TWI440201B - 形成包含薄的積層之光伏電池的方法(二) - Google Patents

形成包含薄的積層之光伏電池的方法(二) Download PDF

Info

Publication number
TWI440201B
TWI440201B TW098102018A TW98102018A TWI440201B TW I440201 B TWI440201 B TW I440201B TW 098102018 A TW098102018 A TW 098102018A TW 98102018 A TW98102018 A TW 98102018A TW I440201 B TWI440201 B TW I440201B
Authority
TW
Taiwan
Prior art keywords
laminate
photovoltaic cell
layer
wafer
thickness
Prior art date
Application number
TW098102018A
Other languages
English (en)
Other versions
TW200943574A (en
Inventor
Srinivasan Sivaram
Aditya Agarwal
S Brad Herner
Christopher J Petti
Original Assignee
Twin Creeks Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Twin Creeks Technologies Inc filed Critical Twin Creeks Technologies Inc
Publication of TW200943574A publication Critical patent/TW200943574A/zh
Application granted granted Critical
Publication of TWI440201B publication Critical patent/TWI440201B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic System including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/061Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being of the point-contact type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/1808Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System including only Ge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System including only AIVBIV alloys, e.g. SiGe
    • H01L31/1816Special manufacturing methods for microcrystalline layers, e.g. uc-SiGe, uc-SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Description

形成包含薄的積層之光伏電池的方法(二) 發明背景
本發明係有關於一種形成用於一光伏電池之薄半導體積層的方法。
習知光伏電池最常由矽晶圓形成,通常這些晶圓係由一矽塊切出。目前的技術不容許小於大約170微米厚度之晶圓被經濟地製成電池,且以這厚度在切割損失或截口中會浪費相當量之矽。矽太陽能電池不需這厚度便是有效的或在商業上是有用的,習知太陽能電池之成本的大部份是矽原料之成本。
因此,需要有一種便宜地且可靠地形成一薄結晶半導體光伏電池的方法。
較佳實施例之概要
本發明係由以下申請專利範圍界定,且在這部份中不應被視為對這些申請專利範圍成為一限制。大致而言,本發明係有關於一用於一光伏電池中之薄半導體積層及多數用以製造這種電池之方法。
本發明之一第一方面是提供一種用以形成一光伏電池的方法,該方法包含:提供一具有一第一施子厚度之連續、單件式半導體施子本體;分裂該連續、單件式半導體施子本體之一部份以形成一半導體材料之第一積層,其中該半導體材料之第一積層具有一第一積層厚度,且該第一積層厚度在大約0.2微米與大約100微米厚度之間;及製造該光伏電池,其中該半導體材料之第一積層包含該光伏電池之基極或射極之至少一部份、或兩者。
本發明之另一方面提供一種用以製造一光伏電池的方法,該方法包含:將多數氫離子穿過一半導體施子本體之第一表面植入該半導體施子本體中,其中離子植入在該第一表面以下大約0.2微米與大約100微米間之一深度界定出一分裂平面;沿著該分裂平面由該施子本體分裂出一半導體材料之積層;及製造該光伏電池,其中該積層包含該光伏電池之基極或射極之至少一部份、或兩者。
本發明之再一方面提供一種用以製造一光伏電池的方法,該方法包含:將一第一連續、單件式半導體施子本體之一第一表面固定於一承接物;在該固定步驟後,由該第一施子本體分裂出一半導體材料之第一積層,其中該半導體材料之第一積層包括該第一表面且保持固定於該承接物;及製造該光伏電池,其中該半導體材料之第一積層包含該光伏電池之基極或射極之至少一部份、或兩者。
本發明之一實施例提供一種用以製造一光伏電池的方法,該方法包含:摻雜一半導體晶圓之一第一表面之至少某些部份;穿過該第一表面植入氫離子;將該第一表面固定於一承接物;及在該固定步驟後,由該半導體晶圓分裂出一第一半導體積層,其中該第一積層包含該第一表面,其中該第一表面結合在該承接物上,其中當該第一積層暴露於光時在該第一積層內產生電流。
本發明之另一實施例提供一種用以製造一光伏模組的方法,該方法包含:將多數半導體晶圓固定於一承接物;及在該固定步驟後,由各半導體晶圓分裂出一半導體積層,其中各積層結合在該承接物上,其中該光伏模組包含該承接物與該積層。
本發明之再一實施例提供一種包含一光伏電池之半導體積層,該半導體積層具有實質平行之第一與第二表面,其中在該等第一與第二表面間之厚度在大約0.2與大約100微米之間,其中配線接觸該第一表面但無配線接觸該第二表面,並且其中入射光經由該第二表面進入該光伏電池。
本發明之另一實施例提供一種包含一光伏電池之半導體積層,該半導體積層具有實質平行之第一與第二表面,其中在該等第一與第二表面間之厚度在大約0.2與大約100微米之間,其中配線接觸該第一表面但無配線接觸該第二表面,並且其中入射光經由該第二表面進入該光伏電池。
本發明之又一實施例提供一種半導體材料之積層,該半導體之積層具有實質平行之第一與第二表面,其中在該等第一與第二表面間之距離在大約1微米與大約100微米之間,其中該第一表面或該第二表面之峰至谷表面粗糙度大於大約600埃,且其中該積層包含一光伏電池或一光伏電池之一部份。
本發明之一實施例提供一種光伏模組,其包含:一承接物;及多數結合於該承接物之半導體積層,其中各半導體積層厚度在大約1與大約100微米之間,其中各半導體積層包含一光伏電池之一基極或一射極之至少一部份。一相關實施例提供一種光伏模組,其包含多數積層,各積層具有一在大約0.2與大約100微米之間的厚度,各積層包含一光伏電池之一基極或一射極之至少一部份;及一基板(substrate),其中各積層結合至該基板。另一相關實施例提供一種光伏模組,其包含多數積層,各積層具有一在大約0.2與大約100微米之間的厚度,各積層包含一光伏電池之一基極或一射極之至少一部份;及一覆板(superstrate),其中各積層結合至該覆板。
本發明之另一方面提供一種用以形成一裝置的方法,該方法包含:將一半導體本體之一第一表面黏著於一承接物,其中該承接物是一金屬或聚合物;及由該半導體本體分裂出一積層,其中該積層包含該第一表面,該第一表面保持黏著於該承接物,且該積層之厚度在1與80微米之間。
本發明之再一方面提供一種用以形成多數積層的方法,該方法包含:由一半導體晶圓分裂出一第一積層,其中該半導體晶圓具有一小於大約1000微米之第一厚度且該第一積層具有一大約等於或大於1微米之厚度;及在分裂出該第一積層後,由該半導體晶圓分裂出一第二積層,其中該第二積層具有一大約等於或大於1微米之厚度,其中在分裂出該第二積層後,該半導體晶圓具有一大於大約180微米之第二厚度,且其中在該第二厚度與該第一厚度間之差係至少該第一積層與該第二積層之組合厚度。
本發明之又一實施例提供一種光伏電池,其包含:一具有在大約0.2微米與大約100微米間之厚度的積層,該積層包含該光伏電池之一基極之至少一部份,其中該積層包含單晶、多晶、或多結晶矽半導體材料;及一包含該光伏電池之一射極之至少一部份的第一非晶矽半導體層。
本發明之另一實施例提供一種光伏裝置,其包含一具有在大約1微米與大約20微米間之厚度的半導體積層,其中該積層具有一第一表面及一實質平行於該第一表面之第二表面,其中該積層包含一光伏電池之一基極之至少一部份,其中對該光伏電池之第一表面與第二表面兩者呈電接觸狀態;及一基板或覆板,其中該積層在該第一表面或該第二表面處固定於該基板或該覆板。
本發明之再一實施例提供一種用以形成一光伏電池的方法,該方法包含:將一第一材料之第一層沈積在一矽晶圓之一第一表面上;穿過該第一表面植入一或多種氣體離子以界定出一分裂平面;在該第一表面處將該晶圓固定於一承接物;加熱該晶圓以沿一分裂平面由該晶圓剝離一積層,其中該積層包含該第一表面且該積層保持固定於該承接物;及使該積層之第一表面或第二表面形成紋路。
另一實施例提供一種光伏電池,其包含:一具有在大約1微米至大約20微米間之厚度的結晶矽積層,其中該積層包含該光伏電池之一基極與一射極,該積層具有一第一表面及一實質平行於該第一表面之第二表面;一基板,其中該積層在該第一表面處固定於該基板;及與該第二表面電接觸之配線,其中入射光在該第二表面處進入該光伏電池。
在此所述之本發明之各方面與實施例可單獨或組合使用。
以下將參照添附圖式說明該等較佳方面與實施例。
圖式簡單說明
第1圖是顯示一習知光伏電池之橫截面圖。
第2圖是各種矽光伏電池之短路電流對厚度之圖。
第3a與3b圖是橫截面圖,顯示在形成本發明一實施例之一光伏電池時之階段。
第4a至4d圖是橫截面圖,顯示在形成本發明一實施例之一光伏電池時之多數階段。
第5a-5c圖是橫截面圖,顯示在形成本發明一實施例之一光伏電池時之多數階段。
第6a與6b圖是橫截面圖,顯示在形成本發明另一實施例之一光伏電池時之階段。
第7a-7c圖是橫截面圖,顯示在形成本發明又一實施例之一光伏電池時之多數階段。
第8a與8b圖是橫截面圖,顯示在形成本發明再一實施例之一光伏電池時之階段。
第9a-9d圖是橫截面圖,顯示在形成本發明一實施例之一光伏電池時之多數階段。
第10a與10b圖是橫截面圖,顯示在形成本發明另一實施例之一光伏電池時之階段。
第11a與11b圖是橫截面圖,顯示在形成本發明又一實施例之一光伏電池時之階段。
第12與13圖是其他實施例之橫截面圖,其中一依據本發明形成之積層係一串列或多接面光伏電池之一部份。
第14圖是一光伏模組之平面圖,該光伏模組包含多數本發明實施例之薄光伏電池。
第15a-15c圖是橫截面圖,顯示在形成本發明另一實施例時之階段,其中一積層在一基板與一覆板之間轉移。
較佳實施例之詳細說明
一被用來製造一光伏電池之典型矽晶圓的厚度係大約200至250微米,且將矽晶圓儘量切薄至180微米是習知的,但是這種晶圓易碎且容易斷裂。
一習知先前技術之光伏電池包括一p-n二極體;其一例係顯示在第1圖中。一空乏區在該p-n接面處形成,產生一電場。入射光子將電子由該傳導帶撞至共價帶,產生多數電子-電洞對。在該p-n接面處之電場內,電子將會朝該二極體之n區域遷移,而電洞則朝p區域遷移,並因此產生電流。這電流可被稱為光電流。通常一區域之摻雜物濃度將高於其他區域,因此該接面是一p-/n+接面(如第1圖所示)或一p+/n-接面。該較輕摻雜之區域係眾所週知之光伏電池的基極(base),而該較高摻雜之區域則為眾所週知之射極(emitter)。大部份之載子係在該基極內產生,且通常它是該電池之最厚的部份。該基極與該射極一起形成該電池之作用區。
在某些範圍內,光伏電池之轉換效率會隨著其厚度變化。在這說明書中,轉換效率(conversion efficiency)表示轉換成可使用電流之入射光子電流的比例。當一電池之厚度減少時,有更多光將通過它且不會被吸收。更大之厚度可產生更多吸收與更高之電池效率,且光吸收亦可藉增加光通過該電池之距離來改善,而增加光通過該電池之距離可藉使光以一傾斜角度彎折或藉使它反射多次通過該電池來達成。彎折可藉由,例如,使該電池之表面之其中一者或兩者形成紋路(texturing)、及藉以一反射材料塗覆一表面而反射來產生。這些效應係眾所週知的光陷獲(light trapping)。
一形成紋路而使得穿透或反射光之角度完全任意化的平面被稱為一朗伯(Lambertian)表面,即,對一朗伯表面而言,每單位立體角之光子通量密度與該入射光方向與沿該表面之位置無關。
如前所述,光伏電池通常具有至少200微米之厚度,但並不一定非如此不可。第2圖是一顯示各種光伏電池之理論短路電流密度(Jsc)對厚度的圖表(第2圖係取自新南威爾斯大學光伏裝置與系統中心之Green,M.A.(1995)“Silicon Solar Cells,Advanced Principle and Practice”)。由其中可看出對一具有朗伯表面之電池而言,Jsc隨著厚度減少,但為相對逐漸地變化。例如,對在第2圖中以“朗伯”標示之曲線而言,在大約100微米處,Jsc為大約42mA/cm2 ,而在大約50微米處,Jsc僅稍微下降至大約41mA/cm2 ;在10微米處,Jsc仍甚高於35mA/cm2 。在5、2、1且甚至數分之一微米厚度之實質較薄光伏電池理論上可以商業上可使用之效率製成,只要它們可以足夠低之成本製造即可。
在本發明之一些實施例中,藉由習知切割法以外之方式,由例如一單晶或多晶矽晶圓之半導體施子本體分裂一非常薄的半導體積層,使該積層可以更薄。該積層可被加工形成一光伏電池之全部或一部份。
請參閱第3a圖,在一較佳實施例中,一或多種氣體離子穿過一晶圓20之一第一表面10被植入。該等離子因電子交互作用且因與在晶格中之原子之原子核碰撞而減速。該等植入離子到達一某些較深、某些較淺深度之分布,且該分布在第一表面10下方某深度將具有一最大集中。這植入過程亦在一深度之分布處導致晶格破壞,且該破壞構成該晶格原子因與射入之植入原子碰撞而位移產生的空晶格位置。這破壞亦具有一最大集中之深度,且該最大集中之深度稍淺於植入氣體原子之最大集中之深度。該植入界定出一分裂平面30,且一積層可沿該分裂平面30由該晶圓20分裂。該分裂平面30之深度可在大約0.2微米與大約100微米之間。
如第3b圖所示,當該晶圓被加熱時,該等植入氣體離子遷移至分裂平面30,形成氣泡或微裂縫。該等氣泡或微裂縫擴大且匯合,導致積層40由施子晶圓20分離。
本發明之甚薄積層一定會比一相當厚之晶圓更易碎,且必須小心處理以避免斷裂。如此,在某些實施例中,如第4a圖所示,先加工晶圓20之積層40,包括,例如,以p型及/或n型摻雜物進行摻雜、形成紋路以增加光陷獲、膜之成長或沈積等。在摻雜後,穿過第一表面10植入氣體離子,界定出次表面分裂平面30。請參閱第4b圖,在界定出分裂平面30後,第一表面10固定或黏著至一將被稱為一承接物(receiver)之平坦表面60。如第4c圖所示,後續之熱退火使積層40可沿先前界定出之分裂平面30剝離;這退火亦可用以完成積層40與承接物60之結合。
分裂產生第二表面62。第二表面62可進行如使表面形成紋路、形成一抗反射層、摻雜、形成配線等其他加工。依據該實施例,承接物60可作為在完成裝置中之一基板(substrate)或一覆板(superstrate),而該完成裝置可為一光伏模組。在其他實施例中,積層40可以暫時被轉移至承接物60上,接著再轉移至某種其他基板或覆板上。在某些實施例中,僅在第一表面10處或在承接物60處與積層40呈電接觸狀態,而在其他實施例中,則在第一表面10與第二表面62兩者處呈電接觸狀態。
結果產生一具有在大約0.2與大約100微米間之厚度的積層40,且最好是在大約1與大約10微米之間;在某些實施例中,這厚度是在大約1與大約5微米之間。積層40包含或是一太陽能電池之一部份,且積層40已在兩側上被加工並固定於一基板或覆板上。一太陽能板或光伏模組可藉將多數積層固定於相同基板或覆板上而製成,且該等多數積層可以在相同之步驟中形成,以進一步減少成本。
在此應注意的是在前述製程中,所提供的是一具有一第一厚度之連續、單件式半導體施子本體。一在先前技術中習知之不同製程是先在一多孔質矽層上形成一結晶矽之磊晶成長層,接著與其分離。在一例子中,可對一矽晶圓進行陽極蝕刻,在或靠近該晶圓表面處形成一連串孔洞,且該等孔洞通常具有等於或大於一微米之尺寸。一在氫中之退火重建一矽之頂面,且該頂面下方具有一層分離孔洞。矽係藉在另一步驟中將矽沈積在一單一結晶基板上而磊晶地成長在這重建矽層上,接著使該磊晶成長層與該初始晶圓在該分離層處分離。構成該分離層之材料會成長,且不是該初始晶圓之一部份;因此該晶圓之厚度不會減少該分離層之厚度,而是僅減少因陽極蝕刻所形成之孔洞所構成之分離層的厚度。緊接分裂步驟之前,該半導體晶圓具有一磊晶成長於其上之層,且包括多數孔洞;它不是一連續、單件式施子本體。
相反地,在本發明中提供一連續、單件式半導體施子本體。大致上,該施子本體沒有孔洞。該分裂之積層是該連續、單件半導體施子本體之一部份,不是一藉在另一步驟中將矽沈積在一單一結晶基板上而磊晶成長在該本體上之另一層。因此,由該施子本體分裂該積層將減少該初始施子本體之厚度至少該積層之厚度。
例子:植入與剝離
一由一半導體施子本體分裂一薄積層的有效方法是藉將氣體離子植入該半導體施子本體中以界定出一分裂平面,接著沿著該分裂平面剝離該積層。為了完整起見,以下將提供一如何進行植入與剝離之詳細例子。請注意剝離只是一種分裂之形式,在此應了解的是這例子只是用以說明,且不是要用來限制。這例子之許多細節可以改變、省略、或擴增,但其結果仍在本發明之範圍內。
這說明將詳細敘述植入一單晶矽晶圓,且在此應了解的是亦可使用許多其他種類之半導體施子本體來替代。請參閱第4a圖,一或多種離子穿過晶圓20之第一表面10被植入(以箭號表示)。可使用多種氣體離子,包括氫(H+、H2 +)與氦(He、He++)。在某些實施例中,可僅單獨植入氫離子或單獨植入氦離子;在其他實施例中,可一起植入氫離子與氦離子。各植入離子將移動至第一表面10下方之某深度,且它將在它移動通過該晶格時因電子交互作用及與原子之原子核碰撞而減速。該原子核碰撞會導致該等晶格原子之位移而產生空間或空晶格位置,而這會有效地破壞晶格。
某些離子將移動得比其他的更遠,且在植入後,將有一離子深度之分布。類似地,在一深度之分布處會造成晶格破壞,且這破壞分布稍微落後該離子分布。在各分布中將有一最大集中,且如果植入氫,則稍淺於氫離子之最大集中之該破壞的最大集中將大致是該分裂平面。如果該植入包括氦或其他氣體離子,但並不包括氫,則該等植入離子之最大集中將是該分裂平面。在任一種情形中,該離子植入步驟界定出該分裂平面,且植入能量界定出該分裂平面之深度。在此應了解的是這分裂平面無法是一完美平面,且將具有某些不規則性。如果植入氫與氦離子兩者,它們的最大集中最好發生在或靠近相同之深度,但它們不必完全相同。雖然不是必要,但該氫植入最好在氦植入前進行。
在其他實施例中,可以植入其他氣體離子,包括氖、氪、氬等,單獨或與氦、與氫、或與氫及氦組合;或甚至任一種組合。這些離子具有較大質量,因此需要較高之植入能量來將它們植入至與一較小質量離子相同之深度。
如果已植入氫,則氫原子藉形成Si-H鍵來鈍化懸矽鍵。原子氫將輕易地鈍化存在空晶格位置處之斷裂矽鍵。在某些情形下,多數氫原子將與相鄰矽原子鍵結,形成一薄層缺陷。Johnson等人於在此加入作為參考之“Defects in single-crystal silicon induced by hydrogenation”Phys. Rev. B35,pp 4166-4169(1987)中更完整地說明了薄層缺陷。某些氫原子將不會與矽鍵結,且仍將以原子或分子氫之狀態自由地存在該晶格中。植入之氦原子是惰性的且不會形成鍵結,並且因此在該晶格中仍是自由的。
如第4a圖所示,該離子植入步驟界定出用於一後續分裂步驟之分裂平面30。分裂平面30距離第一表面10之深度將決定最後將形成之積層的厚度,如早先所述,這厚度影響該完成電池之轉換效率。在某些實施例中,一或多個薄膜可在植入前便已沈積或成長在第一表面10上。
該等植入離子之深度係由該等氣體離子植入處之能量來決定。以植入能量愈高,離子移動愈遠,增加植入離子之最大集中的深度、破壞之最大集中、及該分裂平面之深度。該分裂平面之深度則決定該積層之厚度。
該積層之較佳厚度是在大約0.2與大約100微米之間;因此H+之較佳植入能量範圍是在大約20keV與大約10MeV之間。欲達到這些深度之He+之較佳植入能量範圍亦在大約20keV與大約10MeV之間。
在植入時,在該離子植入機中,該等被植入之離子與原子之間會發生碰撞。以某種已知能量,這些碰撞可造成核反應,產生伽馬(γ)射線、阿爾法(α)粒子、或x光。依據離子劑量率與屏蔽性,最好避免會造成這些反應之能量。但是輻射量與其接受能力是離子劑量率與屏蔽性之函數,且Saadatmand等人在Proceedings of the 1988 International Conference on Ion Implantation Technology,pp. 292-295,1999“Radiation Emission from Ion Implanters when Implanting Hydrogen and Deuterium”中,對這議題有更完整之說明。
在一典型離子植入機中,藉產生某種便利來源氣體或固體之電漿,在離子源中產生多數離子。接著,將這些離子由該來源中抽取出來並進行質量分析以僅選擇所需要之離子種類,且在該電漿中會存在多數藉該質量分析剔除之離子。在另一種植入機中,沒有質量分析且因此所有存在該源電漿中之離子種類均被植入該晶圓標靶。若為一氫電漿,則H+與H2 +離子兩者將相似地存在。如果離子未接受質量分析,則將植入H+與H2 +兩者,產生在不同深度處之兩分布峰。這是比較不好的,因為它會使後續之剝離步驟更難以控制。如果植入氫且沒有質量分析,則對於以一將產生H+離子或H2 +離子之優勢的方式操作該來源是有利的。
如前所述,一植入在各種深度留下多數植入離子。在較該最大集中之深度淺或深之深度處,一較高能量植入較一較低能量植入留下較多離子,產生植入原子之較廣分布。該分裂製程藉該氣體原子擴散至該分裂平面進行;這較廣分布表示一較高能量植入需要一較高植入劑量。
即在此加入作為參考之Agarwal等人之American Institute of Physics,vol. 72,num. 9,pp. 1086-1088m,March 1998“Efficient production of silicon-on-insulator films by co-implantation of He+ with H+”中所述,可發現藉植入H+與He+離子兩者,各者所需之劑量可明顯減少。減少劑量可減少植入所花費之時間與能量,且可明顯地減少加工成本。
在某些實施例中,最好在一與氫與氦離子之目標深度實質上一致之深度處,另外植入一小劑量之硼離子。硼使氫可更快地擴散,且減少可進行該積層之最後剝離時之溫度。這效果於Tong之US專利第6,563,133號“Method of epitaxial-like wafer bonding at low temperature and bonded structure”中詳細地說明。
為了清楚地說明,以下將提供植入劑量與能量之例子。為了形成一具有大約1微米之厚度的積層,氫之植入能量應為大約100keV;對一大約2微米之積層而言,大約為200keV;對一大約5微米之積層而言,大約為500keV;且對一大約10微米之積層而言,大約為1000keV。如果僅植入氫,則一大約1或大約2微米之積層的劑量範圍將在大約0.4×1017 與大約1.0×1017 離子/cm2 之間,而一大約5或大約10微米之積層的劑量範圍將在大約0.4×1017 與大約2.0×1017 離子/cm2 之間。
如果一起植入氫與氦,則各者之劑量較在它們分別各自植入時減少。當以氦植入時,用以形成大約1或大約2微米之積層的氫劑量將在大約0.1×1017 與大約0.3×1017 離子/cm2 之間,而用以形成大約5或大約10微米之積層的氫劑量可在大約0.1×1017 與大約0.5×1017 離子/cm2 之間。
當一起植入氫與氦時,為了形成大約1微米之積層的氦植入能量應為大約50至大約200keV;對於一大約2微米之積層而言,大約100至大約400keV;對於一大約5微米之積層而言,大約250至大約1000keV;且對於一大約10微米之積層而言,大約500至大約1000keV。當以氫植入時,用以形成大約1或大約2微米之積層的氦劑量可為大約0.1×1017 至大約0.3×1017 離子/cm2 ,而為了形成大約5或大約10微米之積層,氦劑量可在大約0.1×1017 與大約0.5×1017 離子/cm2 之間。
在此應了解的是這些是例子,能量與劑量可以改變,且可選擇中間能量以形成中間、較小或較大厚度之積層。
一旦完成離子植入後,可在晶圓20上再進行加工。高溫將導致在分裂平面30處之剝離,因此直到欲產生剝離為止,均必須小心,例如藉限制熱步驟之溫度與期間,以避免過早產生剝離。一旦完成對第一表面10之加工,如第4b圖所示,可以將晶圓20固定於承接物60上。
請參閱第4c圖,一積層40之剝離最容易因溫度上升而受到影響。如前所述,在該植入界定分裂平面30處,該先前之植入步驟留下一氣體離子之分布、及一在該施子矽晶圓中之晶格破壞的分布。如果植入氫,則許多氫離子在與矽原子碰撞時使矽鍵斷裂且使這些鍵鈍化,並在某些情形下如先前所述地形成薄層缺陷。在室溫下,這些薄層缺陷數量級係30至100埃寬度且小於200埃寬度。在植入後與分裂前,該晶圓是一沒有大於該等薄層缺陷之孔洞的連續單件式半導體施子本體。使具有被固定晶圓20之承接物60處於高溫下,例如,在大約200與大約800度C之間。在較高溫度下,剝離進行得會較快。在某些實施例中,用以產生剝離之溫度步驟係在大約200與大約500度C之間進行,且退火時間數量級在200度C時為小時,而在數量級在500度C時為秒。當溫度增加時,由於有愈來愈多之未鍵結氣體原子朝所有方向擴散,所以該等薄層缺陷開始擴大,且形成微裂縫。最後,該等微裂縫匯合且由該膨脹氣體所施加之壓力使積層40由該施子矽晶圓20沿著分裂平面30完全地分離。承接物60之出現迫使該等微裂縫向側邊擴大,沿著分裂平面30形成一連續裂口,而不是垂直於分裂平面30過早擴大,且這過早擴大將在第一表面10處造成起泡與剝脫(flaking)。
請注意薄層缺陷僅在植入氫時形成。如果在沒有氫之情形下植入氦或其他氣體離子,則該等植入原子將形成充滿氣體之微裂縫或氣泡,接著沿著分裂平面30分裂。
在此亦可了解的是相對尺寸,例如,承接物60、晶圓20、及積層40之厚度,無法在圖中依比例實際地顯示。
先前曾提及共植入硼與氫將使氫更快地擴散。因此,可預期的是如果晶圓20是以硼,即,一般的p型摻雜物被p-摻雜,則可在一較如果它是本質的或輕n-摻雜之情形稍低之溫度下達成剝離。
在其他實施例中,亦可使用其他方法、或多種方法之組合來產生積層40之剝離。例如,可使用在此加入作為參考之由Henley等人之US專利第6,528,391號“Controlled cleavage process and device for patterned films”中所述之方法。
第4d圖顯示該結構倒轉,承接物60位於底部。在此可看出積層40係由該分裂步驟產生,且積層40包含第一表面10,並且具有一實質平行於第一表面10之第二表面62。如以下所述,積層40包含或是,或將是一光伏電池之一部份。第一表面10保持固定在承接物60上,且在某些實施例中,用以進行剝離之高溫亦用以同時完成在第一表面10與承接物60之間的結合製程。
藉將氣體離子植入一矽晶圓、將該晶圓結合至一氧化物晶圓、及將一薄矽表層剝離至該氧化晶圓上,形成用以在半導體工業中使用之絕緣層上覆矽膜。接著,在該已剝離矽表層中製成如電晶體等半導體裝置。
但是,即使事實上材料成本佔大部份市售太陽能電池成本之很大比例,且太陽能產品製造商面對一全球性之矽短缺,將氣體離子植入一半導體晶圓中及剝離一薄矽表層之技術尚未被用來形成光伏電池。如前所述,習知晶圓形成技術大量地浪費矽。
離子植入被廣泛地使用於製造半導體裝置,但對於廣泛使用於太陽能工業則被視為是不實際的,因為保持低加工成本對於太陽能產品製造商通常是最重要的。
在半導體工業中使用之典型高劑量植入樹脂於至多大約80keV之能量下為1×1014 至3×1015 離子/cm2 ,且剝離一具有例如1-10微米厚度之積層需要在例如4×1016 至2×1017 離子/cm2 之相當高劑量下,數百keV之植入能量。在較高能量下較高之植入劑量會增加植入之成本。
本發明之發明人已了解一例如等於或小於10微米之等於或小於100微米的積層可被用來形成一具有可接受轉換效率之光伏電池,即使該積層包含該基極及/或射極之全部或一部份、該電池之作用區亦然。在此所述實施例中之氣體離子的植入可以在目前現有之植入機上進行,且本發明人相信利用一特殊化之高通量植入機將顯著地減少這植入之成本。
為了清楚地說明,以下將提供數個製造一具有在0.2與100微米間之厚度之積層的例子,其中該積層包含或者是本發明實施例之光伏電池的一部份。為求完整,將說明許多材料、條件、及步驟。但是,在此應了解的是這些細節可以修改、增添、或省略,而結果仍落在本發明之範圍內。在這些實施例中,說明藉植入氣體離子及剝離一半導體積層來分裂該半導體積層。在這些實施例中,亦可使用由一半導體晶圓分裂一積層之其他方法。
該製程係由一適當半導體材料之一施子本體20開始。一適當施子本體可以是一具有任何實用厚度之單晶矽晶圓,例如,由大約300至大約1000微米之厚度。在其他實施例中,該晶圓可以更厚;最大厚度僅受限於晶圓處理之實用性。或者,可使用多結晶或多晶矽,亦可使用微晶矽,或者包括鍺、鍺化矽或如GaAs、InP等III-V或II-VI半導體化合物之半導體材料的晶圓或塊體。在這說明書中,該用語“多晶”通常是指具有尺寸數量級為毫米之結晶的半導體材料,而“多結晶”半導體材料具有數量級為千埃之較小晶粒。微晶半導體材料非常小,例如,大約100埃。例如,微晶矽可以是完全結晶的或可在一非晶質基質中包括這些微晶體。在此可了解的是多晶或多結晶半導體可為完全或實質上結晶的。
形成單晶矽之製程通常會產生圓形晶圓,但該施子本體亦可具有其他形狀。在切割晶圓前,圓柱形單晶塊經常被切削成一八角形橫截面。多晶晶圓經常是正方形的,且與圓形或六角形晶圓不同,正方形晶圓具有的優點是它們可以邊對邊地在一光伏模組上對齊,且在其間沒有未使用之間隙。該晶圓之直徑或寬度可以是任何標準或訂製尺寸。為了簡化,這討論將說明使用一單晶矽晶圓作為該半導體施子本體,但在此應了解的是亦可使用其他種類之施子本體與材料。
請參閱第5a圖,晶圓20係由最好被輕摻雜成一第一導電種類之單晶矽形成。這例子將說明一相當輕摻雜之晶圓20,但在此應了解的是在這實施例與其他實施例中,該摻雜物種類可以相反。摻雜物濃度可在大約1×1014 與1×1018 原子/cm3 之間;例如,在大約3×1014 與1×1015 原子/cm3 之間;例如,大約5×1014 原子/cm3 。p型矽所需之電阻可例如,在大約133與大約.04歐姆-公分之間,最好大約44至大約13.5歐姆-公分,例如,大約27歐姆-公分。對n型矽而言,所需之電阻可在大約44與大約.02歐姆-公分之間,最好在大約15至大約4.6歐姆-公分之間,例如,大約9歐姆-公分。
第一表面10可選擇性地加以處理以產生表面粗糙度,例如,產生一朗伯表面。該積層之最終厚度將限制可達成之粗糙度。在用於光伏電池之習知矽晶圓中,由峰至谷測得之表面粗糙度的數量級為微米。在本發明之實施例中,該積層之厚度可在大約0.2與大約100微米之間。較佳厚度包括在大約1與大約80微米之間;例如,在大約1與大約20微米之間或在大約2與大約20微米之間。實際上,可達成的是範圍在大約0.2與大約100微米之間的任何厚度;有利之厚度可在大約1與1.5、2、3、5、8、10、20、或50微米之間。
如果最後厚度是大約2微米,則表面粗糙度數量級清楚地無法為微米。對所有厚度而言,一表面粗糙度之下限將是大約500埃,且一上限將是大約該膜厚度之四分之一。對一1微米厚度之積層而言,表面粗糙度可在大約600埃與大約2500埃之間。對一具有大約10微米厚度之積層而言,表面粗糙度將小於大約25000埃,例如,在大約600埃與大約25000埃之間。對一具有大約20微米厚度之積層而言,表面粗糙度可在大約600埃與大約50000埃之間。
這表面粗糙度可以在先前技術中眾所週知之各種方式產生,例如,一如KOH蝕刻等濕式蝕刻選擇性地攻擊該矽晶之某些平面比其他平面更快,且在一(100)定向之晶圓上產生一連串角錐體,其中該等(111)平面被優先地較快蝕刻。一非全向性乾蝕刻亦可用以產生紋路,且可使用任何其他習知方法。所得之紋路顯示在第5a圖中,且如在Niggeman等人之Proceedings of the 17th European Photovoltaic Solar Energy Conference,Munich,Germany,2001“Trapping Light in Organic Plastic Solar Cells with Integrated Diffraction Gratings”中所述,表面粗糙度可以是任意的或是週期性的。
在某些實施例中,擴散摻雜可在第一表面10處進行。第一表面10將可被較高摻雜成與初始晶圓20相同之導電種類,且在這例子中係被p-摻雜。摻雜可以例如B2 H6 或BCl3 等任何習知p型施子氣體來進行,且在其他實施例中,可省略這擴散摻雜步驟。
接著,將最好是氫或一氫與氦之組合的多數離子植入,以如前述般地界定出一分裂平面30。在植入前,最好在第一表面10上形成一可大約等於或小於100埃之薄氧化物層19。這氧化物通常是二氧化矽,且可藉任何習知方法形成。如果在植入前進行擴散摻雜,則在擴散摻雜時提供一些氧將使二氧化矽層19成長。
請注意植入離子之最大分布的平面及植入破壞之平面是一致的,且在第一表面10處之任何不規則性將在分裂平面30上重現。因此,在某些實施例中,在該植入步驟之後而非之前粗化表面10是較佳的。
在植入後,移除氧化物層19並清潔第一表面10。一旦已實施該植入後,只要遇到例如高溫等某些條件,將會發生剝離。接著,必須將加工溫度與期間保持在會觸發剝離之加工溫度與期間以下,直到欲發生剝離為止。通常,如果通過其進行該植入之第一表面10係固定在某種承接物上以提供機械支撐,則剝離將更容易控制,且該積層將更容易處理。在較佳實施例中,為了將處理減至最少,這承接物事實上是一將在製造完成後成為該光伏模組之一部份的覆板或基板。這承接物可以是如半導體、玻璃、金屬或聚合物等任何適當材料。請參閱第5b圖,在此例子中,該第一表面10所固定之承接物是一基板60。在此實施例中,基板60可以是硼矽酸鹽玻璃或其他可以承受相當高溫之材料。
一例如,鈦或鋁等反射金屬材料應接觸第一表面10。在這實施例與其他實施例中,這層之其他替代物包括鉻、鉬、鉭、鋯、釩或鎢。在某些實施例中,最好在第一表面10上沈積一鋁之薄層12。例如,鋁可濺鍍沈積在第一表面10上。或者,基板60之表面可塗覆鋁或某些其他反射金屬材料。後續熱步驟將軟化該鋁,使它流動並與第一表面10良好地接觸。在其他實施例中,可以在第一表面10與基板60兩者上均形成一鋁層。
請參閱第5c圖,此時積層40可以如前述般在分裂平面30處由施子晶圓20剝離,且第二表面62已藉剝離產生。在第5c圖中,所示結構是顛倒的,且基板60在底部。如前所述,用以增加在積層40內之光陷獲且改善該光伏電池之轉換效率的某種表面粗糙度是必要。該剝離製程本身在第二表面62處產生某種表面粗糙度,且在某些實施例中,這粗糙度本身便已足夠。在其他實施例中,可藉如濕式或乾蝕刻等已用以粗化第一表面10之其他習知製程,改變或增加第二表面62之表面粗糙度。如果金屬12是一如鋁等p型受子,則在此時或後來進行退火可用以形成或另外摻雜p-摻雜區域16,其係藉使金屬原子由金屬層12擴散進入區域16來達成。
接著,一在積層40頂部處之區域14’係穿過第二表面62被摻雜成一與該初始晶圓20之導電種類相反之導電種類。在這例子中,初始晶圓20被輕摻雜,如此摻雜之區域14’將是n型。這摻雜可藉任何習知裝置實施。在較佳實施例中,這摻雜步驟係使用任何將提供一例如POCl3 之n型摻雜物之適當施子氣體,藉擴散摻雜來實施。
擴散摻雜通常是在非常高的溫度下進行,例如,在大約700與大約900度C之間,但是,亦可進行如電漿加強擴散摻雜等較低溫方法來取代。這高溫將使來自鋁層12之某些鋁擴散至第一表面10中,且這高溫可用來作為前述之退火,以形成一用以形成與鋁層12之良好接觸的較高摻雜p型區域16。如果來自鋁層12之p-區域16的摻雜充足,則可省略在第一表面10處進行以形成這區域之早先的擴散摻雜步驟。如果在該n型擴散摻雜步驟時存在氧,則將在第二表面62處形成二氧化矽之一薄層(圖未示)。
又,最好藉沈積或成長,在第二表面62上形成抗反射層64。入射光穿過第二表面62進入積層40;因此這層應是透明的。在某些實施例中,抗反射層64是氮化矽,其具有一大約1.5至3.0折射率;且其厚度將是在如大約500與2000埃之間,例如大約650埃之氮化矽。
接著,在層64上形成多數配線57。在某些實施例中,這配線係藉將導電糊網版印刷成配線之圖案且接著在例如在700與大約900度C之間的高溫下焙燒而形成。例如,如果層64是氮化矽,則使用含有銀之網版印刷糊來網版印刷配線是習知的。在焙燒時,某些銀擴散通過該氮化矽,有效地形成一穿過該絕緣氮化矽64之通孔,以與n-摻雜矽區域14電接觸,且可與仍留在抗反射層64上方之銀接觸。
第5c圖顯示本發明一實施例之一完成光伏電池。積層40在第一表面10處結合於基板60,且入射光在第二表面62處進入積層40。請注意該積層40之輕p-摻雜本體是這電池之基極,而高摻雜n區域是射極;如此,積層40包含一光伏電池。當暴露於光中時,在積層40內產生電流。可對這電池之第一表面10與第二表面62兩者進行電接觸,且配線57與第二表面62電接觸。
例子:前面與背面接觸、光刻配線
最好藉其他方法形成配線57。請參閱第6a圖,這實施例之製造係在直到氮化矽層64已形成在第二表面62之點前均與先前實施例相同。在這時點,一連串平行溝槽68形成在氮化矽層64中,使在各溝槽68中之第二表面62之矽暴露出來。溝槽68可藉任何方法,例如藉光刻遮蔽與蝕刻形成。或者,一利用一n型摻雜物之第二擴散摻雜可在這時點進行,且較高摻雜矽暴露在溝槽68中。
第6b圖顯示多數配線57,該等配線57係接觸暴露在溝槽68中之n-摻雜區域14而形成。配線57可以藉任何習知手段形成,且最好在氮化矽層64上形成一金屬層,接著藉光刻遮蔽與蝕刻形成配線57。在另一實施例中,配線57係藉網版印刷法形成,例如用以形成鋁配線。
例子:局部後接觸
在另一實施例中,在該電池背面處之電接觸是局部的。請參閱第7a圖,這實施例係由輕p-摻雜晶圓20開始,且該晶圓20可如在先前實施例中一般地選擇性地在第一表面10處加以粗化。將作為一擴散障壁之介電層55係沈積在第一表面10上,且在某些實施例中,介電層55是氮化矽或SiO2 ,並且可在大約1000埃與大約1200埃之間。多數通孔68形成在介電層55中,使第一表面10暴露在各通孔68中。請注意在較佳實施例中,通孔68是多數通孔,非多數溝槽。接著進行一擴散摻雜步驟,以一p型摻雜物摻雜第一表面10之暴露表面並形成高摻雜p型區域16。在某些實施例中,可省略這擴散摻雜步驟。接著,如前述般植入氣體離子,界定出分裂平面30。
如第7b圖所示,鋁層11形成在介電層55上,填充該等通孔並接觸高摻雜p型區域16。在某些實施例中,鋁層11可以是大約1微米厚。接著,將晶圓20在第一表面10處固定於基板60上。
請參閱第7c圖,其中顯示基板60在底部之顛倒結構,且如前述實施例般繼續進行製造。積層40係藉由晶圓20剝離而形成,且產生第二表面62。第二表面62可如在先前實施例中一般地加以粗化,且一n-摻雜區域14藉擴散摻雜在第二表面62處形成。在這擴散摻雜步驟時之高溫使來自鋁層11之某些鋁擴散進入積層40,且於該積層40中,它在第一表面10處接觸矽,進一步摻雜p-摻雜區域16。抗反射層64形成在第二表面62上,且如在先前實施例中一般,在該擴散摻雜步驟以形成n-摻雜區域14時,一薄氧化物層(圖未示)可已成長在第二表面62上。配線57係藉網版印刷法、光刻法、或藉某種其他方法形成,完成該電池。
例子:非晶質射極與基極接觸
在另一實施例中,該電池之高摻雜區域係形成在非晶質半導體層中。請參閱第8a圖,為了形成這電池,在一實施例中,初始晶圓20被輕n-摻雜(如同以往一般,在其他實施例中,導電種類可以顛倒)。晶圓20之第一表面10可如在先前實施例中一般地選擇性地加以粗化,且在清潔第一表面10後,將一本質(未摻雜)非晶質矽層72緊接在一n-摻雜非晶質矽層74之後,藉如電漿加強化學蒸氣沈積法(PECVD)等任何適當方法沈積在第一表面10上。該等非晶質矽層72與74之組合厚度可以在大約1000與大約5000埃之間,例如大約3000埃。在一實施例中,本質層72之厚度係大約1000埃,而n型非晶質層74之厚度係大約2000埃。多數氣體離子穿過層72、74被植入第一表面10中,以如在先前實施例中一般地形成分裂平面30。在此應了解的是該植入能量必須調整,以補償非晶質層74與72所增加之厚度。
如在先前實施例中一般,一反射、導電金屬11形成在n-摻雜層74上、在基板60上、或兩者上,且晶圓20在第一表面10處固定於基板60,並且本質層72、n-摻雜層74、及金屬層11介於它們之間。金屬層11可以是鋁、鈦、或任何其他適當材料。為了便於對各電池之最終電連接,如果金屬層11係沈積在基板60上,則它可已經沈積成一圖案,使得各個晶圓所欲固定之區域係互相隔離。這些金屬11之區域可延伸至該晶圓區域外一小段距離,使得可對它們進行電接觸。這圖案化可以例如,藉通過一遮蔽遮罩沈積;或在它透過一放置在基板60上之實體遮罩被沈積後,藉蝕刻金屬11來達成。
第8b圖顯示該結構顛倒,其中基板60位在底部。積層40沿著分裂平面30剝離晶圓20,且產生第二表面62。第二表面62選擇性地被粗化,且被清潔。在p-摻雜非晶質矽層78之後,本質非晶質矽層76被沈積在第二表面62上。本質非晶質層76與p-摻雜非晶質層78之厚度可分別大約與本質非晶質層72與n-摻雜非晶質層74相同,或者可以不同。接著,可以是例如氮化矽之抗反射層64藉任何適當方法形成在p型非晶質層78上。在其他實施例中,抗反射層64可以是一透明導電氧化物(TCO)。如果這層是一TCO,則它可以是例如銦錫氧化物、氧化錫、氧化鈦、氧化鋅等。一TCO將作為一頂電極及一抗反射層兩者,且厚度可在大約500與1500埃之間,例如,厚度為大約900埃。
最後,配線57形成在抗反射層64上,且配線57可以藉任何適當方法形成。在一較佳實施例中,配線57係藉網版印刷法形成。
在這實施例中,積層40是一光伏電池之基極,或該基極之一部份。高摻雜p型非晶質層是射極,或該射極之一部份。本質非晶質矽層76是本質的,但在實務中,非晶質矽將包括多數使它具有輕n型或輕p型性質之缺陷。如果它具有輕p型性質,則非晶質層76將作為該射極之一部份,而如果它具有輕n型性質,則它將作為該基極之一部份。
如以下所述,最好在一單一基板60上一次形成多數這些電池。在相同沈積步驟中將p型非晶質層78與一若為TCO之抗反射層64沈積在固定於相同基板60之多數積層使相鄰積層經由這些層電性連接,且這些層必須在形成配線57之前,藉例如經由一放置在該基板/積層總成上之實體遮罩蝕刻這些層,或藉以雷射燒蝕去這些層而電性分離。
為了完成一面板,各個電池應被配線在一起,通常呈一連串構形,其中一電池之N+電極與相鄰電池之P+電極連接。這可藉在其形成時藉將配線57圖案化,以便,如果有的話,與已在基板60上圖案化之多數金屬表面接觸。或者,配線57可以藉個別之焊接而連接在基板60中之金屬圖案。如果在基板60中沒有形成金屬圖案,則可使用一雷射由各積層40之例如大約1平方公分之小面積燒蝕去整個積層40,暴露在下方之金屬,且這暴露金屬可藉例如焊接而連接於相鄰積層之配線57。
例如:背面接觸電池
請參閱第9a圖,另一實施例由任一種類之輕摻雜晶圓20開始;這例子將以輕p-摻雜者說明初始晶圓20,但在此應了解的是可使用任一種類。第一表面10被選擇性地粗化,且以一例如p型之第一導電種類摻雜物加以摻雜,形成p-摻雜區域16。摻雜可藉擴散摻雜來進行,且一擴散障壁32沈積在第一表面10上;並且擴散障壁32可以是氮化矽。請參閱第9b圖,氮化矽層32之區域被移除,暴露第一表面10之多數部份。接著進行一第二摻雜步驟,將第一表面10之暴露區域反摻雜(counterdoping)成一例如n型之與該第一導電種類相反的第二導電種類,形成多數以交叉截面線表示之n-摻雜區域14。較佳地,n-摻雜區域14與p-摻雜區域16被摻雜至一至少1018 原子/cm3 之濃度。
請參閱第9c圖,接著,氮化矽層32被移除,且多數離子被植入以界定一分裂平面30。一介電層18,例如二氧化矽,被沈積或成長在第一表面10上。在介電層18中蝕刻出多數通孔,且在介電層18上形成配線。配線形成兩電絕緣組;一配線組57接觸n-摻雜區域14,而另一配線組58接觸p-摻雜區域16,且配線組57與58可藉沈積一金屬且以光刻方式使它形成圖案。一如旋塗玻璃之介電體22填充在配線組57與58之間的間隙且製成一相當平坦之表面,並且這表面固定於基板60。當該表面是平坦的且均一地固定於在此例中為基板60之承接物時,剝離將更清潔且更可控制。
第9d圖顯示基板60在底部之顛倒結構。積層40沿著分裂平面30由晶圓20分裂,形成第二表面62。第二表面62最好以任何習知之方式加以粗化,且在某些實施例中,第二表面62被摻雜成與初始晶圓20相同之導電種類。在這例子中,初始晶圓20為n型;如此,這表面可以一n型摻雜物藉擴散摻雜加以摻雜,以形成n-摻雜區域17。在這擴散摻雜步驟時最好讓某些氧流過,這將形成一薄二氧化矽層(圖未示);這薄二氧化矽層將有助於鈍化在第二表面62處之懸鍵,減少重組。
接著,形成抗反射層64;抗反射層64可以是氮化矽。藉PECVD沈積之氮化矽將包括某些氫,且這氫將鈍化這些在第二表面62處之懸鍵,減少重組。沈積條件可被選擇成增加氮化矽層64之氫含量,以增加用以達成此目的之氫量。
在這實施例中,僅對第一表面10以配線組57與58之形式達成電接觸。該p-n二極體接面形成在積層40之高摻雜p-區域16與輕n-摻雜本體之間,且光電流在n-摻雜區域14與p-摻雜區域16之間流動。因此,不必對第二表面62進行電接觸。在這實施例中,該光伏電池之基極是積層40之n-摻雜本體,而該射極是該等組合之高摻雜p型區域16;如此,積層40包含一光伏電池之基極與射極。在這部份中所示之所有實施例中,當積層40暴露於光中時,在積層40內產生電流。
例子:剝離至具有TCO之覆板
在目前說明過之實施例中,該積層被剝離至一基板,其中該第一表面,即,該施子本體之初始表面是該完成電池之背面,且因該剝離所產生之第二表面是光進入該電池之表面。該積層亦可被剝離至一覆板,其中該施子本體之初始表面是光進入該電池之表面,而因該剝離所產生第二表面是該完成電池之背面。在此將提供兩例子,但亦可想出許多其他例子。
請參閱第10a圖,在這例子中,半導體施子本體20是一輕p-摻雜矽晶圓。晶圓20之第一表面10如在先前實施例中一般地被選擇性地形成紋路,接著,一藉例如擴散摻雜之摻雜步驟形成n-摻雜區域14。如果在這摻雜步驟中存在氧,則將在第一表面10處成長出一薄氧化物(圖未示)。在此應了解的是,在所有實施例中,導電種類可以顛倒。氣體離子係穿過第一表面10植入以界定分裂平面30。
清潔該第一表面10,並移除在擴散摻雜時所形成之所有氧化物。在這例子中,TCO80將介於第一表面10與覆板60之間,且這TCO80是氧化銦錫、氧化鈦、氧化鋅或任何其他適當材料,並且可沈積在第一表面10上、在覆板60上、或兩者上。當以TCO80同時作為一接觸部與作為一抗反射塗層時,其厚度應在大約500與大約1500埃之間,例如,大約900埃之厚度。晶圓20係在第一表面10處固定於覆板60上,請注意覆板60是一如玻璃等透明材料。
請參閱第10b圖,積層40在分裂平面30處由晶圓20剝離,產生第二表面62,且第二表面62被選擇性地形成紋路。導電層11被沈積在第二表面62上,且導電層11最好是一金屬,例如,鋁。如果導電層11是鋁,則退火將形成p-摻雜區域16。如果導電層11使用某種其他材料,則p-摻雜區域16必須在形成導電層11之前先藉一擴散摻雜步驟形成。
鋁層11可以藉由許多方法,例如,藉由以一遮蔽遮罩濺鍍形成。如果形成鋁層11之方法讓相鄰電池電性連接,則必須移除介於中間之鋁以使它們電絕緣。
第10b圖顯示在操作時,覆板60位於頂部之完成電池,且入射光落在覆板60上並在第二表面62處進入電池。
例子:剝離至具有配線之覆板
如在先前覆板實施例中一般,在第11a圖中,輕p-摻雜晶圓20在第一表面10處選擇性地被形成紋路,接著被摻雜以形成n型區域14。在第一表面10處植入氣體離子形成分裂平面30。
在這例子中,例如,氮化矽之氮化矽層64藉例如PECVD形成在第一表面10上。在氮化矽層64中藉光刻法或雷射劃割形成多數溝槽,以暴露第一表面10。接著,形成接觸n-摻雜區域14之配線57。配線可藉例如,光刻遮蔽與蝕刻等方法,由例如鋁等任何適當材料形成。
接著,如旋塗玻璃之介電體22填充在配線57間之間隙且製成一相當平坦之表面。這表面固定在覆板60上,且覆板60是透明的。
請參閱第11b圖,積層40在分裂平面30處由晶圓20剝離,產生第二表面62。此時,如在先前實施例中一般地進行製造。第二表面62被選擇性地形成紋路。在某些實施例中,進行一擴散摻雜步驟,形成p-摻雜區域16,而在其他實施例中,可省略這步驟。最好是鋁之導電層11形成在第二表面62上,且退火將形成p-摻雜區域16。第11b圖顯示,如在電池操作時一般,覆板60在頂部之完成電池。
例如:多接面電池
在其他實施例中,一依據本發明形成之積層可作為一串列或多接面電池之一部份。如第12圖所示,積層40所固定之基板60可已包括一光伏電池或一電池90之一部份;入射光將落在積層40上,接著通過它到達電池90。或者,如第13圖所示,電池或一電池92之一部份可以形成在積層40上方,使得入射光先通過電池92,接著通過積層40。在其他實施例中,可有一或多個在積層40上方及/或下方之電池或半導體層。其他電池可由與積層40相同之半導體材料形成,或由一不同半導體材料形成,其例子包括鍺、鍺化矽、GaAs、CdTe、InN等。積層40可包括一光伏電池之基極或射極之至少一部份、或兩者。
積層40與在一串列或多接觸電池中之另外的電池或半導體層可以是相同的半導體材料,但可具有不同程度之結晶度。例如,積層40可以是單晶矽,而另一電池或半導體層則是多結晶、多晶、微晶或非晶質矽,或者反之。形成該串列或多接面電池之另外的電池可以例如,藉沈積、蒸發、磊晶成長、依據本發明分裂其他積層、或其他適當方法等各種方法形成。
為達清楚與完整之目的,已提供各種實施例。明顯地,列出所有實施例是不實際的。當了解此說明書後,發明所屬技術領域中具有通常知識者將可了解本發明之其他實施例。
在形成一第一積層後,可第二次對該半導體施子本體進行前述植入與剝離製程,以形成一第二積層。這第二積層可類似地固定在一承接物上且包含或可為一光伏電池之一部份,或可用來達成一不同目的。由想像可知,依據該積層之厚度與該初始施子本體之厚度,可形成許多積層,直到該施子本體太薄到無法安全地處理為止。最好形成一或多個積層,再為另一目的轉售該施子本體。例如,如果一施子本體是一具有400微米之初始厚度的單晶矽晶圓,則可藉前述方法形成積層,直到該施子晶圓之厚度已減少至,例如,大約350微米為止。對許多應用而言,在一400微米厚度晶圓與350微米厚度晶圓之間並無實際之差別;藉此該晶圓可以極少或無損失之方式轉售。
例如,如果一半導體施子晶圓小於大約1000微米,則可由它分裂出一、二、三、四或四個以上之積層。各積層可具有前述之厚度,例如等於或小於20微米。當該最終分裂步驟已完成後,該施子晶圓之厚度最好為至少180微米。一至少180微米厚度之晶圓仍可用來達成其他商業目的。
在此可了解的是因為可由一晶圓形成一或多個積層且不會實質地減少該施子晶圓之價值,所以可以大幅減少材料成本。利用本發明之方法,先前被視為在一光伏電池之使用上不實際之材料此時將變成是經濟可行的。例如,浮區(float-zone)矽晶圓係已經過熱處理以去除雜質之高品質晶圓,且典型浮區矽對於在矽光伏電池中經濟地使用太過昂貴。但是,使用本發明之方法,可以便宜地製造浮區矽之積層,改善所得光伏電池之效率。在由該浮區矽晶圓分裂出一或多個積層後,該晶圓可轉售且用以達成另一目的。例如除了矽以外之矽材料之晶圓的其他較高成本源材料,例如,單晶GaAs或者單或多晶鍺晶圓,亦可以是有利的。
請參閱第14圖,亦可製造一包括多數依據本發明之方法形成之積層的光伏模組。多數如矽晶圓之施子本體可以如前述般被加工、以氣體離子植入、結合或者固定於一為一基板或一覆板之單一承接物88,且一由積層40在一單一分裂步驟中由各施子晶圓分裂。該模組包含該承接物88與該積層40,這種模組可包括多數積層40,例如兩個、十二個、或更多個,例如,在36與72個之間,或更多,或者任何其他適當數目。各積層40包含一光伏電池或為一光伏電池之一部份,例如,其基極或射極之至少一部份。在較佳實施例中,在該模組上之該等光伏電池電性連接;它們可以如同在先前技術中習知般地串聯連接。
在本發明之其他實施例中,最好在兩或多個承接物之間轉移該積層以加工各側。例如,請參閱第15a圖,晶圓20可以在其第一表面10處固定於一暫時之耐高溫承接物61。如第15b圖所示,在分裂產生具有一第二表面62之積層40後,該第二表面62可暴露於如擴散摻雜等高溫程序,且不會損壞該暫時承接物61。請參閱第15c圖,當處理完成時,積層40可由承接物61上移除且轉移至一最終承接物60。但是,可預期的是多數次轉移會增加成本且減少產率,因此雖然這些實施例在本發明之範圍內,但通常非較佳的。
在此已說明了形成一固定於一半導體、玻璃、金屬、或聚合物承接物之積層,且其中積層包含一光伏電池或為一光伏電池一部份。在其他實施例中,該積層可是或不是由一半導體材料形成,且可以被用於達成不同目的。本發明之方法亦可用於其中一薄積層材料欲固定於一承接物之任何環境中;且該承接物可以是半導體、金屬、聚合物、或某種非絕緣材料。例如,具有一導電種類或摻雜物濃度之半導體積層可以固定於一半導體承接物、或一具有一半導體層且摻雜成一不同導電種類或一不同摻雜物濃度之承接物。
詳細之製造方法已在此說明過了,但亦可使用形成相同結構的任何其他方法,且其結果仍落在本發明之範圍內。
前述詳細說明僅說明本發明可採用的許多形式的少數幾種,因此,這詳細說明僅用於說明而不是用來限制。只有包括所有等效物之以下申請專利範圍界定本發明之範圍。
10‧‧‧第一表面
11‧‧‧鋁層;金屬層;導電層
12‧‧‧鋁之薄層;金屬
14‧‧‧摻雜區域
14’‧‧‧區域
16‧‧‧p-摻雜區域
17‧‧‧n-摻雜區域
18‧‧‧介電層
19‧‧‧氧化物層;二氧化矽層
20‧‧‧晶圓;施子本體
22‧‧‧介電體
30‧‧‧分裂平面
32‧‧‧擴散障壁;氮化矽層
40‧‧‧積層
55‧‧‧介電層
57‧‧‧配線;配線組
58‧‧‧配線組
60‧‧‧平坦表面;承接物;基板;覆板
61‧‧‧暫時承接物
62‧‧‧第二表面
64‧‧‧抗反射層;氮化矽層
68‧‧‧溝槽;通孔
72‧‧‧本質非晶質矽層
74‧‧‧n-摻雜非晶質矽層
76‧‧‧本質非晶質矽層
78...p-摻雜非晶質矽層
80...TCO
88...承接物
90,92...電池
第1圖是顯示一習知光伏電池之橫截面圖。
第2圖是各種矽光伏電池之短路電流對厚度之圖。
第3a與3b圖是橫截面圖,顯示在形成本發明一實施例之一光伏電池時之階段。
第4a至4d圖是橫截面圖,顯示在形成本發明一實施例之一光伏電池時之多數階段。
第5a-5c圖是橫截面圖,顯示在形成本發明一實施例之一光伏電池時之多數階段。
第6a與6b圖是橫截面圖,顯示在形成本發明另一實施例之一光伏電池時之階段。
第7a-7c圖是橫截面圖,顯示在形成本發明又一實施例之一光伏電池時之多數階段。
第8a與8b圖是橫截面圖,顯示在形成本發明再一實施例之一光伏電池時之階段。
第9a-9d圖是橫截面圖,顯示在形成本發明一實施例之一光伏電池時之多數階段。
第10a與10b圖是橫截面圖,顯示在形成本發明另一實施例之一光伏電池時之階段。
第11a與11b圖是橫截面圖,顯示在形成本發明又一實施例之一光伏電池時之階段。
第12與13圖是其他實施例之橫截面圖,其中一依據本發明形成之積層係一串列或多接面光伏電池之一部份。
第14圖是一光伏模組之平面圖,該光伏模組包含多數本發明實施例之薄光伏電池。
第15a-15c圖是橫截面圖,顯示在形成本發明另一實施例時之階段,其中一積層在一基板與一覆板之間轉移。
10...第一表面
20...晶圓
30...分裂平面
40...積層
60...承接物
62...第二表面

Claims (10)

  1. 一種光伏電池包含:一結晶半導體積層,其具有一第一表面以及一與該第一表面相對之第二表面,該介於該第一表面及該第二表面間之積層的厚度是在大約1微米與大約10微米之間;一與該第一表面接觸之介電層;及一與該介電層接觸之金屬層,該金屬層經由多數通孔與該第一表面接觸,該多數通孔係經由該介電層形成,其中該介電層與該金屬層被配置在該積層與一承接器間,其中該光伏電池包含該積層。
  2. 如申請專利範圍第1項之光伏電池,其中該結晶半導體積層主要為單晶或多晶矽。
  3. 如申請專利範圍第1項之光伏電池,其中該結晶半導體積層主要為單晶矽。
  4. 如申請專利範圍第1項之光伏電池,其中該介電層包含氮化矽或二氧化矽。
  5. 如申請專利範圍第1項之光伏電池,其中該金屬層包含鋁。
  6. 如申請專利範圍第1項之光伏電池,更包含一與該第二表面接觸之抗反射塗層。
  7. 如申請專利範圍第1項之光伏電池,其中該結晶半導體積層的厚度是在大約1微米與大約5微米之間。
  8. 如申請專利範圍第1項之光伏電池,其中至少部份之該第二表面是較高n-摻雜的或p-摻雜的。
  9. 如申請專利範圍第1項之光伏電池,其中該第二表面為經粗化者。
  10. 如申請專利範圍第1項之光伏電池,其中該承接器包含玻璃。
TW098102018A 2008-02-05 2009-01-20 形成包含薄的積層之光伏電池的方法(二) TWI440201B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/026,530 US8481845B2 (en) 2008-02-05 2008-02-05 Method to form a photovoltaic cell comprising a thin lamina
US12/209,364 US20090197367A1 (en) 2008-02-05 2008-09-12 Method to form a photovoltaic cell comprising a thin lamina

Publications (2)

Publication Number Publication Date
TW200943574A TW200943574A (en) 2009-10-16
TWI440201B true TWI440201B (zh) 2014-06-01

Family

ID=40668420

Family Applications (2)

Application Number Title Priority Date Filing Date
TW098102019A TWI481053B (zh) 2008-02-05 2009-01-20 形成包含薄的積層之光伏電池的方法(一)
TW098102018A TWI440201B (zh) 2008-02-05 2009-01-20 形成包含薄的積層之光伏電池的方法(二)

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW098102019A TWI481053B (zh) 2008-02-05 2009-01-20 形成包含薄的積層之光伏電池的方法(一)

Country Status (5)

Country Link
US (6) US8481845B2 (zh)
EP (1) EP2088632A3 (zh)
CN (3) CN101510573A (zh)
TW (2) TWI481053B (zh)
WO (1) WO2009099943A2 (zh)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993410B2 (en) 2006-09-08 2015-03-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
AU2008325223A1 (en) 2007-11-02 2009-05-14 President And Fellows Of Harvard College Production of free-standing solid state layers by thermal processing of substrates with a polymer
US8178419B2 (en) * 2008-02-05 2012-05-15 Twin Creeks Technologies, Inc. Method to texture a lamina surface within a photovoltaic cell
US8049104B2 (en) * 2009-09-30 2011-11-01 Twin Creek Technologies, Inc. Intermetal stack for use in a photovoltaic cell
US8501522B2 (en) 2008-05-30 2013-08-06 Gtat Corporation Intermetal stack for use in a photovoltaic cell
DE102008049664B3 (de) * 2008-09-30 2010-02-11 Infineon Technologies Austria Ag Verfahren zum Herstellen eines Halbleiterkörpers mit einem graduellen pn-Übergang
US8541680B2 (en) * 2008-12-03 2013-09-24 Applied Materials, Inc. Photovoltaic cells including peaks and methods of manufacture
US8330040B2 (en) * 2008-12-03 2012-12-11 Applied Materials, Inc. Photovoltaic cells including spaced ramps and methods of manufacture
US20100167454A1 (en) * 2008-12-31 2010-07-01 Twin Creeks Technologies, Inc. Double-sided donor for preparing a pair of thin laminae
US8921686B2 (en) 2009-03-12 2014-12-30 Gtat Corporation Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
US7964431B2 (en) * 2009-03-19 2011-06-21 Twin Creeks Technologies, Inc. Method to make electrical contact to a bonded face of a photovoltaic cell
US8193075B2 (en) * 2009-04-20 2012-06-05 Applied Materials, Inc. Remote hydrogen plasma with ion filter for terminating silicon dangling bonds
US8871109B2 (en) * 2009-04-28 2014-10-28 Gtat Corporation Method for preparing a donor surface for reuse
US7754519B1 (en) * 2009-05-13 2010-07-13 Twin Creeks Technologies, Inc. Methods of forming a photovoltaic cell
US8329557B2 (en) 2009-05-13 2012-12-11 Silicon Genesis Corporation Techniques for forming thin films by implantation with reduced channeling
US20100330731A1 (en) * 2009-06-27 2010-12-30 Twin Creeks Technologies, Inc. Method to form a thin semiconductor lamina adhered to a flexible substrate
US20100326510A1 (en) * 2009-06-27 2010-12-30 Twin Creeks Technologies, Inc. Thin semiconductor lamina adhered to a flexible substrate
US20110041910A1 (en) * 2009-08-18 2011-02-24 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
US20110056532A1 (en) * 2009-09-09 2011-03-10 Crystal Solar, Inc. Method for manufacturing thin crystalline solar cells pre-assembled on a panel
US20110073175A1 (en) * 2009-09-29 2011-03-31 Twin Creeks Technologies, Inc. Photovoltaic cell comprising a thin lamina having emitter formed at light-facing and back surfaces
US20110126890A1 (en) * 2009-11-30 2011-06-02 Nicholas Francis Borrelli Textured superstrates for photovoltaics
US20130233378A1 (en) * 2009-12-09 2013-09-12 Solexel, Inc. High-efficiency photovoltaic back-contact solar cell structures and manufacturing methods using semiconductor wafers
US8257995B2 (en) * 2009-12-11 2012-09-04 Twin Creeks Technologies, Inc. Microwave anneal of a thin lamina for use in a photovoltaic cell
US8349626B2 (en) * 2010-03-23 2013-01-08 Gtat Corporation Creation of low-relief texture for a photovoltaic cell
WO2012012166A1 (en) * 2010-06-30 2012-01-26 Innovalight, Inc Methods of forming a metal contact on a silicon substrate
US8148189B2 (en) * 2010-06-30 2012-04-03 Twin Creeks Technologies, Inc. Formed ceramic receiver element adhered to a semiconductor lamina
US20120080083A1 (en) * 2010-09-30 2012-04-05 Twin Creeks Technologies, Inc. Semiconductor assembly with a metal oxide layer having intermediate refractive index
US8604330B1 (en) 2010-12-06 2013-12-10 4Power, Llc High-efficiency solar-cell arrays with integrated devices and methods for forming them
US8536448B2 (en) 2010-12-29 2013-09-17 Gtat Corporation Zener diode within a diode structure providing shunt protection
US8173452B1 (en) 2010-12-29 2012-05-08 Twin Creeks Technologies, Inc. Method to form a device by constructing a support element on a thin semiconductor lamina
US8435804B2 (en) 2010-12-29 2013-05-07 Gtat Corporation Method and apparatus for forming a thin lamina
JP2014506008A (ja) * 2010-12-29 2014-03-06 ジーティーエイティー・コーポレーション 薄い薄膜を形成するための方法および装置
EP2659517A4 (en) * 2010-12-29 2017-10-25 Gtat Corporation A method to form a device by constructing a support element on a thin semiconductor lamina
US20120258561A1 (en) * 2011-04-11 2012-10-11 Twin Creeks Technologies, Inc. Low-Temperature Method for Forming Amorphous Semiconductor Layers
GB2491209B (en) * 2011-05-27 2013-08-21 Renewable Energy Corp Asa Solar cell and method for producing same
US9224904B1 (en) * 2011-07-24 2015-12-29 Ananda Kumar Composite substrates of silicon and ceramic
KR20130062775A (ko) * 2011-12-05 2013-06-13 엘지전자 주식회사 태양 전지 및 이의 제조 방법
TWI506801B (zh) * 2011-12-09 2015-11-01 Hon Hai Prec Ind Co Ltd 太陽能電池組
US10072329B2 (en) * 2011-12-23 2018-09-11 Hong Kong Baptist University Sapphire thin film coated flexible substrate
US8916954B2 (en) * 2012-02-05 2014-12-23 Gtat Corporation Multi-layer metal support
US8841161B2 (en) 2012-02-05 2014-09-23 GTAT.Corporation Method for forming flexible solar cells
US20130200497A1 (en) * 2012-02-05 2013-08-08 Twin Creeks Technologies, Inc. Multi-layer metal support
US8871608B2 (en) 2012-02-08 2014-10-28 Gtat Corporation Method for fabricating backside-illuminated sensors
WO2013123225A1 (en) * 2012-02-17 2013-08-22 Applied Materials, Inc. Passivation film stack for silicon-based solar cells
US8747598B2 (en) 2012-04-25 2014-06-10 Gtat Corporation Method of forming a permanently supported lamina
US20130330871A1 (en) * 2012-06-12 2013-12-12 Twin Creeks Technologies, Inc. Methods for texturing a semiconductor material
US8785294B2 (en) * 2012-07-26 2014-07-22 Gtat Corporation Silicon carbide lamina
US9499921B2 (en) 2012-07-30 2016-11-22 Rayton Solar Inc. Float zone silicon wafer manufacturing system and related process
WO2014028349A1 (en) * 2012-08-15 2014-02-20 Gtat Corporation Bonding of thin lamina
US10304977B1 (en) * 2012-09-26 2019-05-28 National Technology & Engineering Solutions Of Sandia, Llc High performance ultra-thin solar cell structures
EP2909866A4 (en) 2012-10-16 2016-06-29 Solexel Inc SYSTEMS AND METHOD FOR MONOLITHICALLY INTEGRATED BYPASS CIRCUITS IN PHOTOVOLTAIC SOLAR CELLS AND MODULES
US9812592B2 (en) * 2012-12-21 2017-11-07 Sunpower Corporation Metal-foil-assisted fabrication of thin-silicon solar cell
CN103060920A (zh) * 2013-01-05 2013-04-24 武汉电信器件有限公司 一种高精度无污染的半导体晶片解理方法
WO2014193819A1 (en) * 2013-05-28 2014-12-04 Gtat Corporation A mobile electronic device cover plate comprising graphene
WO2014193823A1 (en) * 2013-05-28 2014-12-04 Gtat Corporation A mobile electronic device cover plate comprising a thin sapphire layer
US9437756B2 (en) 2013-09-27 2016-09-06 Sunpower Corporation Metallization of solar cells using metal foils
US9653638B2 (en) 2013-12-20 2017-05-16 Sunpower Corporation Contacts for solar cells formed by directing a laser beam with a particular shape on a metal foil over a dielectric region
US9178104B2 (en) 2013-12-20 2015-11-03 Sunpower Corporation Single-step metal bond and contact formation for solar cells
CA2939214A1 (en) * 2014-02-18 2015-08-27 Rayton Solar Inc. Float zone silicon wafer manufacturing system and related process
US9947812B2 (en) 2014-03-28 2018-04-17 Sunpower Corporation Metallization of solar cells
US9231129B2 (en) 2014-03-28 2016-01-05 Sunpower Corporation Foil-based metallization of solar cells
US20150349180A1 (en) * 2014-05-30 2015-12-03 David D. Smith Relative dopant concentration levels in solar cells
US9257575B1 (en) * 2014-09-18 2016-02-09 Sunpower Corporation Foil trim approaches for foil-based metallization of solar cells
US9620661B2 (en) 2014-12-19 2017-04-11 Sunpower Corporation Laser beam shaping for foil-based metallization of solar cells
FR3030888A1 (fr) * 2014-12-22 2016-06-24 Commissariat Energie Atomique Plaquette de silicium monolithique type p/type n
US10453978B2 (en) 2015-03-12 2019-10-22 International Business Machines Corporation Single crystalline CZTSSe photovoltaic device
US9559245B2 (en) * 2015-03-23 2017-01-31 Sunpower Corporation Blister-free polycrystalline silicon for solar cells
US9548421B2 (en) 2015-04-01 2017-01-17 International Business Machines Corporation Optoelectronic devices with back contact
US20160380127A1 (en) 2015-06-26 2016-12-29 Richard Hamilton SEWELL Leave-In Etch Mask for Foil-Based Metallization of Solar Cells
US9935214B2 (en) 2015-10-12 2018-04-03 International Business Machines Corporation Liftoff process for exfoliation of thin film photovoltaic devices and back contact formation
US9620655B1 (en) 2015-10-29 2017-04-11 Sunpower Corporation Laser foil trim approaches for foil-based metallization for solar cells
US11424373B2 (en) 2016-04-01 2022-08-23 Sunpower Corporation Thermocompression bonding approaches for foil-based metallization of non-metal surfaces of solar cells
US10290763B2 (en) 2016-05-13 2019-05-14 Sunpower Corporation Roll-to-roll metallization of solar cells
US9882071B2 (en) 2016-07-01 2018-01-30 Sunpower Corporation Laser techniques for foil-based metallization of solar cells
CN107623028B (zh) * 2016-07-13 2021-02-19 环球晶圆股份有限公司 半导体基板及其加工方法
US10115855B2 (en) 2016-09-30 2018-10-30 Sunpower Corporation Conductive foil based metallization of solar cells
EP3343639A4 (en) * 2016-11-07 2018-09-26 Shin-Etsu Chemical Co., Ltd Solar cell with high photoelectric conversion efficiency and method for producing solar cell with high photoelectric conversion efficiency
US11908958B2 (en) 2016-12-30 2024-02-20 Maxeon Solar Pte. Ltd. Metallization structures for solar cells
WO2018144225A2 (en) 2017-01-18 2018-08-09 Phoenix Llc High power ion beam generator systems and methods
US10354987B1 (en) 2018-03-22 2019-07-16 Sandisk Technologies Llc Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same
US10354980B1 (en) 2018-03-22 2019-07-16 Sandisk Technologies Llc Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same
US11276785B2 (en) 2018-04-06 2022-03-15 Sunpower Corporation Laser assisted metallization process for solar cell fabrication
AU2019249270A1 (en) 2018-04-06 2020-11-05 Maxeon Solar Pte. Ltd. Laser assisted metallization process for solar cell stringing
WO2019195806A2 (en) 2018-04-06 2019-10-10 Sunpower Corporation Local patterning and metallization of semiconductor structures using a laser beam
KR20200130494A (ko) 2018-04-06 2020-11-18 선파워 코포레이션 레이저 빔을 이용하는 반도체 기판을 위한 국소 금속화
WO2019195804A1 (en) 2018-04-06 2019-10-10 Sunpower Corporation Laser assisted metallization process for solar cell circuit formation
US10381362B1 (en) 2018-05-15 2019-08-13 Sandisk Technologies Llc Three-dimensional memory device including inverted memory stack structures and methods of making the same
US10879260B2 (en) 2019-02-28 2020-12-29 Sandisk Technologies Llc Bonded assembly of a support die and plural memory dies containing laterally shifted vertical interconnections and methods for making the same
FR3098643B1 (fr) * 2019-07-09 2023-01-13 Commissariat Energie Atomique Fabrication d'un dispositif photosensible à semiconducteur
TW202310429A (zh) * 2021-07-16 2023-03-01 美商日升存儲公司 薄膜鐵電電晶體的三維記憶體串陣列

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411952A (en) * 1962-04-02 1968-11-19 Globe Union Inc Photovoltaic cell and solar cell panel
US3480473A (en) * 1966-06-24 1969-11-25 Kewanee Oil Co Method of producing polycrystalline photovoltaic cells
US4174561A (en) * 1976-02-09 1979-11-20 Semicon, Inc. Method of fabricating high intensity solar energy converter
GB1553356A (en) * 1976-12-27 1979-09-26 Hamasawa Kogyo Kk Solar battery
US4084985A (en) * 1977-04-25 1978-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing solar energy panels by automation
DE2720327A1 (de) * 1977-05-06 1978-11-09 Bbc Brown Boveri & Cie Verfahren zur herstellung von halbleiterbauelementen, insbesondere solarelementen
ES462987A1 (es) * 1977-10-07 1978-06-01 Made Labor Sa Un procedimiento para la obtencion de 2-furil-(3,4-dimetil-2-piridil)-carbinol.
US4200472A (en) * 1978-06-05 1980-04-29 The Regents Of The University Of California Solar power system and high efficiency photovoltaic cells used therein
US4240842A (en) * 1979-03-28 1980-12-23 Solarex Corporation Solar cell having contacts and antireflective coating
US4338481A (en) * 1980-10-02 1982-07-06 Joseph Mandelkorn Very thin silicon wafer base solar cell
US4315097A (en) * 1980-10-27 1982-02-09 Mcdonnell Douglas Corporation Back contacted MIS photovoltaic cell
DE3280418T2 (de) * 1981-07-17 1993-03-04 Kanegafuchi Chemical Ind Amorpher halbleiter und photovoltaische vorrichtung aus amorphem silizium.
JPS6032352A (ja) * 1983-08-01 1985-02-19 Matsushita Electric Ind Co Ltd 太陽電池モジュ−ル
US4499658A (en) * 1983-09-06 1985-02-19 Atlantic Richfield Company Solar cell laminates
US4836861A (en) * 1987-04-24 1989-06-06 Tactical Fabs, Inc. Solar cell and cell mount
US4897123A (en) * 1987-11-28 1990-01-30 Mitsubishi Denki Kabushiki Kaisha Solar cells and method for producing solar cells
US4830038A (en) * 1988-01-20 1989-05-16 Atlantic Richfield Company Photovoltaic module
US5057163A (en) * 1988-05-04 1991-10-15 Astropower, Inc. Deposited-silicon film solar cell
US5034068A (en) * 1990-02-23 1991-07-23 Spectrolab, Inc. Photovoltaic cell having structurally supporting open conductive back electrode structure, and method of fabricating the cell
US5273911A (en) * 1991-03-07 1993-12-28 Mitsubishi Denki Kabushiki Kaisha Method of producing a thin-film solar cell
CA2087707A1 (en) * 1991-06-11 1992-12-12 Fritz Wald Solar cell and method of making same
FR2681472B1 (fr) * 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
DE4442824C1 (de) * 1994-12-01 1996-01-25 Siemens Ag Solarzelle mit Chalkopyrit-Absorberschicht
US6107213A (en) * 1996-02-01 2000-08-22 Sony Corporation Method for making thin film semiconductor
FR2748851B1 (fr) * 1996-05-15 1998-08-07 Commissariat Energie Atomique Procede de realisation d'une couche mince de materiau semiconducteur
SG65697A1 (en) * 1996-11-15 1999-06-22 Canon Kk Process for producing semiconductor article
US5746372A (en) * 1996-12-12 1998-05-05 American Excelsior Company Biodegradable cup holder
ATE261612T1 (de) * 1996-12-18 2004-03-15 Canon Kk Vefahren zum herstellen eines halbleiterartikels unter verwendung eines substrates mit einer porösen halbleiterschicht
US6552414B1 (en) * 1996-12-24 2003-04-22 Imec Vzw Semiconductor device with selectively diffused regions
DE69738307T2 (de) * 1996-12-27 2008-10-02 Canon K.K. Herstellungsverfahren eines Halbleiter-Bauelements und Herstellungsverfahren einer Solarzelle
US6013563A (en) * 1997-05-12 2000-01-11 Silicon Genesis Corporation Controlled cleaning process
US6229165B1 (en) * 1997-08-29 2001-05-08 Ntt Electronics Corporation Semiconductor device
DE19808590C2 (de) * 1998-02-28 2003-03-20 Draeger Medical Ag Beatmungsanfeuchter
US6331208B1 (en) * 1998-05-15 2001-12-18 Canon Kabushiki Kaisha Process for producing solar cell, process for producing thin-film semiconductor, process for separating thin-film semiconductor, and process for forming semiconductor
US6291326B1 (en) * 1998-06-23 2001-09-18 Silicon Genesis Corporation Pre-semiconductor process implant and post-process film separation
EP0993052B1 (en) * 1998-09-28 2009-01-14 Sharp Kabushiki Kaisha Space solar cell
ES2253907T3 (es) * 1998-11-17 2006-06-01 Henri Mehier Dispositivo destinado a asegurar la liberacion de una sustancia activa directamente en el seno de un tejido celular, medio de implantacion del dispositivo y aparatos destinados a la inyeccion de sustancia activa en dicho dispositivo.
US6262358B1 (en) * 1999-02-18 2001-07-17 Sharp Kabushiki Kaisha Solar cell module and solar cell panel using the same
US6162232A (en) * 1999-03-18 2000-12-19 Shadduck; John H. Instruments and techniques for high-velocity fluid abrasion of epidermal layers with skin cooling
US6287290B1 (en) * 1999-07-02 2001-09-11 Pulmonx Methods, systems, and kits for lung volume reduction
JP4452789B2 (ja) 1999-09-01 2010-04-21 独立行政法人 日本原子力研究開発機構 シリコン系結晶薄板の製造方法および光電変換素子用基板の製造方法
EP1096577B9 (en) * 1999-10-27 2016-06-01 Kaneka Corporation Method of producing a thin-film photovoltaic device
AUPQ385899A0 (en) * 1999-11-04 1999-11-25 Pacific Solar Pty Limited Formation of contacts on thin films
US6464324B1 (en) * 2000-01-31 2002-10-15 Picojet, Inc. Microfluid device and ultrasonic bonding process
WO2001078154A2 (en) * 2000-04-10 2001-10-18 Davis, Joseph & Negley Preparation of cigs-based solar cells using a buffered electrodeposition bath
US6690014B1 (en) * 2000-04-25 2004-02-10 Raytheon Company Microbolometer and method for forming
US6563133B1 (en) * 2000-08-09 2003-05-13 Ziptronix, Inc. Method of epitaxial-like wafer bonding at low temperature and bonded structure
US6273333B1 (en) * 2000-10-10 2001-08-14 Eric Ward Combination coaster and cup holder
FR2894990B1 (fr) * 2005-12-21 2008-02-22 Soitec Silicon On Insulator Procede de fabrication de substrats, notamment pour l'optique,l'electronique ou l'optoelectronique et substrat obtenu selon ledit procede
JP3697214B2 (ja) * 2001-03-16 2005-09-21 キヤノン株式会社 半導体膜の製造方法
EP1386349A1 (en) * 2001-04-17 2004-02-04 California Institute Of Technology A method of using a germanium layer transfer to si for photovoltaic applications and heterostructure made thereby
US7238622B2 (en) * 2001-04-17 2007-07-03 California Institute Of Technology Wafer bonded virtual substrate and method for forming the same
JP2003017723A (ja) 2001-06-29 2003-01-17 Shin Etsu Handotai Co Ltd 半導体薄膜の製造方法及び太陽電池の製造方法
US7420147B2 (en) * 2001-09-12 2008-09-02 Reveo, Inc. Microchannel plate and method of manufacturing microchannel plate
FR2831714B1 (fr) * 2001-10-30 2004-06-18 Dgtec Assemblage de cellules photovoltaiques
FR2834820B1 (fr) * 2002-01-16 2005-03-18 Procede de clivage de couches d'une tranche de materiau
US7056815B1 (en) * 2002-11-12 2006-06-06 The Regents Of The University Of Michigan Narrow energy band gap gallium arsenide nitride semi-conductors and an ion-cut-synthesis method for producing the same
US7176528B2 (en) * 2003-02-18 2007-02-13 Corning Incorporated Glass-based SOI structures
US7388147B2 (en) * 2003-04-10 2008-06-17 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
US7462774B2 (en) * 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7377278B2 (en) * 2003-06-05 2008-05-27 Portaero, Inc. Intra-thoracic collateral ventilation bypass system and method
WO2006015185A2 (en) * 2004-07-30 2006-02-09 Aonex Technologies, Inc. GaInP/GaAs/Si TRIPLE JUNCTION SOLAR CELL ENABLED BY WAFER BONDING AND LAYER TRANSFER
DE112005003549B4 (de) * 2005-05-11 2011-03-17 Mitsubishi Electric Corp. Verfahren zur Herstellung von Siliziumblöcken und Siliziumwafern
JP5128781B2 (ja) 2006-03-13 2013-01-23 信越化学工業株式会社 光電変換素子用基板の製造方法
US7863157B2 (en) * 2006-03-17 2011-01-04 Silicon Genesis Corporation Method and structure for fabricating solar cells using a layer transfer process
EP2002484A4 (en) * 2006-04-05 2016-06-08 Silicon Genesis Corp METHOD AND STRUCTURE FOR MANUFACTURING PHOTOVOLTAIC CELLS USING A LAYER TRANSFER PROCESS
US20070277874A1 (en) * 2006-05-31 2007-12-06 David Francis Dawson-Elli Thin film photovoltaic structure
KR20090074724A (ko) * 2006-07-28 2009-07-07 메가와트 솔라 엘엘씨 태양광 전기 발생을 위하여 태양 복사에너지를 수집하는 반사체 어셈블리, 반사시스템, 그리고 반사 방법
WO2008027148A1 (en) * 2006-08-31 2008-03-06 Antaya Technologies Corporation Buss bar strip
US7811900B2 (en) * 2006-09-08 2010-10-12 Silicon Genesis Corporation Method and structure for fabricating solar cells using a thick layer transfer process
US20080070340A1 (en) * 2006-09-14 2008-03-20 Nicholas Francis Borrelli Image sensor using thin-film SOI
US20080188011A1 (en) * 2007-01-26 2008-08-07 Silicon Genesis Corporation Apparatus and method of temperature conrol during cleaving processes of thick film materials
US7910458B2 (en) * 2007-01-29 2011-03-22 Silicon Genesis Corporation Method and structure using selected implant angles using a linear accelerator process for manufacture of free standing films of materials

Also Published As

Publication number Publication date
CN101504957B (zh) 2013-05-22
CN104037258A (zh) 2014-09-10
US7842585B2 (en) 2010-11-30
EP2088632A2 (en) 2009-08-12
US20090197368A1 (en) 2009-08-06
US20090194163A1 (en) 2009-08-06
CN101510573A (zh) 2009-08-19
EP2088632A3 (en) 2011-03-23
US20100009488A1 (en) 2010-01-14
WO2009099943A3 (en) 2009-10-29
TW200943575A (en) 2009-10-16
CN101504957A (zh) 2009-08-12
US20090194162A1 (en) 2009-08-06
US8481845B2 (en) 2013-07-09
US8247260B2 (en) 2012-08-21
TWI481053B (zh) 2015-04-11
US20090194164A1 (en) 2009-08-06
US20090197367A1 (en) 2009-08-06
WO2009099943A2 (en) 2009-08-13
TW200943574A (en) 2009-10-16

Similar Documents

Publication Publication Date Title
TWI440201B (zh) 形成包含薄的積層之光伏電池的方法(二)
US7964431B2 (en) Method to make electrical contact to a bonded face of a photovoltaic cell
US8129613B2 (en) Photovoltaic cell comprising a thin lamina having low base resistivity and method of making
US20100229928A1 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
US20110073175A1 (en) Photovoltaic cell comprising a thin lamina having emitter formed at light-facing and back surfaces
US7915522B2 (en) Asymmetric surface texturing for use in a photovoltaic cell and method of making
US20090242010A1 (en) Method to Form a Photovoltaic Cell Comprising a Thin Lamina Bonded to a Discrete Receiver Element
US8563352B2 (en) Creation and translation of low-relief texture for a photovoltaic cell
US20120080083A1 (en) Semiconductor assembly with a metal oxide layer having intermediate refractive index
TWI474489B (zh) 包含有具後接面之薄積層的光伏電池及其製造方法
US7858430B2 (en) Method for making a photovoltaic cell comprising contact regions doped through a lamina
US20100326510A1 (en) Thin semiconductor lamina adhered to a flexible substrate
US20100330731A1 (en) Method to form a thin semiconductor lamina adhered to a flexible substrate
US20100224238A1 (en) Photovoltaic cell comprising an mis-type tunnel diode
US8921686B2 (en) Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
US20090242031A1 (en) Photovoltaic Assembly Including a Conductive Layer Between a Semiconductor Lamina and a Receiver Element
KR101484620B1 (ko) 실리콘 태양전지
EP2088633A2 (en) Method to form a photovoltaic cell comprising a thin lamina
US20110036397A1 (en) Intermetal stack fro use in photovoltaic device
US7994064B2 (en) Selective etch for damage at exfoliated surface
KR20130143100A (ko) 얇은 반도체 라미나 상에 지지 요소를 구성함으로써 장치를 형성하는 방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees