensation with a shorter training signal length than the training signal of the first embodiment by performing channel estimation on the time axis. The training signal used in the present invention (time axis estimation) is a “training signal” capable of estimating a channel response including the influence of IQ imbalance on the time axis.

図6は、MIMO−OFDM通信システムにおいて、本発明(時間軸推定)を適用した受信器の構成を示すブロック図である。   FIG. 6 is a block diagram showing a configuration of a receiver to which the present invention (time axis estimation) is applied in a MIMO-OFDM communication system.

図6に示されるように、本発明(時間軸推定)を適用した受信器は、時間軸上のチャネルを推定する「時間軸チャネル推定器」と、時間軸上のチャネル応答から周波数軸上の拡張チャネル行列へ変換する「拡張チャネル行列推定器」と、IQインバランスの影響を考慮に入れた復調を実現する「拡張受信処理器(つまり、拡張MIMO処理器)」とを備えている。   As shown in FIG. 6, the receiver to which the present invention (time axis estimation) is applied includes a “time axis channel estimator” that estimates a channel on the time axis, and a frequency response from a channel response on the time axis. An “extended channel matrix estimator” for converting to an extended channel matrix and an “enhanced reception processor (that is, an extended MIMO processor)” that realizes demodulation taking into account the influence of IQ imbalance are provided.

まず、本発明(時間軸推定)において、拡張チャネル行列の推定方法について説明する。   First, a method for estimating an extended channel matrix in the present invention (time axis estimation) will be described.

即ち、時間軸チャネル推定器で推定した時間軸上のチャネルに基づいて、拡張チャネル行列を以下のように推定する。   That is, the extended channel matrix is estimated as follows based on the channel on the time axis estimated by the time axis channel estimator.

まず、MIMO−OFDM通信システムにおいて、第m受信アンテナにおける時間軸上の受信信号ベクトル

Figure 0004702883
を下記数8、数9によって表現する。 First, in a MIMO-OFDM communication system, a received signal vector on the time axis at the m-th receiving antenna.
Figure 0004702883
Is expressed by the following equations 8 and 9.

Figure 0004702883
Figure 0004702883

Figure 0004702883
ここで、添え字iは信号の実数成分を、添え字qは信号の虚数成分をそれぞれ表している。また、1OFDMシンボルのFFTポイント数をLとしている。
Figure 0004702883
Here, the suffix i represents the real component of the signal, and the suffix q represents the imaginary component of the signal. Further, the number of FFT points of one OFDM symbol is L.

そして、第n送信アンテナにおける時間軸上の送信信号ベクトル

Figure 0004702883
を下記数10、数11によって表現する。 And the transmission signal vector on the time axis in the nth transmission antenna
Figure 0004702883
Is expressed by the following equations 10 and 11.

Figure 0004702883
Figure 0004702883

Figure 0004702883
ここでも、添え字iは信号の実数成分を、添え字qは信号の虚数成分をそれぞれ表している。また、1OFDMシンボルのFFTポイント数をLとしている。
Figure 0004702883
Again, the subscript i represents the real component of the signal, and the subscript q represents the imaginary component of the signal. Further, the number of FFT points of one OFDM symbol is L.

次に、第n送信アンテナから送信され第

Figure 0004702883
タップ遅延のパスを通った信号のベクトルを下記数12で表すことにする。 Next, it is transmitted from the nth transmitting antenna and
Figure 0004702883
The vector of the signal passing through the tap delay path is expressed by the following equation (12).

Figure 0004702883
ここで、サイクリックプリフィックスの挿入により、
Figure 0004702883
の関係が成り立っている。ただし、LGIはガードインターバルポイント数である。
Figure 0004702883
Here, by inserting a cyclic prefix,
Figure 0004702883
The relationship is established. However, LGI is the number of guard interval points.

第n送信アンテナから第m受信アンテナへの第

Figure 0004702883
タップ遅延のチャネルの状態を
Figure 0004702883
と表現すると、送受信信号の関係は、下記数13及び数14のように書き表すことができる。 N-th transmitting antenna to m-th receiving antenna
Figure 0004702883
The channel state of the tap delay
Figure 0004702883
In other words, the relationship between transmission and reception signals can be expressed as in the following equations 13 and 14.

Figure 0004702883
Figure 0004702883

Figure 0004702883
ここで、添え字iiはi-ch→i-ch、添え字iqはq-ch→i-ch、添え字qiはi-ch→q-ch、添え字qqはq-ch→q-chへのチャネル応答であることを示している。また、mは送信アンテナ本数で、
Figure 0004702883
は最大遅延のタップ数を表している。
Figure 0004702883
Where subscript ii is i-ch → i-ch, subscript iq is q-ch → i-ch, subscript qi is i-ch → q-ch, subscript qq is q-ch → q-ch It is a channel response to. Mt is the number of transmitting antennas,
Figure 0004702883
Represents the number of taps with the maximum delay.

ここで、下記数15、数16、数17及び数18に示すように、送信信号を表す行列

Figure 0004702883
とチャネルを表すベクトル
Figure 0004702883
を定義する。 Here, as shown in the following equations 15, 16, 17, and 18, a matrix representing a transmission signal
Figure 0004702883
And channel vector
Figure 0004702883
Define

Figure 0004702883
Figure 0004702883

Figure 0004702883
Figure 0004702883

Figure 0004702883
Figure 0004702883

Figure 0004702883
上記定義を用いて、数13を下記数19に書き直すことができる。
Figure 0004702883
Using the above definition, Equation 13 can be rewritten as Equation 19 below.

Figure 0004702883
以上より、時間軸におけるチャネルは、下記数20に基づいて求めることができる。即ち、図6の時間軸チャネル推定器では、この数20に基づいて時間軸上のチャネルを求めるようにしている。
Figure 0004702883
From the above, the channel on the time axis can be obtained based on the following equation (20). That is, in the time axis channel estimator of FIG. 6, the channel on the time axis is obtained based on this equation (20).

Figure 0004702883
ただし、
Figure 0004702883

Figure 0004702883
の一般逆行列である。
Figure 0004702883
However,
Figure 0004702883
Is
Figure 0004702883
Is the general inverse of

ここで、図6を参照しながら、時間軸上のチャネル推定を表す数20により求めた

Figure 0004702883
内のサブマトリックス
Figure 0004702883
より、周波数軸上の拡張チャネル行列を生成する手順を示す。 Here, with reference to FIG. 6, it was obtained by Expression 20 representing channel estimation on the time axis.
Figure 0004702883
Sub-matrix in
Figure 0004702883
Thus, a procedure for generating an extended channel matrix on the frequency axis will be described.

まず、FFTを表す行列

Figure 0004702883
の第
Figure 0004702883
要素は、下記数21に書き表すことができる。 First, a matrix representing FFT
Figure 0004702883
The first
Figure 0004702883
The element can be written in Equation 21 below.

Figure 0004702883
また、実数空間上で表したFFTを表す行列
Figure 0004702883
の第
Figure 0004702883
サブマトリックス
Figure 0004702883
は、下記数22に書き表すことができる。
Figure 0004702883
Also, a matrix representing FFT expressed in real space
Figure 0004702883
The first
Figure 0004702883
Submatrix
Figure 0004702883
Can be written in the following Equation 22.

Figure 0004702883
さらに、±k番目のサブキャリアに対するフーリエ変換を表す行列は、
Figure 0004702883
より第kサブ行及び第L−kサブ行を抜き出すことで、下記数23で表すことができる。
Figure 0004702883
Furthermore, the matrix representing the Fourier transform for the ± kth subcarrier is
Figure 0004702883
Further, by extracting the k-th sub-row and the L-k-th sub-row, the following Expression 23 can be used.

Figure 0004702883
次に、図6に示されるように、時間軸上のチャネル行列のFFTを行う。まず、FFTポイント数
Figure 0004702883
まで
Figure 0004702883
に対して0パッドを行う。
Figure 0004702883
Next, as shown in FIG. 6, FFT of the channel matrix on the time axis is performed. First, the number of FFT points
Figure 0004702883
Until
Figure 0004702883
Perform 0 pad to.

Figure 0004702883
ここで、
Figure 0004702883
は第
Figure 0004702883
タップ遅延のチャネルの状態を表す行列である。
Figure 0004702883
here,
Figure 0004702883
Is the first
Figure 0004702883
It is a matrix showing the channel state of tap delay.

時刻xの送信信号に対するチャネル応答は、下記数25に書き表すことができる。   The channel response to the transmission signal at time x can be written as

Figure 0004702883
ただし、サイクリックプリフィックスの挿入を考慮すると、
Figure 0004702883
が成り立っている。
Figure 0004702883
However, considering the insertion of a cyclic prefix,
Figure 0004702883
Is true.

すべての送信時刻に対するチャネルの応答は、下記数26で表す巡回行列

Figure 0004702883
として、表現することができる。 The channel response for all transmission times is a circulant matrix expressed by Equation 26 below.
Figure 0004702883
Can be expressed as:

Figure 0004702883
上記の数式を用いて、±kサブキャリア間干渉の影響を含んだ周波数軸のチャネル行列は、下記数27で表される。
Figure 0004702883
Using the above equation, the channel matrix on the frequency axis including the influence of ± k intersubcarrier interference is expressed by the following equation (27).

Figure 0004702883
さらに、数27で表すチャネル行列をm×mのMIMO−OFDM通信システムに拡張した場合のストリーム間干渉の影響を考慮に入れた拡張チャネル行列は、下記数28で表すことができる。
Figure 0004702883
Further, an extended channel matrix taking into account the influence of inter-stream interference when the channel matrix represented by Equation 27 is expanded to an m t × m r MIMO-OFDM communication system can be represented by Equation 28 below.

Figure 0004702883
以上に述べた手順により、時間軸におけるチャネル推定により、周波数軸上の拡張チャネル行列の推定を行うことができる。
Figure 0004702883
By the procedure described above, it is possible to estimate the extended channel matrix on the frequency axis by channel estimation on the time axis.

ところで、本発明(時間軸推定)において、時間軸においてIQインバランスの影響を含んだチャネル応答を求めるためには、トレーニング信号が下記(イ)、(ロ)、(ハ)という条件を満たす必要がある。
(イ)IQチャネル間の直交性
(ロ)ストリーム間の直交性
(ハ)推定誤差の小さな系列
以下、本発明(時間軸推定)において、上記(イ)、(ロ)、(ハ)という条件を満たすトレーニング信号の一実施例を示す。
By the way, in the present invention (time axis estimation), in order to obtain a channel response including the influence of IQ imbalance on the time axis, the training signal must satisfy the following conditions (A), (B), and (C). There is.
(B) Orthogonality between IQ channels (b) Orthogonality between streams (c) Small sequence of estimation error In the following (time axis estimation) of the present invention (time axis estimation), the conditions (i), (b), (c) An example of a training signal that satisfies is shown.

送信アンテナ本数mのMIMO−OFDM通信システムにおいて、OFDMシンボルに含まれる総サブキャリア数がLのとき、周波数軸において下記数29に示すトレーニング信号を用いることで、本発明(時間軸推定)の拡張チャネル行列を求めることができる。なお、図7は数29に示す周波数軸トレーニング信号

Figure 0004702883
のイメージを説明するための模式図である。 In the MIMO-OFDM communication system with the number of transmitting antennas mt, when the total number of subcarriers included in the OFDM symbol is L s , the present invention (time axis estimation) is used by using the training signal shown in the following equation 29 on the frequency axis. Can be obtained. FIG. 7 shows the frequency axis training signal shown in Equation 29.
Figure 0004702883
It is a schematic diagram for demonstrating the image.

Figure 0004702883
数29で表すトレーニング信号を周波数軸においてBPSK信号とすることで、時間軸におけるIQチャネル間のトレーニング信号の直交性を確保する。そして、数29で表すトレーニング信号をアダマール直交行列で拡散することで、ストリーム間のトレーニング信号の直交性を確保している。また、
Figure 0004702883
は、数29で表すトレーニング信号を用いてチャネル推定を行ったときの推定誤差が小さくなる系列を適用する。
Figure 0004702883
By using the training signal represented by Equation 29 as a BPSK signal on the frequency axis, the orthogonality of the training signal between IQ channels on the time axis is ensured. And the orthogonality of the training signal between streams is ensured by spreading | difening the training signal represented by Numerical formula 29 by a Hadamard orthogonal matrix. Also,
Figure 0004702883
Applies a sequence in which an estimation error is small when channel estimation is performed using the training signal represented by Equation 29.

上述した本発明(時間軸推定)の効果を確認するために、IQインバランス補償無しの従来方法、本発明(周波数軸推定)、本発明(時間軸推定)に対して、誤り率特性について計算機シミュレーションを行い、評価を行った。計算機シミュレーションに用いられたパラメータを下記表2に示す。   In order to confirm the effect of the present invention (time axis estimation) described above, the error rate characteristics are calculated with respect to the conventional method without IQ imbalance compensation, the present invention (frequency axis estimation), and the present invention (time axis estimation). A simulation was performed for evaluation. The parameters used for the computer simulation are shown in Table 2 below.

Figure 0004702883
計算機シミュレーションの結果を図8に示す。つまり、図8は、IQインバランス補償無しの従来方法と、本発明(周波数軸推定)、本発明(時間軸推定)をそれぞれ適用した場合の誤り率特性を示す図である。
Figure 0004702883
The result of the computer simulation is shown in FIG. That is, FIG. 8 is a diagram showing error rate characteristics when the conventional method without IQ imbalance compensation, the present invention (frequency axis estimation), and the present invention (time axis estimation) are applied.

図8から分かるように、本発明を適用した場合は、IQインバランス補償無しの従来方法を適用した場合と比べて、誤り率特性が大幅に改善した。また、図8から、周波数軸上における拡張チャネル推定に比べても、時間軸推定によるチャネル推定誤差低減の効果が得られ、特にMLD受信処理において、誤り率特性が大きく改善していることがよく分かる。   As can be seen from FIG. 8, when the present invention is applied, the error rate characteristics are greatly improved as compared with the case where the conventional method without IQ imbalance compensation is applied. In addition, it can be seen from FIG. 8 that the effect of channel estimation error reduction by time axis estimation can be obtained compared to extended channel estimation on the frequency axis, and in particular, the error rate characteristic is greatly improved in MLD reception processing. I understand.

周波数軸推定に基づく本発明に係るMIMO−OFDM通信システムにおけるIQインバランス補償方法を適用した受信器の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver to which the IQ imbalance compensation method in the MIMO-OFDM communication system based on this invention based on frequency-axis estimation is applied. 本発明において使用されるMIMO−OFDM通信システムIQインバランスモデルを説明するための模式図である。It is a schematic diagram for demonstrating the MIMO-OFDM communication system IQ imbalance model used in this invention. IQインバランス補償無しの従来方法を用いて受信処理を行った場合の受信コンスタレーションの一例を示す図である。It is a figure which shows an example of the reception constellation at the time of performing a reception process using the conventional method without IQ imbalance compensation. 周波数軸推定に基づく本発明に係るMIMO−OFDM通信システムにおけるIQインバランス補償方法を用いて受信処理を行った場合の受信コンスタレーションの一例を示す図である。It is a figure which shows an example of the reception constellation at the time of performing a receiving process using the IQ imbalance compensation method in the MIMO-OFDM communication system based on this invention based on frequency-axis estimation. IQインバランス補償無しの従来方法と、周波数軸推定に基づく本発明に係るMIMO−OFDM通信システムにおけるIQインバランス補償方法をそれぞれ適用した場合の誤り率特性を示す図である。It is a figure which shows the error rate characteristic at the time of applying the IQ imbalance compensation method in the MIMO-OFDM communication system based on the frequency axis estimation and the conventional method without IQ imbalance compensation according to the present invention. 時間軸推定に基づく本発明に係るMIMO−OFDM通信システムにおけるIQインバランス補償方法を適用した受信器の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver to which the IQ imbalance compensation method in the MIMO-OFDM communication system based on this invention based on time-axis estimation is applied. 本発明(時間軸推定)において、周波数軸トレーニング信号の一実施例のイメージを説明するための模式図である。In this invention (time-axis estimation), it is a schematic diagram for demonstrating the image of one Example of a frequency-axis training signal. IQインバランス補償無しの従来方法、本発明(周波数軸推定)、本発明(時間軸推定)をそれぞれ適用した場合の誤り率特性を示す図である。It is a figure which shows the error rate characteristic at the time of applying the conventional method without IQ imbalance compensation, this invention (frequency axis estimation), and this invention (time-axis estimation), respectively.

Claims (12)

MIMO−OFDM通信システムにおける送信装置であって、
前記送信装置が送信した信号を受信する受信装置が前記送信装置と前記受信装置のIQインバランスを含んだチャネル応答を推定可能なトレーニング信号を送信し、
前記トレーニング信号は、OFDM用のトレーニング信号と、MIMO用のトレーニング信号とを構成要素に含み、
前記OFDM用のトレーニング信号は、IQインバランスの影響による上下側波帯のサブキャリア間干渉の影響を含むチャネル応答行列を推定可能なトレーニング信号であり、
前記MIMO用のトレーニング信号は、IQインバランスの影響によるストリーム間干渉の影響を含むチャネル応答行列を推定可能なトレーニング信号であることを特徴とする送信装置。
A transmission apparatus in a MIMO-OFDM communication system,
A receiving device that receives a signal transmitted by the transmitting device transmits a training signal capable of estimating a channel response including IQ imbalance between the transmitting device and the receiving device ;
The training signal includes a training signal for OFDM and a training signal for MIMO as constituent elements,
The OFDM training signal is a training signal capable of estimating a channel response matrix including the effect of interference between subcarriers in the upper and lower sidebands due to the effect of IQ imbalance,
The MIMO training signal is a training signal capable of estimating a channel response matrix including the effect of inter-stream interference caused by IQ imbalance .
前記トレーニング信号は、
[階数4×送信アンテナ数]からなる行列により構成されることを特徴とする請求項に記載の送信装置。
The training signal is
The transmission apparatus according to claim 1 , wherein the transmission apparatus is configured by a matrix composed of [floor 4 × number of transmission antennas].
前記トレーニング信号は、
ストリーム間で直交するように配置することを特徴とする請求項1に記載の送信装置。
The training signal is
The transmission apparatus according to claim 1, wherein the transmission apparatuses are arranged so as to be orthogonal between streams.
前記トレーニング信号は、
直交行列に基づいた信号であることを特徴とする請求項1に記載の送信装置。
The training signal is
The transmission apparatus according to claim 1, wherein the transmission apparatus is a signal based on an orthogonal matrix.
前記トレーニング信号は、
(イ)IQチャネル間の直交性、(ロ)ストリーム間の直交性、(ハ)推定誤差の小さな系列、の3つの条件を満たすことを特徴とする請求項1に記載の送信装置。
The training signal is
2. The transmission apparatus according to claim 1, wherein three conditions are satisfied: (b) orthogonality between IQ channels, (b) orthogonality between streams, and (c) a sequence having a small estimation error.
前記MIMO−OFDM通信システムの送信アンテナ本数はmで、OFDMシンボルに含まれる総サブキャリア数がLの場合、前記トレーニング信号は次の数式によって定義され、
Figure 0004702883
ただし、haadmard(m)は、m次の直交アダマール行列を表し、
Figure 0004702883
は前記トレーニング信号を用いてチャネル推定を行ったときの推定誤差が小さくなる系列を適用することを特徴とする請求項1に記載の送信装置。
Wherein in MIMO-OFDM transmission antenna number of the communication system m t, if the total number of subcarriers included in OFDM symbols of L s, the training signal is defined by the following formula
Figure 0004702883
However, haadmard (m t) represents the m t following the orthogonal Hadamard matrix,
Figure 0004702883
The transmission apparatus according to claim 1, wherein a sequence that reduces an estimation error when channel estimation is performed using the training signal is applied.
前記トレーニング信号として、下記の数式で表す直交アダマール行列を用い、
Figure 0004702883
ただし、
Figure 0004702883
はOFDMのためのトレーニング信号行列で、
Figure 0004702883
はMIMOのためのトレーニング信号行列で、
Figure 0004702883
はMIMO−OFDMのためのトレーニング信号行列であり、
Figure 0004702883
はクロネッカ積であり、また、hadamard(4)は、4次の直交アダマール行列を表し、hadamard(mt)は、mt次の直交アダマール行列を表し、
前記チャネル応答行列は、次の数式によって推定され、
Figure 0004702883
ただし、
Figure 0004702883

Figure 0004702883
に対応する受信信号行列で、
Figure 0004702883

Figure 0004702883
の一般逆行列であることを特徴とする請求項1に記載の送信装置。
As the training signal, using an orthogonal Hadamard matrix represented by the following formula,
Figure 0004702883
However,
Figure 0004702883
Is the training signal matrix for OFDM,
Figure 0004702883
Is a training signal matrix for MIMO,
Figure 0004702883
Is a training signal matrix for MIMO-OFDM,
Figure 0004702883
Is a Kronecker product, and hadamard (4) represents a fourth-order orthogonal Hadamard matrix, hadamard (mt) represents an mt-order orthogonal Hadamard matrix,
The channel response matrix is estimated by the following equation:
Figure 0004702883
However,
Figure 0004702883
Is
Figure 0004702883
Is a received signal matrix corresponding to
Figure 0004702883
Is
Figure 0004702883
The transmission apparatus according to claim 1, wherein the transmission apparatus is a general inverse matrix.
IQインバランスの影響による上下側波帯サブキャリア間干渉とストリーム間干渉の影響を拡張チャネル応答を推定する拡張チャネル行列推定部と、
前記拡張チャネル応答を用いて、MIMO−OFDMの受信処理を行う拡張受信処理部と、
を備えることを特徴とする受信装置。
An expansion channel matrix estimator for the effects of IQ-between affected by the interference between the upper and lower sidebands subcarrier stream balance interference estimating the including extended channel response,
An extended reception processing unit that performs MIMO-OFDM reception processing using the extended channel response;
A receiving apparatus comprising:
送信装置、受信装置を備えるMIMO−OFDM通信システムであって、A MIMO-OFDM communication system comprising a transmission device and a reception device,
前記送信装置は、The transmitter is
IQインバランスの影響による上下側波帯サブキャリア間干渉とストリーム間干渉の影響を含んだチャネル応答を推定可能なトレーニング信号を送信し、  Send a training signal that can estimate the channel response including the effects of upper and lower sideband inter-carrier interference and inter-stream interference due to IQ imbalance,
前記受信装置は、The receiving device is:
送信された前記トレーニング信号に基づいて、IQインバランスの影響を含んだ拡張チャネル行列を推定する拡張チャネル行列推定部と、  An extended channel matrix estimator for estimating an extended channel matrix including the influence of IQ imbalance based on the transmitted training signal;
前記拡張チャネル行列推定部で推定された拡張チャネル行列に基づいて、前記MIMO−OFDM通信システムの受信処理方法で受信処理を行う拡張受信処理部と、An extended reception processing unit that performs reception processing in the reception processing method of the MIMO-OFDM communication system based on the extended channel matrix estimated by the extended channel matrix estimation unit;
を備えることを特徴とするMIMO−OFDM通信システム。A MIMO-OFDM communication system comprising:
送信装置、受信装置を備えるMIMO−OFDM通信システムであって、A MIMO-OFDM communication system comprising a transmission device and a reception device,
前記送信装置は、The transmitter is
時間軸においてIQインバランスの影響による上下側波帯サブキャリア間干渉とストリーム間干渉の影響を含んだチャネル応答を推定可能なトレーニング信号を送信し、  A training signal capable of estimating the channel response including the effects of the inter-subcarrier interference between the upper and lower sidebands due to the influence of IQ imbalance on the time axis is transmitted,
前記受信装置は、The receiving device is:
送信された前記トレーニング信号に基づいて、前記時間軸上のチャネルを推定する時間軸チャネル推定部と、  A time axis channel estimation unit that estimates a channel on the time axis based on the transmitted training signal;
前記時間軸上のチャネル応答からIQインバランスの影響による上下側波帯サブキャリア間干渉とストリーム間干渉の影響を含んだ周波数軸上の拡張チャネル行列を求める拡張チャネル行列推定部と、An extended channel matrix estimator for obtaining an extended channel matrix on the frequency axis including the effects of upper and lower sideband inter-subcarrier interference and inter-stream interference caused by IQ imbalance from the channel response on the time axis;
前記拡張チャネル行列に基づいて、前記MIMO−OFDM通信システムの受信処理方法で受信処理を行う拡張受信処理部と、An extended reception processing unit that performs reception processing in the reception processing method of the MIMO-OFDM communication system based on the extended channel matrix;
を備えることを特徴とするMIMO−OFDM通信システム。A MIMO-OFDM communication system comprising:
MIMO−OFDM通信システムに適用され、送信装置受信装置の双方に含まれるハードウェアの不完全性が引き起こすIQインバランスを補償するためのMIMO−OFDM通信システムにおけるIQインバランス補償方法であって、
前記送信装置側で、IQインバランスの影響を含んだチャネル応答を推定可能なトレーニング信号を送信する第1のステップと、
前記受信装置側で、送信された前記トレーニング信号に基づいて、IQインバランスの影響による上下側波帯サブキャリア間干渉とストリーム間干渉の影響を含んだ拡張チャネル行列を推定する第2のステップと、
前記第2のステップで推定された拡張チャネル行列に基づいて、前記MIMO−OFDM通信システムの受信処理方法で受信処理を行うことによって、IQインバランスの補償を実現する第3のステップと、
を有することを特徴とするMIMO−OFDM通信システムにおけるIQインバランス補償方法。
An IQ imbalance compensation method in a MIMO-OFDM communication system, which is applied to a MIMO-OFDM communication system and compensates for IQ imbalance caused by hardware imperfections included in both transmitter and receiver devices,
In the transmission device side, a first step of transmitting the estimated available training signal channel response including the effects of I Q imbalance,
In the receiving apparatus, based on the training signal transmitted, a second step of estimating the extended channel matrix that contains the influence of the upper and lower inter-sideband subcarrier interference and inter-stream interference caused by the influence of I Q imbalance When,
Based on the estimated expanded channel matrix in the second step, by performing reception processing in the reception processing method of the MIMO-OFDM communication system, a third step of implementing the compensation of I Q imbalance,
An IQ imbalance compensation method in a MIMO-OFDM communication system, comprising:
MIMO−OFDM通信システムに適用され、送信装置受信装置の双方に含まれるハードウェアの不完全性が引き起こすIQインバランスを補償するためのMIMO−OFDM通信システムにおけるIQインバランス補償方法であって、
前記送信装置側で、時間軸においてIQインバランスの影響を含んだチャネル応答を推定可能なトレーニング信号を送信する第1のステップと、
前記受信装置側で、送信された前記トレーニング信号に基づいて、IQインバランスの影響による上下側波帯サブキャリア間干渉とストリーム間干渉の影響を含んだ前記時間軸上のチャネルを推定する第2のステップと、
前記時間軸上のチャネル応答から周波数軸上の拡張チャネル行列へ変換する第3のステップと、
前記第3のステップで変換された拡張チャネル行列に基づいて、前記MIMO−OFDM通信システムの受信処理方法で受信処理を行うことによって、IQインバランスの補償を実現する第4のステップと、
を有することを特徴とするMIMO−OFDM通信システムにおけるIQインバランス補償方法。
An IQ imbalance compensation method in a MIMO-OFDM communication system, which is applied to a MIMO-OFDM communication system and compensates for IQ imbalance caused by hardware imperfections included in both transmitter and receiver devices,
In the transmission device side, a first step of transmitting the estimated available training signal channel response including the effects of I Q imbalance Te time axis odor,
Based on the transmitted training signal, the receiving apparatus side estimates a channel on the time axis including the effects of upper and lower sideband inter-subcarrier interference due to IQ imbalance and inter-stream interference . And the steps
A third step of converting the channel response on the time axis into an extended channel matrix on the frequency axis;
Based on the converted extended channel matrix in the third step, by performing reception processing in the reception processing method of the MIMO-OFDM communication system, a fourth step of realizing the compensation of I Q imbalance,
An IQ imbalance compensation method in a MIMO-OFDM communication system, comprising:
JP2005241162A 2005-08-23 2005-08-23 Transmitting apparatus, receiving apparatus, MIMO-OFDM communication system, and IQ imbalance compensation method in MIMO-OFDM communication system Expired - Fee Related JP4702883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005241162A JP4702883B2 (en) 2005-08-23 2005-08-23 Transmitting apparatus, receiving apparatus, MIMO-OFDM communication system, and IQ imbalance compensation method in MIMO-OFDM communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005241162A JP4702883B2 (en) 2005-08-23 2005-08-23 Transmitting apparatus, receiving apparatus, MIMO-OFDM communication system, and IQ imbalance compensation method in MIMO-OFDM communication system

Publications (3)

Publication Number Publication Date
JP2007060106A JP2007060106A (en) 2007-03-08
JP2007060106A5 JP2007060106A5 (en) 2009-12-03
JP4702883B2 true JP4702883B2 (en) 2011-06-15

Family

ID=37923226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241162A Expired - Fee Related JP4702883B2 (en) 2005-08-23 2005-08-23 Transmitting apparatus, receiving apparatus, MIMO-OFDM communication system, and IQ imbalance compensation method in MIMO-OFDM communication system

Country Status (1)

Country Link
JP (1) JP4702883B2 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US8064550B2 (en) 2007-03-09 2011-11-22 Qualcomm, Incorporated Quadrature imbalance estimation using unbiased training sequences
US8290083B2 (en) 2007-03-09 2012-10-16 Qualcomm Incorporated Quadrature imbalance mitigation using unbiased training sequences
KR101075288B1 (en) * 2007-03-09 2011-10-19 콸콤 인코포레이티드 Quadrature modulation rotating training sequence
US8428175B2 (en) 2007-03-09 2013-04-23 Qualcomm Incorporated Quadrature modulation rotating training sequence
CN103036839B (en) * 2007-08-20 2015-09-30 瑞登有限责任公司 MU-MAS, wireless client device and the method implemented in MU-MAS
JP5526901B2 (en) 2010-03-19 2014-06-18 富士通株式会社 IQ imbalance correction method in wireless communication apparatus including quadrature modulation / demodulation function
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
RU2767777C2 (en) 2013-03-15 2022-03-21 Риарден, Ллк Systems and methods of radio frequency calibration using the principle of reciprocity of channels in wireless communication with distributed input - distributed output
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245871A (en) * 2005-03-02 2006-09-14 Hitachi Ltd Radio data-communication system and method for radio data communication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245871A (en) * 2005-03-02 2006-09-14 Hitachi Ltd Radio data-communication system and method for radio data communication

Also Published As

Publication number Publication date
JP2007060106A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4702883B2 (en) Transmitting apparatus, receiving apparatus, MIMO-OFDM communication system, and IQ imbalance compensation method in MIMO-OFDM communication system
US8416759B1 (en) Carrier frequency offset and doppler frequency estimation and correction for OFDMA and SC-FDMA
RU2455779C2 (en) System and method for wireless communication with distributed inputs and distributed outputs
KR101009774B1 (en) The spatial modulation method in multiple-input multiple-output system and the transmitting and receiving apparatus using the same
US8081690B2 (en) OFDM channel estimation
JP4911780B2 (en) Wireless communication system, receiving apparatus and receiving method
JP5687524B2 (en) Transmitting apparatus, receiving apparatus, communication system, communication method, and integrated circuit
US20140064354A1 (en) Filter calculating device, transmitting device, receiving device, processor, and filter calculating method
RU2011131822A (en) SYSTEM AND METHOD OF WIRELESS COMMUNICATION WITH DISTRIBUTED INPUTS AND DISTRIBUTED OUTPUTS
US8711987B2 (en) Method and receiver for jointly decoding received communication signals using maximum likelihood detection
KR101241824B1 (en) A receiver of communication system for orthogonal frequency division multiplexing and Method for mitigate a phase noise in thereof
WO2010053059A1 (en) Radio communication device and method
JP2006246176A (en) Mimo-receiving device, receiving method and radio communications system
US20150043683A1 (en) Receiving device, receiving method, and receiving program
US20180123856A1 (en) Communication with i-q decoupled ofdm modulation
JP2010502140A (en) Equalization structure and equalization method
US8050335B2 (en) Equal phase combining technique for a robust OFDM system
Zarikoff et al. Multiple frequency offset estimation for the downlink of coordinated MIMO systems
JP5047289B2 (en) Equalization structure and equalization method
JP5770558B2 (en) Receiving device, program, and integrated circuit
KR101314776B1 (en) Apparatus and method for frequency offset compensation in mobile communication system
Charrada Support vector machines regression for mimo-ofdm channel estimation
KR100874011B1 (en) Frequency offset compensation device and method in wireless communication system
Beheshti et al. Joint compensation of transmitter and receiver IQ imbalance for MIMO-OFDM over doubly selective channels
EP2244432A1 (en) Compensating carrier frequency offsets in OFDM systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091016

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees