TWI442697B - 射頻功率放大器之前饋線性化 - Google Patents

射頻功率放大器之前饋線性化 Download PDF

Info

Publication number
TWI442697B
TWI442697B TW098110916A TW98110916A TWI442697B TW I442697 B TWI442697 B TW I442697B TW 098110916 A TW098110916 A TW 098110916A TW 98110916 A TW98110916 A TW 98110916A TW I442697 B TWI442697 B TW I442697B
Authority
TW
Taiwan
Prior art keywords
signal
amplifier
analog
digital
digital data
Prior art date
Application number
TW098110916A
Other languages
English (en)
Other versions
TW201004131A (en
Inventor
G Patrick Martin
Christopher D Moffatt
James Tonti
Original Assignee
Harris Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris Corp filed Critical Harris Corp
Publication of TW201004131A publication Critical patent/TW201004131A/zh
Application granted granted Critical
Publication of TWI442697B publication Critical patent/TWI442697B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3223Modifications of amplifiers to reduce non-linear distortion using feed-forward
    • H03F1/3229Modifications of amplifiers to reduce non-linear distortion using feed-forward using a loop for error extraction and another loop for error subtraction

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Description

射頻功率放大器之前饋線性化
本發明配置係關於用於線性化RF功率放大器之方法,且更特定而言係關於一種用於向包絡消彌與回復(EER)放大器提供一增強之線性度的方法。
廣播及其他通信產業向複雜數位波形之變遷已使得一前所未有程度之放大器線性度成為必需。同時,一直存在對更有效運作且提供功率消耗減小之放大器之持續需求。在大型發射器設備之情況下,較大效率對於減少廢熱及成本係重要的。在(例如)涉及可攜式收發器裝備等其他應用中,效率對減小大小、重量及電池消耗係重要的。
一種類型之提供經改良效率之RF功率放大器係包絡消彌與回復(EER)放大器。EER放大器在此項技術中眾所周知且可達成非常高效地將DC能量轉換為RF能量以用於具有一變化包絡之複雜波形。EER放大器藉由單獨處理包含於一經調變之輸入信號中的包絡及相位資訊而運作。相位資訊被傳遞至一功率放大器,在該功率放大器處其被放大為一恆定包絡信號。此准許使用高效非線性放大器來放大此相位資訊。在該信號被放大之後,包含於輸入信號中之包絡資訊回復為相位資訊。
雖然具有高效率,但習知使用E類拓撲之EER放大器具有不良線性度。此不良線性度導致顯著信號失真量。舉例而言,此失真通常自用於控制輸出包絡電壓之脈衝寬度調變器電路中產生及自存在於用於放大相位資訊之電路中的切換非線性度中產生。該等非線性度導致頻譜再生長(帶外雜訊),此導致毗鄰通道干涉。其亦導致帶內失真,此帶內失真使數位調變波形之位元錯誤率(BER)效能降格。為符合FCC頻譜遮罩、減小BER及達成可接受之放大器效率,線性化係必要的。
通常藉助一振幅至振幅(AM-to-AM)調變曲線及一振幅至相位(AM-to-PM)調變曲線表徵與RF功率放大器相關聯之失真。AM-to-AM調變曲線顯示RF功率放大器增益隨輸入功率而變。AM-to-PM調變曲線顯示RF功率放大器之輸出相位變化隨輸入功率而變。應瞭解,AM-to-AM失真及AM-to-PM失真可對一RF通信系統之效能產生不利影響。舉例而言,此失真可使得難以在一通信鏈路之一接收端處恢復符號。
一種用於改良RF功率放大器線性度之眾所周知之方法稱為前饋線性化。藉助前饋線性化,通常使用一RF分路器將一源信號分成兩個單獨信號。此兩個信號包含一放大器輸入信號及一參考信號。該放大器輸入信號作為一輸入被提供至放大器。使用一定向RF耦合器獲得來自RF功率放大器之失真輸出信號之一樣本。該參考信號及來自定向耦合器之該所採樣輸出皆被傳遞至一180°混合RF信號組合器之各單獨輸入。該180°混合RF混合組合器自失真放大器輸出減去參考信號。自該組合器所得之輸出係一錯誤信號。接著,放大該錯誤信號以將該錯誤信號按比例縮放為等於包含於來自RF功率放大器之失真輸出信號中之任何失真之功率位準。然後,自RF功率放大器之失真輸出信號中減去該錯誤信號以自該輸出信號移除失真。
前饋線性化對改良放大器線性度係有效的。然而,其對於某些放大器應用並不特別實用。舉例而言,改良高度非線性放大器之線性度所需的錯誤信號之相對較大量值可需要一相對高功率之RF放大器以用於按比例縮放該錯誤信號。此一用於按比例縮放該錯誤信號之相對高功率之RF放大器之必要性可減小該放大器系統之總體效率。因此,已在前饋線性化應用於高度非線性放大器(例如,EER類型放大器)時之有用性方面對前饋線性化加以限制。
對前饋線性化之另一限制係關於頻寬。在前饋線性化系統中,錯誤信號高度準確地表示RF功率放大器所產生之實際失真係重要的。一失真之錯誤信號將不適當地自放大器之輸出移除非線性度。然而,在其中欲被放大之信號係寬頻RF信號之情況下,可出現錯誤信號之不準確度。舉例而言,此等不準確度可由在用於形成及處理錯誤信號之RF分量之運作頻寬上存在的振幅及相位變化產生。如上所述,此等RF組件可包含RF信號分路器及180°RF混合組合器電路。
本發明係關於一併入有前饋線性化之RF放大器系統。該系統包含一耦合至一數位波形源之數位多工器。該數位多工器經組態以產生數位資料之第一及第二實例。一第一資料轉換子系統耦合至該數位多工器用於將該數位資料之第一實例轉換為界定類比信號之類比量值及相位信號。一RF放大器耦合至該第一資料轉換子系統且回應於該等量值及相位信號用於產生一由該等量值及相位信號中之一者或多者調變之失真RF輸出信號。一第二資料轉換子系統經組態以用於自數位多工器接收該數位資料之第二實例且將該數位資料之第二實例轉換為一類比RF參考信號。
提供一前饋線性化電路用於減小RF放大器之一失真。將失真RF輸出信號及類比RF參考信號傳遞至前饋線性化電路。該前饋線性化電路包含一差動放大器,該差動放大器經配置以用於產生一表示失真RF輸出信號與類比RF參考信號之間一差異之錯誤信號。該前饋線性化電路亦包含一組合器,該組合器用於將錯誤信號與失真RF輸出信號組合以移除失真RF輸出信號之一失真部分。
有利地,RF放大器系統包含一耦合至數位多工器之數位資料延時裝置。該數位延時裝置經組態以用於選擇性延遲該數位資料之第二實例以便當失真RF輸出信號及類比RF參考信號被傳遞至差動放大器時可時間對準該失真RF輸出信號及該類比RF參考信號。
本發明亦包含一種用於線性化一RF放大器之一輸出信號之方法。該方法包含使用一數位多工器產生一數位資料s(t) 之第一及第二實例之若干步驟。該方法亦包含將數位資料之第一實例轉換為類比量值及相位信號。一RF放大器回應於該等量值及相位信號產生一失真RF輸出信號。該RF輸出信號由該等量值及相位信號中之至少一者調變。該方法進一步包含將該數位資料之第二實例轉換為一類比RF參考信號。該方法繼續使用一前饋線性化電路減小失真RF輸出信號之一失真。前饋線性化電路產生一錯誤信號。該錯誤信號表示失真RF輸出信號與類比RF參考信號之間的一差異。該方法繼續將錯誤信號與失真RF輸出信號組合以移除該失真RF輸出信號中之一失真部分之步驟。
現在,下文將參照其中顯示本發明之各圖解闡釋性實施例之隨附圖式更全面地闡述本發明。然而,本發明可體現為若干不同形式而不應被視為限於本文中所述之該等實施例。舉例而言,本發明可體現為一種方法、一種資料處理系統或一電腦程式產品。因此,本發明可採取一完全硬體實施例、一完全軟體實施例或一硬體/軟體實施例之形式。
本文中所述系統意欲改良一RF功率放大器之線性度,且更特定而言意欲改良用於放大寬頻信號之RF功率放大器之線性度。如本文中所使用,使用術語線性及/或線性度來闡述一RF放大器能夠藉由該RF放大器之一所界定之動態運作範圍內某一恆定比例因數產生一經放大輸出信號(其具有一與其輸入信號相關之振幅)達到之範圍。同樣,關於相位,使用術語線性或線性度來闡述此一RF放大器可藉由在該RF放大器之一所界定之動態運作範圍內某一恆定值產生一經放大輸出信號(其具有一與其輸入信號相關之相位)達到之程度。該動態運作範圍(如本文中使用之彼術語)包含一所希望之信號振幅範圍及所預期之信號頻寬。
一直存在對藉助前所未有位準之線性度更加有效運作之放大器之持續需求。習知某些類型之放大器(例如,包絡消彌與回復(EER)放大器)具有極高運作效率。然而,亦習知此等相同放大器具有不良線性度。根據本發明之一實施例,可藉由使用一經改良之前饋線性化技術改良此等放大器之線性度。
現參照圖1,其顯示一併入有一用於改良放大器之線性度之前饋系統之RF功率放大器系統100之一簡化方塊圖。在RF功率放大器系統100中,一波形源102將一源RF信號傳遞至一RF功率分配器104。通常,使用RF功率分配器將一RF源信號分成兩個單獨信號。通常,此等信號中之每一者將具有一近似為源RF信號功率一半之RF功率。因此,所產生之兩個信號包含一放大器輸入信號及一參考信號。該放大器輸入信號作為一輸入被提供至RF功率放大器106。通常,使用一定向耦合器108自RF功率放大器106獲得失真輸出信號之一低功率樣本。
參考信號及來自定向耦合器108之所採樣輸出信號皆被傳遞至一180°混合RF信號組合器114之各單獨輸入。習用180°混合RF信號組合器自失真放大器輸出信號減去參考信號。自180°混合RF信號組合器114所得之輸出係一錯誤信號。接著,在一線性錯誤放大器116中放大該錯誤信號以按比例縮放該錯誤信號。特定而言,放大該錯誤信號以便將其功率位準適當地按比例縮放為等於包含於來自RF功率放大器106之失真輸出信號之任何失真之功率位準。來自定向耦合器之失真輸出信號亦被傳遞至一第二定向耦合器110。在第二定向耦合器110中,該錯誤信號在一減去運作中與該失真輸出信號組合。特定而言,自RF功率放大器之失真輸出信號中減去RF錯誤信號以自該輸出信號移除失真。
圖2顯示一具有前饋線性化之RF功率放大器系統200之一簡化方塊圖,該RF功率放大器系統併入有一前饋配置用於自放大器輸出移除非線性度。所示之配置特定而言用於意欲與寬頻RF信號一起使用之RF功率放大器。
現參照圖2,RF功率放大器系統200包含一數位波形源202,該數位波形源產生數位資料信號s(t) 。該數位資料信號s(t) 可係一習用之複雜源信號。如本文中所使用,一複雜信號係用實信號分量及虛信號分量表示之任一信號。為方便闡述本發明起見,數位資料信號可理解為由表示一由相位(I)及正交(Q)分量向量(I/Q分量信號)組成之類比信號之數位資料組成。此類型之數位資料在此項技術中眾所周知且因此本文中將不再詳細闡述。然而,應理解,本發明並不限於上述情形。相反,亦可使用一複雜時變類比信號之任何其他數位表示。無論用於s(t) 之所選擇之特定格式如何,應理解數位波形源202產生一可視為理想之信號,此乃因其係所期望類比信號之一精確數位表示。特定而言,該數位資料信號s(t) 缺乏與習用類比信號處理相關聯之任何失真。
數位波形源202可以電腦硬體、軟體或硬體與軟體之一組合來實現。在此方面,應瞭解,數位波形源可產生於一個數位處理系統中,或以一其中不同處理元件跨越數個互連系統散佈之分佈方式產生。任一種類之電腦系統或其他適於實施本文中所述方法之設備皆適用。硬體與軟體之一典型組合可係一載入有一控制電腦系統之電腦程式之通用電腦處理器或數位信號處理器,因此其產生I及Q信號分量之時變數位表示。本發明上下文中之電腦程式或應用程式意指以任一語言、編碼或記法對一指令集之任一表示,該指令集意欲導致一具有一資訊處理能力之系統直接或在以下任一項或兩項作業之後執行一特定功能:a)轉換為另一語言、代碼或記法;b)以一不同實質形式再現。
再次參照圖2,數位資料信號s(t) 傳遞至參考信號產生器塊203。參考信號產生器203包含至少一個數位電路,該數位電路能夠提供包括來自一單個數位資料信號s(t) 輸入之數位資料信號s(t) 之兩個相同輸出。如熟習此項技術者將顯而易見,多種數位資料電路可用於此目的。舉例而言,一數位多工器或數位資料緩衝器可用於此目的。為方便起見,該數位電路顯示為一數位多工器204。然而,本發明並不限於上述情形。所必需的一切係提供用於產生兩個相同數位資料信號s(t) 之某些構件。
使用數位資料信號s(t) 產生一用作放大器212之一輸入之類比信號。取決於使用之放大器212之類型,可期望將數位資料信號轉換為一不同格式。出於此目的,提供一第一資料轉換子系統213。舉例而言,EER類型放大器具有用於相位及振幅資訊之單獨處理路徑。對於此等類型之放大器而言,有必要將一I/Q分量信號轉換為分別表示振幅及相位資訊之兩個類比信號。如在此項技術中眾所周知,此振幅及相位資訊作為一輸入信號傳遞至EER放大器。
若該等發明配置意欲與一EER類型放大器一起使用,則該數位資料信號s(t) 被傳遞至包含一信號格式轉換器206之第一資料轉換子系統213。在所示之實施例中,該信號格式轉換器將較佳係一I/Q至振幅/相位(I/Q至A/P)轉換器。信號格式轉換器206將數位資料信號s(t) (由I及Q分量組成)轉換為呈一不同格式之一等效信號s'(t) 。在此情況下,等效信號s'(t) 由一包括一時變振幅信號A(t)之第一分量及一由包含一時變相位角度Φ(t)之載體信號組成之第二分量界定。此類型之轉換器在此項技術中眾所周知。因此,在本文中將不再詳細闡述信號格式轉換器206。
熟習此項目技術者將顯而易見,多種類型之RF功率放大器可需要與一EER類型放大器所需信號格式不同之信號格式。因此,若本發明意欲使用此等其他類型之放大器,則可能有必要用一不同類型之信號格式轉換器代替I/Q至A/P轉換器。因此,應理解,本發明不限於使用一I/Q至A/P轉換器。相反,任一其他合適之轉換器可用於一特定放大器應用,且所有此等替代轉換器皆意欲包含於本發明之範疇中。
應理解,量值及相位分量A(t)及Φ(t)可呈數位格式。此等信號必須在傳遞至RF功率放大器212之前被轉換為一類比格式。出於此目的,第一資料轉換子系統213亦可包含數位至類比轉換器。舉例而言,有利地,量值及相位分量A(t)及Φ(t)傳遞至數位至類比(D/A)轉換器208、210。D/A轉換器在此項技術中眾所周知且因此本文中將不再詳細闡述。
來自數位至類比轉換器208、210之類比輸出將被傳遞至功率放大器212,在功率放大器212處該信號將被放大。根據本發明之一個實施例,功率放大器212可係一切換放大器,有時其亦稱為一D類放大器。在功率放大器212中,「量值」輸入係一基帶類比信號。欲被傳輸之RF信號產生於功率放大器212中且其振幅調變由量值輸入信號控制。功率放大器212之「相位」輸入信號控制由功率放大器212產生之RF信號之相位調變。雖然如本文中所述之切換放大器具有數個優點,但存在於此等功率放大器中之非線性度將導致一可被顯著失真之輸出。若功率放大器係EER類型,則此等非線性度可尤其顯著。
來自功率放大器212之失真RF輸出信號將被傳遞至一定向耦合器218。定向耦合器218包含一連接至功率放大器212之輸入埠、一連接至一延遲線220之傳輸埠、一連接至一端接電阻器224之隔離埠及一連接至差動放大器230之耦合埠。定向耦合器218欲將來自功率放大器212之大部分失真RF輸出信號傳遞至一延時裝置220。
概言之,較佳地,失真RF輸出信號之至少約90%將傳遞至延時裝置220。根據一個實施例,定向耦合器218可經選擇係一50 dB之定向耦合器。藉助此一耦合器,傳遞至延時裝置220之失真RF輸出信號通常將至多約為1 dB,低於由功率放大器212產生之失真輸出信號之功率位準。然而,應理解,本發明並不限於上述情形。較高或較低功率位準可傳遞至差動放大器230及延時裝置220。
延時裝置220補償經由差動放大器230、延時裝置232及錯誤放大器234之延時。延時裝置220可係在信號穿過該延時裝置過程中能夠產生一延時之任一裝置。舉例而言,延時裝置232可係由一段RF傳輸線構成之一簡單RF延遲線。延時裝置220亦可具有一延時控制電路(未示出),該延時電路回應於一延時控制信號221用於改變由延時裝置220產生之一延時。此延時控制電路可代替提供於延時232中回應於一延時控制信號233之一延時控制電路(未示出)或可係除該延時控制電路之外之延時控制電路。來自延時裝置220之輸出將傳遞至一定向耦合器222。延時控制信號215、221及233可由一對準處理器235產生,該對準處理器監控一個或多個控制信號以確保包括來自耦合器222之經線性化輸出之信號之時間對準。另一選擇係,適當之延時控制信號215、221、233可藉由呈一初始對準程序之手動或自動構件確定,且此後儲存於一記憶體裝置中。
再次參照定向耦合器218,在圖2中可觀察到來自功率放大器212之失真RF輸出信號之一部分耦合至差動放大器230之負輸入。此信號在本文中應稱為耦合信號219。耦合信號219通常將具有一功率位準,該功率位準相對於自功率放大器212傳遞至耦合器218之總RF輸入功率顯著減小。耦合信號219之實際功率位準將取決於多種設計因素。然而,耦合信號219之功率位準通常將至多約為由功率放大器212產生之失真輸出信號之功率位準的10%。舉例而言,定向耦合器218可係一50 dB類型之定向耦合器,因此耦合信號將具有一約為50 dB之功率位準,低於來自功率放大器212之失真RF輸出信號之功率位準。然而,應理解,本發明並不限於上述情形。
一參考信號229傳遞至差動放大器230之正輸入。此參考信號229產生於參考信號產生器203中,現在將對其進行詳細闡述。自數位多工器204提供之數位資料信號s(t) 傳遞至一適用於選擇性延遲數位信號之數位資料延時裝置205。在此方面,應理解,該數位資料延時裝置較佳地在數位域中運作。數位資料延時裝置205可係固定延遲類型。然而,數位延時裝置205亦可包含一延時控制電路(未示出),該延時控制電路允許選擇性可變控制施加至數位資料信號s(t) 之延遲量。該延時控制電路可由如所示之一延時控制信號215控制。
數位延時裝置205提供一充分延時以確保參考信號229與耦合信號219在時間上適當對準。此意指自數位多工器204至差動放大器230之路徑延遲對於參考信號229及耦合信號219而言相等。特定而言,耦合信號219由信號格式轉換器206、D/A轉換器208、210及功率放大器212延遲。與此對比,參考信號由D/A轉換器207、209及一RF調變器211延遲。每一信號遇到之相應延遲量可係不同。因此,為適當地比較耦合信號219與參考信號229,該等信號必須在時間上對準。此時間對準由延遲裝置205實施。
在數位資料延時裝置205處理數位信號s(t) 之後,其輸出傳遞至將數位s(t) 信號轉變成一類比基帶信號之一個或多個D/A轉換器207、209。舉例而言,此等信號可係類比基帶I及Q信號。接著,此等信號傳遞至將此等類比基帶信號轉換為一類比RF參考信號229之RF調變器211。為方便起見,D/A轉換器207、209與RF調變器211之組合在本文中稱為第二資料轉換子系統。另一選擇係,倘若D/A轉換器可分兩次採樣RF頻率,則可在數位域中實施RF調變器211。若在數位域中實施該RF調變器,則僅需要一個D/A。
類比RF參考信號229在以下意義上係一理想參考信號:該類比參考信號係由一RF調變器211基於對來自數位波形源202之所期望源信號s(t) 之一精確數位表示而產生。同樣,其被數位延遲以提供正確時間對準。如此,不存在任何顯著失真,例如由功率放大器212所致之失真。
較佳地,選擇耦合信號219及類比RF參考信號229之功率位準以使其相等。舉例而言,若功率放大器212具有一+53 dBm之輸出功率且定向耦合器係一50 dB之定向耦合器,則耦合信號219將具有一+3 dBm之功率位準。在此情況下,類比RF參考信號229亦將經選擇以具有一+3 dBm之功率位準。當然,亦可使用其他功率位準,但類比RF參考信號之功率位準229與耦合信號功率位準219相等係有利的。當以此方式配置功率位準時,差動放大器230之輸出將係一表示被引入至功率放大器212之失真之反向錯誤信號。
來自差動放大器230之反向錯誤信號輸出傳遞至一延時裝置232。舉例而言,延時裝置232可係由一段傳輸線構成之一固定RF延遲線。然而,根據本發明之一較佳實施例,延時裝置232可選擇性變化。舉例而言,一可變長度之傳輸線可用於此目的。然而,亦可使用其他類型之延遲線且本發明並非意欲限於上述情形。舉例而言,可使用多種市場上可購得之可變類比延遲線裝置中之任一者。在此方面,應理解,延時裝置232可包含至少一個用於選擇性改變由延時裝置232施加之延時量之延時控制電路。如圖2中所示,可將一延時控制信號233作為一輸入提供至延時裝置以選擇性改變延時。應注意,並非必須具有延時裝置232。有利地,延時裝置232允許延時控制對較低功率信號起作用,而固定延時220對高功率信號起作用。另一選擇係,可移除延時裝置232且向延時220提供延時控制。移除延時裝置232允許裝置220需要較少延時。
延遲裝置232之反向錯誤信號輸出傳遞至至少一個錯誤放大器234。錯誤放大器234係一線性放大器,其線性地放大該反向之錯誤信號。根據本發明之一實施例,可藉助一增益調整控制信號調整該錯誤放大器之一增益。有利地,錯誤放大器234增加該反向錯誤信號之功率位準以使其等於包含於被傳遞至定向耦合器222之失真放大器輸出信號中之失真之功率位準。放大之後,該反向錯誤信號自錯誤放大器234之一輸出傳遞至定向耦合器222之輸入。如上所述,定向耦合器在此項技術中眾所周知。根據一個實施例,定向耦合器222可經選擇係一15 dB之定向耦合器。在此方面,應瞭解,定向耦合器222之一15 dB之耦合比導致一最小量來自功率放大器212之RF功率被傳遞至端接電阻器226。然而,該耦合適於將一充分量來自錯誤放大器234之功率提供至來自定向耦合器222之經線性化輸出信號以大致減小失真。然而,應理解,設計者可選擇定向耦合器222之特定耦合比。當然,來自錯誤放大器234之輸出功率應經選擇以確保由該錯誤放大器所產生之錯誤信號具有充分量值以補償包含於來自功率放大器212之輸出信號中之失真。
自先前闡述應理解,存在兩個被提供至定向耦合器222之信號。一個信號係來自功率放大器212之失真輸出信號且另一信號係來自錯誤放大器234之經放大之反向錯誤信號。定向耦合器222係一四個埠之裝置,其將來自錯誤放大器234之反向錯誤信號耦合至失真輸出信號。在此方面,應理解,定向耦合器222在一輸出埠產生一經線性化輸出信號,該輸出信號係失真輸出信號與反向錯誤信號之和。由於錯誤信號被反向,因此求和運作可視為一涉及自失真輸出信號減去錯誤信號之運作。由於該反向錯誤信號係存在於失真輸出信號中之失真的一反向表示,因此此減去運作移除存在於該失真輸出信號中之失真。結果係一經線性化輸出。
本發明包含數個特徵,該等特徵共同表示與如圖1中所示之先前習用前饋類型放大器系統之一極大不同。一個此特徵係關於處理參考信號229之方式。類似於圖1中所示之一者,習用前饋類型之放大器系統使用一類比RF信號分路器104來產生一參考信號229。然而,當應用於一前饋線性化系統時,此習用類比RF信號分路器104具有數個不期望之特性。最為顯著地,習用類比RF信號分路器可展現相位及振幅之頻率相依變化。換言之,此意指信號分路器104之轉移特性可引入一輸入信號之一頻寬上相位及振幅變化。當在一前饋線性化應用中使用時,此RF信號分路器可導致參考信號相位及振幅變化。因此,將產生一不理想之參考信號。因此,錯誤信號在此情況下將係不準確的,使得該錯誤信號不能適當地改良來自放大器之輸出信號之線性度。
與此對比,本發明藉由當數位輸入信號s(t) 在數位域中時「分路」該信號形成參考信號。此功能在數位多工器204中執行。此種方式之優點係其避免相位及振幅變化之問題,該問題通常當使用一習用RF分路器時在一放大器輸入信號之頻寬內發生。當輸入信號係一寬頻信號時,此等變化可尤其成問題。
本文中所述方式之另一優點係其促進使用一在數位域中運作之數位資料延時裝置205。在此前饋線性化應用中使用一數位資料延時裝置205出於數個原因係有利的。數位資料延遲裝置205在數位域中運作且因此避免若使用一類比延遲裝置可以其他方式出現的參考信號之任何潛在失真。第二,在數位域中之可變延時裝置相對便宜、更容易實施且更容易數位控制。對於RF信號而言,此係優於可變類比延時裝置之一優點。特定而言,使用一數位資料延時裝置205意指可快速重新組態線性化系統以與不同類型之放大器212一起使用。
不同放大器212可具有與其相關聯之不同延時。針對參考信號使用一數位資料延遲裝置205意指圖2中之線性化系統可使用不具有任何顯著設計修改之兩個或兩個以上放大器。相反,當一特定應用需要時,習用數位控制信號可傳遞至數位延遲裝置205以控制延時。舉例而言,此等控制信號可由一合適積體電路控制器或可程式化ROM提供。
本發明之另一重要特徵係關於自參考信號229減去耦合信號219之方式。特定而言,本發明利用一差動放大器230代替一如圖1中所示之習用180°混合耦合器114。習用180°混合耦合器具有兩個潛在問題。第一,180°混合耦合器可以且確實展現相位及振幅之頻率相依變化。當180°混合耦合器之輸入信號用於處理具有一相對寬頻寬之信號時,此等變化可尤其成問題。熟習此項技術者應瞭解,相位及振幅之頻率相依變化可產生將導致一不準確之反向錯誤信號之失真。在此情況下,該錯誤信號不能適當改良來自功率放大器212之輸出信號之線性度,此乃因該錯誤信號未準確地表示錯誤。
與此對比,市場上可購得之高精度積體電路差動放大器可提供若干經改良之效能。當前市場上可購得之高精度積體電路差動放大器經設計從而以高頻率運作。尤其當輸入信號係相對寬頻寬時,此等放大器與180°混合耦合器相比具有顯著經改良之線性度。因此,此差動放大器可提供一錯誤信號之一更準確表示。
180°混合耦合器之另一問題系關於共模抑制比(CMRR)。一裝置之共模抑制比(CMRR)係一對抑制輸入信號為兩個輸入所共用之彼裝置之趨勢的量測。在當前情況下,CMRR係關於一180°混合耦合器114(或差動放大器230)完全且準確確定一參考信號與一失真放大器輸出信號之間的差異之能力。一高CMRR在前饋線性化應用中係重要的,此乃因存在於失真放大器輸出信號中之失真與該失真放大器輸出信號之振幅相比通常可係一相對小的電壓。通常,難以達成使一180°混合耦合器具有一大於約為50 dB之CMRR的一設計。與此對比,當前市場上可購得之差動放大器積體電路可達成一100 dB或更好之CMRR。因為當前可購得之差動放大器之寬運作頻寬,因此現在可將此一積體電路用於若干RF應用。此等特徵之組合意指在一前饋線性化中可使用一高線性度差動放大器代替習用180°混合耦合器,且該高線性度差動放大器可提供一顯著效能改良。
概言之,差動放大器230應具有導致一至少約為50 dB之共模抑制比(CMRR)的一設計。較佳地,該差動放大器應具有一適用於包含於參考信號229之輸入頻率之一範圍之頻寬。舉例而言,若放大器系統200意欲與AM或FM廣播帶中之習用廣播信號一起使用,則可使用一具有在10 MHz與200 MHz之間的一頻寬之線性差動放大器。應注意,差動放大器230所需線性度程度之精度規格將取決於欲自功率放大器212消彌之失真的位準。差動放大器230必須充分免於失真以便該放大器可基於參考信號229與耦合信號219之間的一差異準確地產生一錯誤信號。存在多種可用於實施差動放大器230之市場上可購得之產品。
應注意,本文中所述之放大器系統可用於多種信號,包含寬頻資料信號。然而,對於寬頻資料信號而言,差動放大器230及錯誤放大器234具有一合適之寬運作頻寬係重要的。在此方面,應理解,差動放大器230可係一習用積體電路裝置、一混合電路設計或一RF類型差動放大器。特定類型之電路結構將由CMRR及一特定應用中所需之用於處理特定類型之寬頻信號之頻寬容量確定。
102...波形源
104...RF功率分配器/類比RF信號分路器
106...RF功率放大器
108...定向耦合器
110...第二定向耦合器
114...180°混合RF信號組合器
116...線性錯誤放大器
200...RF放大器系統
202...數位波形源
203...參考信號產生器
204...數位多工器
205...數位資料延時裝置
206...信號格式轉換器
207...D/A轉換器
208...數位至類比轉換器
209...D/A轉換器
210...數位至類比轉換器
211...RF調變器
212...RF功率放大器
213...第一資料轉換子系統
215...延時控制信號
218...定向耦合器
219...耦合信號/耦合功率位準
220...延遲線/延時裝置
221...延時控制信號
222...定向耦合器
224...端接電阻器
226...端接電阻器
229...類比RF參考信號
230...差動放大器
232...延時裝置
233...延時控制信號
234...錯誤放大器
235...對準處理器
將參照以下圖式闡述各實施例,在所有圖式中,相同編號表示相同項,且其中:
圖1係一併入有一用於改良RF功率放大器線性度之前饋系統之習用RF功率放大器配置之一方塊圖。
圖2係用於理解一併入有一經改良之前饋系統之RF功率放大器配置之一配置之一方塊圖,該經改良之前饋系統用於修正一RF功率放大器之一輸出中之非線性度。
200...RF放大器系統
202...數位波形源
203...參考信號產生器
204...數位多工器
205...數位資料延時裝置
206...信號格式轉換器
207...D/A轉換器
208...數位至類比轉換器
209...D/A轉換器
210...數位至類比轉換器
211...RF調變器
212...RF功率放大器
213...第一資料轉換子系統
215...延時控制信號
218...定向耦合器
219...耦合信號/耦合功率位準
220...延遲線/延時裝置
221...延時控制信號
222...定向耦合器
224...端接電阻器
226...端接電阻器
229...類比RF參考信號
230...差動放大器
232...延時裝置
233...延時控制信號
234...錯誤放大器
235...對準處理器

Claims (10)

  1. 一種併入有前饋線性化之RF放大器系統,其包括:一數位多工器,其經組態用於自一數位波形源接收數位資料s(t) 且用於產生該數位資料之第一及第二實例;第一轉換構件,其耦合至該數位多工器,用於將該數位資料之該第一實例轉換為界定一類比信號之類比量值及相位信號;一RF放大器,其耦合至該第一轉換構件且回應於該等類比量值及相位信號用於產生一由該等類比量值及相位信號中之至少一者調變之失真RF輸出信號;第二轉換構件,其經組態用於自該數位多工器接收該數位資料之該第二實例且將該數位資料之該第二實例轉換為一類比RF參考信號;一前饋線性化電路,其用於減小該RF放大器之一失真,該前饋線性化電路包括一經配置用於產生一表示該失真RF輸出信號與該類比RF參考信號之間一差異之錯誤信號之差動放大器;及組合構件,其用於將該錯誤信號與該失真RF輸出信號組合,以移除該失真RF輸出信號之一失真部分。
  2. 如請求項1之RF放大器系統,其中該數位資料係一數位I/Q分量信號且該第一轉換構件包括一信號格式轉換器,該信號格式轉換器經配置用於將該數位I/Q分量信號轉換為至少一個包括相位及量值資訊之數位資料信號。
  3. 如請求項2之RF放大器系統,其中該第一轉換構件進一 步包括至少一個數位至類比轉換器,該數位至類比轉換器耦合至該信號格式轉換器且經組態用於將該至少一個包括相位及量值資訊之數位資料信號轉換為該等類比量值及相位信號。
  4. 如請求項1之RF放大器系統,其進一步包括一數位資料延時裝置,該數位資料延時裝置耦合至經組態用於選擇性延遲該數位資料之該第二實例之該數位多工器。
  5. 如請求項1之RF放大器系統,其中該第二轉換構件包括至少一個數位至類比轉換器,該數位至類比轉換器經組態用於自該數位資料之該第二實例產生類比基帶I及Q分量。
  6. 如請求項5之RF放大器系統,其中該第二轉換構件進一步包括一RF調變器,該RF調變器耦合至該至少一個數位至類比轉換器且回應於該類比參考信號之該類比基帶I及Q分量用於產生該類比RF參考信號。
  7. 如請求項1之RF放大器,其進一步包括一錯誤放大器,該錯誤放大器具有一經組態用於自該差動放大器接收該錯誤信號之輸入及一耦合至該組合構件之輸出,該錯誤放大器經組態用於放大該錯誤信號。
  8. 如請求項1之RF放大器系統,其進一步包括一類比延時裝置,該類比延時裝置耦合至該差動放大器及該錯誤放大器中之至少一者,該類比延時裝置經組態用於選擇性延遲該錯誤信號。
  9. 如請求項1之RF放大器系統,其中該RF放大器係一EER 類型放大器。
  10. 一種用於線性化一RF放大器之一輸出信號之方法,其包括:使用一數位多工器產生一數位資料s(t) 之第一及第二實例;將該數位資料之該第一實例轉換為類比量值及相位信號;回應於該等類比量值及相位信號,使用一RF放大器產生一由該等類比量值及相位信號中之至少一者調變之失真RF輸出信號;將該數位資料之該第二實例轉換為一類比RF參考信號;使用一前饋線性化電路減小該失真RF輸出信號之一失真,該前饋線性化電路產生一表示該失真RF輸出信號與該類比參考信號之間一差異之錯誤信號且將該錯誤信號與該失真RF輸出信號組合以移除該失真RF輸出信號中之一失真部分。
TW098110916A 2008-04-02 2009-04-01 射頻功率放大器之前饋線性化 TWI442697B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/061,013 US7642850B2 (en) 2008-04-02 2008-04-02 Feedforward linearization of RF power amplifiers

Publications (2)

Publication Number Publication Date
TW201004131A TW201004131A (en) 2010-01-16
TWI442697B true TWI442697B (zh) 2014-06-21

Family

ID=40673449

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098110916A TWI442697B (zh) 2008-04-02 2009-04-01 射頻功率放大器之前饋線性化

Country Status (7)

Country Link
US (1) US7642850B2 (zh)
EP (1) EP2277262B1 (zh)
JP (1) JP2011517215A (zh)
KR (1) KR101102109B1 (zh)
CA (1) CA2720162C (zh)
TW (1) TWI442697B (zh)
WO (1) WO2009123999A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2920265A1 (fr) * 2007-08-23 2009-02-27 Eads Secure Networks Soc Par A Correction de distorsions dans une chaine d'emission
US8254493B2 (en) * 2008-09-30 2012-08-28 Intel Mobile Communications GmbH High bandwidth modulation and transmission
US9077440B2 (en) * 2013-01-04 2015-07-07 Telefonaktiebolaget L M Ericsson (Publ) Digital suppression of transmitter intermodulation in receiver
US9214968B2 (en) * 2013-07-24 2015-12-15 Nokia Technologies Oy Apparatus and methods for providing a power amplifier with interference cancellation
US11108403B2 (en) * 2017-04-13 2021-08-31 Rohde & Schwarz Gmbh & Co. Kg Device and method for efficient digital-analog conversion
TWI696344B (zh) * 2018-11-16 2020-06-11 財團法人工業技術研究院 線性度改善系統及線性度改善方法
CN112285620A (zh) 2019-07-24 2021-01-29 通用电气精准医疗有限责任公司 Rf发射系统和方法、mri系统及其预扫描方法以及存储介质

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9002788D0 (en) * 1990-02-08 1990-04-04 Marconi Co Ltd Circuit for reducing distortion produced by an r.f.power amplifier
US5892397A (en) * 1996-03-29 1999-04-06 Spectrian Adaptive compensation of RF amplifier distortion by injecting predistortion signal derived from respectively different functions of input signal amplitude
US5923712A (en) * 1997-05-05 1999-07-13 Glenayre Electronics, Inc. Method and apparatus for linear transmission by direct inverse modeling
US5861777A (en) * 1997-07-02 1999-01-19 Motorola, Inc. Method and apparatus for compensation of phase distortion in power amplifiers
FI105366B (fi) * 1997-10-29 2000-07-31 Nokia Networks Oy Linearisointimenetelmä ja vahvistinjärjestely
US5959500A (en) * 1998-01-26 1999-09-28 Glenayre Electronics, Inc. Model-based adaptive feedforward amplifier linearizer
US6078216A (en) * 1998-03-31 2000-06-20 Spectrian Corporation Aliased wide band performance monitor for adjusting predistortion and vector modulator control parameters of RF amplifier
US6188732B1 (en) * 1998-10-19 2001-02-13 Samsung Electronics Co., Ltd. Digital feedforward amplifier for use in an RF transmitter and method of operation
GB2351624B (en) 1999-06-30 2003-12-03 Wireless Systems Int Ltd Reducing distortion of signals
US6356146B1 (en) * 1999-07-13 2002-03-12 Pmc-Sierra, Inc. Amplifier measurement and modeling processes for use in generating predistortion parameters
KR100674586B1 (ko) * 1999-12-30 2007-01-25 엘지전자 주식회사 전력증폭기의 전치왜곡 선형화기
US6570444B2 (en) * 2000-01-26 2003-05-27 Pmc-Sierra, Inc. Low noise wideband digital predistortion amplifier
US6944238B2 (en) * 2001-02-16 2005-09-13 Lucent Technologies Inc. Digital transmitter system and method
US6794936B2 (en) * 2001-07-03 2004-09-21 Lucent Technologies Inc. Equalizer system and method for predistortion
US6756844B2 (en) * 2001-08-07 2004-06-29 Hitachi Kokusai Electric Inc. Distortion compensation amplification apparatus of feed forward type and adaptive pre-distortion type
JP3805221B2 (ja) * 2001-09-18 2006-08-02 株式会社日立国際電気 歪み補償装置
US6834084B2 (en) * 2002-05-06 2004-12-21 Rf Micro Devices Inc Direct digital polar modulator
US6937669B2 (en) * 2002-12-03 2005-08-30 Motorola, Inc. Digital predistortion system for linearizing a power amplifier
US7129778B2 (en) 2003-07-23 2006-10-31 Northrop Grumman Corporation Digital cross cancellation system
US7034614B2 (en) * 2003-11-21 2006-04-25 Northrop Grumman Corporation Modified polar amplifier architecture
EP1690395A1 (en) * 2003-11-24 2006-08-16 Telefonaktiebolaget LM Ericsson (publ) Frequency shifting of wcdma carriers for variable carrier separation
US7336725B2 (en) * 2004-03-03 2008-02-26 Powerwave Technologies, Inc. Digital predistortion system and method for high efficiency transmitters
JP2006093873A (ja) * 2004-09-21 2006-04-06 Matsushita Electric Ind Co Ltd Eer変調増幅装置
EP1732207B1 (en) 2005-06-03 2008-02-13 NTT DoCoMo INC. Multi-Band lookup table type predistorter
JP2007221418A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd Eerシステムを用いた電力増幅装置および電力増幅方法

Also Published As

Publication number Publication date
US20090251211A1 (en) 2009-10-08
JP2011517215A (ja) 2011-05-26
TW201004131A (en) 2010-01-16
CA2720162C (en) 2014-01-28
KR20100127866A (ko) 2010-12-06
KR101102109B1 (ko) 2012-01-02
US7642850B2 (en) 2010-01-05
EP2277262B1 (en) 2013-11-13
CA2720162A1 (en) 2009-10-08
WO2009123999A1 (en) 2009-10-08
EP2277262A1 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
KR100802353B1 (ko) 고효율 송신기를 위한 디지털 전치보상 시스템 및 방법
EP1066682B1 (en) A predistorter
TWI442697B (zh) 射頻功率放大器之前饋線性化
EP1025638B1 (en) Linearization method and amplifier arrangement
KR100421145B1 (ko) 비선형 왜곡 보상 방법 및 비선형 왜곡 보상 회로
US8736365B2 (en) Broadband linearization module and method
KR100438445B1 (ko) 비선형 왜곡 보상 방법 및 비선형 왜곡 보상 회로
EP2728742B1 (en) Amplifier circuit and wireless communication equipment
EP1042864A1 (en) Method and apparatus for wideband predistortion linearization
KR20010089465A (ko) 인터모드-보완 전치왜곡 경로를 갖는 병렬 알 에프 전력증폭기를 사용하는 알 에프 전력 증폭기 선형화 장치
KR100548763B1 (ko) 피드포워드 방식의 선형화기를 갖는 기지국 송신장치
CN107579716B (zh) 基于模拟对消的线性功率放大器
JP2002330032A (ja) 歪み改善回路
US6275105B1 (en) Adaptive linearization of a feedforward amplifier by complex gain stabilization of the error amplifier
JP5049562B2 (ja) 電力増幅器
KR20170054283A (ko) 아날로그 rf 전치 왜곡기 및 비선형 스플리터
GB2339354A (en) A predistorter for an amplifier in which a pilot signal is supplied to the amplifier via the predistorter
US20130044836A1 (en) Device and method for pre-distorting and amplifying a signal based on an error attribute
JP2004165900A (ja) 通信装置
KR20020052495A (ko) 알에프 전력증폭기의 디지탈 선형화장치
JP2008028746A (ja) 歪み補償装置
KR100865886B1 (ko) 고주파 증폭기의 비선형성을 보정하기 위한 장치
KR20010028084A (ko) 전력증폭기의 전치보상기
JP2003110371A (ja) 歪み補償装置
JP4118882B2 (ja) 増幅器のプリディストータ