TWI444475B - 經設計之成骨蛋白類 - Google Patents
經設計之成骨蛋白類 Download PDFInfo
- Publication number
- TWI444475B TWI444475B TW100129548A TW100129548A TWI444475B TW I444475 B TWI444475 B TW I444475B TW 100129548 A TW100129548 A TW 100129548A TW 100129548 A TW100129548 A TW 100129548A TW I444475 B TWI444475 B TW I444475B
- Authority
- TW
- Taiwan
- Prior art keywords
- bmp
- type
- protein
- receptor
- designed
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/51—Bone morphogenetic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/18—Growth factors; Growth regulators
- A61K38/1875—Bone morphogenic factor; Osteogenins; Osteogenic factor; Bone-inducing factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/04—Drugs for skeletal disorders for non-specific disorders of the connective tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/52—Cytokines; Lymphokines; Interferons
- C07K14/54—Interleukins [IL]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Toxicology (AREA)
- Biochemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Education & Sports Medicine (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Biomedical Technology (AREA)
- Rheumatology (AREA)
- Dermatology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
本申請案關於成骨蛋白類之領域、製備經改善之成骨蛋白類之方法,及利用成骨蛋白類治療病患之方法。
胱胺酸結細胞介素超家族分成數個亞家族,包括轉化生長因子β(TGFβ)蛋白、糖蛋白荷爾蒙、血小板衍生性生長因子樣(PDGF樣)蛋白、神經生長因子(NGF)、及神經胚細胞瘤中之分化篩選選擇基因脫軌(DAN)家族(例如cerberus)。其中該TGFβ超家族包含大約43個成員,分成三個亞家族,包括:TGFβ、活化素及骨型態發生蛋白/生長分化因子蛋白(BMP/GDF)。
該TGF-β超家族成員包含典型之胱胺酸結拓撲。也就是說,胱胺酸結係六個半胱胺酸殘基之非尋常排列之結果。該結係由半胱胺酸1-4、半胱胺酸2-5之間的鍵及中介序列形成環組成,在半胱胺酸3-6之間的雙硫鍵通過該環。這些蛋白質之活性形式係同型二聚體或異二聚體。在各例中,該單體拓撲係由半胱胺酸結及額外之半胱胺酸穩定,導致額外之鏈內鍵及/或媒介與另一蛋白單位之二聚化。見Kingsley,1994,Genes Dev. 8:133-146;Lander et al,2001,Nature 409:860-921。
BMP/GDF係TGF-β蛋白超家族中為數最多之成員。BMP/GDF超家族包括但不限於BMP2、BMP3(成骨素)、BMP3b(GDF-10)、BMP4(BMP2b)、BMP5、BMP6、BMP7(成骨蛋白-1或OP1)、BMP8(OP2)、BMP8B(OP3)、BMP9(GDF2)、BMP10、BMP11(GDF11)、BMP12(GDF7)、BMP13(GDF6、CDMP2)、BMP15(GDF9)、BMP16、GDF1、GDF3、GDF5(CDMP1、MP52)及GDF8(肌肉抑制素)。BMP有時係指成骨蛋白(OP)、生長分化因子(GDF)、或軟骨衍生性型態發生蛋白(CDMP)。BMP亦存在於其他動物物種。另外,在人族群之不同成員之間可能存在一些BMP序列之等位基因差異。
天然表現之BMP係原蛋白質(pro-proteins),其包含長的原結構域、一或多個切割位點及成熟結構域。此原蛋白質接著藉由細胞機制處理以產生二聚體之成熟BMP分子。該原結構域被認為有助於BMP之正確摺疊及處理。另外,在一些但非所有的BMP中,該原結構域可能與該成熟結構域非共價結合,且可能作為伴護子,也可能作為抑制子(例如Thies et al.,Growth Factors 18:251-9(2001))。
BMP信號傳導係當BMP二聚體與二個第一型及二個第二型絲胺酸/蘇胺酸激酶受體結合時被啟動。第一型受體包括但不限於ALK-1(Activin receptor-Like Kinase 1(活化素受體樣激酶1))、ALK-2(亦稱為ActRla或ActRI)、ALK-3(亦稱為BMPRIa)及ALK-6(亦稱為BMPRIb)。第二型受體包括但不限於ActRIIa(亦稱為ActRII)、ActRIIb及BMPRII。人基因組包含12個受體絲胺酸/蘇胺酸激酶家族之成員,包括7個第一型及5個第二型受體,所有這些受體皆與TGF-β傳訊有關(Manning et al.,Science 298:1912-34(2002),該文獻之揭示內容以參照方式納入本發明)。因此,由12個受體及43個超家族成員可知,至少某些TGF-β超家族成員係與相同受體結合。在BMP結合之後,該第二型受體使該第一型受體磷酸化,該第一型受體使轉錄因子之Smad家族之成員磷酸化,且使該Smad轉位至細胞核並活化數種基因之表現。
BMP係TGF-β超家族中為數最多之成員,他們控制一組廣泛的細胞性及發育性過程,諸如胚胎模式形成及組織特異化,亦能促進傷口癒合及成人組織之修復過程。BMP最初是藉由彼等誘導骨及軟骨形成之能力而被分離。BMP傳訊可在骨折及相關組織傷害時被誘導,以導致骨再生及修復。改變對BMP受體之親和性的BMP分子將具有相較於該原始蛋白質改善之生物活性。該等BMP包括具有增加活體內活性之蛋白質,且可能提供用於(除其它者外)組織再生、修復、及類似者之潛能改善之治療劑,其中藉由在較低之蛋白量下提供較高或經改變之活性,以提供改善之蛋白質治療劑。
本發明包括一種經設計之骨型態發生蛋白(BMP),其在至少一個第一型或第二型受體結合結構域中包含至少一種突變,其中相較於對應之野生型BMP與該第一型或第二型受體之結合,該突變授予經改變之與該第一型或第二型BMP受體之結合。
在一態樣中,該蛋白係選自BMP2、BMP4、BMP5、BMP6、BMP7、BMP8或BMP9。
在另一態樣中,該蛋白在第二型結合結構域A、第二型結合結構域B、第一型結合結構域及上述結構域之任何組合內包含至少一種突變。
本發明亦提供一種經設計之成骨蛋白,其包含胺基酸序列,該胺基酸序列在至少一個第一型或第二型受體結合結構域中包含至少一種突變,其中相較於野生型BMP2與該第一型或第二型受體之結合,該突變授予經改變之與該第一型或第二型BMP受體之結合。
在一態樣中,該突變係在第二型結合結構域A內之突變,其中該突變係至少一種選自SEQ ID NO:1序列之V33、P36、H39或F41處的突變。
在另一態樣中,該突變係在第二型結合結構域A內之突變,其中該突變係至少一種選自SEQ ID NO:1序列之V33I、P36K、P36R、H39A或F41N的突變。
在又一態樣中,該突變係在第二型結合結構域B內之突變,其中該突變係至少一種選自SEQ ID NO:1序列之E83、S85、M89、L92、E94、E96、K97或V99處的突變。
在另一其他態樣中,該突變係在第二型結合結構域B內之突變,其中該突變係至少一種選自SEQ ID NO:1序列之E83K、S85N、M89V、L92F、E94D、E96S、K97N或V99I的突變。
在另一態樣中,該突變係在第一型結合結構域內之突變,其中該突變係至少一種選自SEQ ID NO:1序列之H44、P48、A52、D53、L55、S57、N68、S69或V70處、或於N71後插入單一胺基酸、或S72、K73、I74、A77或V80處的突變。
在又一態樣中,該突變係在第一型結合結構域內之突變,其中該突變係至少一種選自SEQ ID NO:1序列之H44D、P48S、A52N、D53A、L55M、S57A、N68H、S69L、V70M、於N71後插入P、S72E、K73Y、I74V、A77P或V80A的突變。
在另一其他態樣中,該蛋白包含SEQ ID NO:1序列之各胺基酸H44、P48、A52、D53、L55、S57、N68、S69、或V70處、或於N71後插入單一胺基酸、或S72、K73、I74、A77或V80的突變。
在另一態樣中,該蛋白包含SEQ ID NO:1序列之各胺基酸H44、P48、A52、D53、L55、S57、N68、S69、或V70處、或於N71後插入單一胺基酸、或S72、K73、I74、A77或V80的突變,其中該等突變係H44D、P48S、A52N、D53A、L55M、S57A、N68H、S69L、V70M、於N71後插入P、S72E、K73Y、I74V、A77P及V80A。
在又一態樣中,該蛋白包含SEQ ID NO:1序列之各胺基酸V33、P36、H39、S85、M89、L92、E94、E96、K97或V99處之突變。
在另一態樣中,該蛋白包含SEQ ID NO:1序列之各胺基酸V33、P36、H39、S85、M89、L92、E94、E96、K97或V99處之突變,其中該等突變係V33I、P36K、H39A、S85N、M89、L92F、E94D、E96S、K97N及V99I。
在另一其他態樣中,該蛋白包含SEQ ID NO:1序列之各胺基酸V33、P36、H39、H44、P48、A52、D53、L55、S57、N68、S69或V70處、或於N71後插入單一胺基酸、或S72、K73、I74、A77、V80、S85、M89、L92、E94、E96、K97或V99的突變。
在又一態樣中,該蛋白包含SEQ ID NO:1序列之各胺基酸V33、P36、H39、H44、P48、A52、D53、L55、S57、N68、S69或V70處、或於N71後插入單一胺基酸、或S72、K73、I74、A77、V80、S85、M89、L92、E94、E96、K97或V99的突變,其中該等突變係V33I、P36K、H39A、H44D、P48S、A52N、D53A、L55M、S57A、N68H、S69L、V70M、於N71後插入P、S72E、K73Y、I74V、A77P、V80A、S85N、M89、L92F、E94D、E96S、K97N及V99I。
在又一態樣中,該蛋白包含SEQ ID NO:1序列之各胺基酸V33、P36、H39、H44、P48、A52、D53、L55、S57、N68、S69或V70處、或於N71後插入單一胺基酸、或S72、K73、I74、A77、V80、S85、M89、L92、E94、E96、K97或V99的突變,其中該等突變係V33I、P36R、H39A、H44D、P48S、A52N、D53A、L55M、S57A、N68H、S69L、V70M、於N71後插入P、S72E、K73Y、I74V、A77P、V80A、S85N、M89、L92F、E94D、E96S、K97N及V99I。
在另一態樣中,該蛋白以不超過約2 nM之KD
與ALK2受體結合,以不超過約2 nM之KD
與ALK3受體結合,以不超過約1 nM之KD
與ALK6受體結合,以不超過約2 nM之KD
與ActRIIA受體結合,以不超過約0.5 nM之KD
與ActRIIB受體結合,且以不超過約3.5 nM之KD
與BMPRIIA受體結合。
在一態樣中,該蛋白另包含不位於該第一型或第二型結合區內之1、2、3、4、5、6、7、8、9或10個胺基酸突變。
本發明包括一種經設計之成骨蛋白,其包含SEQ ID NO:8至73中任一者之胺基酸序列。
本發明包括一種經設計之成骨蛋白,其包含SEQ ID NO:12之胺基酸序列。
本發明包括一種經設計之成骨蛋白,其包含SEQ ID NO:14之胺基酸序列。
本發明包括一種經設計之成骨蛋白,其包含SEQ ID NO:36之胺基酸序列。
本發明包括一種經設計之成骨蛋白,其包含SEQ ID NO:37之胺基酸序列。
本發明包括一種產製經設計之BMP蛋白之方法,該BMP蛋白在至少一個第一型或第二型受體結合結構域中包含至少一種突變,其中相較於對應之野生型BMP與該第一型或第二型受體之結合,該突變授予經改變之與該第一型或第二型BMP受體之結合。該方法包含將編碼該蛋白之核酸導入宿主細胞中、在產製該蛋白之條件下培養該細胞及純化該蛋白。
在一態樣中,該核酸包含選自SEQ ID NO:74至139中任一者之核酸序列之序列。
本發明包括一種經設計之BMP6蛋白,其包含胺基酸序列,該胺基酸序列在至少一個第一型或第二型受體結合結構域中包含至少一種突變,其中相較於野生型BMP6與該第一型或第二型受體之結合,該突變授予經改變之與該第一型或第二型BMP受體之結合。
在一態樣中,該突變係在第二型結合結構域A內之突變,其中該突變係至少一種選自SEQ ID NO:4序列之I57、K60、G61、A63、N65、Y66或D68處的突變。
在另一態樣中,該突變係在第二型結合結構域B內之突變,其中該突變係至少一種選自SEQ ID NO:4序列之K108、N110、A111、V114、F117、D119、N120、S121、N122、V123或I124處的突變。
在又一態樣中,該突變係在第一型結合結構域內之突變,其中該突變係至少一種選自SEQ ID NO:4序列之S72、N76、A77、H78、M79、N80、A81、N83、V87、T89、H92、L93、M94、N95、P96、E97、Y98、V99或P100處的突變。
在另一態樣中,該突變係SEQ ID NO:4序列之各胺基酸殘基I57、K60、G61、A63、N65、Y66或D68處之突變。
在另一其他態樣中,該突變係胺基酸序列SEQ IDNO:4之各胺基酸殘基K108、N110、A111、V114、F117、D119、N120、S121、N122、V123或I124處之突變。
在又一態樣中,該突變係胺基酸序列SEQ ID NO:4之各胺基酸殘基S72、N76、A77、H78、M79、N80、A81、N83、V87、T89、H92、L93、M94、N95、P96、E97、Y98、V99或P100處之突變。
在另一態樣中,該經設計之BMP6蛋白包含胺基酸序列,該胺基酸序列在至少一個第一型或第二型受體結合結構域中包含至少一種突變,其中相較於野生型BMP6與該第一型或第二型受體之結合,該突變授予經改變之與該第一型或第二型BMP受體之結合,該BMP6蛋白另包含不位於該第一型或第二型結合結構域內之1、2、3、4、5、6、7、8、9或10個胺基酸突變。
本發明包括一種經分離之核酸分子,其包含編碼選自SEQ ID NO:8至73之序列的胺基酸序列之核苷酸序列。
在一態樣中,該核酸編碼包含胺基酸序列之蛋白,該胺基酸序列選自SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:36或SEQ ID NO:37之序列。
本發明包括一種經分離之核酸分子,其包含編碼選自SEQ ID NO:74至139之核苷酸序列。
在一態樣中,該核酸包含選自SEQ ID NO:78、SEQ ID NO:80、SEQ ID NO:102或SEQ ID NO:103之核苷酸序列。
本發明包括一種產製經設計之BMP6蛋白之方法,該BMP6蛋白包含胺基酸序列,該胺基酸序列在至少一個第一型或第二型受體結合結構域中包含至少一種突變,其中相較於野生型BMP6與該第一型或第二型受體之結合,該突變授予經改變之與該第一型或第二型BMP受體之結合。該方法包含將編碼該蛋白之核酸導入宿主細胞中、在產製該蛋白之條件下培養該細胞及純化該蛋白。
本發明包括一種在有治療需要之病患中治療骨流失相關性骨疾病之方法。該方法包含投予治療有效量之經設計之BMP蛋白至病患藉以治療該病患之骨疾病,該BMP蛋白在至少一個第一型或第二型受體結合結構域中包含至少一種突變,其中相較於對應之野生型BMP蛋白與該第一型或第二型受體之結合,該突變授予經改變之與該第一型或第二型BMP受體之結合。
本發明包括一種在有治療需要之病患中治療纖維化之方法。該方法包含投予治療有效量之經設計之BMP蛋白至病患藉以治療纖維化,該BMP蛋白在至少一個第一型或第二型受體結合結構域中包含至少一種突變,其中相較於對應之野生型BMP與該第一型或第二型受體之結合,該突變授予經改變之與該第一型或第二型BMP受體之結合。
本發明包括一種誘導組織中之骨形成之方法。該方法包含使該組織與經設計之BMP蛋白接觸藉以誘導在該組織中之骨形成,該BMP蛋白在至少一個第一型或第二型受體結合結構域中包含至少一種突變,其中相較於對應之野生型BMP與該第一型或第二型受體之結合,該突變授予經改變之與該第一型或第二型BMP受體之結合。
本發明關於「經設計之」骨型態發生蛋白,在此處稱為「經設計之BMP」、「經設計之成骨蛋白」及「經設計之蛋白」。本發明之經設計之BMP可能對應野生型未經修飾之BMP之胺基酸序列,諸如但不限於BMP2、BMP4、BMP5、BMP6、BMP7、BMP8及BMP9。在特定實施態樣中,該經設計之BMP當與彼之對應野生型BMP比較時顯示經改變之與第一型及/或第二型BMP受體之結合。在其他實施態樣中,該經設計之BMP當與彼之對應BMP比較時可能經修飾以具有經改變之半衰期、免疫原性或任何藥物動力學/藥物藥效學(PK/PD)參數。
除非此處另外加以定義,關於本發明所使用之科學性及技術性用語應具有該領域之一般技藝人士所通常了解之意義。另外,除非內文另外要求,單數用語應包括複數意義且複數用語應包括單數意義。一般來說,與此處所描述之細胞培養、組織培養、分子生物學、免疫學、微生物學、基因學以及蛋白質及核酸化學和雜交有關所使用之命名法及技術係該領域所廣為週知且經常使用者。
本發明之方法及技術通常根據該領域所廣為周知之方法進行,除非另外說明否則如同本說明書各處引述及討論之各種一般性及更具體之參考文獻所述。該等參照文獻包括例如Sambrook and Russell,Molecular Cloning,A Laboratory Approach,Cold Spring Harbor Press,Cold Spring Harbor,NY(2001)、Ausubel et al.,Current Protocols in Molecular Biology,John Wiley & Sons,NY(2002)、及Harlow and Lane,Antibodies: A Laboratory Manual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY(1990),彼等以參照方式納入本發明。酶反應及純化技術係根據製造商說明書,以該領域經常完成或此處所描述之方式進行。與此處所述之分析化學、合成有機化學、醫學及製藥化學有關所使用之命名和實驗室方法及技術係該領域所廣為週知且經常使用者。標準技術係用於化學合成、化學分析、醫藥製備、醫藥調製、醫藥遞送及病患治療。
如在本發明之使用,下列用語各具有與在本節中相關之意義。
冠詞“a”及“an”在此處被用來指稱一或超過一個(即至少一個)該冠詞之文法對象。舉例來說,「一元件」係指一個元件或超過一個元件。
在此申請案中,「或」之使用代表「及/或」,除非另外說明。
習用標記在此處係用來描述多肽序列:多肽序列之左手端係胺基端;多肽序列之右手端係羧基端。本發明所使用之該20種習用之胺基酸及彼等之縮寫遵照習慣用法。見Immunology--A Synthesis(2nd Edition,E. S. Golub and D.R. Gren,Eds.,Sinauer Associates,Sunderland,Mass.(1991)),其以參照方式納入此處。本發明所使用之胺基酸係以彼等之全名、對應彼等之三字母代碼或對應彼等之一字母代碼表示,如下所示:
「保守性胺基酸取代」係指其中胺基酸殘基被另一具有類似化學性質(例如電荷或疏水性)之側鏈R基團之胺基酸殘基取代之取代。通常,保守性胺基酸取代將不會顯著改變蛋白質之功能特性。當二或多個胺基酸序列彼此之間具有保守性取代之差異時,該序列一致性百分比或類似程度可能向上調整以校正該取代之保守特性。進行此調整之方法係該領域之技藝人士所廣為周知。見例如Pearson,Methods Mol. Biol. 243:307-31(1994)。
具有類似化學性質之側鏈的胺基酸類別實例包括:1)脂肪族側鏈:甘胺酸、丙胺酸、纈胺酸、白胺酸及異白胺酸;2)脂肪族羥基側鏈:絲胺酸及蘇胺酸;3)含醯胺側鏈:天冬醯胺酸及麩醯胺酸;4)芳香族側鏈:苯丙胺酸、酪胺酸及色胺酸;5)鹼性側鏈:離胺酸、精胺酸及組胺酸;6)酸性側鏈:天冬胺酸及麩胺酸;及7)含硫側鏈:半胱胺酸及甲硫胺酸。較佳之保守性胺基酸取代類別包括纈胺酸-白胺酸-異白胺酸、苯丙胺酸-酪胺酸、離胺酸-精胺酸、丙胺酸-纈胺酸、麩胺酸-天冬胺酸、及天冬醯胺酸-麩醯胺酸。
或者,保守性取代係在Gonnet et al.,Science 256:1443-1445(1992)(以參照方式納入本發明)所揭示之PAM250對數概似矩陣具有正值之任何改變。「中度保守性」取代係在PAM250對數概似矩陣中具有非負值之任何改變。
較佳之胺基酸取代係該些:(1)減少對蛋白水解易感性之取代、(2)減少對氧化易感性之取代、(3)改變結合親和性以形成蛋白質複合體之取代,及(4)授予或修飾該類似物之其他物理化學或功能特性之取代。包含取代、刪除及/或插入之類似物可包括除特定肽序列以外之序列的各種突變蛋白。舉例來說,單一或多重胺基酸取代(較佳地保守性胺基酸取代)可在該特定序列中發生(較佳地在形成分子間接觸之結構域以外之多肽部分,例如在CDR或第一型或第二型受體結合部位以外)。保守性胺基酸取代不應實質改變該母體序列之結構特徵(例如取代胺基酸不應傾向破壞發生在母體序列中之螺旋,或破壞其他類型之二級結構,該二級結構為該母體序列之特徵)。該領域公認之多肽二級和三級結構之實例係描述於Proteins,Structures and Molecular Principles(Creighton,Ed.,W. H. Freeman and Company,New York(1984))、Introduction to Protein Structure(C. Branden and J. Tooze,eds.,Garland Publishing,New York,N.Y.(1991))、及Thornton et al.,Nature 354:105(1991),這些文獻各以參照方式納入本發明。
用語「多肽」、「核苷酸序列」、「核酸」、「核酸分子」、「核酸序列」及「寡核苷酸」係指在DNA及RNA中之一系列核苷鹼基(亦稱為「核苷酸」),且代表任何二或多個核苷酸之鏈。該等多核苷酸可為單股或雙股之嵌合性混合物或衍生物或彼等之經修飾之版本。寡核苷酸可在鹼基、糖基、或磷酸主鏈處被修飾,以增進例如該分子之穩定性、彼之雜交參數等。核苷酸序列通常攜帶基因資訊,包括由細胞機制使用以製造蛋白質及酶之資訊。這些用語包括雙股或單股基因組及cDNA、RNA、任何合成性及經基因操作之多核苷酸,包括同義及反義多核苷酸二者。此亦包括含有經修飾之鹼基之核酸,例如硫基尿嘧啶、硫基鳥嘌呤、或氟基尿嘧啶,或含有碳水化合物或脂質之核酸。
在核苷酸序列之上下文中,用語「實質上一致」係用於此處以指稱第一核酸序列包含足夠或最少數量之與第二核酸序列中經排比之核苷酸一致之核苷酸,以使該第一及第二核苷酸序列編碼具有共同功能活性之多肽,或編碼共同結構多肽結構域或共同功能性多肽活性。舉例來說,核苷酸序列與參照序列具有至少約85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%之一致性。
「經設計之BMP核酸」及此處之文法相等用語係指編碼經設計之BMP之核酸。
用語「蛋白質」及「多肽」在此處可互相交換使用。這些用語係指經由肽鍵連在一起之胺基酸序列鏈。該等用語包括一或多種作為離散單位之蛋白質。若單一多肽係離散功能單位且不需要與其他多肽永遠或暫時性地物理相連以形成該離散功能單位,該等用語「多肽」及「蛋白質」可被交換使用。若該離散功能單位係由物理互相相連之多重多肽組成,此處所使用之用語「蛋白質」係指該經物理耦合且一起作為該離散單位之多重多肽。根據本發明被表現之蛋白質可為蛋白質治療劑。蛋白質治療劑係對於其所作用之身體區域或對於其經由中間物遠端作用之身體區域具有生物功能之蛋白質。蛋白質治療劑之實例將於下更詳細地討論。
本發明所使用之用語「經設計之BMP」係關於相較於不含突變之對應野生型BMP包含至少一種胺基酸突變之BMP蛋白,其中該經設計之BMP對於至少一個第一型受體及/或至少一個第二型受體之結合相較於該對應野生型BMP對於該第一型及/或第二型受體之結合具有可偵測之改變。
「對應之野生型蛋白質」係指該經設計之BMP在導入任何突變之前之野生型版本。舉例來說,若該經設計之BMP係經設計之BMP2,該對應之野生型BMP係野生型BMP2。因此,在一實施態樣中,經設計之BMP之設計可(但不需要)始於野生型BMP序列,其中突變(例如胺基酸取代、刪除及/或插入)被導入該野生型序列中。因此,該經設計之BMP可對應野生型BMP,且該等突變之位置可被稱為例如對應、相對於及/或各自關於該野生型對應或「參照」BMP序列之胺基酸序列。
本發明之蛋白質包括此處所描述之多肽之片段、衍生物、類似物或變體及彼等之任何組合。當「片段」、「變體」、「衍生物」及「類似物」係指本發明之蛋白質時,該等用語包括保留其所源自之蛋白質之至少一些功能特性之任何蛋白質。
本發明所使用之用語「片段」係指多肽且被定義為給定多肽之任何離散部分,其對於該給定多肽為獨特或具特徵性。此處所使用之該用語亦指給定多肽之任何離散部分,其保留該全長多肽之至少一部分之活性。在某些實施態樣中,該經保留之活性部分係該全長多肽之活性的至少10%。在某些實施態樣中,該經保留之活性部分係該全長多肽之活性的至少20%、30%、40%、50%、60%、70%、80%或90%。在某些實施態樣中,該經保留之活性部分係該全長多肽之活性的至少95%、96%、97%、98%或99%。在某些實施態樣中,該經保留之活性部分係該全長多肽之活性的至少100%或100%以上。另外或額外地,此處所使用之該用語亦指給定多肽之任何部分,其包括在該全長多肽中發現之至少已建立之序列元件。在一些實施態樣中,該序列元件包括該全長多肽之至少約4至5、10、15、20、25、30、35、40、45、50或更多胺基酸。本發明之蛋白質之片段包括蛋白水解片段以及刪除片段。
本發明之蛋白質之變體包括如上述之片段,亦包括具有因為胺基酸取代、刪除或插入而經改變之胺基酸序列之多肽。變體可天然發生或非天然地發生。非天然發生之變體可利用該領域已知之突變形成技術製備。變體蛋白質可包含保守性或非保守性胺基酸取代、刪除或添加。
本發明之蛋白質包括具有藉由側功能基之反應而化學衍生之一或多個殘基之蛋白質。本發明之蛋白質亦包括包含該二十種標準胺基酸之一或多個天然發生之胺基酸衍生物之多肽。舉例來說,4-羥基脯胺酸可能取代脯胺酸,5-羥基離胺酸可能取代離胺酸,3-甲基組胺酸可能取代組胺酸,同絲胺酸可能取代絲胺酸,及鳥胺酸可能取代離胺酸。
本發明所使用之「重組表現之多肽」及「重組多肽」係指由經操縱以表現該多肽之宿主細胞所表現之多肽。在某些實施態樣中,該宿主細胞係哺乳動物細胞。在某些實施態樣中,此操縱可包含一或多種基因修飾。舉例來說,該宿主細胞可能藉由導入一或多種編碼該所欲表現之多肽的異源性基因加以基因修飾。該異源性重組表現之多肽可與在該宿主細胞中正常表現之多肽相同或類似。該異源性重組表現之多肽亦可為該宿主細胞之外來物,例如與該宿主細胞中正常表現之多肽異源。在某些實施態樣中,該異源性重組表現之多肽係嵌合性。舉例來說,多肽之部分可包含與該宿主細胞中正常表現之多肽相同或類似之胺基酸序列,然而其他部分包含對該宿主細胞為外來物之胺基酸序列。額外或另外地,多肽可包含來自二或多個正常皆在該宿主細胞中表現之不同多肽之胺基酸序列。另外,多肽可包含來自二或多個皆屬對該宿主細胞為外來物之多肽之胺基酸序列。在一些實施態樣中,該宿主細胞係藉由活化或上調一或多種內源性基因加以基因修飾。
序列間之同源性或序列一致性(這些用語在此處可交換使用)之計算係如下進行。為了測定二個胺基酸序列或二個核酸序列之一致性百分比,該等序列係經排比以達最佳比較之目的(例如缺口可被導入第一及第二胺基酸或核酸序列中之一或二者以最佳排比及非同源性序列可被忽略以供比較之目的)。在典型之實施態樣中,經排比以供比較目的之參照序列之長度係該參照序列之長度的至少30%、至少40%、至少50%或60%、或至少70%、80%、90%、或100%。接著比較在對應胺基酸位置或核苷酸位置之胺基酸殘基或核苷酸。當第一序列中之位置被和第二序列中之對應位置上相同之胺基酸殘基或核苷酸佔據時,則該等分子在該位置係一致(在此處所使用之胺基酸或核酸「一致性」係等於胺基酸或核酸「同源性」)。
為了測定二個胺基酸序列或二個核酸之一致性百分比,該等序列係經排比以達最佳比較之目的(例如缺口可被導入第一胺基酸或核酸序列之序列中以用於與第二胺基酸或核酸序列最佳排比)。該二個序列之間的一致性百分比取決於該等序列所共享之一致位置的數目(即同源性百分比=一致位置數目/位置總數×100)。測定二個序列之間的同源性百分比可利用數學演算法完成。被用於比較二個序列之數學演算法之較佳、非限制性實例係Karlin et al.,Proc Natl Acad Sci U S A 87:2264-8(1990)之演算法,其在Karlin et al.,Proc Natl Acad Sci U S A 90:5873-7(1993)中經過修飾。該演算法被加入Altschul et al.,J Mol Biol 215:403-10(1990)之NBLAST及XBLAST程式中。BLAST核苷酸搜尋可利用NBLAST程式進行,得分(score)=100,字長(wordlength)=12。
BLAST蛋白質搜尋可利用XBLAST程式進行,得分(score)=50,字長(wordlength)=3。為了獲得帶缺口之排比以供比較目的,Gapped BLAST可如Altschul et al.,Nucleic Acids Res 25:3389-402(1997)中所述被使用。當利用BLAST及Gapped BLAST程式時,個別程式(例如XBLAST及NBLAST)之預設參數可被使用。
該二個序列之間之一致性百分比係取決於該等序列共享之一致位置之數量,並考慮缺口之數量及各缺口之長度,這些需要被導入以供該二個序列之最佳排比。
序列之比較及二個序列之間的一致性百分比之測定可利用數學演算法完成。在一實施態樣中,二個胺基酸序列之間的一致性百分比係利用尼德曼-文施(Needleman-Wunsch)演算法測定(Needleman et al.,J Mol Biol 48:443-53(1970)),該演算法被納入GCG套裝軟體(可得自gcg.com網站)之GAP程式中,使用Blossum 62矩陣或PAM250矩陣,及16、14、12、10、8、6、或4之缺口加權及1、2、3、4、5、或6之長度加權。在另一實施態樣中,二個核苷酸序列之間的一致性百分比係利用GCG套裝軟體(可得自網站gcg.com)中之GAP程式測定,使用NWSgapdna.CMP矩陣及40、50、60、70、或80之缺口加權及1、2、3、4、5、或6之長度加權。一組典型參數(且應被使用除非另外說明)係Blossum 62計分矩陣,其缺口罰分為12,缺口延伸罰分4,及讀框移位缺口罰分5。
二個胺基酸或核苷酸序列之間的一致性百分比可利用E. Myers及W. Miller之演算法測定(Myers et al.,Comput Appl Biosci 4:11-7(1988)),該演算法被納入ALIGN程式(2.0版)中,其使用PAM120加權殘基表,缺口長度罰分為12及缺口罰分為4。
當用語「說明材料」用於本發明時,其包括公開資料、紀錄、圖示、或任何其他可被用於溝通本發明之化合物、組合及/或組成物於該套組中用於影響、緩和或治療此處所述之各種疾病或病症之用途的表現介質。可任意選擇地或另外地,該說明材料可描述一或多種緩和在細胞、組織或哺乳動物中之疾病或病狀之方法,包括本發明他處所揭示者。
該套組之說明材料(舉例來說)可被固定在包含本發明之化合物及/或組成物之容器上或與包含該化合物及/或組成物之容器一起運送。另外,該說明材料可與該容器分開運送,其意圖是使接受者配合使用該說明材料及該化合物。
除非另外提及,用語「病患」或「個體」可交換使用,且係指哺乳動物諸如人病患及非人靈長動物,以及獸醫對象諸如兔、大鼠及小鼠及其他動物。較佳地,病患係指人。
用語「有效量」或「治療有效量」在此處可交換使用,係指當投予至組織或哺乳動物(較佳地人)時,相較於在無該化合物存在時所偵測到之反應,媒介可偵測之治療反應之量。治療反應(諸如但不限於抑制及/或減少纖維化、增加骨質量或骨密度、及類似者)可被輕易地利用該領域已知之許多方法評估,包括諸如本發明所揭示之方法。
該領域之技藝人士將了解本發明所投予之化合物或組成物之有效量不同,該有效量可輕易地根據多種因素決定,諸如將被治療之疾病或狀況、疾病之分期、將被治療之哺乳動物的年齡、健康狀況及身體狀況、該疾病之嚴重性、將被投予之特定化合物及類似因素。
本發明所使用之「治療」係指減少病患所經歷之疾病症狀(例如骨密度降低、骨折、纖維化及類似者)之頻率。該用語包括投予本發明之化合物或劑以防止或延遲疾病之症狀、併發症或生化徵象之發生、緩和該症狀、或停止或抑制該疾病、狀況或病狀之進一步發展。治療可能為預防性(以防止或延遲該疾病之發生,或防止彼等之臨床或亞臨床症狀之表現)或治療性抑制或緩和該疾病表現後之症狀。
本發明所使用之用語「特異性結合」係指辨識特定分子並與之結合之化合物(例如蛋白質、核酸、抗體及類似物),但該化合物實質上不辨識樣本中之其他分子或與該其他分子結合。舉例來說,BMP蛋白、抗體或肽抑制物辨識樣本中之同源受體(例如BMP第一型或第二型受體、與彼之同源抗原結合之抗體及類似物)並與之結合,但實質上不辨識該樣本中之其他分子或與該其他分子結合。因此,在指定分析條件下,該特定結合基團(例如BMP或彼之受體結合片段)優先地與特定標靶分子結合且不與存在於測試樣本中之其他成份以顯著量結合。各種分析格式可被使用以選擇與感興趣之分子特異性結合之抗體。舉例來說,固相ELISA免疫分析、免疫沉澱、BIAcore、FACS、Octet及西方墨點試驗係可被用於識別與BMP受體特異性反應之BMP的多種分析。通常,特異性或選擇性反應將至少為背景信號或噪音之兩倍,更佳地至少超過背景信號或噪音之五倍,且更典型地超過10倍背景值,甚至更特異性地,當該平衡解離常數(KD
)係100 μM,更佳地10 μM,甚至更佳地1 μM,又更佳地100 nM且最佳地10 nM時,BMP被稱為與BMP受體「特異性結合」。
用語「KD
」係指特定配體-受體交互作用之平衡解離常數。
「結合親和性」通常係指分子(例如BMP配體)之結合部位與彼之結合伴(例如BMP第一型或第二型受體)之間非共價交互作用之總和力。除非另外說明,本發明所使用之「結合親和性」係指反應結合伴(例如BMP與彼之同源受體)之成員間1:1交互作用之固有結合親和性。分子X對彼之結合伴Y之親和性通常可藉由解離常數(Kd)表示。
親和性可藉由該領域已知之常用方法測量,包括該些於此處描述者。低親和性BMP通常與受體緩慢結合且傾向於快速解離,然而高親和性BMP通常與受體較快速地結合且傾向於維持較長之結合。各種測量結合親和性之方法係該領域所知,任何這些方法可被用於本發明之目的。特定說明性實施態樣係於本發明他處描述。
此處所使用之用語「kon
」係意圖指稱前述(或複合體形成)反應之結合速率常數或特定反應速率,以M-1
sec-1
之單位測量。
此處所使用之用語「kofr
」係意圖指稱抗體自該抗體/抗原複合體解離之解離速率常數或特定反應速率,以sec-1
之單位測量。
此處所使用之用語「Kd
」係意圖指稱特定抗體-抗原交互作用之解離常數。其係由下式計算:koff
/kon
=Kd
此處所使用之用語「經改變之結合」係指該經設計之BMP包含對至少第一型受體及/或第二型受體具有相較於對應之野生型BMP與該相同之第一型及/或第二型受體之結合不同之結合特異性。該經設計之BMP可能以相較於該野生型BMP與該受體之結合更高或更低之親和性與該受體結合。舉例來說,若該野生型BMP以特定結合親和性與特定第一型受體結合,該對應之經設計之BMP以相較於該野生型BMP更高或更低之親和性與該受體結合。該經設計之BMP甚至可能將與野生型BMP無法偵測地結合之受體特異性結合或反過來使該經設計之BMP不再可偵測地與該野生型BMP所結合之受體結合。因此,經改變之結合包含經設計之BMP與第一型或第二型受體之結合相較於由該對應之野生型BMP與該受體之結合上的任何可偵測之改變。該經設計之BMP可能具有相較於對應野生型BMP之kon
值更高或更低之kon
值,及/或該經設計之BMP可能具有相較於該對應野生型BMP之koff
值更高或更低之koff
值,以使該經設計之BMP之Kd
係大於或小於對應野生型對該相同BMP受體之Kd
。因此,在經設計之BMP與對應之野生型BMP之間的任何結合特徵及/或親和性數值差異係由本發明所使用之「經改變之結合」之用語所包含。
本發明所使用之用語「表面電漿共振」係指藉由檢測在生物感測器矩陣內蛋白濃度之變化,以允許即時生物特異性交互反應之分析的光學現象,例如使用BIAcore系統(瑞典烏普薩拉市及及紐澤西州皮斯卡塔威法瑪西亞生物檢測公司(Pharmacia Biosensor AB))。其他說明見例如Johnsson,et al.,Ann. Biol. Clin. 51: 19-26(1993)、Johnsson,et al.,Biotechniques 11: 620-627(1991)、Johnsson,et al.,J. Mol. Recognit. 8: 125-131(1995)、及Johnnson,et al.,Anal. Biochem. 198: 268-277(1991)。
本發明所使用之「實質上純的」係指目的物種係存在之優勢物種(即以莫耳數計算其係多過該組成物中之任何其他個別物種),且較佳地實質上經純化之組分係其中該目的物種(例如經設計之BMP)佔所有存在之巨分子物種之至少約50%(以莫耳數計算)之組成物。通常,實質上純的組成物將包含超過約80%之所有存在於該組成物中之巨分子物種,更佳地超過約85%、90%、95%、及99%。最佳地,該目的物種係經純化至實質均質性(利用習用檢測方法未檢測到汙染物種存在於該組成物中),其中該組成物實質上係由單一巨分子物種組成。
如本發明先前所述,BMPs係TGF-β蛋白超家族之成員,該超家族之所有成員皆具有6個保守性半胱胺酸殘基(Lander et al,(2001) Nature,409:860-921)。該BMP/GDF亞家族包括但不限於BMP2、BMP3(成骨素)(見例如美國專利第6,177,406號)、BMP3b(GDF-10)(見例如美國專利第6,204,047號)、BMP4(BMP2b)(見例如美國專利第6,245,889號)、BMP5(見例如美國專利第5,543,394號)、BMP6(見例如美國專利第6,613,744號)、BMP7(成骨蛋白-1或OP1)(見例如美國專利第5,141,905號)、BMP8(OP2)(見例如美國專利第5,688,678號)、BMP8B(OP3)(見例如美國專利第5,854,071號)、BMP9(GDF2)(見例如美國專利第6,287,816號)、BMP10(見例如美國專利第5,703,043號)、BMP11(GDF11)(見例如美國專利第6,437,111號)、BMP12(GDF7)(見例如美國專利第6,027,919號)、BMP13(GDF6、CDMP2)(見例如美國專利第6,027,919號)、BMP15(GDF9)(見例如美國專利第6,034,229號)、BMP16(見例如美國專利第6,331,612號)、GDF1(見例如美國專利申請案第2004/0039162號)、GDF3(見例如美國專利第6,025,475號)、GDF5(CDMP1、MP52)(見例如美國專利第5,994,094號)、及GDF8(肌肉抑制素)(見例如美國專利第5,827,733號)。
BMPs與彼等之同源受體特異性結合,該些同源受體包括第一型受體:ALK-I、ALK-2(亦稱為ActRla或ActRI)、ALK-3(又名BMPRIa)、及ALK-6(又名BMPRIb);及第二型受體:ActRIIa(亦稱為ActRII)、ActRIIb、及BMPRII。該些BMP-受體結合交互作用已受到廣泛研究,各種野生型BMP與各種第一型及/或第二型受體之結合特異性係該領域普遍周知並列示於表1。見例如Nickel et al.,Cytokine Growth Factor Rev 20:367-77(2009);Heinecke et al.,BMC Biol 7:59(2009)。
本申請案有部分係根據對各種BMP二聚體與四個BMP受體(二個第一型受體及二個第二型受體)結合之了解。各種BMP對各種受體之特異性係該領域所廣為周知且列示於上表1。同樣地,媒介BMP與各受體結合之各BMP的受體結合區已被定位並列於表2。舉例來說,清楚了解野生型BMP2及BMP4以高親和性與第一型BMP受體Alk-3及ALK-6結合,並以較低之親和性與第二型BMP受體結合。另一方面,野生型BMP6及BMP7已知可以高親和性與第二型受體ActrIIA、ActrIIB及BMPRII結合,但以較第二型為低之親和性與第一型受體結合。一般相信來自大約43個TGFβ超家族成員經由與大約12個受體交互作用之傳訊造成的不同細胞性反應被認為是因為各配體利用不同親和性與特定受體庫結合所致。第一型及第二型結合結構域係說明於表2。
合理胺基酸取代以改變經設計之BMP之受體結合在一實施態樣中,本發明包含在至少一個受體結合部位導入胺基酸突變,藉此由經設計之BMP提供相較於該對應之野生型BMP與該些受體之結合經改變之與第一型及第二型BMP受體之結合。例如,該領域廣為周知野生型BMP2顯示對第一型受體之相對高親和性,然而野生型BMP6顯示對第二型受體之高親和性。進一步為該領域所知的是,野生型BMP2及BMP6之異二聚體以相對高親和性與第一型及第二型受體二者結合,各BMP似乎對各自受體提供較高親和性之結合部位。見下表3。已知在活體外及活體內之二種骨形成試驗中,BMP2/6異二聚體比BMP2或BMP6單獨或同型二聚體更具活性。表3顯示BMP2及BMP6與第一型及第二型受體之結合親和性之實例。
因此,本發明之目的係提供具有與第一型及/或第二型受體結合增加之經設計之BMP。如圖1A及表2所示,每個BMP包含三個導致受體結合之結合部位。自N端至C端,每個BMP包含第二型受體結合部位A、第一型受體結合部位及第二型受體結合部位B。雖然野生型BMP2、BMP4、BMP5、BMP6、BMP7、BMP8及BMP9之示範性排比係顯示於圖1,該領域之技藝人士將了解有廣為周知之排比提供TGBβ超家族成員間之各種胺基酸之相對位置。該等排比係提供於(除其它者外)國際專利公開號WO 2009/086131(例如圖15至17、圖31A)、WO 2008/051526(圖9至12)、WO 2005/118636(圖6)、WO 2005/118635、WO 2005/113585(圖3)、WO 2001/92298(圖6A至6C)、Kirsch et al.,EMBO J. 19:3314-3324(2000)(圖1)、美國專利申請公開號2007/0293425(圖6)、Groppe et al.,Nature 420:636-642(2002)、Nickel et al.,J. Bone Joint Surg. Am. 83:7-14(2001)、及Weber et al.,BMC Structural Biol. 7:6(2007)。因此,使用該領域眾所周知之蛋白質序列排比演算法及工具包括排比各種TGFβ超家族成員之胺基酸序列,以及本發明所提供之揭示內容,可決定在一BMP/GDF蛋白中相對另一BMP/GDF蛋白之任何位置處之胺基酸的對應胺基酸。在一實施態樣中,在BMP-2、BMP-4、BMP-5、BMP-6、BMP-7、BMP-8及BMP-9中之對應胺基酸殘基係經顯示(見例如圖1A)。
在本發明之一些實施態樣中,該經設計之BMP包含在第一型結合結構域或第二型結合結構域中之突變,其中該等突變授予經改變之與該第一型或第二型BMP受體之結合。在一些實施態樣中,該經設計之BMP在第一型結合結構域及第一個(結合結構域A)或第二個(結合結構域B)第二型結合結構域二者中包含一或多種突變。在其他實施態樣中,該經設計之BMP在二個第二型結合結構域中包含一或多種突變。在其他實施態樣中,該經設計之BMP在第一個第二型結合結構域、第二個第二型結合結構域及第一型結合結構域中包含一或多種突變。在一些實施態樣中,該經設計之BMP在第一型結合結構域中包含一或多種突變。
在一些實施態樣中,該等突變增加與第一型受體之結合。在其他實施態樣中,該等突變增加與第二型受體之結合。在其他實施態樣中,該等突變減少與第一型或第二型受體之結合。在一些實施態樣中,該等突變如下更加詳述之產生或破壞聚糖繫鏈基。在一些實施態樣中,該等突變如下更加詳述之產生或破壞His門擋。
由於BMP在該領域中係經廣泛研究及了解,當可了解一旦提供本發明所揭示之內容,可使之產生突變而不進一步影響該經設計之BMP之活性的可能位置將被了解。因此,本發明之經設計之BMP包含變異體BMP,其與對應之野生型或經設計之BMP之不同處在於其包含額外之不影響該變異體BMP之受體結合親和性之插入、刪除或取代。在一些非限制性之實施態樣中,該領域之技藝人士當能了解與半胱胺酸結形成有關之半胱胺酸及與受體交互作用有關之胺基酸不應發生突變或應以保守性取代加以改變,至於其他胺基酸可以被比較自由地取代、插入或刪除而不附帶影響該經設計之BMP之生物活性。
應注意的是除非另外說明,經設計或經修飾之BMP的所有位置編號係基於該成熟天然BMP之序列。經設計之BMP之特徵在於該變異具有預定特性,此特性使彼等與該BMP序列之天然發生之等位基因或物種間變異有所不同。經設計之BMP之變異體必須保留該對應之野生型或經設計之BMP於一或多種細胞類型中之活性的至少50%,由下述之適當試驗測定。保留至少75%、80%、85%、90%或95%之野生型活性的變異體係為更佳,相較於野生型更具活性之變異體則特別較佳。經設計之BMP可能包含在N端、C端或內部之插入、刪除、及/或取代。在較佳之實施態樣中,經設計或修飾之BMP具有至少一個與最類似之人BMP序列不同之殘基,有至少2、3、4、5、6、7、8、9、10或更多不同殘基係為更佳。
本發明之經設計之BMP與該對應之野生型BMP蛋白序列維持至少80%、至少81%、至少82%、至少83%、至少84%、至少85%、至少86%、至少87%、至少88%、至少89%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、或至少99%之一致性。
本發明之經設計之BMP可能與該對應之野生型BMP蛋白序列之C端區域的保守性半胱胺酸結構域維持至少80%、至少81%、至少82%、至少83%、至少84%、至少85%、至少86%、至少87%、至少88%、至少89%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、或至少99%之一致性。
經設計之BMP可能包含其他修飾,例如改變其他蛋白質性質諸如穩定性或免疫原性之突變,或使轉譯後修飾諸如PEG化或糖基化得以進行或無法進行之突變。經設計之BMP可能發生轉譯時或轉譯後修飾,包括但不限於合成性衍生化一或多個側鏈或末端、糖基化、PEG化、環狀排列、環合、與蛋白質或蛋白結構域融合、及添加肽標籤或標記。
由於基因密碼之簡併性,可藉由不改變該經設計之BMP之胺基酸序列之方法簡單地修飾一或多個密碼子之序列以產生極大量之核酸,其中所有核酸皆編碼本發明之經設計之BMP。本發明之經設計之BMP不包含專利WO2008/051526或WO2009/086131中所述之該些序列。
如上所述,BMP被天然地表現為包含長的原結構域、一或多個切割位點及成熟結構域之原蛋白質。此原蛋白質接著藉由細胞機制處理以產生二聚體之成熟BMP分子。在較佳之實施態樣中,本發明之經設計之BMP係以類似方式產製。該原結構域被認為有助於BMP之正確摺疊及處理。另外,在一些但非所有的BMP中,該原結構域可能與該成熟結構域非共價結合,且可能作為伴護子及抑制子(例如Thies et al.(2001) Growth Factors,18:251-259)。較佳地,本發明之經修飾之BMP係以此形式產製及/或治療性投予。或者,BMP可能被產製為其他形式,包括但不限於其中該成熟結構域係直接產生或由包涵體再折疊而成,或包含全長之完整原蛋白質。本發明之經設計之BMP可以這些及其他形式被使用。
在特定實施態樣中,本發明之經設計之BMP包含主鏈BMP(即野生型BMP),其為該經設計之BMP所對應者。在特定實施態樣中,此主鏈BMP可為野生型BMP2、BMP4、BMP5、BMP6、BMP7、BMP8、或BMP9主鏈。
在本發明之一些實施態樣中,該經設計之BMP包含在第一型結合結構域及/或第二型結合結構域中之至少一個突變,其中相較於對應之不包含該突變之野生型BMP之結合,該突變授予經改變之與該第一型或第二型BMP受體之結合。在一些實施態樣中,該經設計之BMP在第一型結合結構域中包含至少一個突變且在第二型結合結構域中包含至少一個突變。在其他實施態樣中,該經設計之BMP在第二型結合結構域A及第二型結合結構域B內包含至少一個突變。在其他實施態樣中,該經設計之BMP在第二型結合結構域A、第二型結合結構域B、及第一型結合結構域內包含至少一個突變。
在某些實施態樣中,該突變可能包含胺基酸或核酸取代、刪除及/或插入。在較佳之實施態樣中,該突變包含胺基酸取代。
在一些實施態樣中,該主鏈BMP係野生型BMP且該等突變係於表4至6所列之突變中之一或多者。該經設計之BMP可能包含該些表中所列之任何組合及任何數量之突變。
在一些實施態樣中,該主鏈BMP係野生型BMP且該等突變係於表4至6所列之突變中之一或多者。該經設計之BMP可能包含在這些表中所列或本發明他處所揭示之突變的排列及其中任一及所有突變。
在一些實施態樣中,該等突變增加與第一型受體之結合。在其他實施態樣中,該等突變增加與第二型受體之結合。在其他實施態樣中,該等突變減少與第一型或第二型受體之結合。
上表4至6提供本發明之示範突變之非限制性彙整,其中該突變之位置係參考該對應之野生型BMP胺基酸序列提供。因此,在一些實施態樣中,該經設計之BMP包含下列較佳之突變組合。
在某些實施態樣中,該經設計之BMP所對應之野生型BMP係BMP2。另外,在該第二型受體結合結構域A內之至少一個突變係選自V33、P36、G37、H39、F41、Y42或H44之突變。
在其他實施態樣中,該經設計之BMP在該第二型受體結合結構域A內包含至少一個突變且在第一型受體結合結構域內另包含至少一個額外之突變。在該第一型受體結合結構域內之突變係至少一個選自SEQ ID NO:1序列之P48、F49、A52、D53、H54、L55、N56、S57、N59、V63、T65、N68、S69、V70、N71、S72、K73、I74、或P75處之突變。
在另外之其他實施態樣中,該經設計之BMP在第二型受體結合結構域A內包含至少一個突變,在第一型受體結合結構域內包含至少一個突變,且在第二型受體結合結構域B內另包含至少一個額外突變。在該第二型受體結合結構域B內之突變係至少一個於SEQ ID NO:1序列之E83、S85、A86、M89、L92、E94、N95、E96、K97、V98、或V99處之突變。
在一些實施態樣中,該經設計之包含SEQ ID NO:1序列之各胺基酸H44、P48、A52、D53、L55、S57、N68、S69、或V70處、或於N71後插入P、或S72、K73、I74、A77或V80的突變。
在一實施態樣中,該經設計之BMP包含下列突變:SEQ ID NO:1序列之H44D、P48S、A52N、D53A、L55M、S57A、N68H、S69L、V70M、在N71後插入P、S72E、K73Y、I74V、A77P、及V80A。
在一些實施態樣中,該經設計之BMP包含SEQ ID NO:1序列之各胺基酸V33、P36、H39、S85、M89、L92、E94、E96、K97或V99處之突變。
在一些實施態樣中,該經設計之BMP包含SEQ ID NO:1序列之各胺基酸V33I、P36K、H39A、S85N、M89、L92F、E94D、E96S、K97N或V99I之突變。
在其他實施態樣中,該經設計之BMP包含下列突變:SEQ ID NO:1序列之V33I、P36K、H39A、H44D、P48S、A52N、L54M、S56M、N68H、V70M、S72E、K73E、在K73後插入Y、I74V、77AP、S85N、M89V、L92F、E94D、E96S、K97N、及V99I。
在仍其他實施態樣中,該經設計之BMP包含下列突變:SEQ ID NO:1序列之V33I、P36R、H39A、H44D、P48S、A52N、L54M、S56M、N68H、V70M、S72E、K73E、在K73後插入Y、I74V、77AP、S85N、M89V、L92F、E94D、E96S、K97N、及V99I。
在某些實施態樣中,該經設計之BMP所對應之野生型BMP係BMP4。在某些實施態樣中,在該第二型受體結合結構域A內之至少一個突變係於SEQ ID NO:2之V35、P38、G39、Q41、F43、Y44、或H46處。
在其他實施態樣中,該經設計之BMP4在該第二型受體結合結構域A內包含至少一個突變且在第一型受體結合結構域內另包含至少一個額外之突變。在該第一型受體結合結構域內之突變係至少一個在SEQ ID NO:2之P50、A54、D55、H56、L57、N58、S59、N61、V65、T67、N70、S71、V72、N73、S74、S75、I76、或P77處之突變。
在另外之其他實施態樣中,該經設計之BMP4在第二型受體結合結構域A內包含至少一個突變,在第一型受體結合結構域內包含至少一個突變,且在第二型受體結合結構域B內另包含至少一個額外突變。在該第二型受體結合結構域B內之突變係至少一個於SEQ ID NO:2序列之E85、S87、A88、M91、L94、E96、K97、V98、或V99處之突變。
在某些實施態樣中,該經設計之BMP所對應之野生型BMP係BMP5。在某些實施態樣中,在該第二型受體結合結構域A內之突變係至少一個於SEQ ID NO:3之I56、E59、G60、A62、F64、Y65、或D67處之突變。
在其他實施態樣中,該經設計之BMP在該第二型受體結合結構域A內包含至少一個突變且在第一型受體結合結構域內另包含至少一個額外之突變。在該第一型受體結合結構域內之突變係至少一個於SEQ ID NO:3之S71、F72、N75、A76、H77、M78、N79、A80、N82、V86、T88、H91、L92、M93、F94、P95、D96、H97、V98、或P99處之突變。
在另外之其他實施態樣中,該經設計之BMP在第二型受體結合結構域A內包含至少一個突變,在第一型受體結合結構域內包含至少一個突變,且在第二型受體結合結構域B內另包含至少一個額外突變。在該第二型受體結合結構域B內之突變係至少一個於SEQ ID NO:3之K107、N109、A1I0、V113、F116、D118、S119、S120、N121、V122、或I123處之突變。
在某些實施態樣中,該經設計之BMP所對應之野生型BMP係BMP6。在某些實施態樣中,在該第二型受體結合結構域A內之突變係至少一個於SEQ ID NO:4之I57、K60、G61、A63、N65、Y66、或D68處之突變。
在其他實施態樣中,該經設計之BMP6在該第二型受體結合結構域A內包含至少一個突變且在第一型受體結合結構域內另包含至少一個額外之突變。在該第一型受體結合結構域內之突變係至少一個於SEQ ID NO:4之S72、N76、A77、H78、M79、N80、A81、N83、V87、T89、H92、L93、M94、N95、P96、E97、Y98、V99或P100處之突變。
在另外之其他實施態樣中,該經設計之BMP6在第二型受體結合結構域A內包含至少一個突變,在第一型受體結合結構域內包含至少一個突變,且在第二型受體結合結構域B內另包含至少一個額外突變。在該第二型受體結合結構域B內之突變係至少一個於SEQ ID NO:4之K108、N110、A111、V114、F117、D119、N120、S121、N122、V123、或I124處之突變。
在某些實施態樣中,該經設計之BMP所對應之野生型BMP係BMP7。在某些實施態樣中,在該第二型受體結合結構域A內之突變係至少一個於SEQ ID NO:5之I57、E60、G61、A63、Y65、Y66、或E68處之突變。
在其他實施態樣中,該經設計之BMP7在該第二型受體結合結構域A內包含至少一個突變且在第一型受體結合結構域內另包含至少一個額外之突變。在該第一型受體結合結構域內之突變係至少一個於SEQ ID NO:5之A72、F73、N76、S77、Y78、M79、N80、A81、N83、V87、T89、H92、F93、I94、N95、P96、E97、T98、V99或P100處之突變。
在另外之其他實施態樣中,該經設計之BMP7在第二型受體結合結構域A內包含至少一個突變,在第一型受體結合結構域內包含至少一個突變,且在第二型受體結合結構域B內另包含至少一個額外突變。在該第二型受體結合結構域B內之突變係至少一個於SEQ ID NO:5之Q108、N110、A111、V114、F117、D119、S120、S121、N122、V123、或I124處之突變。
在某些實施態樣中,該經設計之BMP所對應之野生型BMP係BMP8。在某些實施態樣中,在該第二型受體結合結構域A內之突變係至少一個於SEQ ID NO:6之I57、Q60、G61、S63、Y65、Y66、或E68處之突變。
在其他實施態樣中,該經設計之BMP8在該第二型受體結合結構域A內包含至少一個突變且在第一型受體結合結構域內另包含至少一個額外之突變。在該第一型受體結合結構域內之突變係至少一個於SEQ ID NO:6之S72、F73、D76、S77、C78、M79、N80、A82、N83、L87、S89、H92、L93、M94、M95、P96、D97、A98、V99或P100處之突變。
在另外之其他實施態樣中,該經設計之BMP8在第二型受體結合結構域A內包含至少一個突變,在第一型受體結合結構域內包含至少一個突變,且在第二型受體結合結構域B內另包含至少一個額外突變。在該第二型受體結合結構域B內之突變係至少一個於SEQ ID NO:6之K108、S110、A111、V114、Y117、D118、S119、S120、N121、N122、V123、或I124處之突變。
在某些實施態樣中,在該第二型受體結合結構域A內之突變係至少一個於SEQ ID NO:7之I27、K30、E31、E33、Y35、或E36處之突變。
在其他實施態樣中,該經設計之BMP9在該第二型受體結合結構域A內包含至少一個突變且在第一型受體結合結構域內另包含至少一個額外之突變。在該第一型受體結合結構域內之突變係至少一個於SEQ ID NO:7之F42、F43、A46、D47、D48、V49、T50、P51、K53、V57、T59、H62、L63、K64、F65、P66、T67、K68、V69、或G70處之突變。
在另外之其他實施態樣中,該經設計之BMP9在第二型受體結合結構域A內包含至少一個突變,在第一型受體結合結構域內包含至少一個突變,且在第二型受體結合結構域B內另包含至少一個額外突變。在該第二型受體結合結構域B內之突變係至少一個於SEQ ID NO:7之K78、S80、P81、V84、K87、D89、M90、G91、V92、P93、或T94處之突變。
經設計之BMP的示範性胺基酸序列係如下表7所示。表7顯示該經設計之分子的名稱及序列。
雖然上表列示之經設計之BMP包含本發明之實施態樣,但本發明並不以任何方式限至於任何特定分子。相反地,本發明包含任何具有經改變之受體結合之經設計之BMP,其中該經設計之BMP包含至少一個在第二型受體結合結構域A內之突變,甚至更佳地,該經設計之BMP包含至少一個在第一型受體結合結構域內之其他突變,最佳地,該經設計之BMP包含又另一個在第二型受體結合結構域B內之至少一個其他突變。
在其他實施態樣中,本發明之經設計之BMP包含與上述序列中之一者具有至少約70%、75%、80%、85%、87%、90%、92%、95%、96%、97%、98%、99%之一致性或完全一致之胺基酸序列。在另一實施態樣中,該經設計之BMP包含與SEQ ID NO:8至73中之序列具有至少約70%、75%、80%、85%、87%、90%、92%、95%、96%、97%、98%、99%之一致性或完全一致之胺基酸序列。
在又一實施態樣中,該經設計之BMP包含如SEQ ID NO:8至73中之任一者所述之胺基酸序列。在另一實施態樣中,該經設計之BMP之胺基酸序列係由序列SEQ ID NO:8至73中之一者組成。
另外,在一實施態樣中,該經設計之BMP包含與序列SEQ ID NO:12具有至少約70%、75%、80%、85%、87%、90%、92%、95%、96%、97%、98%、99%之一致性或完全一致之胺基酸序列。在另一實施態樣中,該胺基酸序列係SEQ ID NO:12之序列。在又一實施態樣中,該經設計之BMP係BMPE。
在額外之實施態樣中,該經設計之BMP包含與序列SEQ ID NO:14具有至少約70%、75%、80%、85%、87%、90%、92%、95%、96%、97%、98%、99%之一致性或完全一致之胺基酸序列。在另一實施態樣中,該胺基酸序列係SEQ ID NO:14之序列。在又一實施態樣中,該經設計之BMP係BMPG。
在另一實施態樣中,該經設計之BMP包含與序列SEQ ID NO:36具有至少約70%、75%、80%、85%、87%、90%、92%、95%、96%、97%、98%、99%之一致性或完全一致之胺基酸序列。在另一實施態樣中,該胺基酸序列係SEQ ID NO:36之序列。在又一實施態樣中,該經設計之BMP係BMPGE。
在另一實施態樣中,該經設計之BMP包含與序列SEQ ID NO:37具有至少約70%、75%、80%、85%、87%、90%、92%、95%、96%、97%、98%、99%之一致性或完全一致之胺基酸序列。在另一實施態樣中,該胺基酸序列係SEQ ID NO:37之序列。在又一實施態樣中,該經設計之BMP係BMPGER。
本發明之經設計之BMP可能包含上述序列中之任一者之片段。在一實施態樣中,經設計之BMP片段可能包含來自SEQ ID NO:8至73序列之任一序列中之至少不中斷之20、22、24、25、26、27、28、30、32、33、34、35、36、37、38、40、41、43、44、45、47、50、53、54、56、58、60、62、66、68、70、71、74、77、80、83、85、88、90、91、93、95、97、99、100、102、105、108、110、112、115、117、119、120、121、122、或125個胺基酸之序列。
該領域所廣為周知的是,BMP通常具有多變異性之蛋白質之胺基及/或羧基端。也就是說,本發明包含具有胺基酸刪除/截短之胺基及/或羧基端之經設計之BMP,該刪除/截短包含自該經設計之BMP的C端及/或N端刪除至少10個胺基酸殘基,較佳地9個胺基酸殘基,甚至更佳地8個胺基酸殘基,又更佳地7個胺基酸殘基,較佳地6個胺基酸殘基,甚至更佳地5個胺基酸殘基,較佳地4個胺基酸殘基,更佳地3個胺基酸殘基,甚至更佳地2個胺基酸殘基,及最佳地1個胺基酸殘基。
在另一實施態樣中,本發明包含經設計之BMP蛋白,該經設計之BMP蛋白包含SEQ ID NO:8至73之序列中任一者之胺基酸序列且另包含自該蛋白之胺基及/或羧基端之刪除/截短。在另一實施態樣中,本發明包含衍生自具有SEQ ID NO:8至73序列中任一者之胺基酸序列的BMP蛋白之經設計之BMP蛋白,其中該經設計之BMP蛋白包含胺基酸刪除/截短之胺基及/或羧基端,該刪除/截短包含自該經設計之BMP蛋白胺基酸序列的C端及/或N端刪除至少10個胺基酸殘基,較佳地9個胺基酸殘基,甚至更佳地8個胺基酸殘基,又更佳地7個胺基酸殘基,較佳地6個胺基酸殘基,甚至更佳地5個胺基酸殘基,較佳地4個胺基酸殘基,更佳地3個胺基酸殘基,甚至更佳地2個胺基酸殘基,及最佳地1個胺基酸殘基。
本發明所揭示之資料顯示,在大腸桿菌(E. coli)中產製之未經糖基化之BMP2同型二聚體(在此處稱為“E. coli BMP2”)相較於在哺乳動物細胞諸如CHO細胞(在此處稱為“CHO BMP2”)中產製之糖基化BMP2具有較低之活性。此外,本發明所揭示之資料另外顯示由E. coli產製之BMP6同型二聚體相較於由哺乳動物細胞培養所產製之BMP6同型二聚體實質上無功能。
本發明所揭示之資料顯示,E. coli BMP2與CHO BMP2之第一型受體結合區的晶體結構之間有顯著差異。
在一實施態樣中,該經設計之BMP包含由糖基化所媒介之經改變之構型,藉此影響結合模體,該模體反過來媒介經改變之與第一型受體之結合。此係根據本發明之發現,即在哺乳動物(例如CHO)細胞所產製之野生型BMP2中,D53朝向該受體界面,但是H54背對該受體。此與E. coli產製之BMP2相反,其中該D53殘基背對該受體界面,而該H54殘基朝向該受體排列,與如圖3所示之脯胺酸殘基交疊,似乎作為「門擋」之用。此外,本發明所揭示之資料首度顯示,由CHO產製之經完全糖基化及活化之BMP6亦包含朝向該來襲受體之組胺酸殘基,即組胺酸「門擋」。
不希望被任何特定理論限制,但本發明所揭示之資料首度顯示,自該受體界面移除「門擋」殘基可媒介該BMP配體與彼之受體之間的結合增加。該資料進一步顯示,該門擋殘基可能自己突變以移除該門擋或可能是其他殘基發生突變以移動該門擋殘基之位置。另外,本發明所揭示之資料進一步顯示其他殘基可能發生突變以提供「聚糖繫鏈基」,該聚糖繫鏈基可以轉而引導聚糖以使該聚糖之繫鏈重新引導該門擋殘基之方向。
因此在一些實施態樣中,經設計之BMP可藉由併入至少一個會影響該聚糖繫鏈基及/或移除組胺酸門擋結構之胺基酸突變加以產製,藉此提供具有經改變之受體結合之經設計之BMP。
總結來說,在一些實施態樣中,本發明之經設計之BMP可能包含至少一個在該BMP之第一型及/或第二型結合結構域內之突變,該突變授予經改變之與該第一型及/或第二型受體之結合。在一實施態樣中,該BMP序列係經工程化以改變BMP之受體親和性,這是為了改變及改善該經工程化或「經設計」之BMP的受體結合及/或成骨活性。在一實施態樣中,此工程化涉及識別與第一型及第二型受體結合有關之殘基,並取代這些殘基以產生經設計之BMP分子,該等經設計之BMP分子相較於彼等所衍生自之母體BMP顯示(除其它者外)對第一型及第二型受體二者皆具有較高之親和性。
在其他實施態樣中,本發明之經設計之BMP包含產生新的精胺酸「聚糖繫鏈基」或破壞現有繫鏈基以重新塑形該第一型受體結合結構域之突變。也就是說,使在距離該第一半胱胺酸之C端二個殘基位置之精胺酸發生突變(相當於BMP2之R16),似乎造成該聚糖鏈被「繫鏈」於該BMP表面上,因此改變該前螺旋環區相較於缺乏該突變之野生型BMP之構型。在其他實施態樣中,本發明之經設計之BMP可能包含至少一個突變,該突變改變、產生或破壞(取消)擋住第一型受體使其無法與BMP進一步結合之「門擋」殘基。也就是在該經設計之BMP中之H54(或彼之對應相等殘基)的突變,該突變之方向性使其阻礙或增加該經設計之BMP與第一型受體之交互作用。
在一些實施態樣中,該胺基酸突變影響該經設計之BMP的構型,以使該突變媒介該產生及或取消本來存在於該對應之野生型BMP中之精胺酸「聚糖繫鏈基」。在一些實施態樣中,該突變媒介經改變之構型,該構型產生或移除/取消在該經設計之BMP中之組胺酸門擋構型,其中在該對應之野生型BMP中該門擋構型分別為不存在或具有活性。
因此,該領域之技藝人士一旦了解本發明所提供之揭示內容,當能理解精胺酸「聚糖繫鏈基」及/或組胺酸「門擋」在TGFβ超家族成員中之存在與否可利用該領域已知之用於蛋白質結構分析之任何方法測定,包括但不限於本發明所例示之方法。一旦「門擋」殘基之存在被確認後,至少一個突變可被導入該分子中以重新引導該組胺酸遠離該受體結合界面之方向。或者,將產生或促進「聚糖繫鏈基」之突變可被導入,以使該組胺酸「門擋」之抑制效果(若有的話)被降低或更佳地被消除。
在一實施態樣中,當該TGFβ超家族成員係BMP2時,移除該組胺酸門擋之突變係以另一胺基酸取代H54。在一些實施態樣中,該H54係由丙胺酸、甘胺酸、絲胺酸或蘇胺酸取代。
雖然本發明揭示該等BMP2之「門擋」移除突變,技藝人士當能根據該領域之知識了解如何識別其他TGFβ超家族成員之對應突變,並輕易地產生缺乏「門擋」之突變,即移除或重新引導原本將藉由面對或突出至該結合界面而干擾受體結合之殘基。該突變對於蛋白質構型之影響可利用任何該領域公認之用於蛋白質結構分析之方法測定,諸如但不限於該些本發明所揭示之方法。或者,可移除該門擋及增加配體與該第一型受體結合之突變可利用該領域可用之電腦模型方法於電腦上識別。因此,本發明包含具有增進之與該第一型受體結合之TGFβ超家族成員之設計,其中該等成員缺乏原本將存在於該受體界面之組胺酸「門擋」殘基。
本發明另提供該領域之技藝人士有關如何識別其他TGFβ家族成員之突變之了解,該等突變將產生或破壞該精胺酸聚糖繫鏈基。添加該精胺酸聚糖繫鏈基至缺乏該繫鏈基之蛋白質之突變被本發明所考慮。因此,本發明包含具有增進之與該第一型受體結合之TGFβ超家族成員之設計,其中該等成員包含改變該第一型受體結合結構域之構型之精胺酸聚糖繫鏈基。
在一些實施態樣中,移除該組胺酸門擋因此移除對聚糖繫鏈基之需求,提供一種可以不須糖基化之形式被產製且仍維持生物活性之經設計之BMP。舉例來說,經設計之BMP可在具有與哺乳動物細胞不同之糖基化活性或不具糖基化活性之細胞中產製,例如細菌細胞、酵母菌細胞、昆蟲細胞或黏液黴菌細胞。在特定實施態樣中,該經設計之BMP可在大腸桿菌(E. coli)中產製並維持生物活性。
因此,在一些實施態樣中,本發明提供設計及產製BMP之方法,該等BMP可於缺乏糖基化或包含經改變之糖基化之細胞內產製,以使與哺乳動物細胞所產製之聚糖不同之經改變之聚糖被產製。也就是說,本發明包含用於導入突變之方法,該突變移除原本將會妨害或抑制受體結合之門擋殘基。該領域之技藝人士一旦了解本發明之揭示當能知道,侵犯該受體-配體界面之門擋殘基可能發生突變以完全移除該殘基或其他突變可被導入以使該殘基朝向遠離該界面之方向。該等其他突變包括但不限於提供將改變聚糖之構型的聚糖繫鏈基及藉此改變該配體之構型以使該門擋殘基之方向遠離該結合界面。
本發明亦包括編碼此處所描述之BMP之核酸。編碼本發明所描述之該等經設計之BMP之核酸可根據該領域已知之各種方法製備。
在一種方法中,編碼經設計之BMP之核酸係藉由全基因合成,或藉由使編碼野生型或經修飾之BMP之核酸定點突變加以製備。可利用包括模板引導連接、遞迴PCR、卡匣突變形成、定點突變形成或其他該領域眾所周知之方法(見例如Strizhov et al.,Proc. Natl. Acad. Sci. USA 93:15012-15017(1996)、Prodromou and Perl,Prot. Eng. 5: 827-829(1992)、Jayaraman and Puccini,Biotechniques 12: 392-398(1992)、及Chalmers et al.,Biotechniques 30: 249-252(2001))。
因此,本發明之實施態樣可包含編碼本發明之經設計之BMP之核酸分子。在某些實施態樣中,本發明提供編碼SEQ ID NO:8至66之胺基酸序列中之一者之核酸分子。
在其他實施態樣中,該核酸分子編碼包含與SEQ ID NO:12之胺基酸序列具有至少70%、75%、80%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%一致性之胺基酸序列的經設計之BMP蛋白。在一些實施態樣中,該核酸分子編碼包含SEQ ID NO:12之胺基酸序列之經設計之BMP蛋白。在另一實施態樣中,該核酸分子編碼如表8所示之BMPE之胺基酸序列。
在其他實施態樣中,該核酸分子編碼包含與SEQ ID NO:14之胺基酸序列具有至少70%、75%、80%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%一致性之胺基酸序列的經設計之BMP蛋白。在一些實施態樣中,該核酸分子編碼包含SEQ ID NO:14之胺基酸序列之經設計之BMP蛋白。在另一實施態樣中,該核酸分子編碼如表8所示之BMPG之胺基酸序列。
在其他實施態樣中,該核酸分子編碼包含與SEQ ID NO:36之胺基酸序列具有至少70%、75%、80%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%一致性之胺基酸序列的經設計之BMP蛋白。在一些實施態樣中,該核酸分子編碼包含SEQ ID NO:36之胺基酸序列之經設計之BMP蛋白。在另一實施態樣中,該核酸分子編碼如表8所示之BMPGE之胺基酸序列。
在其他實施態樣中,該核酸分子編碼包含與SEQ ID NO:37之胺基酸序列具有至少70%、75%、80%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%一致性之胺基酸序列的經設計之BMP蛋白。在一些實施態樣中,該核酸分子編碼包含SEQ ID NO:37之胺基酸序列之經設計之BMP蛋白。在另一實施態樣中,該核酸分子編碼如表8所示之BMPGER之胺基酸序列。
編碼經設計之BMP的示範性核苷酸序列係如下表8所示。表8顯示該經編碼之蛋白質之名稱及編碼該蛋白質之核苷酸序列。通常,該成熟蛋白質編碼序列始於下列序列之核苷酸847。
在其他實施態樣中,編碼經設計之BMP之核酸分子包含與SEQ ID NO:74至139所示之核酸序列中之一者或彼之片段具有至少40%、50%、60%、65%、70%、75%、80%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%一致性之核酸序列。在其他實施態樣中,編碼經設計之BMP之核酸分子包含與表8所示之核酸序列中之一者或彼之片段具有至少40%、50%、60%、65%、70%、75%、80%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%一致性之核酸序列。在另一實施態樣中,該編碼經設計之BMP之核酸分子包含如SEQ ID NO:74至139所示之任何序列之核酸序列。在又一實施態樣中,該核酸分子係由SEQ ID NO:74至139之核酸序列中任一者之核酸序列所組成。
在另一實施態樣中,編碼經設計之BMP之核酸分子包含與SEQ ID NO:78之核酸序列或彼之片段具有至少40%、50%、60%、65%、70%、75%、80%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%一致性之核酸序列。在另一實施態樣中,編碼經設計之BMP之核酸分子包含SEQ ID NO:78之核酸序列。在又一實施態樣中,該核酸分子係由編碼BMPE之SEQ ID NO:78之核酸序列組成。
在另一實施態樣中,編碼經設計之BMP之核酸分子包含與SEQ ID NO:80之核酸序列或彼之片段具有至少40%、50%、60%、65%、70%、75%、80%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%一致性之核酸序列。在另一實施態樣中,編碼經設計之BMP之核酸分子包含SEQ ID NO:80之核酸序列。在又一實施態樣中,該核酸分子係由編碼BMPG之SEQ ID NO:80之核酸序列組成。
在另一實施態樣中,編碼經設計之BMP之核酸分子包含與SEQ ID NO:102之核酸序列或彼之片段具有至少40%、50%、60%、65%、70%、75%、80%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%一致性之核酸序列。在另一實施態樣中,編碼經設計之BMP之核酸分子包含SEQ ID NO:102之核酸序列。在又一實施態樣中,該核酸分子係由編碼BMPGE之SEQ ID NO:102之核酸序列組成。
在另一實施態樣中,編碼經設計之BMP之核酸分子包含與SEQ ID NO:103之核酸序列或彼之片段具有至少40%、50%、60%、65%、70%、75%、80%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%一致性之核酸序列。在另一實施態樣中,編碼經設計之BMP之核酸分子包含SEQ ID NO:103之核酸序列。在又一實施態樣中,該核酸分子係由編碼BMPGER之SEQ ID NO:103之核酸序列組成。
BMP被天然地表現為包含長的原結構域、一或多個切割位點及成熟結構域之原蛋白質。此原蛋白質接著藉由細胞機制處理以產生(通常為)二聚體之成熟BMP分子。在一些實施態樣中,該經設計之BMP係以類似之方式產製。該原結構域被認為在BMP之摺疊及處理上有其作用。另外,在一些BMP中,該原結構域可能與該成熟蛋白共價結合,並具有增強、伴護或抑制溶解性之作用。在一些實施態樣中,BMP可能被產製為直接由內涵體產製或再摺疊之成熟結構域。在其他實施態樣中,該等BMP係經由化學合成或任何其他用於蛋白質產製之已知方法產製。
在一實施態樣中,該經設計之BMP係利用化學合成方法產製,諸如但不限於該領域廣為周知之合成方法。
在一些實施態樣中,編碼經設計之BMP之核酸係藉由全基因合成,或藉由使編碼野生型、經設計或變異體BMP之核酸定點突變加以製備。方法包括模板引導連接、PCR、卡匣突變形成、定點突變形成、限制酶消化及連接或其他該領域廣為周知之技術(見例如Prodromou et al.,Protein Eng 5:827-9(1992)、Jayaraman et al.,Biotechniques 12:392-8(1992)、Chalmers et al.,Biotechniques 30:249-52(2001)、及Sambrook and Russell,In: Molecular Cloning,A Laboratory Approach,Cold Spring Harbor Press,Cold Spring Harbor,NY(2001))。
在一些實施態樣中,包含編碼經設計之BMP之基因的表現載體係經製備。用於各種宿主細胞之各種類型之適當表現載體及適當調節序列係該領域所知。該等表現載體可包含轉錄及轉譯調節序列,包括但不限於啟動子序列、核糖體結合位點、轉錄終止信號、聚腺苷酸化信號及增強子或活化子序列。在一些實施態樣中,該調節序列包括啟動子及轉錄起始及終止序列。此外,該表現載體可包含額外元件,諸如二種複製系統以允許其被維持於兩種有機體中。該表現載體可為染色體外載體或嵌入宿主細胞之基因組中之載體。在一些實施態樣中,該表現載體包含至少一種與宿主細胞之基因組同源之序列,以促進整合至該基因組內。用於整合載體之建構體係該領域所廣為周知。在一些實施態樣中,該表現載體包含可篩選之標誌基因以允許篩選經穩定轉形之宿主細胞。篩選標誌基因係該領域眾所周知,將隨所使用之宿主細胞而異。
該表現載體可包括分泌前導序列或信號肽序列,以用於自該宿主細胞分泌該經設計之BMP。適當之分泌前導序列及信號肽係為該領域所知。
編碼經設計之BMP之核酸可被單獨導入或與表現載體組合導入宿主細胞,以使該經設計之BMP由該核酸表現。導入之方法主要取決於該宿主細胞之種類。示範性轉染/轉形之方法包括磷酸鈣(CaPO4
)沉澱、脂質體融合、電穿孔、病毒感染、葡聚糖媒介轉染、凝聚胺媒介轉染、原生質體融合、直接顯微注射及其他該領域已知之方法。編碼經設計之BMP之核酸可能被穩定嵌入該宿主細胞之基因組中或可能暫時或穩定地存在於細胞質中。
用於表現經設計之BMP之適當宿主細胞包括任何適合用於表現野生型或天然BMP之細胞,包括但不限於酵母菌、細菌、古細菌、真菌、昆蟲及動物細胞。在一些實施態樣中,該宿主細胞係啤酒釀母菌(Saccharomyces cerevisiae)或大腸桿菌(Escheria coli)。在一些實施態樣中,該宿主細胞係哺乳動物細胞諸如293(例如293-T及293-EBNA)、BHK、CHO(例如CHOK1及DG44)、COS、Jurkat、NIH3T3、或C2C12細胞。其他適當細胞可見於ATCC目錄。經設計之BMP可於更複雜之有機體中製備,包括但不限於植物及動物。在一實施態樣中,該等細胞可能經額外之基因工程化,即除了包含該經設計之BMP核酸之表現載體以外還包含外源性核酸。
在一些實施態樣中,經設計之BMP係藉由培養經表現載體轉形之宿主細胞加以產製,該表現載體包含編碼經設計之BMP之核酸,該培養在適當條件下進行以誘導或造成該經設計之BMP之表現。適合經設計之BMP表現之條件係與已知適用於表現天然或野生型BMP之條件相同。這些條件將隨表現載體及宿主細胞之選擇而異,且可輕易地由該領域之技藝人士經由例行實驗加以確定。
在一些實施態樣中,該經設計之BMP可在表現後純化或分離。標準純化方法包括電泳、分子、免疫及層析技術,包括離子交換層析、疏水性層析、親和性層析、逆相HPLC層析及色層集焦。適當純化技術之一般指南可見於Scopes,In: Protein Purification,Springer-Verlag,NY,3rd
Ed.(1994)。所需之純化程度將隨該所欲之用途而定,在一些情況中將不需要純化。
自細菌細胞純化可能導致BMP於內涵體中表現及於CHAPS/高鹽系統中再摺疊之後續步驟。自哺乳動物細胞純化可能涉及經由Cellufine硫酸鹽及逆相層析管柱之二步驟純化。
在一些實施態樣中,該經設計之BMP可經共價或非共價之修飾。共價修飾可藉由使蛋白質之目標胺基酸殘基與有機衍生劑反應而被導入該蛋白質中,該有機衍生劑能與經選擇之側鏈或末端殘基反應。用於修飾之理想位點可利用各種標準選擇,包括但不限於目視檢查、結構分析、序列分析及分子模擬。
在一些實施態樣中,經設計之BMP可利用至少一種元件、同位素或化學化合物標示。該標記可為同位素標記,諸如放射性或重同位素。在一些實施態樣中,該標記可為免疫標記諸如抗體或抗原。在一些實施態樣中,該標記可為彩色或螢光標記,諸如螢光素。在一些實施態樣中,該標記可為生物素、標籤(例如FLAG、Myc、His)。
該經設計之BMP可利用雙官能劑衍生化,以使該經設計之BMP與用於純化與蛋白質結合之抗體或蛋白質之支持基材或表面交聯,或於篩選試驗中檢測結合。常用之交聯劑包括但不限於1,,1-雙(二偶氮乙醯基)-2-苯基乙烷、戊二醛、N-羥基琥珀醯亞胺酯(例如具有4-疊氮基水楊酸之酯)、同型雙官能性亞胺酸酯(包括二琥珀醯亞胺酯諸如3,3'-二硫雙(琥珀醯亞胺丙酸酯))、雙官能性順丁烯二醯亞胺(諸如雙-N-順丁烯二醯亞胺基-1,8-辛烷)。其他修飾包括分別脫去麩醯胺基及天冬醯胺基之醯胺成為該對應之麩胺醯基及天冬胺醯基、脯胺酸及離胺酸之羥化、絲胺醯基或蘇胺醯基之羥基的磷酸化、離胺酸、精胺酸及組胺酸側鏈之胺基的甲基化(T.E. Creighton,Proteins: Structure and Molecular Properties,W. H. Freeman & Co.,San Francisco,pp. 79-86(1983))、N端胺之乙醯化及任何C端羧基之醯胺化。該等衍生化可改善溶解性、吸收性、通過血腦屏障、血清半衰期及類似者。或者,經設計之BMP之修飾可能消除或減輕該蛋白質之任何可能的非所欲之不良反應。可媒介該效應之基團係經揭示於例如Remington's Pharmaceutical Sciences,16th ed.,Mack Publishing Co.,Easton,PA(1980)。
另一類型之經設計之BMP之共價修飾包含連接該蛋白質與各種非蛋白質性聚合物中之一者,例如聚乙二醇("PEG")、聚丙二醇或聚氧化烯,以美國專利第4,640,835、4,496,689、4,301,144、4,670,417、4,791,192或4,179,337中所闡述之方式進行。如該領域所廣為周知,各種耦合化學可被用於達成PEG連接。
在另一實施態樣中,該經設計之BMP包含經由CovX抗體(CovX-body)連接子連接該蛋白質至CovX抗體,諸如但不限於於美國專利第5,733,757號及美國專利公開號US 2009/0098130中所述之CovX抗體。該等CovX抗體可能呈現經改善之特徵,包括但不限於經改善之穩定性及延長之血清半衰期。
經設計之BMP的受體結合活性可利用任何用於檢測野生型BMP之活性的方法檢測。
經設計之BMP對於一或多種BMP受體之親和性可藉由受體結合試驗測定。舉例來說,可測定對ALK-2、ALK-3、ALK-6、ActRII、ActRIIb、或BMPRII之親和性。適當之結合試驗包括但不限於ELISA、螢光異向性及強度、鄰近閃爍檢測(SPA)、Biacore(Pearce et al.,Biochemistry 38:81-89(1999))、DELFIA試驗及AlphaScreenTM
(可自珀金埃爾默(Perkin Elmer)公司購得;Bosse R.,Illy C,and Chelsky D(2002))。
在一些實施態樣中,使用Biacore或表面電漿共振試驗。見例如McDonnell,Curr. Opin. Chem. Biol. 5:572-577(2001)。Biacore實驗先前曾被用來特徵化TGF-β異構體與彼等之受體之結合(De Crescenzo et al.,J. Biol. Chem.,276: 29632-29643(2001);De Crescenzo et al.,J. Mol. Biol. 328: 1173-1183)(2003)。
在其他實施態樣中,盤式直接結合試驗被用於測定一或多種經修飾之BMP對一或多種BMP受體之親和性。此方法係經改良之三明治式ELISA,其中利用抗-BMP單株抗體捕捉BMP,接著使用BMP受體-Fc融合蛋白檢測。
在其他實施態樣中,AlphaScreenTM
試驗(Bosse R. et al.,Principles of AlphaScreenTM
,PerkinElmer Literature Application Note Ref #4069,http://lifesciences.perkinelmer.com/Notes/S4069-0802.pdf(2002))可被用於特徵化受體與抑制劑之結合。螢光試驗亦可被用於特徵化受體與抑制劑之結合。舉例來說,不是BMP2就是BMP2受體或抑制劑可利用螢光染料標示(適當染料之實例見Molecular Probes catalog)。另外,鄰近閃爍檢測(SPA)可被用於測定受體結合親和性。舉例來說,BMP受體-Fc融合可與經蛋白質A包覆之SPA珠或閃光板結合,並經S35標記之BMP處理,該結合事件導致光之產生。
在特定實施態樣中,特定BMP突變對第一型或第二型受體之KD可藉由利用受體細胞外結構域與人IgG-Fc融合測定。該受體可利用抗人IgG-Fc感應器與octet感應器結合,且該BMP可與溶液中之受體胞外結構域結合以測定Kon及Koff速率。該Octet系統利用專用BioLayer干涉儀(BLI)以使能進行生物分子交互作用之即時、無標記分析及提供親和性、動力學及濃度之資料。當蛋白質與Octet感應器結合時,通過該感應器之光線具有可利用分光光度計測量之波長位移。該位移之速率係在該分析物與該感應器結合及當其失去結合時測量。
經設計之BMP的成骨活性可利用任何用於檢測野生型BMP之活性的方法檢測。
BMP促進多種類型之細胞的生長及分化。分化可利用例如鹼性磷酸酶之發光報告子或量熱試劑諸如亞爾襄藍(Alcian Blue)或PNPP監測(Asahina et al.(1996) Exp. Cell Res,,222:38-47;Inada et al.(1996) Biochem. Biophvs. Res. Commun.. 222:317-322;Jortikka et al.(1998) Life ScL 62:2359-2368;Cheng et al.(2003) J. Bone Joint Surgery 95A:1544-1552)。
大鼠肢芽軟骨分化試驗亦可被用來監測初代細胞中之活性。在選擇性實施態樣中,報告子基因或激酶試驗可被使用。由於BMP活化該JAK-STAT信號傳導途徑,包含STAT反應性報告子諸如GFP或螢光素酶之BMP反應性細胞系可被使用(Kusanagi et al.(2000) MoI Biol. Cell.,11:555-565)。舉例來說,在腎細胞中之BMP活性可利用細胞基底試驗測定,見例如Wang and Hirschberg(2004) J. Biol. Chem.,279:23200-23206。
成骨活性可在細胞基底試驗中測量,諸如鹼性磷酸酶、BRE螢光素酶或茜素紅(Alizarin red)礦物化試驗,所有皆於Isaacs et al.,Mol. Endocrinol. 24:1469-1477(2010)中描述。
成骨活性亦可經由大鼠異位骨試驗或哺乳動物骨生長模型在活體內測量。在一些實施態樣中,成骨活性係於非人靈長動物模型中測量。這些模型係於Isaacs et al.,Mol. Endocrinol. 24:1469-1477(2010)中描述。
評估骨質量及品質之方法係該領域所知,包括但不限於X光繞射、DXA、DEQCT、pQCT、化學分析、密度分離、組織測光法、及例如於Lane et al.,J. Bone Min. Res. 18:2105-2115(2003)中所描述之組織化學分析。一種測定皮質骨密度之方法係MicroCT試驗。在pQCT測量之後,可利用例如Scanco mCT40(Scanco Medical AG)進行股骨之microCT評估。
任何已知或稍後發展出之用於檢測骨生長/密度/強度之活體外或活體內方法可被用於評估本發明之經設計之BMP的成骨活性。
本發明之經設計之BMP可經調製以用於投予至哺乳動物,較佳地需要其作為醫藥組成物之一部分之人。該組成物可藉由任何適當之手段投予,例如非經腸、經口或局部。當該經設計之BMP將藉由注射被局部投予至所欲之組織部位,或藉由諸如靜脈內、皮下、肌肉內、眼框內、經眼、腦室內、顱內、囊內(intracapsular)、脊柱內、腦池內、腹膜內、經頰、經直腸、經陰道、鼻內或氣霧投予之系統性投予時,該組成物較佳地包含水性溶液。該溶液較佳地具有生理相容性,以使彼之投予至哺乳動物不會不良地影響該哺乳動物之正常電解質及流體體積平衡。該水性溶液因此可包含例如等張生理食鹽水(0.9% NaCl,0.15M),pH 7-7.4。
可用於經口或非經腸系統性投予之溶液可藉由製藥領域中廣為周知之任何方法加以製備,例如於"Remington's Pharmaceutical Sciences"中描述者(Gennaro,A.,ed.,Mack Pub.,1990,彼之揭示內容係以參照方式納入此處)。調製劑可包括例如聚伸烷基二醇諸如聚乙二醇、植物來源之油、氫化萘及類似者。特別是用於直接投予之調製劑可包括甘油及其他具高黏性之組成物。
生物相容性較佳地生物可吸收性聚合物(包括例如玻糖醛酸、膠原蛋白、磷酸三鈣、聚丁酯(polybutyrate)、聚交酯、聚乙交酯及乳交酯/乙交酯共聚物)可為有用之賦形劑以控制該經設計之BMP於活體內之釋放。用於本發明之經設計之BMP之其他潛在有用之非經腸遞送系統可包括乙烯醋酸乙烯酯共聚物顆粒、滲透泵、可植入之輸注系統及脂質體。用於吸入投予之調製劑可包含賦形劑例如乳糖,或可為包含例如聚氧乙烯-9-月桂基醚、甘膽酸鹽或去氧膽酸鹽之水性溶液,或用於以鼻滴劑形式投予之油性溶液或被施用於鼻內之膠。
或者,本發明之經設計之BMP包括如此處所述之識別之經設計之BMP2及BMP6可經口投予。舉例來說,經設計之BMP之液體調製劑可根據標準方法製備,諸如該些於"Remington's Pharmaceutical Sciences"(同上)中所述者。該等液體調製劑接著可被加至飲料或其他食物補充劑以供投予。經口投予亦可利用這些液體調製劑之氣霧劑達成。或者,利用該領域廣知之乳化劑製備之固體調製劑可被製作成適用於經口投予之錠劑、膠囊或含錠。
可任意選擇地,該經設計之BMP可被調製於包含用於促進由所欲組織攝取該蛋白質之裝置的組成物中。舉例來說,已知當於哺乳動物體內系統性提供四環素及二膦酸鹽(雙膦酸鹽)時,它們可與骨礦物質結合,特別是在骨重塑之區域。因此,該等成份可被用於促進遞送本發明之經設計之BMP至骨組織。或者,與該所欲之標靶組織之特異性相關之易接近物質(諸如細胞表面抗原)特異性結合之抗體或彼之部分亦可被使用。若有需要,該等特異性靶向分子可與本發明之經設計之BMP共價結合,例如藉由化學交聯或藉由使用標準基因工程化技術以產生例如不耐酸鍵諸如Asp-Pro鍵接。可用之靶向分子可根據例如美國第5,091,513號專利之揭示內容加以設計。
亦考慮的是,某些經設計之BMP當與載劑基體(即不可溶之聚合物基體)結合時可能展現最高量之活體內活性。見例如美國第5,266,683號專利,其揭示內容以參照方式納入本發明。目前較佳之載劑基體在本質上係異種性、異體性或自體性。然而所考慮的是,合成性材料包含聚乳酸、聚乙醇酸、聚丁酸、彼等之衍生物及共聚物亦可被用於產製適當之載劑基體。較佳之合成性及天然衍生性基體材料、彼等之製備、調製彼等與本發明之經設計之BMP之方法及投予方法係該領域所廣為周知,因此不在此詳細說明。見例如美國專利第5,266,683號。
在某些實施態樣中,該經設計之BMP可被單獨投予或與另一已知對組織形態發生具有利效應之物質組合投予至需要該BMP之哺乳動物。該等物質(此處稱為輔因子)之實例包括促進組織修復及再生及/或抑制發炎或纖維化之物質。可用於刺激骨質疏鬆症個體之骨組織生長之輔因子實例包括但不限於例如維生素D3、降鈣素、前列腺素、副甲狀腺素、地塞米松(dexamethasone)、雌激素及IGF-I或IGF-II。可用於神經組織修復及再生之輔因子可包括神經生長因子。其他有用之輔因子包括症狀減輕輔因子,包括抗菌劑、抗生素、抗病毒劑、抗真菌劑、止痛劑及麻醉劑。
經設計之BMP係較佳地藉由與醫藥上可接受之非毒性賦形劑及載劑混合而調製成醫藥組成物。如上所述,該等組成物可被製備以用於系統性例如非經腸投予,特別是呈液體溶液或懸浮液形式;用於經口投予,特別是呈錠劑或膠囊之形式;或用於經鼻投予,特別是呈粉劑、鼻滴劑或氣霧劑之形式。當黏附於組織表面係為所欲時,該組成物可包含纖維蛋白原-凝血酶分散液或其他生物黏著劑諸如於例如PCT US91/09275中所揭示者,該揭示內容以參照方式納入本發明。接著該組成物可被塗布、噴灑或以其他方式施用於該所欲之組織表面。
當投予時,本發明之醫藥組成物通常係以無致熱原、生理可接受之形式遞送。另外,該組成物可能刻意地被包封或以黏性形式注射以遞送至骨軟骨或組織傷害之部位。局部投予可能適合用於傷口癒合及組織修復。對於骨及/或軟骨形成較佳地是,該組成物包括能遞送BMP蛋白至骨及/或軟骨傷害之部位之基體,該基體提供發展骨及軟骨之結構且理想地能夠被身體吸收。該等基體可由目前用於其他植入式醫學應用之材料形成。
基體材料之選擇係根據生物相容性、可生物降解性、機械性質、化妝品外觀及界面性質。本發明之經設計之BMP之特定應用將定義該適當之調製劑。用於該等組成物之潛在基體可能為可生物降解及化學定義之硫酸鈣、磷酸三鈣、羥磷灰石、聚乳酸及聚酐。其他潛在材料係可生物降解及具有清楚之生物定義,諸如骨或皮膚之膠原蛋白。其他基體係由純的蛋白質或胞外基體成份組成。其他潛在之基體係非生物可降解且具有化學定義,諸如經燒結之羥磷灰石、生物玻璃、鋁酸酯或其他陶瓷。基體可由任何上述材料類型之組合組成,諸如聚乳酸及羥磷灰石或膠原蛋白及磷酸三鈣。該生物陶瓷可在組成物中被改變,諸如於鈣-鋁酸酯-磷酸酯中及經處理以改變孔洞大小、顆粒大小、顆粒形狀及生物降解性。
該給藥方案將由主治醫師考慮各種影響該經設計之BMP蛋白之作用的因素後決定。這些因素包括但不限於所希望形成之骨重量之量、骨損傷之部位、該損傷之骨之狀況、傷口大小、受損組織之類型、病患年齡、性別及飲食、任何感染之嚴重性、給藥時間及其他臨床因素。劑量可視重構中所使用之基體類型而定。添加其他已知之生長因子諸如IGF I(胰島素樣生長因子I)至該最終組成物可能也會影響劑量。進展可藉由週期性評估骨生長及/或修復加以監測。在該領域中許多廣知之方法中之一種評估骨生長或修復之方法係藉由x光攝影及/或CT掃描。
該組成物可被調製成以治療有效量非經腸或經口投予至人或其他哺乳動物,例如提供適當濃度之該經設計之BMP至標靶組織一段足以誘導該所欲效應之時間之量。較佳地,本發明之組成物緩和或減輕哺乳動物對於形態發生因子相關性生物反應之需要,諸如維持衰老組織(例如骨量減少之骨組織)之組織特異性功能或恢復組織特異性表型,或抑制或回復組織中之纖維化反應。
如該領域之技藝人士所將了解的,在治療性組成物中所描述之化合物之濃度將視一些因素而定,包括要被投予之藥物之劑量、所使用之化合物的化學特徵(例如疏水性)、及投予途徑。將被投予之藥物的較佳劑量亦有可能取決於一些變異因素,諸如疾病之類型及程度、組織喪失或缺陷、特定病患之整體健康狀況、該選擇之化合物的相對生物療效、該化合物之調製、在調製劑中賦形劑之存在及類型、及投予途徑。
總體而言,本發明之化合物可被提供於包含大約0.1至10% w/v化合物之水性生理緩衝溶液中以用於非經腸投予。典型劑量範圍係介於每天約10 ng/kg體重至約1 g/kg體重,較佳之劑量範圍係介於約0.1 mg/kg體重至100 mg/kg體重。
經設計之BMP可被用於任何野生型BMP可用之適應症,或用於其中TGFβ超家族成員可被使用之任何方法中。經設計之BMP能夠誘導骨及軟骨形態發生之發育級聯及誘導或媒介Smad傳訊途徑。經設計之BMP誘導較高之骨增量及修復,包括但不限於相較於對應之野生型BMP產生較高之骨質量、骨硬度及骨密度。因此,經設計之BMP可被用於誘導組織中之骨形成。另外,經設計之BMP可被用於在體內之不同位置誘導骨及軟骨之增生。舉例來說,經設計之BMP可被用於修復關節,諸如膝關節、肘關節、踝關節及指關節。舉例來說,經設計之BMP可被用於使罹患關節炎或其他軟骨退化性疾病之病患的軟骨再生。另外,經設計之BMP之使用適應症係治療因為傷害造成之軟骨撕裂。此外,經設計之BMP可用於誘導病患之骨生長。舉例來說,經設計之BMP之使用適應症係治療骨折或斷裂、或骨質疏鬆症之病患、或需要進行脊椎融合或修復脊椎、椎骨或類似者之病患。
在另一實施態樣中,本發明包括骨增量及/或修復之方法。因此,本發明包含投予治療有效量之經設計之BMP至某部位,其中該BMP媒介可偵測之骨增量或修復。
在另一實施態樣中,本發明包括誘導或增加Smad表現之方法。該方法包含使含有Smad媒介之表現途徑之細胞與本發明之經設計之BMP接觸。
經設計之BMP可誘導骨形態發生之發育級聯及哺乳動物體內和骨或骨軟骨不同之多種組織之組織形態發生。此形態發生活性包括誘導祖細胞增生及分化之能力,及經由事件之進展支持及維持該經分化之表型之能力,該活性導致骨、軟骨、非鈣化之骨骼或結締組織及其他成人組織之形成。
舉例來說,經設計之BMP可被用於治療以預防代謝性骨疾病中之骨質量喪失及/或增加骨質量。使用成骨蛋白以預防在代謝性骨疾病中之骨質量喪失及/或增加骨質量之一般性治療方法係揭示於美國專利第5,674,844號,該專利之揭示內容係以參照方式納入此處。經設計之BMP亦可被投予以取代或修復在受傷部位之骨或軟骨,諸如斷骨、骨折、及軟骨撕裂。本發明之經設計之BMP可被用於牙周組織再生。使用成骨蛋白以使牙周組織再生之一般方法係揭示於美國專利第5,733,878號,該揭示係以參照方式納入此處。
經設計之BMP可被用於肝臟再生。使用成骨蛋白以使肝臟再生之一般方法係揭示於美國專利第5,849,686號,該揭示係以參照方式納入此處。經設計之BMP可被用於治療慢性腎衰竭。使用成骨蛋白以治療慢性腎衰竭之一般方法係揭示於美國專利第6,861,404號,該揭示係以參照方式納入此處。經設計之BMP可被用於促進中樞神經系統缺血或創傷後之功能恢復。使用成骨蛋白以促進中樞神經系統缺血或創傷後之功能恢復之一般方法係揭示於美國專利第6,407,060號,該揭示係以參照方式納入此處。
經設計之BMP可被用於誘導樹突生長。使用成骨蛋白以誘導樹突生長之一般方法係揭示於美國專利第6,949,505號,該揭示係以參照方式納入此處。
經設計之BMP可被用於誘導神經細胞黏附。使用成骨蛋白以誘導神經細胞黏附之一般方法係揭示於美國專利第6,800,603號,該揭示係以參照方式納入此處。
經設計之BMP可被用於治療及預防帕金森氏症。使用成骨蛋白以治療及預防帕金森氏症之一般方法係揭示於美國專利第6,506,729號,該揭示係以參照方式納入此處。
該領域之一般技藝人士當能使用本發明之經修飾之BMP以改良該一般用於上述各種治療用途之方法。本發明之經修飾之BMP的治療應用之示範性實施態樣係於下進一步描述。
經設計之BMP可被用於修復有病變或受損之哺乳動物組織。欲經修復之組織係較佳地加以評估,視需要藉由手術、化學、燒蝕或其他該醫學領域中之已知方法移除多餘之壞死或干擾結痂組織。然後該經設計之BMP可作為無菌、生物相容性組成物之一部分,藉由手術植入或注射被直接提供至該組織部位。或者,包含受到經修飾之BMP刺激之祖細胞之無菌、生物相容性組成物可被提供至該組織部位。在該部位之不論有病變或受損之現有組織提供適當基材以允許祖細胞之增生及組織特異性分化。此外,受損或有病變之組織部位特別是已進一步經手術手段處理者提供形態發生允許環境。在一些組織中,設想由系統性提供該經修飾之BMP將為足夠。
經設計之BMP可被用於預防或實質上抑制傷害後之結痂組織形成。若經設計之BMP被提供至新近受傷之組織部位,其可誘導該部位之組織形態發生,防止移動之纖維母細胞聚集至非分化之結締組織。該經設計之BMP較佳地係以在受傷5小時內被注射至該組織部位之無菌醫藥製劑提供。
舉例來說,該經設計之BMP可被用於蛋白質誘導之實質上受損之肝臟組織在部分肝切除後之形態發生。此常規方法之變化形可被用於其他組織。該常規方法涉及切開組織之實質上不再生之部分,提供較佳地呈可溶性醫藥製劑之該經修飾之BMP至該切開之組織部位,關閉該傷口並在未來日期檢查該部位。和骨類似,肝臟在胎後生命期間受到傷害時具有再生之潛力。
在另一實例中,經設計之BMP亦可被用於誘導牙本質形成。到目前為止,牙髓組織對傷害之不可預期之反應係牙科之基本臨床問題。使用標準牙科手術技術,藉由移除琺瑯質及在牙髓上之牙本質(鑽洞)可手術暴露樣本牙之小區域(例如2 mm)牙髓,進行部分冠髓組織切斷術,誘導止血,施用牙髓治療,並以標準程序封閉及填充該空腔。
本發明之經設計之BMP可被用於治療纖維化。纖維化可能位於身體之不同部位且可能為特定種類,舉例來說,纖維化可能發生在下列部位:腎臟,例如在腎小球性腎炎、糖尿病腎病、異體移植排斥及HIV腎病中觀察到之纖維化;肝臟,例如肝硬化及肝靜脈閉鎖症;肺臟,例如自發性纖維化(及自體免疫性纖維化);皮膚,例如全身性硬化症、蟹足腫、疤痕、及嗜酸性球增多-肌痛症候群;中樞神經系統,例如眼內纖維化;心血管系統,例如血管再狹窄;鼻,例如鼻息肉;骨或骨髓;內分泌器官;及胃腸道系統。
在一實施態樣中,具有BMP7之結合特性或彼等之有用修飾(延長半衰期、相較於野生型BMP7對相同或不同受體之結合親和性增加、對BMP7拮抗劑諸如但不限於Noggin及類似者之抑制具抗藥性)之經設計之BMP可被用於治療、改善或反轉纖維化。因為最近的回顧文獻Weiskirchen et al.,2009,Frontiers in Biosci. 14:4992-5012指出,TGFβ1
媒介導致纖維化增加之級聯,包括但不限於上皮轉間質之轉化。該TGFβ1
之纖維化誘導效應可被BMP7抑制或反轉。亦見Loureiro et al.,2010,Nephrol. Dial. Transplant. 25:1098-1108。另外,某些纖維化狀況亦可藉由投予BMP4加以治療或改善(見Pegorier et al.,2010,Resp. Res. 11:85)。因此,本發明包含以BMP7骨架為基礎及/或併入本發明他處所揭示之第一型及第二型突變之經設計之BMP,以改變受體結合及提供潛在有用之治療劑以用於治療需要治療病患之纖維化。
纖維化疾病可能由多種原因誘發,包括:化學治療,例如由博來黴素(bleomycin)、氯芥苯丁酸(chlorambucil)、環磷醯胺(cyclophosphamide)、甲胺喋呤(methotrexate)、氮芥(mustine)、或甲基苄肼(procarbazine)治療所造成之肺纖維化;意外或在放射治療中有目的之放射線暴露,例如由放射線造成之間質性肺疾病(ILD);環境或工業因素或汙染物諸如化學物、煙霧、金屬、蒸氣、氣體等,例如由石綿或煤灰造成之ILD;藥物或藥物之組合,例如抗生素(例如青黴素、磺醯胺等)、心血管藥物(例如肼屈嗪(hydralazine)、乙型阻斷劑等)、CNS藥物(苯妥英(phenytoin)、氯丙嗪(chlorpromazine)等)、抗發炎藥物(例如金鹽、苯基丁氮酮等)等可造成ILD;免疫反應疾病,例如慢性移植物抗宿主病中之皮膚纖維化;疾病狀態諸如已知會造成ILD之吸入性肺炎及寄生蟲誘導之纖維化;及傷口,例如鈍傷、手術切口、戰爭傷口等如CNS之穿刺傷。
在特定實施態樣中,具有增加之與第一型受體ALK2結合之經設計之BMP(諸如BMPE)可被用於治療與ALK2相關之疾病。
本發明包括各種套組,該等套組包含治療有效量之本發明之經設計之BMP,以及施用器及描述使用該經設計之BMP以進行本發明之方法之說明材料。雖然在下面描述示範性套組,其他可用套組之內容將為該領域之技藝人士鑑於本揭示內容而顯而易見。這些套組皆分別被包括於本發明之內。
本發明包括用於治療之套組,以在需要該治療之病患中預防代謝性骨疾病之骨質量流失及/或增加骨質量。該套組包括本發明之經設計之BMP。該套組另包含施用器以用於投予該套組之成份至病患,包括但不限於針筒、骨水泥混合裝置及類似者。另外,該套組包含說明使用該套組以治療或預防病患之骨流失及/或增加骨質量之相關資訊的說明材料。
更佳地,該套組包含至少一種選自具有胺基酸序列之抗體的經設計之BMP,該胺基酸序列選自SEQ ID NO:8至73之胺基酸序列,甚至更佳地,該經設計之BMP包含SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:36或SEQ ID NO:37之胺基酸序列。較佳地,該經設計之BMP係BMPE、BMPG、BMPGE或BMPGER。
該套組可包含任何數量之額外治療劑以用於治療或預防骨流失及/或增加骨質量。該等劑係如前所述,包括治療性化合物、細胞介素、維生素、TGFβ超家族之其他成員等許多其它者。
本發明亦關於製造物品(例如適合靜脈注射或經口投予之劑型),其包含有效量之經設計之BMP以預防骨流失及/或增加骨質量(例如超過10 mg/kg,至少15 mg/kg,或15 mg/kg)。在某些實施態樣中,該製造物品包含容器或多個容器,該(等)容器包含經設計之BMP及標籤及/或治療或預防骨流失及/或增加骨質量之使用說明。
本發明亦包括用於治療或預防有其需要之病患的組織或器官纖維化之套組。該套組包括本發明之經設計之BMP。該套組另包含施用器以用於投予該套組之成份至病患,包括但不限於針筒或遞送該蛋白質之裝置、混合裝置及類似者。另外,該套組包含說明使用該套組以治療或預防病患之纖維化之相關資訊的說明材料。
更佳地,該套組包含至少一種選自具有胺基酸序列之蛋白質的經設計之BMP,該胺基酸序列選自SEQ ID NO:8至73之胺基酸序列,甚至更佳地,該經設計之BMP包含SEQ ID NO:12、SEQ ID NO:14、SEQ ID NO:36或SEQ ID NO:37之胺基酸序列。較佳地,該經設計之BMP係BMPE、BMPG、BMPGE或BMPGER。
該套組可包含任何數量之額外治療劑以用於治療或預防骨流失及/或增加骨質量或治療或預防纖維化。該等劑係如前所述,包括治療性化合物、細胞介素、維生素、TGFβ超家族之其他成員等許多其它者。
本發明亦關於製造物品(例如適合靜脈注射或經口投予之劑型),其包含有效量之經設計之BMP以預防骨流失及/或增加骨質量或治療或預防纖維化(例如超過1 mg/kg,至少10 mg/kg,至少15 mg/kg,或15 mg/kg)。在某些實施態樣中,該製造物品包含容器或多個容器,該(等)容器包含經設計之BMP及標籤及/或治療或預防骨流失及/或增加骨質量或治療或預防纖維化之使用說明。
本發明另詳細描述於下列實驗實施例。這些實施例係僅用於說明之目的,並無限制本發明之意圖除非另外說明。因此,本發明不應被視為被下列實施例所限制,反而應被視為包含任何及所有因此處所提供之揭示而變得明顯之變異。
產製及分泌野生型及經設計之BMP之重組宿主CHO細胞係利用標準重組DNA技術製備。條件培養基係由貼壁式細胞培養製備。簡言之,CHO細胞被接種於含有10% dFBS之培養基中,允許細胞生長3至4天至近滿狀態。在此生長期後,生長培養基被丟棄,該等細胞以PBS-CMF潤洗一次,接著被換至不含血清之添加200 ug/ml硫酸葡聚糖、2mM丁酸鈉及10mM HEPES之培養基。接著使細胞於31℃之溫度下培養7天。收集條件培養基,並利用0.2 uM無菌過濾使之澄清。儲存該條件培養基於-20℃直到純化。
為了要從CHO細胞條件培養基中純化該新穎之經設計之BMP分子,該BMP係藉由二步驟之習用層析捕捉,結果如圖5A至5D所示。此處僅顯示BMPE之純化細節,因為所有其他新穎之經設計之BMP係以實質上類似之方式純化。
CHO條件培養基(CHOCM)(以1.0 M Tris pH 8.0將pH調整至8.0)被裝載至經20mM MES pH 8.0平衡之Cellufine硫酸酯管柱(65ml,2.6×12.3cm)。該管柱係以10倍管柱體積(CV)之20 mM Tris,pH 8.0、10 CV之50mM MES pH 5.6及10 CV之緩衝液A(6.0 M尿素,50mM MES,pH 5.6)沖洗。該BMP係經5 CV之線性0至1.0 M NaCl梯度洗脫(緩衝液B=6.0 M尿素,50 mM MES,1.0 M NaCl,pH 5.6)。當添加氯化鈉梯度時,觀察到導電度在30至45 mS/cm之間為BMP2之特徵的寬峰(圖5A)。組分係由考馬斯染色之SDS-PAGE膠體分析,匯合收集包含BMP之組分。在組分中之BMP被識別為在SDS-PAGE非還原膠體上之可還原二聚體(圖5B之左圖)。自該Cellufine硫酸酯層析步驟匯合收集之BMP進一步利用製備型逆相HPLC純化,使用10×250mm Vydac 15 μm C8管柱(溶劑A=0.1% TFA,溶劑B=90%乙腈,0.1% TFA),BMP在約32%乙腈時被洗脫出來。逆相層析步驟之圖係如圖5C所示。利用speedvac離心濃縮機將該蛋白質濃縮及移除乙腈,該濃縮液經由透析被調製於MFR-169緩衝液。該經純化之BMP藉由SDS-PAGE、A280及LAL試驗(內毒素)加以特徵化。顯示該相同膠體組分(F13至F18)之非還原SDS-PAGE膠體(圖5D之左側)及還原SDS-PAGE膠體(圖5D之右側)之照片係經顯示。總共16種經設計之BMP蛋白係經純化至實質上相同程度之純度,表現/純化產量係介於0.3至1.4 mg/L CM,結果於圖6之照片顯示(圖6)。簡言之,野生型BMP2(WT)及經設計之BMP類BMPSE、BMPE、E109R、BMPD、BMP S85R、BMP SNE、BMPB及BMP-EN係顯示於非還原膠體(圖6A)及還原SDS-PAGE(圖6B)之照片,經設計之BMP類ai(BMPA之變異體)、aii(BMPA之變異體)、c(BMPC)、hi(BMPI之變異體)、hii、i、f及g係顯示於非還原SDS-PAGE(圖6C)及還原SDS-PAGE(圖6D)之照片。
大約8000個C2C12細胞/孔於96孔盤係經該所示BMP之所示劑量之處理。在處理後24小時,該等盤係經處理以測量鹼性磷酸酶,其為該領域公認之成骨活性測試。該培養基係經移除,以不含鈣/鎂之PBS清洗孔盤二次。在每孔中加入50 μl之4-甲基傘型酮磷酸酯(4-MUP液體鹼性磷酸酶受質;西格瑪(Sigma)公司產品編號M3168),使該孔盤在暗處於37℃培養15分鐘。在Victor冷光儀(設定:激發波長355nM;發射波長460nM;CW燈能量為1120)上測量螢光,每孔1秒。在讀取完成後,50 μl之2倍蛋白質分析溶解緩衝液(200 mM Tris-HCl,pH 9.8/0.4% Triton X-100)被添加至各孔,該蛋白質濃度係利用BCA蛋白分析(皮爾斯(Pierce)公司)根據製造商之微量盤操作程序測定。接著該鹼性磷酸酶測量值被正常化至該總蛋白濃度(即每微克之蛋白質的螢光單位)。如圖7之折線圖顯示,相較於野生型BMP2之處理(小圓點粗線),C2C12肌原母細胞在經多種經設計之BMP分子處理後顯示顯著增加之鹼性磷酸酶活性(其為成骨細胞分化之標記)。相較於WT BMP2展現增加之AP活性之經設計之BMP包括經設計之BMPA、BMPF、BMPG、及BMPE。令人意外的是,經設計之BMPE展現與野生型BMP2/6異二聚體(方點粗線)相同之活性,已知該野生型BMP2/6以高親和性與BMP2之第一型受體及BMP6之第二型受體二者結合。經設計之BMPE係導入BMP6之低親和性第一型結合區域至BMP2之結果。該經設計之BMPE分子極高之活性非常令人意外,因為原本預期BMPE將以低親和性與第一型及第二型受體二者結合。有趣的是,其他經設計之BMP分子如經設計之BMPA、經設計之BMPF及經設計之BMPG具有被導入BMP2中之與BMP6之第二型(高親和性)受體結合之野生型BMP6之區域(見圖1B),這些經設計之BMP顯示相較於BMP2增加之活性,但是不像野生型BMP2/6異二聚體那麼高(圖7)。
穩定表現BMP-反應-元件螢光素酶報告子(元件係來自Id1啟動子)之C2C12細胞被以8000細胞/孔接種於96孔盤,並以該所示之BMP及劑量處理。在處理後48小時,該細胞被溶解並利用Promega Dual-Glo試驗套組讀取螢光素酶活性。
此處揭示之資料顯示,BMPE之活性不僅在鹼性磷酸酶試驗中與BMP-2/6之活性相等,彼等在C2C12細胞之BRE螢光素酶試驗中之活性亦為相等(如圖8所示)。另外,BMPE相較於野生型BMP2在BRE螢光素酶試驗中顯示大約高出10至20倍之活性(圖8)。因此,在BRE螢光素酶(BRE-luc)試驗中觀察到之結果與在此相同細胞類型中進行之鹼性磷酸酶(Alk-phos)活性試驗獲得之該些結果有強烈相關性(比較圖7及圖8)。來自Alk-phos及BRE-luc二種試驗之野生型BMP2及該所示之經設計之BMP之結果亦顯示於表10。
雖然不希望被任何特定理論束縛,但這些資料顯示添加ALK-2作為BMPE之高親和性受體可能是彼之成骨活性增加之原因。這是因為ALK-2突變已被發現會造成進行性肌肉骨化症(FOP),一種幼童發生不當異位性骨形成之疾病。因此,ALK-2結合之突變係與成骨作用增加有關,且可能與BMPE之成骨活性增加有關。因此,BMPE係新類型之對第一型受體ALK-2、3及6具有高親和性之BMP分子。
C2C12細胞以4×104
cells/cm2
之密度被接種於6孔組織培養盤,並於37℃之5% CO2
/95%增濕空氣培養器中隔夜培養。在回收期之後,該培養基係以新鮮製備之成骨分化培養基更換:含50ug/ml L-抗壞血酸磷酸酯(L-抗壞血酸磷酸鎂鹽水合物,和光純藥(WAKO Pure Chemical Industries),產品編號013-12061)之生長培養基;β-甘油磷酸酯(β-甘油磷酸二鈉鹽,10mM五水合物,Fluka生化,產品編號50020);及100 nM亞硫酸氫鈉甲萘醌(維生素K3,西格瑪(Sigma)公司,產品編號M2518)。該所示之BMP以該所欲濃度被添加至適當孔槽。該盤係於37℃培養約15天,每隔2至3天更換一次培養基。細胞係遵照標準公開之程序以茜素紅染色。
如下表9所示,經設計之BMPE所誘導之C3H10T-1/2小鼠間質幹細胞之礦物化程度遠高於對應之野生型BMP2,如茜素紅染色所示。也就是說,如下更清楚地說明,在野生型BMP-2無法誘導C3H10T-1/2細胞礦物化之劑量(5、25、50及100 ng/ml)下,BMPE同型二聚體誘導類似BMP-2/6異二聚體之強烈礦物化(如表9所示)。因此,該茜素紅染色試驗之結果進一步與先前所述之Alk-phos及BRE-luc試驗所獲得之結果相關。
為了測定在活體外所觀察到之該經設計之BMP較強成骨活性是否對應活體內之類似活性增加,進行大鼠異位骨形成試驗。簡言之,浸有在160微升緩衝液中之該所示總量之經設計之BMP的ACS(可吸收之膠原蛋白海綿)被植入8周齡Long Evans公鼠之大腿肌肉。具體地說,三個利用組織穿孔切割器取下之8 mm ACS圓片利用不可吸收之絲線縫在一起。利用160微升之含有圖9之圖表所示之BMP之量(即0.1 μg或0.5 μg)的BMP溶液使該海綿濕潤。使該潤濕海綿於室溫中平衡20分鐘。接著手術置入該海綿於各鼠雙側之大腿肌肉中。每種BMP(野生型及經設計之分子)被置入4隻大鼠之雙腿。在植入後二周,該些動物被犧牲,大腿肌肉被切下並置於10%福馬林中,利用μCT(Scanco公司)掃描以測定存在之異位骨之量。該經治療之動物的肢體中存在之羥磷灰石的毫克量(mg HA)係於圖9顯示。圖9A顯示BMP2、BMPE及BMP2/6異二聚體之結果。圖9B顯示BMP2、BMPG、BMPA及BMPF之結果。以各種經設計之BMP而言,異位骨係於野生型BMP2無法形成可偵測之骨質量之劑量下形成。在野生型BMP2與經設計之BMPE的頭對頭比較中,BMPE所能誘導之異位骨形成和野生型BMP2/6異二聚體之程度類似,密切符合先前揭示之活體外實驗所得到之結果。經設計之BMP如BMPG、BMPA及BMPF亦顯示相較於野生型BMP2顯著較高之異位骨形成(圖9B)。此試驗之結果係顯示於圖9及表10。
為了進一步闡明該經設計之BMP成骨活性增加之機轉,利用Octet系統(ForteBio,Menlo Park,CA)進行每種經設計之BMP與各種BMP受體之結合動力學分析。該Octet QK分析係於含有0.1% Tween-20之TBS中進行。樣本係以1000 rpm攪動。抗人IgG Octet尖端係以10 ug/mL之各種受體-人IgG1-Fc融合蛋白飽和20分鐘,此通常導致在一排8支尖端內經飽和之受體之捕捉量。各種BMP係以7倍連續稀釋(通常200-3 nM單倍)加緩衝空白液製備。各種受體/BMP結合對係經至少二次測試。結合係經10分鐘之監測,分離至僅緩衝液中係經30分鐘監測。動力學參數(kon及koff)及親和性(KD)係利用Octet資料分析軟體6.0計算,依照製造商之說明使用部分結合1:1模型。
在表12中之資料顯示,野生型BMP2及BMP6蛋白分別顯示預期之與第一型受體(ALK-3及ALK-6)及第二型受體(ActRIIA、ActRIIB及BMPRII)之高親和性結合。野生型BMP2/6異二聚體展現與第一型及第二型二種受體之高親和性結合,經設計之BMPG亦同,其中BMP2之第二型結合結構域A及B已被野生型BMP6之結構域取代。經設計之BMPE如預期地顯示和野生型BMP2類似之第二型受體親和性,因為在該第二型結合區域中未發生突變。意外的是,具有BMP6之第一型結合結構域以取代BMP2中之該位置之經設計之BMPE維持對第一型受體ALK-3及ALK-6之高親和性結合,同樣意外的是其以2 nm之KD與第一型受體ALK-2結合。因此,BMPE意外地獲得未見於野生型BMP2或野生型BMP6之非常高之與ALK-2之親和性結合。
如表13所示,結合BMPG及BMPE之突變(包含相對於如SEQ ID NO:1所示之野生型BMP2之胺基酸序列之胺基酸殘基36處之脯胺酸或精胺酸(P36R))以分別產製BMP-GEP(亦稱為BMPGE P36)及BMP-GER(亦稱為BMPGE P36R),該產製之經設計之BMP對所有第一型及第二型BMP受體包括ALK-2顯示高親和性及低nMKD。
因此,此處揭示之資料顯示,新穎之經設計之BMP諸如但不限於BMP-GER及BMP-GEP結合BMP-G及BMP-E之特性,以使得這些新穎之經設計之BMP顯示對廣泛種類之第一型及第二型受體之高親和性結合,包括但不限於ALK2、ALK3、ALK6、ActRIIA、ActRIIB及BMPRIIA。該資料進一步顯示,取代WT BMP2之胺基酸序列(SEQ ID NO:1)的殘基編號36之脯胺酸成為精胺酸產生和其中該胺基酸未經取代之其他完全相同之BMP一樣有效之經設計之BMP。這些新穎之成骨性BMP如BMP-GER所示,提供高量之生物活性因此允許較低劑量,在一些情況中更快速的成骨反應強烈顯示這些分子將成為高度有效之治療劑。
為了進一步評估本發明之新穎經設計之BMP的潛在治療效力,經設計之BMPE及BMPG之活性係於NHP(非人靈長動物)腓骨切除模型中與野生型BMP2比較。
在平均體重(及標準差)7.5±0.2 kg及年齡介於7至10歲之成年公馬來猴(長尾獼猴(Macaca fascicularis)),以震動鋸之1 mm刀片進行雙側腓骨中段骨幹切除。在先前描述之腓骨切除模型加上小型髓內K線(Kirschner wire)固定,以維持近端與遠端骨末端之對齊,以進行比較一致之扭轉生物力學測試。此模型之二項主要優點在於因為該試驗程序之低發病率因此能夠利用雙側試驗設計,及能夠移除6至8-cm之包含該骨切除部位之腓骨區段以用於後續生物力學及組織學評估而無須犧牲該動物。含0.5 mg/ml之野生型或經設計之BMP的500μL溶液被加至30mm×15mm ACS海綿。在手術後將海綿包裹於缺損周圍。骨成熟NHP的二支腓骨之大約2mm骨折係經ACS海綿包裹,該海綿包含0.5 mg/ml劑量之經設計之BMP分子(共遞送250μg),或在對側肢之該相同量之野生型BMP2。因此,每隻動物的一肢接受野生型BMP,對側肢接受經設計之BMP。
在此模型中,選用經設計之BMPE及BMPG因為它們各自代表不同類型之經設計之分子,經設計之BMPG顯示對第一型及第二型二種受體之高親和性,而BMPE除了以高親和性與第一型受體ALK-3及ALK-6結合以外,還以高親和性與第一型受體ALK-2結合。每二周進行一次放射線攝影以比較各動物中以該經設計之BMP分子治療之肢體的癒合與以野生型BMP2治療之對側肢的癒合。如圖10A至10C所示,包括各組之7隻動物的資料顯示,相較於以野生型BMP2治療之肢體中所觀察到的骨形成,以各種經設計之BMP(圖10A所示之BMPE及圖10B至10C所示之BMPG)分子治療之肢體的骨痂形成較早且較為強固。
下表14及15之資料提供在野生型BMP2治療肢體與經設計之BMPE治療肢體之間所觀察到之骨質量及骨體積差異的定量評估。如圖11所示,當與野生型BMP2治療肢體之骨體積增加比較時,BMPE投予導致骨體積(mm3
)平均增加33%。此μCT分析包括所有具有骨痂之天然骨,因此在相同動物中BMP-E係遠比BMP-2更為有效。
在相對於野生型BMP2如SEQ ID NO:1所示之胺基酸序列的位置36處之脯胺酸被聲稱是授與Noggin抗藥性之重要殘基,並提供野生型BMP2增加之成骨活性(見例如WO 2009/086131)。因此,為了評估以非保守性胺基酸取代替換P36對該BMPGE之新穎活性之影響,BMPGEP之P36係經突變為精胺酸以產生BMPGER並於活體外評估這二種經設計之分子之成骨活性。圖12所揭示之資料顯示,以精胺酸取代P36(P36R)不會影響該等新穎之BMP-GE設計之BMP的結合親和性,且BMPGEP及BMPGER係和BMP2/6異二聚體一樣有效。
如圖13及14所示,大鼠異位實驗顯示,BMP-GER在非常低劑量之0.25 ug總BMP之所有分子皆在ACS海綿上遞送時,與BMP-2/6一樣有效地驅使異位骨形成。圖13顯示,只有BMP-2/6及BMP-GER(不包括BMPE或BMPG)在此低劑量下具有顯著高於BMP-2之活性,其中在異位形成之HA的毫克數係以μCT分析定量。
該相同樣本經去礦物化處理,並由組織學評分骨形成(骨得分),結果顯示於圖14。此評分方法顯示,低劑量遞送0.25ug之BMP-2不具骨形成,BMP-GER及2/6具有最高得分。BMP-G及BMP-E之活性亦顯著高於BMP-2,但不似BMP-GER之有效。
圖15及16顯示嚴重NHP腓骨切除模型之結果,其比較BMP-2及BMP-GER之活性。在此模型中,移除NHP之每支腓骨寬度約4至6 mm之楔形骨,再放回原位並以鈦釘固定。該缺損接著以含有250 ug總BMP(劑量為0.5mg/ml)之ACS海綿包裹。在每隻NHP中,一肢接受BMP-2及對側肢接受BMP-GER。圖15A顯示在第5週拍攝之放射影像,其顯示6隻動物中4隻之缺損。該BMP-GER肢體相較於BMP-2肢體顯示顯著較多之骨形成。圖15B(該圖之下排)顯示該相同的4隻動物在第10週犧牲後之腓骨的μCT影像。可見的是,在BMP-GER肢體中之骨形成之量係遠高於以BMP2治療之對側肢。
圖16A至C顯示比較每隻動物的BMP-2及BMP-GER治療肢體的強度、硬度及骨痂骨體積之肢體比較分析。平均來說,相較於對側之BMP-2治療肢,BMP-GER治療肢需要高出21%之扭力才能折斷(圖16A),硬度高出24%(圖16B),骨痂體積平均高出55%(圖16C)。所有這些比較以成對分析顯示小於.01之p值。這些資料顯示在相同動物中,BMP-GER相較於BMP-2顯著較早且更有效地誘發骨折修復及骨形成。
為了進一步於NHP中評估BMPE骨形成之有效性,BMPE在楔形缺損試驗中誘發成骨作用之能力係與BMP2之該能力比較。圖17A至C顯示三隻非人靈長動物在楔形骨缺損模型後之骨形成的放射影像,其中1.5mg/ml之BMP-2被用於一肢,僅0.5 mg/ml之BMP-GER被用於另一肢,使用以磷酸鈣骨水泥為基底之載劑。在放射線學上,每隻動物的癒合及骨形成皆相等,不論該治療係高劑量之BMP-2或較低劑量之BMP-GER。因此,即使使用三分之一的劑量,BMPE在誘導骨形成之效果上與BMP2相等,這顯示此經設計之BMP的活性相較於野生型BMP2顯著較高。
分別於哺乳動物細胞中產製之經純化、全糖基化之野生型BMP2/6異二聚體、野生型BMP2/2同型二聚體及野生型BMP6/6同型二聚體係於10mM醋酸鈉中(pH 3.5)經濃縮至6至10 mg/ml,結晶化係利用“mosquito”自動化機器人設備於18℃進行(TTP LabTech Inc.,Cambridge,MA)。先獲得每個二聚體之初始結晶陽性物,接著最佳化結晶條件以得到良好繞射品質之晶體。
野生型BMP2/6、BMP2/2及BMP6/6之晶體被暫時冷凍保護,在以同步加速器光源(先進光子源(Advanced Photon Source) SER-CAT之ID射束線)收集X光繞射資料之前於液態氮中冷凍。資料係利用Mosflm/Scala程式處理及按比例計算以推導出正確的晶體晶格類型及積分/比例資料。解析度及單位晶胞參數列示如下:BMP2/6屬於P43
21
2之空間群,每個非對稱單位有二個異二聚體;在一方向之繞射解析度達2.8,另二方向達3.0,單位晶胞參數為a=b=105.23,c=188.73,α=β=γ=90°。BMP2/2屬於P31
之空間群,每個非對稱單位有二個同型二聚體;繞射解析度達2.7,單位晶胞參數為a=b=62.74,c=126.35,α=β=90°,γ=120°。BMP6/6屬於P31
21之空間群,每個非對稱單位有一個同型二聚體;繞射解析度達2.6,單位晶胞參數為a=b=97.40,c=85.64,α=β=90°,γ=120°。由於BMP2/6晶體之異向繞射特性,該資料係經橢球性截短及異向性比例計算以保留高解析度資料之貢獻。
CHO BMP2/6、BMP2/2及BMP6/6之結構係使用Phaser程式由分子置換方法測定,利用E coli BMP2(PDB登錄號:1REW)及E. coli BMP6(PDB登錄號:2R52)作為搜尋模型。在獲得正確分子置換解法及證實空間群後,由Phaser計算之電子密度圖被用於評估該搜尋模型之品質,將有問題之區域(特別是與第一型及第二型受體結合有關之區域)自原始模型剝離以用於重建以避免模型偏差。
該結構模型經過剛體優化,之後進行模擬退火法、位置及溫度因子優化。被剝離之區域利用omit圖重建,該過程隨著TLS優化而重複直到優化穩定。最終優化之統計數據如下:以BMP2/6而言,Rw/Rf=0.2231/0.2775,rmsd鍵=0.008,rmsd角=1.545;以BMP2/2而言,Rw/Rf=0.2114/0.2659,rmsd鍵=0.005,rmsd角=0.982;以BMP6/6而言,Rw/Rf=0.2170/0.2510,rmsd鍵=0.006,rmsd角=1.182。所有三種結構根據Procheck結果皆呈現非常好的幾何形狀。
CHO BMP2/6晶體結構顯示廣泛之糖基化。特別是,由CHO產製之BMP2的前螺旋環係第一型受體之重要結合模體,其與大腸桿菌(E. coli)產製及再摺疊之BMP2的對應區域不同。當糖基化存在時,該CHO BMP2環相較於經細菌再摺疊之BMP2的相同區域具有獨特之「多環」構型,其更為螺旋(Keller et al.,Nat Struct Mol Biol 11:481-488(2004))。該資料顯示CHO產製之BMP2的D53指向該受體界面,而H54遠離該受體,如圖3A所示。在E. coli BMP2中,該D53遠離該受體且該H54朝向該受體排列(在此處被稱為「組胺酸門擋」),其如圖3B所示之交疊在該BMP2第一型受體Alk3上之脯胺酸殘基(P45)(H54另外被標記為H336)。不希望被任何特定理論束縛,但此交疊可能防止該第一型受體與E. coli再摺疊之BMP2完全結合,因此解釋E. coli BMP2相較於CHO BMP2之降低結合活性。此結構特色係以圖3A至B表示。在此圖中,組胺酸54(H54)被編號為H336,天冬醯胺酸56(N56)被標記為N338,ALK3之P45係以深灰色顯示。
如圖4所示,完全糖基化之CHO BMP6亦具有指向該受體結合部位之此「門擋」組胺酸殘基。此門擋His結構模體係BMP中常見之結構特色(不包括CHO BMP2)(見例如Keller et al.,Nat Struct Mol Biol 11:481-8(2004);Kotzsch et al.,EMBO J 28:937-47(2009)。不希望被任何特定理論束縛,CHO BMP2之特定聚糖可能係經由多個氫鍵與精胺酸16連接(「該聚糖繫鏈基」亦被命名為R298)。此聚糖繫鏈基係顯示於圖4A,其與該聚糖之交互作用係利用該聚糖與此繫鏈基R298之間的虛線表示,該繫鏈基R298在此處亦被稱為R16。因此,雖然不希望被任何特定理論束縛,但該聚糖繫鏈基可能被用來穩定該BMP2分子之前螺旋環之構型,以使該組胺酸門擋(若另外存在的話)反過來朝向遠離該第一型受體界面之方向,藉此允許該配體以大於該組胺酸門擋存在時之範圍與該受體接觸。換言之,在CHO BMP2中觀察到之組胺酸門擋之重新導向最有可能是聚糖繫鏈基之結果。不希望被任何特定理論束縛,此處揭示之資料顯示,當該組胺酸門擋存在時,在缺乏糖基化時移除該門擋(即藉由導入改變His之方向性以遠離該受體界面之突變)增加該BMP配體與該第一型受體之結合。
經設計之BMPE(包含低親和性之BMP2之第二型結合結構域及低親和性之與BMP6類似之第一型結合結構域)顯示(1)在活體外及活體內二種試驗中增加成骨活性;及(2)不預期地獲得與第一型受體Alk2結合之功能,雖然具有低親和性之第一型受體結合結構域。不希望被任何特定理論束縛,此意外之發現有可能係由在該聚糖基團與該BMPE之第一型受體結合結構域之R16(「聚糖繫鏈基」)之間形成的多個氫鍵所媒介。此繫鏈交互作用可能媒介在該BMPE分子之前螺旋區域的結構重排,藉由使H54(「門擋」)之位置遠離該界面以允許該BMP與該受體之間更靠近的交互作用,以呈現適當的Alk2結合界面。相反地,如圖4B所示,BMP6(亦具有和BMPE類似之低親和性第一型結合結構域)不與Alk2結合,因為彼之需要繫鏈彼之聚糖基團之「聚糖繫鏈基」(R413)與該BMPE繫鏈基(R298/R16)相比時有位置之移動。因此在BMP6中,該聚糖不被繫鏈,且該門擋(H454)並不位於遠離該配體-受體界面。該「聚糖繫鏈基」似乎是野生型糖基化BMP2之獨特現象(以在CHO細胞中產製之BMP2為例),藉由導入(或移除)「聚糖繫鏈基」以使BMP之前螺旋環結構重構現可首次被使用以調節其他BMP之第一型受體結合能力。因此,該領域之技藝人士現有了本發明所提供之揭示,將能了解如何藉由導入突變使該H54遠離或藉由影響該聚糖繫鏈基以使該繫鏈媒介H54之位移,使該BMP產生突變以使該門擋遠離該受體界面,另外將了解這些揭示可被用於設計具有增加(或減少若突變導入使H54進入門擋位置)與彼之受體結合之BMP,或產生具有獲得功能突變之經設計之BMP以使它們與本來不結合之新穎受體結合。如以下更詳細地說明,本發明顯示如何使用此新穎之門擋/繫鏈設計方法以設計經改善之成骨蛋白。因此,本發明提供新的合理設計經改善之成骨蛋白之方法,該成骨蛋白包含經改變之受體結合。
為了更清楚地了解導致BMP-E及BMP-GER與ALK-2結合之原因,及進一步闡述此利用門擋/聚糖繫鏈基影響受體結合之新穎機轉,BMP-E之晶體結構被解出並與BMP-2及BMP-6之晶體結構比較。主要結構發現係顯示於圖18及19。如圖18所示,BMP-E維持BMP-2之有次序之糖,同時維持BMP-6之中心螺旋結構。圖18所示之結構顯示BMP-E(可能還有BMP-GER)係與BMP-2及BMP-6二者在第一型受體結合之關鍵區域中不同。圖19係比較BMPE(淺灰)與BMP6(深灰)之潛在His門擋周圍區域之放大圖。該圖顯示該二個分子中組胺酸及天冬醯胺酸之排比類似性,亦顯示聚糖位置之差異及顯示由R16(繫鏈基)繫鏈該BMPE聚糖,該R16亦造成更堅固之聚糖構型,以使BMPE在分析時顯像較長之聚糖,相較於BMP6所顯像之較短聚糖(深灰)。
為了測定BMP-E之聚糖是否造成與ALK-2之交互作用及彼之較高活性,BMP-2、BMP-6及BMP-E係經Endo H處理以剪切該糖為二個GlcNac單位。BMP-E對AlK-2之結合親和性下降至400 nM,然而其對ALK-3及ALK-6之親和性仍在3至6 nM之範圍,因此顯示該完整糖對此交互作用極為重要。此去糖基化突變體之活性亦顯著降低。如圖20所示,此實驗中經Endo H處理之去糖基化BMP-E之活性向右移動,幾乎等於BMP-6 WT。該EC-50自3nM移至大約50 nM。這些資料顯示BMP-E之糖係彼之活性所必須,此應適用於BMP-GER因為其具有完全相同之用以取代BMP-2之BMP-6區域,只有該指狀結構域不同。由於該糖係增加受體結合及成骨活性所必須,這些結果顯示在E. coli或任何其他缺乏糖基化之系統中產製BMP-E或BMP-GER將無法產生活性高於BMP-2 WT之BMP。
經純化、全糖基化之BMP-E係於25mM醋酸鈉中(pH 3.5)經濃縮至8.7 mg/ml,結晶化係利用“mosquito”自動化機器人設備於18℃進行(TTP LabTech Inc.,Cambridge,MA)。先獲得每個二聚體之初始結晶陽性物,接著最佳化結晶條件以得到良好繞射品質之晶體。
BMP-E之晶體被暫時冷凍保護,在以同步加速器光源(先進光子源(Advanced Photon Source)SER-CAT之ID射束線)收集X光繞射資料之前於液態氮中冷凍。資料係利用CCP4套裝軟體中之Mosflm/Scala程式處理及按比例計算以推導出正確的晶體晶格類型及積分/比例資料。解析度及單位晶胞參數列示如下:BMPE屬於P43
21
2之空間群,每個非對稱單位有二個BMPE;繞射解析度達2.7,單位晶胞參數為a=b=67.78,c=148.01,α=β=γ=90°。
BMPE之結構係使用Phaser程式由分子置換方法測定,利用皆在輝瑞(Pfizer)藥廠測定之完全糖基化之CHO BMP2及BMP6作為搜尋模型。在獲得正確分子置換解法及證實空間群後,由Phaser計算之電子密度圖被用於評估該搜尋模型之品質,將有問題之區域(特別是在第一型受體結合及糖基化周圍之區域)自原始模型剝離以用於重建以避免模型偏差。
該BMPE之結構模型經過剛體優化,之後利用Phenix程式進行模擬退火法、位置及溫度因子優化。被剝離之區域利用omit圖重建,該過程隨著TLS優化而重複直到優化穩定。最終優化之統計數據如下:Rw/Rf=0.2252/0.2840,rmsd鍵=0.006,rmsd角=0.935。該結構根據Procheck結果呈現非常好的幾何形狀。
BMPE是一種經設計之分子,其中BMP2之殘基44至80被來自BMP6之對應區域取代,其維持BMP2之整體骨架但具有BMP6之第一型受體結合區段。如圖21所示,該晶體結構顯示該移植區段仍保留在BMP6中之類似構型,在前螺旋環中形成小型螺旋,其中該「門擋」H54指向該受體。然而,雖然不希望被任何特定理論束縛,有可能因為在R16及E110*(BMP-2之E109)處有「聚糖繫鏈基」存在,此二者與第三及第四聚糖基團(分別為β-甘露糖及α-甘露糖)形成多個氫鍵,該延伸之糖基化鏈係附著於該蛋白表面,正如CHO BMP2所示。該聚糖鏈之繫鏈亦使該前螺旋環相較於該整體骨架移位約2。不希望被任何特定理論束縛,可能意外發現該類BMP6前螺旋環與該類BMP2糖基化之組合表現用於Alk2受體之結合表位,該Alk2受體通常不與BMP2或BMP6交互作用。去糖基化使BMPE無法與Alk2結合,此強調糖基化媒介BMPE之Alk2辨識之重要性。
為了探討對經分泌之BMP抑制劑Noggin的抗藥性是否能增加BMP-GER或BMP-E之活性,這些潛在治療分子被進一步修飾以可能地增加彼等對Noggin之抗藥性。最近,研究指出在E. coli產製之蛋白質中,將活化素A之C端部分併入野生型BMP2增加對Noggin抑制之抗藥性。見WO 2010/099219之例如圖15及16。因此,為了測定本發明所揭示之新穎經設計之蛋白質是否能藉由併入活化素A序列而更進一步地改善,以該Noggin抗藥性(NR)胺基酸序列取代BMP-E(SEQ ID NO:12)及BMP-GER(SEQ ID NO:37)以產生BMP-E-NR(SEQ ID NO:70)及BMP-GER-NR(SEQ ID NO:71)。如圖22所示,BMP-E-NR及BMP-GER-NR在鹼性磷酸酶活性試驗中具有和BMP-E及BMP-GER相同之活體外活性,且具有對Noggin之完全抗藥性,然而BMP-E及BMP-GER則對Noggin敏感。
為了瞭解由BMPE-NR及BMP-GER-NR在活體外顯示之Noggin抗藥性之可能基礎,評估這些分子對第二型活化素受體ActRIIB之結合親和性。如下表16所示,活化素A無法與Noggin結合,但Noggin抗藥性BMP-E-NR及BMP-GER-NR可與Noggin結合,但親和性不像BMP-2、BMP-E、或BMP-GER那麼高。這些資料亦顯示該等Noggin抗藥性BMP以極高之親和性與第二型BMP受體ActRIIB結合,甚至高於BMP-GER之親和性。在不希望被任何特定理論束縛的前提下,這些資料指出BMP-GER-NR及BMP-E-NR對於Noggin之抗藥性是因為彼等對BMP第二型受體之親和性遠高於對Noggin之親和性,因此即使在高量之Noggin存在時仍能與BMP受體結合。
雖然包含活化素A之Noggin抗藥性部分之BMP-E及BMP-GER分子在活體外顯示Noggin抗藥性,這些結果並不關於改善之活體內活性。也就是說,當在大鼠異位試驗中比較這些BMP-E-NR及BMP-GER-NR之成骨活性與BMP-E及BMP-GER之成骨活性時,該些NR分子的活性遠遠較低。此資料係顯示於圖23及24。更具體地說,當比較所有測試濃度(0.125 μg、0.25 μg、0.5 μg及1.0 μg)之BMP-GER及BMP-GER-NR之骨得分時,BMP-GER之表現顯著優於BMP-GER-NR(如圖23所示)。類似地,圖24顯示BMP-E在此活體內試驗中之骨得分遠高於BMP-E-NR。因此,就BMP-E及BMP-GER而言,該據稱為Noggin抗藥性之版本在活體內之活性遠低於彼等之NR(Noggin抗藥性)相對物,在BMP-E之例中,幾乎所有活體內活性皆因併入活化素A之序列而喪失(見圖24比較BMP-E-NR與BMP-E)。
這些資料顯示,併入可能授與Noggin抗藥性之序列雖然增加與某些第二型受體(例如ActRIIB)之結合,但並不增加該經設計之BMP的活體內成骨活性。
另外,雖然添加Noggin並不促進該經設計之BMP於活體內之成骨活性,事實上其似乎降低彼等之活體內活性,但即使不具有活體外之Noggin抗藥性,本發明之新穎經設計之BMP相較於野生型BMP顯示大幅增加之成骨活性,並提供可能用於各種廣泛應用之潛在新穎治療劑。因此,本發明之經設計之BMP提供優異之新穎潛在治療劑,其(除其他用途外)在骨增量及修復上顯示大幅提升之臨床特性。
本發明引述之各項專利、專利申請案及公開資料之揭示內容現以參照方式整體納入本發明。
雖然本發明已參照特定實施態樣加以揭示,顯而易見的是,本發明之其他實施態樣及變異可由該領域之其他技藝人士設計而不背離本發明之真實精神及範圍。該隨附之權利要求係意圖被視為包括所有該等實施態樣及對等變異。
<110> 惠氏有限責任公司(WYETH LLC)
<120> 經設計之成骨蛋白類
<140> TW 100129548
<141> 2011-08-18
<150> US 61/375,636
<151> 2010-08-20
<160> 139
<170> PatentIn版本3.5
<210> 1
<211> 114
<212> PRT
<213> 智人(Homo sapiens)
<400> 1
<210> 2
<211> 116
<212> PRT
<213> 智人(Homo sapiens)
<400> 2
<210> 3
<211> 138
<212> PRT
<213> 智人(Homo sapiens)
<400> 3
<210> 4
<211> 139
<212> PRT
<213> 智人(Homo sapiens)
<400> 4
<210> 5
<211> 139
<212> PRT
<213> 智人(Homo sapiens)
<400> 5
<210> 6
<211> 139
<212> PRT
<213> 智人(Homo sapiens)
<400> 6
<210> 7
<211> 110
<212> PRT
<213> 智人(Homo sapiens)
<400> 7
<210> 8
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 8
<210> 9
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 9
<210> 10
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 10
<210> 11
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 11
<210> 12
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 12
<210> 13
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 13
<210> 14
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 14
<210> 15
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 15
<210> 16
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 16
<210> 17
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 17
<210> 18
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 18
<210> 19
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 19
<210> 20
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 20
<210> 21
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 21
<210> 22
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 22
<210> 23
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 23
<210> 24
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 24
<210> 25
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 25
<210> 26
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 26
<210> 27
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 27
<210> 28
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 28
<210> 29
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 29
<210> 30
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 30
<210> 31
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 31
<210> 32
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 32
<210> 33
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 33
<210> 34
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 34
<210> 35
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 35
<210> 36
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 36
<210> 37
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 37
<210> 38
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 38
<210> 39
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 39
<210> 40
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 40
<210> 41
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 41
<210> 42
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 42
<210> 43
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 43
<210> 44
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 44
<210> 45
<211> 114
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 45
<210> 46
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 46
<210> 47
<211> 116
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 47
<210> 48
<211> 116
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 48
<210> 49
<211> 123
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 49
<210> 50
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 50
<210> 51
<211> 117
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 51
<210> 52
<211> 117
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 52
<210> 53
<211> 139
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 53
<210> 54
<211> 138
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 54
<210> 55
<211> 139
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 55
<210> 56
<211> 138
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 56
<210> 57
<211> 117
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 57
<210> 58
<211> 117
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 58
<210> 59
<211> 117
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 59
<210> 60
<211> 139
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 60
<210> 61
<211> 139
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 61
<210> 62
<211> 139
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 62
<210> 63
<211> 139
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 63
<210> 64
<211> 138
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 64
<210> 65
<211> 113
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 65
<210> 66
<211> 110
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 66
<210> 67
<211> 117
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 67
<210> 68
<211> 117
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 68
<210> 69
<211> 117
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 69
<210> 70
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 70
<210> 71
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 71
<210> 72
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 72
<210> 73
<211> 115
<212> PRT
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多肽"
<400> 73
<210> 74
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 74
<210> 75
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 75
<210> 76
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 76
<210> 77
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 77
<210> 78
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 78
<210> 79
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 79
<210> 80
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 80
<210> 81
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 81
<210> 82
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 82
<210> 83
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 83
<210> 84
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 84
<210> 85
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 85
<210> 86
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 86
<210> 87
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 87
<210> 88
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 88
<210> 89
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 89
<210> 90
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 90
<210> 91
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 91
<210> 92
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 92
<210> 93
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 93
<210> 94
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 94
<210> 95
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 95
<210> 96
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 96
<210> 97
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 97
<210> 98
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 98
<210> 99
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 99
<210> 100
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 100
<210> 101
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 101
<210> 102
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 102
<210> 103
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 103
<210> 104
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 104
<210> 105
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 105
<210> 106
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 106
<210> 107
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 107
<210> 108
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 108
<210> 109
<211> 1176
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 109
<210> 110
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 110
<210> 111
<211> 1191
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 111
<210> 112
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 112
<210> 113
<211> 1197
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 113
<210> 114
<211> 1308
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 114
<210> 115
<211> 1329
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 115
<210> 116
<211> 1329
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 116
<210> 117
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 117
<210> 118
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 118
<210> 119
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 119
<210> 120
<211> 1539
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 120
<210> 121
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 121
<210> 122
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 122
<210> 123
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 123
<210> 124
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 124
<210> 125
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 125
<210> 126
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 126
<210> 127
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 127
<210> 128
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 128
<210> 129
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 129
<210> 130
<211> 1539
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 130
<210> 131
<211> 1287
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 131
<210> 132
<211> 1290
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 132
<210> 133
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 133
<210> 134
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 134
<210> 135
<211> 1542
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 135
<210> 136
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 136
<210> 137
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 137
<210> 138
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 138
<210> 139
<211> 1194
<212> DNA
<213> 人工序列
<220>
<221> source
<223> /note="人工序列之說明:合成性多核苷酸"
<400> 139
為了說明本發明之目的,在圖式中描繪本發明之某些實施態樣。然而,本發明並不限於在圖式中所描繪之實施態樣之精確安排及儀器設備。
圖1(包含A至C圖)顯示各種野生型及經設計之BMP胺基酸序列之排比,並顯示(以方框框起)這些蛋白中可能與第一型及第二型受體交互作用有關之區域。圖1A顯示野生型BMP2、BMP4、BMP5、BMP6、BMP7、BMP8及BMP9之胺基酸序列排比。圖1B顯示各種經設計之BMP之胺基酸序列排比,其中該對應之野生型BMP係BMP2。圖1C顯示各種經設計之BMP6分子之胺基酸序列排比,其中該對應之野生型BMP係BMP6。
圖2以結構模型顯示與二個第一型及二個第二型BMP受體結合之野生型BMP2同型二聚體。
圖3(包含A及B圖)以結構模型顯示在中國倉鼠卵巢(CHO)細胞(圖3A)及大腸桿菌(E. coli)細胞(圖3B)中產製之人BMP2之組胺酸門擋(H54)之位置。
圖4(包含A及B圖)說明聚糖繫鏈基之位置及潛在之組胺酸(His)門擋。圖4A顯示皆在CHO產製之BMP2中之呈非門擋方向之聚糖繫鏈基(在N56處之N-連接聚糖)及組胺酸54,以及該聚糖繫鏈基與R16之交互作用。圖4B顯示在BMP6中之聚糖繫鏈基(在N80處之N-連接聚糖)及H78處之非門擋構型之組胺酸,以及對應BMP2中之R16之R39。
圖片上方係BMP2(11-KSSCKRHP)與BMP6(35-KTACRKHE)之序列排比,其顯示BMP2與BMP6之間的對應胺基酸。
圖5(包含A至D圖)顯示在純化BMP及經設計之BMP之過程中之各種步驟。圖5A之層析圖顯示使用cellufine硫酸酯管柱之BMP之梯度洗脫液。圖5B為含有來自cellufine硫酸酯管柱步驟之樣本組分之考馬斯(Coomassie)染色SDS-PAGE(左側為非還原,右側為還原)膠體。圖5C之層析圖顯示來自製備型逆向純化步驟之特性。圖5D為藉由製備型逆相純化步驟獲得之含有BMP樣本組分之考馬斯(Coomassie)染色SDS-PAGE(左側為非還原,右側為還原)膠體。
圖6(包含A至D圖)顯示經考馬斯染色之SDS-PAGE蛋白膠體,其中包含經純化之BMP2野生型及各種如各膠體圖片上方所示之突變。該等膠體係於非還原(圖6A及6B)及還原(圖6C及6D)條件下進行分析。
圖7顯示在C2C12肌原母細胞中之鹼性磷酸酶分析結果,其比較野生型BMP2及BMP2/6異二聚體與各種如圖例所示之經設計之BMP之成骨活性。
圖8顯示表示Smad活性之C2C12 BMP-反應元件螢光素酶(BRE-螢光素酶)分析之結果,其顯示BMPE相較於BMP2具有更強之傳訊及相當於BMP2/6之傳訊。
圖9(包含A及B圖)顯示由各種BMP媒介之異位骨形成。圖9A顯示異位骨之量(計算為羥磷灰石之毫克數;mgHA),其係由μCT分析測定經植入所示劑量(0.1或0.5μg)之所示BMP(BMP2、BMPE、及BMP2/6)之各隻肢體。圖9B顯示異位骨之量(計算為羥磷灰石之毫克數),其係由μCT分析測定經植入所示劑量(0.1或0.5μg)之所示BMP(BMP2、BMPG、BMPA及BMPF)之各隻肢體。呈現之資料係來自2個分開之實驗。
圖10(包含A至D圖)係放射影像,其顯示在4及8週之非人靈長動物(NHP)之腓骨切除模型之結果。放射影像顯示7隻代表性NHP之腓骨,這些動物分別接受0.5 mg/ml(250μg總遞送BMP/肢體)之BMPE及BMPG。每隻NHP在對側肢體接受相同劑量之WT BMP2。圖10A及10B分別顯示各圖上方標明之NHP於4周及8周之放射影像,該影像顯示BMPE相較於BMP2野生型之效應。圖10C及10D分別顯示各圖上方標明之NHP於4周及8周之放射影像,該影像顯示BMPG相較於BMP2野生型之效應。
圖11顯示BMP-E治療肢與BMP-2治療之對側肢之骨體積比較。
圖12顯示於C2C12肌原母細胞中之鹼性磷酸酶測試結果,其比較野生型BMP2及BMP-GER、BMP-GEP、及BMP2/6異二聚體之成骨活性。
圖13顯示異位骨之量(計算為羥磷灰石之毫克數),其係由μCT分析測定經植入所示劑量(0.05或0.25μg)之所示BMP(BMP2、BMP2/6、BMP-E、BMP-GER及BMP-6)之各隻肢體。
圖14顯示異位骨之量(計算為羥磷灰石之毫克數),其係由μCT分析測定經植入所示劑量(0.05或0.25μg)之所示BMP(BMP2、BMP2/6、BMP-E、BMP-GER及BMP-6)之各隻肢體。這些結果來自與圖13所示者分開之實驗。
圖15(包含A及B圖)係放射影像及μCT影像,其顯示在5及10周之非人靈長動物(NHP)之腓骨楔形骨切除模型之結果。圖15A顯示得自NHP腓骨楔形骨切除模型之5周放射影像。圖15A顯示4隻代表性NHP之腓骨影像,該些NHP的一肢體在5周接受0.5 mg/ml(250μG總BMP遞送/肢)之BMP-GER,對側肢體接受WT BMP-2。圖15B顯示相同肢體在10周之uCT影像,其顯示每隻動物之BMP-GER治療肢相較於BMP2治療對側肢具有大型骨痂。
圖16(包含A至C圖)說明比較BMP-GER治療肢與BMP-2治療對側肢之強度(圖16A)、硬度(圖16B)及骨痂體積(圖16C)。
圖17(包含A至C圖)顯示3隻非人靈長動物(NHP)經0.5 mg/ml之BMP-GER治療之腓骨隨時間癒合的放射影像,對側肢以1.5mg/ml之BMP-2治療,在楔形缺損模型後使用磷酸鈣基底骨水泥作為載劑。圖17A(上圖)顯示1號NHP之左臂經0.5 mg/ml GER治療之下列結果:第1及2圖分別顯示在剛開始時間點之LAT(側面)及AP(前後)影像;第3及4圖分別顯示在2周之LAT及AP影像;第5及6圖分別顯示在4周之LAT及AP影像;第7及8圖分別顯示在6周之LAT及AP影像;第9及10圖分別顯示在7周之LAT及AP影像;第11及12圖分別顯示在8周之LAT及AP影像;圖17A(下圖)顯示1號NHP之右臂經1.5 mg/ml BMP-2治療之下列結果:第1及2圖分別顯示在剛開始時間點之LAT(側面)及AP(前後)影像;第3及4圖分別顯示在2周之LAT及AP影像;第5及6圖分別顯示在4周之LAT及AP影像;第7及8圖分別顯示在6周之LAT及AP影像;第9及10圖分別顯示在7周之LAT及AP影像;第11及12圖分別顯示在8周之LAT及AP影像;圖17B顯示2號NHP之結果,其說明如圖17A中之1號NHP;及圖17C顯示3號NHP之結果,其說明如圖17A中之1號NHP。
圖18係結構模型圖,其顯示BMP-E及BMP-6 WT晶體結構之代表圖及比較。強調所解出之聚糖長度的差異,顯示被解出之BMPE的聚糖係遠長於BMP6所被解出者。這表示該BMPE聚糖相較於BMP6聚糖係更具有構型限制性,因此可在此模型中顯像(rendered)較多之聚糖。BMPE及BMP6二者之組胺酸門擋殘基係呈現類似之非門擋構型。同樣地,穩定該BMPE聚糖之精胺酸聚糖「繫鏈」係以虛線表示,虛線代表該精胺酸與該聚糖之交互作用。
圖19係圖18所示之BMPE及BMP6之組胺酸門擋及精胺酸繫鏈比較之放大圖。此圖顯示BMPE之H54組胺酸殘基與BMP6之相等組胺酸之類似構型,二者皆位於非門擋位置。此圖亦顯示該R16繫鏈(經由該BMPE聚糖之交互作用)使該聚糖更為堅固因此由該模型提供更多細節,相較於BMP6之較為「鬆散」及較無限制之聚糖使較少之BMP6聚糖可見於此模型。此模型圖亦顯示呈現聚糖之N-連接之BMPE的天冬醯胺酸N56之類似位置,及在相等及類似位置之BMP6之天冬醯胺酸。該圖亦說明BMPE E110之潛在的額外聚糖繫鏈交互作用,由在該胺基酸殘基與該聚糖遠端之間的虛線表示。所解出之聚糖長度的差異係經強調,其顯示相較於具有淡色陰影之BMPE之較長聚糖顯像,較少之深色BMP6聚糖可被解出,這表示該BMPE聚糖係較為構型約束,因此在結構分析時顯示較多細節。
圖20顯示使用C2C12肌原母細胞之鹼性磷酸酶分析結果,比較BMP-2、BMPE及BMP-6與彼等之經Endo-H處理之去糖基化(Degly.)對應物之成骨活性。
圖21說明顯示BMPE之結構模型,其顯示在R16處之聚糖繫鏈基之位置,並顯示在該精胺酸(R16)與麩胺酸(E110,對應BMP2之E109)殘基之間的穩定交互作用。該圖顯示R16及E110二者皆與該第三(β-甘露糖)及第四(α-甘露糖)聚糖基團形成多重氫鍵。該圖亦顯示H54潛在「門擋」之位置及提供該聚糖之N-連接位點之天冬醯胺酸56(N56)。
圖22顯示使用C2C12肌原母細胞之鹼性磷酸酶分析結果,該分析比較BMP-E與BMP-E-NR及BMP-GER與BMP-GER-NR在增加劑量之Noggin(BMP-2之天然抑制劑)存在時之成骨活性。該資料顯示包含衍生自活化素之序列的BMP-GER-NR並不會受到即使高濃度之Noggin之抑制,但是BMP-GER對於Noggin之抑制敏感。因此,添加衍生自活化素之序列使BMP-GER變成具有Noggin抗性(NR)。這些結果顯示至少在此活體外試驗中,對Noggin具敏感性之BMP-GER及BMPE在經衍生自活化素之序列取代該蛋白之C端區域後變成具有Noggin抗性(NR)。
圖23顯示由免疫組織化學(IHC)測定之經特定劑量之所示BMP處理之大鼠異位植入物之骨得分。該資料顯示當BMP-GER之C端序列被衍生自活化素之序列取代時(NR),該分子之骨形成活性係經大幅減低。因此,該資料顯示BMP-GER-NR在活體內之活性遠低於BMP-GER。
圖24顯示由免疫組織化學(IHC)測定之經特定劑量之所示BMP處理之大鼠異位植入物之骨得分。該資料顯示當BMP-E之C端序列被衍生自活化素之序列取代時(NR),該分子之骨形成活性係經大幅減低,事實上該活性完全消失。
Claims (12)
- 一種經設計之骨型態發生蛋白(BMP),其在至少一個第一型或第二型受體結合結構域中包含至少一種突變,其中相較於對應之野生型BMP與該第一型或第二型受體之結合,該突變授予經改變之與該第一型或第二型BMP受體之結合,其特徵在於該蛋白質包含相對於SEQ ID NO:1序列在下列各胺基酸的突變:V33、P36、H39、H44、P48、A52、D53、L55、S57、N68、S69、V70、於N71後插入單一胺基酸、S72、K73、I74、A77、V80、S85、M89、L92、E94、E96、K97或V99的突變;其中該等突變係V33I、P36R、H39A、H44D、P48S、A52N、D53A、L55M、S57A、N68H、S69L、V70M、於N71後插入P、S72E、K73Y、I74V、A77P、V80A、S85N、M89V、L92F、E94D、E96S、K97N及V99I。
- 如請求項1之蛋白,其具有SEQ ID NO:37之序列。
- 如請求項2之蛋白,其進一步特徵在於Noggin抗性胺基酸序列係取代至該蛋白中以產生包含SEQ ID NO:71之蛋白。
- 如請求項1-3中任一項之蛋白,其中該蛋白以不超過約2nM之KD 與ALK2受體結合,該蛋白以不超過約2nM之KD 與ALK3受體結合,該蛋白以不超過約1nM之KD 與ALK6受體結合,該蛋白以不超過約2nM之KD 與ActRIIA受體結合,該蛋白以不超過約0.5nM之KD 與ActRIIB受體結合,該蛋白以不超過約3.5nM之KD 與BMPRIIA受體結合。
- 一種產製如請求項1-4中任一項之蛋白之方法,該方法包含將編碼該蛋白之核酸導入宿主細胞中、在產製該蛋白之條件下培養該細胞及純化該蛋白。
- 一種經分離之核酸分子,其包含編碼如請求項1-4中任一項的蛋白之核苷酸序列。
- 如請求項6之核酸分子,其中該核酸分子編碼包含選自SEQ ID NO:71及SEQ ID NO:37組成的群的胺基酸序列之蛋白。
- 一種如請求項1-4中任一項之蛋白於製備藥物之用途。
- 一種如請求項1-4中任一項之蛋白於製備藥物之用途,該藥物係用於治療與骨質量流失相關之骨疾病、纖維化或用於誘發骨形成。
- 一種套組,其包含:如請求項1-4中任一項之經設計之BMP蛋白;施用器;及說明材料,其描述使用該套組以治療或預防骨質量流失之相關資訊。
- 一種醫藥組合物,其包含如請求項1-4中任一項之經設計之BMP蛋白。
- 一種宿主細胞,其包含如請求項6或7之核酸分子。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37563610P | 2010-08-20 | 2010-08-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201226565A TW201226565A (en) | 2012-07-01 |
TWI444475B true TWI444475B (zh) | 2014-07-11 |
Family
ID=44720059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100129548A TWI444475B (zh) | 2010-08-20 | 2011-08-18 | 經設計之成骨蛋白類 |
Country Status (18)
Country | Link |
---|---|
US (1) | US8952131B2 (zh) |
EP (4) | EP2605787B1 (zh) |
JP (4) | JP5985480B2 (zh) |
KR (3) | KR101800596B1 (zh) |
CN (2) | CN105198981B (zh) |
AR (1) | AR082502A1 (zh) |
AU (1) | AU2011292810B2 (zh) |
BR (1) | BR112013003587B1 (zh) |
CA (1) | CA2807343C (zh) |
CO (1) | CO6680686A2 (zh) |
HK (1) | HK1184377A1 (zh) |
IL (3) | IL224394A (zh) |
MX (1) | MX2013001977A (zh) |
PE (1) | PE20140135A1 (zh) |
RU (1) | RU2013104029A (zh) |
SG (1) | SG187589A1 (zh) |
TW (1) | TWI444475B (zh) |
WO (1) | WO2012023113A2 (zh) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9688735B2 (en) * | 2010-08-20 | 2017-06-27 | Wyeth Llc | Designer osteogenic proteins |
EP2602264A1 (en) | 2011-12-05 | 2013-06-12 | Biopharm Gesellschaft Zur Biotechnologischen Entwicklung Von Pharmaka mbH | GDF-5 mutant for inducing cartilage formation |
EP2784083A1 (en) * | 2013-03-28 | 2014-10-01 | Charité - Universitätsmedizin Berlin | Bone Morphogenetic Protein (BMP) variants with highly reduced antagonist sensitivity and enhanced specific biological activity |
US9872881B2 (en) * | 2013-11-01 | 2018-01-23 | The Brigham And Women's Hospital, Inc. | Bone and metal targeted polymeric nanoparticles |
AU2015374114B2 (en) | 2014-12-29 | 2018-07-26 | Bioventus, Llc | Systems and methods for improved delivery of osteoinductive molecules in bone repair |
WO2016193872A2 (en) | 2015-06-05 | 2016-12-08 | Novartis Ag | Antibodies targeting bone morphogenetic protein 9 (bmp9) and methods therefor |
CN109311957A (zh) * | 2015-08-25 | 2019-02-05 | 伊斯迪德股份公司 | 诱导组织形成的化合物及其应用 |
CN109311956A (zh) | 2015-08-25 | 2019-02-05 | 伊斯迪德股份公司 | 诱导组织形成的化合物及其应用 |
US20170129933A1 (en) | 2015-10-23 | 2017-05-11 | Bioventus, Llc | Purification of tgf-beta superfamily proteins |
US20170319750A1 (en) | 2016-05-09 | 2017-11-09 | Bioventus, Llc | Composite matrices designed for enhanced bone repair |
CA3026660A1 (en) | 2016-06-10 | 2017-12-14 | Bioventus, Llc | Protein delivery with porous metallic structure |
TWI712598B (zh) | 2016-07-20 | 2020-12-11 | 瑞士商諾華公司 | 胺基吡啶衍生物及其作為選擇性alk-2抑制劑之用途 |
CN106749606B (zh) * | 2016-12-29 | 2018-06-22 | 广州领晟医疗科技有限公司 | 一种用于修复软骨和/或治疗骨关节炎的肽 |
JP2020504748A (ja) | 2016-12-30 | 2020-02-13 | バイオジェンド セラピューティクス カンパニー リミテッド | 組換えポリペプチド、それらの組成物及び方法 |
EP3713927B1 (en) | 2017-11-24 | 2021-12-15 | Novartis AG | Pyridinone derivatives and their use as selective alk-2 inhibitors |
US11529438B2 (en) | 2018-06-25 | 2022-12-20 | Bioventus, Llc | Porous carrier matrix |
CN116115736A (zh) * | 2022-12-09 | 2023-05-16 | 上海交通大学医学院附属瑞金医院 | 一种bmp9在制备抑制成骨细胞衰老的制剂或药物中的应用 |
Family Cites Families (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4179337A (en) | 1973-07-20 | 1979-12-18 | Davis Frank F | Non-immunogenic polypeptides |
JPS6023084B2 (ja) | 1979-07-11 | 1985-06-05 | 味の素株式会社 | 代用血液 |
US4640835A (en) | 1981-10-30 | 1987-02-03 | Nippon Chemiphar Company, Ltd. | Plasminogen activator derivatives |
US4496689A (en) | 1983-12-27 | 1985-01-29 | Miles Laboratories, Inc. | Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer |
EP0206448B1 (en) | 1985-06-19 | 1990-11-14 | Ajinomoto Co., Inc. | Hemoglobin combined with a poly(alkylene oxide) |
US4791192A (en) | 1986-06-26 | 1988-12-13 | Takeda Chemical Industries, Ltd. | Chemically modified protein with polyethyleneglycol |
ZA874681B (en) | 1986-07-01 | 1988-04-27 | Genetics Inst | Novel osteoinductive factors |
US5459047A (en) | 1986-07-01 | 1995-10-17 | Genetics Institute, Inc. | BMP-6 proteins |
US6150328A (en) | 1986-07-01 | 2000-11-21 | Genetics Institute, Inc. | BMP products |
US6432919B1 (en) | 1986-07-01 | 2002-08-13 | Genetics Institute, Inc. | Bone morphogenetic protein-3 and compositions |
US5543394A (en) | 1986-07-01 | 1996-08-06 | Genetics Institute, Inc. | Bone morphogenetic protein 5(BMP-5) compositions |
US5091513A (en) | 1987-05-21 | 1992-02-25 | Creative Biomolecules, Inc. | Biosynthetic antibody binding sites |
US5266683A (en) | 1988-04-08 | 1993-11-30 | Stryker Corporation | Osteogenic proteins |
US5688678A (en) | 1990-05-16 | 1997-11-18 | Genetics Institute, Inc. | DNA encoding and methods for producing BMP-8 proteins |
ATE184052T1 (de) | 1990-06-15 | 1999-09-15 | Carnegie Inst Of Washington | Gdf-1 und uog1 proteine |
US6800603B2 (en) | 1991-03-11 | 2004-10-05 | Curis, Inc. | Morphogen-induced neural cell adhesion |
US5652337A (en) | 1991-03-11 | 1997-07-29 | Creative Biomolecules, Inc. | OP-3-induced morphogenesis |
US6506729B1 (en) | 1991-03-11 | 2003-01-14 | Curis, Inc. | Methods and compositions for the treatment and prevention of Parkinson's disease |
US5849686A (en) | 1991-03-11 | 1998-12-15 | Creative Biomolecules, Inc. | Morphogen-induced liver regeneration |
US5674844A (en) | 1991-03-11 | 1997-10-07 | Creative Biomolecules, Inc. | Treatment to prevent loss of and/or increase bone mass in metabolic bone diseases |
US5656593A (en) | 1991-03-11 | 1997-08-12 | Creative Biomolecules, Inc. | Morphogen induced periodontal tissue regeneration |
US6949505B1 (en) | 1991-03-11 | 2005-09-27 | Curis, Inc. | Morphogen-induced dendritic growth |
US6287816B1 (en) | 1991-06-25 | 2001-09-11 | Genetics Institute, Inc. | BMP-9 compositions |
US6025475A (en) | 1998-09-15 | 2000-02-15 | The Johns Hopkins University School Of Medicine | Growth differentiation factor-3 |
WO1994021681A1 (en) | 1993-03-19 | 1994-09-29 | Johns Hopkins University School Of Medicine | Growth differentiation factor-8 |
AU678582B2 (en) | 1993-05-12 | 1997-06-05 | Genetics Institute, Llc | BMP-11 compositions |
US5637480A (en) | 1993-05-12 | 1997-06-10 | Genetics Institute, Inc. | DNA molecules encoding bone morphogenetic protein-10 |
IL110589A0 (en) | 1993-08-10 | 1994-11-11 | Bioph Biotech Entw Pharm Gmbh | Growth/differentiation factor of the TGF- beta family |
EP0725796A4 (en) | 1993-10-08 | 1999-12-01 | Univ Johns Hopkins | GROWTH DIFFERENTIATION FACTOR-10 |
US6027919A (en) | 1993-12-07 | 2000-02-22 | Genetics Institute, Inc. | BMP-12 and BMP-13 proteins and DNA encoding them |
US5733757A (en) | 1995-12-15 | 1998-03-31 | The Scripps Research Institute | Aldolase catalytic antibody |
US5635372A (en) | 1995-05-18 | 1997-06-03 | Genetics Institute, Inc. | BMP-15 compositions |
JP2000507939A (ja) | 1996-03-22 | 2000-06-27 | ザ ジェネラル ホスピタル コーポレーション | 中枢神経系の虚血または外傷後のポリペプチド成長因子の投与 |
US6498142B1 (en) | 1996-05-06 | 2002-12-24 | Curis, Inc. | Morphogen treatment for chronic renal failure |
US5965403A (en) | 1996-09-18 | 1999-10-12 | Genetics Institute, Inc. | Nucleic acids encoding bone morphogenic protein-16 (BMP-16) |
US7601685B2 (en) | 1998-08-27 | 2009-10-13 | Eidgenossische Technische Hochschule Zurich | Growth factor modified protein matrices for tissue engineering |
US7572440B2 (en) | 1999-07-30 | 2009-08-11 | Stryker Corporation | Method for repairing a defect in an intervertebral disc |
US6846906B1 (en) | 1998-10-07 | 2005-01-25 | Stryker Corporation | Modified proteins of the TGF-β superfamily, including morphogenic proteins |
AU1103900A (en) * | 1998-10-07 | 2000-04-26 | Stryker Corporation | Modified tgf-beta superfamily proteins |
JP2002536077A (ja) | 1999-02-04 | 2002-10-29 | エスディージーアイ・ホールディングス・インコーポレーテッド | 高度に鉱化されている骨形成性スポンジ組成物およびそれらの使用 |
US7435260B2 (en) | 1999-08-13 | 2008-10-14 | Ferree Bret A | Use of morphogenetic proteins to treat human disc disease |
DE10026713A1 (de) | 2000-05-30 | 2001-12-06 | Walter Sebald | Mutein einer Kette eines Proteins aus der Superfamilie des Wachstumsfaktors TGF-beta |
ES2319506T3 (es) | 2000-10-24 | 2009-05-08 | Warsaw Orthopedic, Inc. | Metodos y dispositivos de fusion vertebral. |
EP1571159A1 (en) | 2004-03-04 | 2005-09-07 | Bayerische Julius-Maximilians-Universität Würzburg | Mutein of a bone morphogenetic protein and use thereof |
EP1730186A2 (en) | 2004-03-31 | 2006-12-13 | Xencor, Inc. | Bmp-7 variants with improved properties |
US7575751B2 (en) | 2004-04-27 | 2009-08-18 | Research Development Foundation | Activin-A mutants |
US20090042780A1 (en) | 2004-05-20 | 2009-02-12 | Acceleron Pharma Inc | Modified TGF-Beta Superfamily Polypeptides and Related Methods |
US7749268B2 (en) | 2004-05-26 | 2010-07-06 | Warsaw Orthopedic, Inc. | Methods for treating the spine |
EP1751185A2 (en) | 2004-05-27 | 2007-02-14 | Acceleron Pharma Inc. | Tgf derepressors and uses related thereto |
EA010350B1 (ru) | 2004-06-03 | 2008-08-29 | Новиммун С.А. | Антитела против cd3 и способы их применения |
CA2591992A1 (en) | 2004-12-22 | 2006-06-29 | The Salk Institute For Biological Studies | Compositions and methods for producing recombinant proteins |
ATE533781T1 (de) | 2005-05-27 | 2011-12-15 | Bbs Bioactive Bone Substitutes Oy | Heparin-bindungsstelle enthaltendes knochenmorphogenetisches protein 6 und osteogene vorrichtungen und pharmazeutische produkte, die diese enthalten |
US7671014B2 (en) | 2006-08-14 | 2010-03-02 | Warsaw Orthopedic, Inc. | Flowable carrier matrix and methods for delivering to a patient |
WO2008051526A2 (en) * | 2006-10-23 | 2008-05-02 | Stryker Corporation | Bone morphogenetic proteins |
US20090098130A1 (en) | 2007-01-05 | 2009-04-16 | Bradshaw Curt W | Glucagon-like protein-1 receptor (glp-1r) agonist compounds |
CA2708549C (en) * | 2007-12-21 | 2014-04-01 | Stryker Corporation | Bmp mutants with decreased susceptibility to noggin |
GB0818255D0 (en) * | 2008-10-06 | 2008-11-12 | Agency Science Tech & Res | Isolation and identification of glycosaminoglycans |
WO2010099219A2 (en) | 2009-02-24 | 2010-09-02 | The Salk Institute For Biological Studies | Designer ligands of tgf-beta superfamily |
WO2011025042A1 (ja) | 2009-08-31 | 2011-03-03 | 新日本製鐵株式会社 | 高強度溶融亜鉛めっき鋼板及びその製造方法 |
-
2011
- 2011-08-17 KR KR1020177021849A patent/KR101800596B1/ko active IP Right Grant
- 2011-08-17 KR KR1020137006970A patent/KR101630501B1/ko active Application Filing
- 2011-08-17 KR KR1020167012916A patent/KR101767860B1/ko active IP Right Grant
- 2011-08-17 CA CA2807343A patent/CA2807343C/en active Active
- 2011-08-17 WO PCT/IB2011/053638 patent/WO2012023113A2/en active Application Filing
- 2011-08-17 EP EP11763772.8A patent/EP2605787B1/en active Active
- 2011-08-17 SG SG2013005285A patent/SG187589A1/en unknown
- 2011-08-17 PE PE2013000312A patent/PE20140135A1/es not_active Application Discontinuation
- 2011-08-17 EP EP15175058.5A patent/EP2949338B1/en active Active
- 2011-08-17 BR BR112013003587-0A patent/BR112013003587B1/pt active IP Right Grant
- 2011-08-17 EP EP16188161.0A patent/EP3124039B1/en active Active
- 2011-08-17 RU RU2013104029/10A patent/RU2013104029A/ru not_active Application Discontinuation
- 2011-08-17 EP EP17209849.3A patent/EP3320913B1/en active Active
- 2011-08-17 US US13/211,755 patent/US8952131B2/en active Active
- 2011-08-17 CN CN201510660648.6A patent/CN105198981B/zh active Active
- 2011-08-17 AU AU2011292810A patent/AU2011292810B2/en active Active
- 2011-08-17 MX MX2013001977A patent/MX2013001977A/es not_active Application Discontinuation
- 2011-08-17 CN CN201180040389.7A patent/CN103079585B/zh not_active Expired - Fee Related
- 2011-08-17 JP JP2013525388A patent/JP5985480B2/ja active Active
- 2011-08-18 TW TW100129548A patent/TWI444475B/zh active
- 2011-08-19 AR ARP110103030A patent/AR082502A1/es unknown
-
2013
- 2013-01-24 IL IL224394A patent/IL224394A/en active IP Right Grant
- 2013-02-28 CO CO13041042A patent/CO6680686A2/es unknown
- 2013-10-22 HK HK13111831.5A patent/HK1184377A1/zh unknown
-
2016
- 2016-06-02 JP JP2016111017A patent/JP6142041B2/ja not_active Expired - Fee Related
- 2016-08-03 JP JP2016152849A patent/JP6317789B2/ja not_active Expired - Fee Related
-
2017
- 2017-08-28 IL IL254186A patent/IL254186A0/en active IP Right Grant
-
2018
- 2018-03-30 JP JP2018068611A patent/JP2018126148A/ja active Pending
- 2018-09-05 IL IL261608A patent/IL261608B/en active IP Right Grant
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI444475B (zh) | 經設計之成骨蛋白類 | |
US10370424B2 (en) | Designer osteogenic proteins | |
US11008373B2 (en) | Designer osteogenic proteins | |
AU2018236821B2 (en) | Designer osteogenic proteins |