CN101504957B - 包括薄层的光伏电池 - Google Patents

包括薄层的光伏电池 Download PDF

Info

Publication number
CN101504957B
CN101504957B CN2009100004980A CN200910000498A CN101504957B CN 101504957 B CN101504957 B CN 101504957B CN 2009100004980 A CN2009100004980 A CN 2009100004980A CN 200910000498 A CN200910000498 A CN 200910000498A CN 101504957 B CN101504957 B CN 101504957B
Authority
CN
China
Prior art keywords
layer
photovoltaic cell
approximately
wafer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100004980A
Other languages
English (en)
Other versions
CN101504957A (zh
Inventor
斯里尼瓦桑·斯瓦瑞姆
阿蒂塔亚·阿加瓦尔
S·布莱德·赫内尔
克里斯托弗·J·佩蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Twin Creeks Technologies Inc
Original Assignee
Twin Creeks Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Twin Creeks Technologies Inc filed Critical Twin Creeks Technologies Inc
Publication of CN101504957A publication Critical patent/CN101504957A/zh
Application granted granted Critical
Publication of CN101504957B publication Critical patent/CN101504957B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/061Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being of the point-contact type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1808Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only Ge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • H01L31/1816Special manufacturing methods for microcrystalline layers, e.g. uc-SiGe, uc-SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • H01L31/1896Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates for thin-film semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及形成包括薄层的光伏电池的方法。通过将气体离子注入在诸如半导体晶片之类的施主体的表面以下,来形成非常薄的光伏电池。离子注入界定了解理平面,并且后续的步骤在解理平面处将薄层从晶片剥离。在层内形成光伏电池,或者形成光伏电池的基极或发射极的全部或部分。在优选实施例中,在解理步骤之前,晶片附装到接收体。可以形成对于层的两个表面或仅一个表面的电接触。

Description

包括薄层的光伏电池
技术领域
本发明涉及形成用于光伏电池的薄半导体层的方法。 
背景技术
传统的光伏电池相当普遍地由硅晶片形成。通常这种晶片由硅晶锭切割得到。当前的技术不能经济地将小于170微米厚的晶片制造成为电池,并且在此厚度情况下,相当数量的硅在切割损耗或切缝中被浪费。对于有效或商业用途,硅太阳能电池并不需要这么厚。传统太阳能电池的成本的大部分是硅施主的成本。 
因此,存在廉价并可靠地形成薄晶体半导体光伏电池的需求。 
发明内容
本发明由以下方面界定,并且此部分中的内容不应视为对权利要求的限制。总体而言,本发明针对用于光伏电池的薄半导体层和用于制造这种电池的方法。 
本发明的第一方面提供了一种形成光伏电池的方法,所述方法包括:提供具有第一原料厚度的连续单层半导体施主体;以及解理连续单层半导体施主体的一部分以形成第一半导体材料层,其中第一半导体材料层具有第一层厚度,第一层厚度在约0.2微米与约100微米之间;以及制造所述光伏电池,其中第一半导体材料层包括光伏电池的基极或发射极或两者的至少一部分。 
本发明的另一方面提供了一种制造光伏电池的方法,所述方法包括:将氢离子通过半导体施主体的第一表面注入到半导体施主体中,其中离子注入界定了在所述第一表面以下约0.2微米与约100微米之间深度处的解理平面;沿着解理平面从施主体解理半导体材料层;以及制造光伏电池, 其中层包括光伏电池的基极或发射极或两者的至少一部分。 
本发明的又一方面提供了一种制造光伏电池的方法,所述方法包括:将第一连续单层半导体施主体的第一表面附装到接收体;在附装步骤之后,从第一施主体解理第一半导体材料层,其中第一半导体材料层包括所述第一表面并保持附装到接收体;以及制造光伏电池,其中第一半导体材料层包括光伏电池的基极或发射极或两者的至少一部分。 
本发明的实施例提供了一种用于制造光伏电池的方法,所述方法包括:掺杂半导体晶片的第一表面的至少一部分;将氢离子通过第一表面注入;将第一表面附装到接收体;以及在附装步骤之后,从半导体晶片解理第一半导体层,其中第一层包括所述第一表面,其中所述第一表面接合到接收体,其中当第一层暴露于光时在其内产生电流。 
本发明的另一实施例提供了一种制造光伏模组的方法,所述方法包括:将多个半导体晶片附装到接收体;以及在所述附装步骤之后,从半导体晶片中的每个解理半导体层,其中每个层接合到接收体,其中光伏模组包括接收体和层。 
本发明的又一方面提供了一种包括光伏电池的半导体层,该半导体层具有大体平行的第一和第二表面,其中第一和第二表面之间的厚度在约0.2与约100微米之间,其中导线接触第一表面但是没有导线接触第二表面,并且其中入射光通过第二表面进入光伏电池。 
本发明的另一实施例提供了一种包括光伏电池的半导体层,该半导体层具有大体平行的第一和第二表面,其中第一和第二表面之间的厚度在约0.2与约100微米之间,其中导线接触第一表面但是没有导线接触第二表面,并且其中入射光通过第二表面进入光伏电池。 
本发明的又一实施例提供了一种包括光伏电池的半导体层,该半导体层具有大体平行的第一和第二表面,其中第一和第二表面之间的厚度在约1与约100微米之间,其中第一表面或第二表面的峰谷表面粗糙度大于约600埃,并且其中层包括光伏电池或光伏电池的一部分。 
本发明的实施例提供了一种光伏模组,包括:接收体;和接合到接收体的多个半导体层,其中每个半导体层在约1与约100微米之间,其中每 个半导体层包括光伏电池的基极或发射极的至少一部分。相关实施例提供了一种光伏模组,包括:多个层,每个层具有在约0.2微米与约100微米之间的厚度,每个层包括光伏电池的基极或发射极的至少一部分;以及衬底,其中每个层接合到衬底。另一个相关实施例提供了一种光伏模组,包括:多个层,每个层具有在约0.2微米与约100微米之间的厚度,每个层包括光伏电池的基极或发射极的至少一部分;以及衬顶,其中每个层接合到衬顶。 
本发明的又一方面提供了一种形成器件的方法,所述方法包括:将半导体主体的第一表面粘附到接收体,其中接收体是金属或聚合物;以及从半导体主体解理层,其中层包括所述第一表面,所述第一表面保持为粘附到接收体,并且层在约1与80微米之间厚。 
本发明的又一方面提供了一种形成多个层的方法,所述方法包括:从半导体晶片解理第一层,其中所述半导体晶片具有小于约1000微米的第一厚度,并且第一层具有约1微米或更大的厚度;并且在解理第一层之后,从半导体晶片解理第二层,其中第二层具有约1微米或更大的厚度,其中,在解理第二层之后,半导体晶片具有大于约180微米的第二厚度,并且其中第二厚度与第一厚度之间的差是至少第一层和第二层的合计厚度。 
本发明的又一实施例提供了一种光伏电池,包括:具有在约0.2微米与约100微米之间厚度的层,层包括光伏电池的基极的至少一部分,其中层包括单晶体、多晶体或聚晶体半导体材料;以及第一非晶体半导体层,其包括光伏电池的发射极的至少一部分。 
本发明的又一实施例提供了一种光伏器件:半导体层,其具有约1微米与约晶片20微米之间的厚度,其中层具有第一表面和与第一表面大体平行的第二表面,其中层包括光伏电池的基极的至少一部分,其中对光伏电池的第一表面和第二表面两者都进行电接触;以及衬底或衬顶,其中层在第一表面或第二表面处附装到衬底或衬顶。 
本发明的又一实施例提供了一种形成光伏电池的方法,所述方法包括:在硅晶片的第一表面上沉积第一材料的第一层;通过第一表面注入一 种或多种气体离子以界定解理平面;将晶片在第一表面处附装到接收体;加热晶片以沿着解理表面从晶片剥离层,其中层包括所述第一表面,并且层保持附装到接收体;对层的第一表面或第二表面纹理化。 
又一实施例提供了一种光伏电池,包括:具有在约1微米与约晶片20微米之间厚度的晶体硅层,其中层包括光伏电池的基极和发射极,层具有第一表面和与第一表面大体平行的第二表面;衬底,其中层在第一表面处附装到衬底;在层与衬底之间的金属层;以及与第二表面电接触的导线,其中入射光在第二表面处进入光伏电池。 
本文所述的本发明的方面和实施例中的每一者都可以单独使用或彼此结合使用。 
现在,将参考附图描述优选的方面和实施例。 
附图说明
图1是描述现有技术光伏电池的剖视图。 
图2是短路电流对于各种硅光伏电池的厚度的曲线图。 
图3a和3b是示出在根据本发明实施例的光伏电池的形成阶段的剖视图。 
图4a至4d是示出在根据本发明实施例的光伏电池的形成阶段的剖视图。 
图5a至5c是示出在根据本发明实施例的光伏电池的形成阶段的剖视图。 
图6a和6b是示出在根据本发明另一实施例的光伏电池的形成阶段的剖视图。 
图7a至7c是示出在根据本发明另一实施例的光伏电池的形成阶段的剖视图。 
图8a和8b是示出在根据本发明又一实施例的光伏电池的形成阶段的剖视图。 
图9a至9d是示出在根据本发明实施例的光伏电池的形成阶段的剖视图。 
图10a和10b是示出在根据本发明再一实施例的光伏电池的形成阶段的剖视图。 
图11a和11b是示出在根据本发明再一实施例的光伏电池的形成阶段的剖视图。 
图12和13是可选实施例的剖视图,其中根据本发明形成的层是串列或多结光伏电池的一部分。 
图14是包括根据本发明实施例的多个薄光伏电池的光伏模组的俯视图。 
图15a至15c是示出在根据本发明可选实施例的形成中在衬底和衬顶之间转移层的阶段的剖视图。 
具体实施方式
通常用于制造光伏电池的硅晶片为约200至250微米厚。公知硅晶片可切割为约180微米厚,但是这样的晶片较脆弱并容易断裂。 
传统的现有技术光伏电池包括p-n二极管;在图1中示出了示例。耗尽区形成在p-n结处,产生了电场。入射光子将电子从导带撞击到价带,产生了电子-空穴对。在p-n结处的电场内,电子趋于朝向二极管的n区迁移,而空穴朝向p区迁移,从而产生电流。此电流称为光子流。通常,一个区的掺杂浓度高于另一个区的掺杂浓度,由此该结是p-/n+结(如图1所示)或p+/n-结。更少掺杂的区域被称为光伏电池的基极,而更多掺杂的区域被称为发射极。大多数载流子在基极内产生,并且其通常是电池的最厚部分。基极和发射极一起形成了电池的活性区域。 
在某些范围内,光伏电池的转换效率随着其厚度改变。关于此,转换效率表示,入射光子流被转换为可用电流的百分比。随着电池厚度减小,更多的光将穿过电池而不被吸收。附加的厚度使得更多的吸收和更高的电池效率。可以通过使光以倾斜角度弯折或使光多次在内部反射地通过电池,增大光通过电池行进的距离,来提高光吸收。例如,可以通过纹理化电池的一个或两个表面来引起弯折,通过对一个表面涂覆反射材料来引起反射。这些效果公知为光捕捉(light trapping)。 
被纹理化为使得透射和反射光的角度完全随机的表面称为朗伯表面(Lambertian surface)。即,对于朗伯表面,每单位立体角的光子通量密度与入射光的方向和沿该表面的位置无关。 
如所注意到的,光伏电池通常至少为200微米厚,但其不需要这么厚。图2是示出理论短路电流密度(JSC)对于各种光伏电池的厚度的曲线图。(图2摘自Green,M.A.,(1995)“Silicon Solar Cells,AdvancedPrinciples and Practice”,Centre for Photovoltaic Devices and Systems,University of New South Wales.)。可见,对于具有朗伯表面的电池,JSC随着厚度减小而减小,但相对平缓。例如,对于图2中标为“朗伯”的曲线,在约100微米的情况下,JSC是约42mA/cm2,而在50微米的情况下,JSC仅略微减小到约41mA/cm2;在10微米的情况下,JSC仍良好地在35mA/cm2以上。在5、2、1甚至几分之一微米厚的情况下,明显更薄的光伏电池如果能够以充分低的成本制造,则其理论上能够以有商业价值的效率来制造。 
在本发明的实施例中,借助于传统切片之外的方法,从半导体施主体(例如,单晶或多晶硅晶片)解理非常薄的半导体层,允许层薄得多。可以对该层进行处理以形成光伏电池的全部或部分。 
参考图3a,在优选实施例中,一种或多种气体离子通过晶片20的第一表面10注入。通过电子相互作用和与晶格中的原子的核碰撞,使离子减慢。注入的离子实现深度的分布,一些较深,一些较浅。此分布将在第一表面10以下的某个深度具有最大浓度。注入处理也在某个深度分布处导致晶格损伤。该损伤包括由于与进入的注入原子的碰撞导致的晶格原子的位移所产生的晶格内空穴。此损伤也具有最大浓度的深度,其比注入气体原子的最大浓度的深度略浅。该注入界定了解理平面30,层可以沿着该解理平面30从晶片20解理。解理平面30的深度可以在约0.2微米与约100微米之间。 
如图3b所示,当晶片被加热时,注入气体离子向解理平面30迁移,形成气泡或微裂纹。这些气泡或微裂纹扩张并融合,导致层40从施主晶片20分离。 
本发明的显著更薄的层显然比相对较厚的晶片更脆弱,并必须小心处理以避免断裂。因此在一些实施例中,如图4a所示,首先对晶片20的第一表面10进行处理,包括例如用p型和/或n型掺杂剂进行掺杂,纹理化以增强光捕捉、膜生长或沉积等。在掺杂之后,气体离子通过第一表面10注入,界定了表面下的解理平面30。参考图4b,在界定了解理平面30之后,将第一表面10附装或粘附到平坦表面60,平坦表面60将被称为接收体。如图4c所示,随后的热退火使层40沿着先前界定的解理平面30剥离;此退火也用于将层40完全接合到接收体60。 
解理产生了第二表面62。可以对第二表面62进行额外的处理,例如表面纹理化、形成抗反射层、掺杂、形成导线等。根据本实施例,接收体60可以用作成品器件(其可以是光伏模组)中的衬底或衬顶。在另一些实施例中,层40可以暂时转移到接收体60,然后转移到某些其他的衬底或衬顶。在一些实施例中,仅在第一表面10处或仅在第二表面62处形成对层40的电接触,而在其他实施例中,可以在第一表面10和第二表面62两者处形成电接触。 
结果得到的层40具有的厚度在约0.2与约100微米之间,优选地在约1与约10微米之间;在一些实施例中,此厚度在约1与约5微米之间。层40包括或成为太阳能电池的一部分。层40在两侧均被处理并附装到衬底或衬顶。可以通过将多个层附装到相同的衬底或衬顶来制造太阳能面板或光伏模组。可以在相同步骤中形成多个层,进一步降低成本。 
应该注意,在刚刚描述的处理中,提供了具有第一厚度的连续单层半导体施主体。本领域公知一种不同的处理:首先在多孔硅层上形成外延生长的晶体硅层,然后将该外延生长的晶体硅层与多孔硅层分离。在一个示例中,硅晶片可以受到阳极蚀刻,其在晶片表面上或晶片表面附近形成一系列空洞。这些空洞通常具有一微米或更大的尺寸。在氢气中退火将硅的顶表面重建为在其下方具有空洞分离层。通过在单个晶体衬底上以单独的步骤沉积硅来在此重建的硅层上外延地生长硅。然后在分离层处将外延生长层与初始晶片分离。得到分离的材料是生长的,而不是初始晶片的一部分;因此晶片的厚度并非减小了脱离层的厚度,而是仅减小了包括由阳极 蚀刻形成的空洞的分离层的厚度。在即将进行分离步骤之前,半导体晶片在其上具有外延生长的层,并包括空洞;其不是连续单层施主体。 
相反,在本发明中,提供连续单层半导体施主体。基本上,该施主体不具有空洞。解理层是连续单层半导体施主体的一部分,而不是通过在单个晶体衬底上以单独的步骤沉积硅在施主体上外延生长的分离层。因此,将层从施主体解理使初始施主体的厚度至少减小了该层的厚度。 
示例:注入和剥离 
从半导体施主体剥离薄层的有效方式是通过将气体离子注入到半导体施主体中以界定解理平面,然后沿着解理平面将层剥离。为了技术方案的完整性,将提供如何进行注入和剥离的示例。注意,剥离是解理的一种形式。应该理解,提供此示例仅用于解释,而非意在限制。此示例的许多细节可以更改、省略或进行讨论,而结果仍落在本发明的范围内。 
此说明将细化注入到单晶硅晶片中的处理。应该理解,可以替代地使用许多其他类型的半导体施主体。参考图4a,一种或多种离子通过晶片20的第一表面10注入(由箭头表示)。可以使用多种气体离子,包括氢(H+,H2+)和氦(He+,He++)。在一些实施例中,可以注入仅氢离子、或仅氦离子;在可选实施例中,一起注入氢离子或氦离子。每个注入的离子将在第一表面10下方行进某个深度。随着其进行通过晶格,其将通过电子相互作用和与原子的核碰撞而减慢。核碰撞将导致晶格原子的位移,其产生空穴或晶格内空穴,这有效地损伤了晶格。 
一些离子将比其他离子行进得更深,并在注入之后,将具有离子深度的分布。类似地,也以深度分布引起晶格损伤,此损伤分布略微滞后于离子分布。在每个分布中将具有最大浓度。如果注入氢,则损伤的最大浓度(其略浅于氢离子的最大浓度)将通常成为解理平面。如果注入包括氦或某些其他气体离子,但不包括氢,则注入离子的最大浓度将成为解理平面。在任一情况下,离子注入步骤界定了解理平面,并且注入能量界定了解理平面的深度。应该理解,此解理平面不会是完美的平面,而将具有一些不平整。如果注入氢和氦离子两者,则优选使它们的最大浓度发生在相 同或接近的深度,尽管它们不可能精确地相同。虽然不是必要的,但是优选地,在氦注入之前进行氢注入。 
在其他实施例中,可以注入其他气体离子,包括氖、氪、氩等,其可以单独注入或者与氦、与氢、或与氢和氦组合注入;或者实际上能以任意组合注入。这些离子具有较大质量,由此将它们注入到与更小质量的离子相同的深度需要更高的注入能量。 
如果已经注入氢,则氢原子通过形成Si-H键而使悬空硅键钝化。原子氢将容易使存在于晶格内空位的断裂硅键钝化。在一些情况下,多个氢原子将键合到相邻的硅原子,形成片晶缺陷(platelet defect)。由文献:Johnson等的“Defects in single-crystal silicon induced by hydrogenation”Phys.Rev.B 35,第4166-4169页(1987)更完整地描述了片晶缺陷,其通过引用结合于此。一些氢原子将不与硅键合,并将作为原子氢或分子氢在晶格中保持自由。注入的氦原子是惰性的,并不会形成键,并且将在晶格中保持自由。 
如图4a所示,离子注入步骤界定了用于后续解理步骤的解理平面30。解理平面30从第一表面10起的深度接着将界定最终将产生的层的厚度。如先前所述,此厚度影响成品电池的转换效率。在一些实施例中,在注入之前可以在第一表面10上沉积或生长一个或多个薄膜。 
注入离子的深度由注入气体离子的能量确定。在更高注入能量的情况下,离子行进得更深,增大了注入离子的最大浓度的深度、以及最大损伤浓度,因此增大了解理平面的深度。解理平面的深度接着确定了层的厚度。 
层的优选厚度在约0.2与约100微米之间;因此优选的对于H+的注入能量在约20keV与约10MeV之间的范围内。实现这些深度的优选的对于He+离子的注入能量也在约20keV与约10MeV之间的范围内。 
在注入期间,可以在正被注入的离子与离子注入器中的原子之间发生碰撞。在某些已知能量的情况下,这些碰撞可以引起核反应、产生伽马辐射、阿尔法粒子或x光。根据离子剂量率和屏蔽,优选地避免将引起这些反应的能量。但是,辐射量及其可接受性是离子剂量率和屏蔽的函数。由 文献:Saadatmand等人的“Radiation Emission from Ion Implanters whenImplanting Hydrogen and Deuterium”,Proceedings of the 1998InternationalConference on Ion Implantation Technology,第292-295页,1999完整讨论了该主题。 
在典型离子注入器中,通过产生某些方便的源气体或固体的等离子体,来在离子源中产生离子。随后从源提取这些离子并进行质量分析以仅选择期望的离子种类。在可选类型的注入器中,没有质量分析,因此存在于源等离子体中的全部离子种类都比注入到晶片靶中。在氢等离子体的情况下,将容易存在H+和H2+两者。如果离子不经历质量分析,则H+和H2+两者都将被注入,在不同深度处产生了两个分布峰值。这是较不优选的,因为这使后续的剥离步骤更难控制。如果在不进行质量分析的情况下注入氢,则使源以产生H+离子或H2+离子占优势的方式来工作是较为有利的。 
如所述的,注入在各个深度处留下了注入离子。相比较低能量的注入,较高能量的注入在比最大浓度的深度更浅和更深的深度处留下了更多的离子,导致注入原子的更宽分布。通过将气体原子扩散到解理平面来进行解理处理;这种更宽的分布意味着,更高能量的注入需要更大的注入剂量。 
如Agarwal等人在文献:“Efficient production of silicon-on-insulatorfilms by co-implantation of He+with H+”,American Institute o Physics,Vol.72,num.9,第1086-1088页,1998年3月(其通过引用结合与此)中所述,发现通过注入H+和He+离子两者,对于每一者所需的剂量都可以显著减少。减少剂量减少了注入所花费的时间和能量,并可以显著降低处理成本。 
在一些实施例中,优选地可以额外注入小剂量的硼离子,并优选地注入在与氢和氦离子的目标深度一致的深度。硼使氢扩散更快,降低了能够进行层的最终剥离所处的温度。此效果由Tong的美国专利No.6,563,133,“method of epitaxial-like wafer bonding at low temperature andbonded structure”中详细描述。 
为了清楚起见,将提供注入剂量和能量的示例。为了形成具有约1微米厚度的层,氢的注入能量应该是约100keV;对于约2微米的层,为约200keV,对于约5微米的层,为约500keV,而对于约10微米的层,为约1000keV。如果仅注入氢,则对于约1或约2微米的层的剂量将在约0.4×1017个离子/cm2与约1.0×1017个离子/cm2的范围内,而对于约5或约10微米的剂量将在约0.4×1017个离子/cm2与约2.0×1017个离子/cm2的范围内。 
如果氢和氦一起注入,则相比单独注入任一者的情况,对于每者的剂量都减少。当与氦一起注入时,用于形成约1或约2微米的层的氢剂量将在约0.1×1017个离子/cm2与约0.3×1017个离子/cm2之间,而为了形成约5或约10微米的层,氢剂量将在约0.1×1017个离子/cm2与约0.5×1017个离子/cm2之间。 
当氢和氦一起注入时,为了形成约1微米的层,氦的注入能量应该是约50至约200keV;对于约2微米的层,为约100至约400keV;对于约5微米的层,为约250至约1000keV;而对于约10微米的层,为约500keV至约1000keV。当与氢一起注入时,用于形成约1或约2微米的层的氦剂量可以是约0.1×1017个离子/cm2至约0.3×1017个离子/cm2,而为了形成约5或约10微米的层,氦剂量可以在约0.1×1017个离子/cm2与约0.5×1017个离子/cm2的范围内。 
应该理解这些仅是示例。能量和剂量可以改变,而可以选择中间能量来形成中间、更大或更小厚度的层。 
一旦已经完成注入,可以对晶片20进行进一步的处理。升高的温度将在解理平面30处引起剥离;因此在期望发生剥离之前,应该小心处理,例如限制温度和热步骤的时段,以避免过早引起剥离。一旦如图4a所示已经完成对第一表面10的处理,则可以将晶片20附装到接收体60。 
参考图4c,最容易通过升高温度来进行层40的剥离。如上所述,先前的注入步骤在施主硅晶片中留下了气体离子的分布以及晶格损伤的分布,其中注入界定了解理平面30。如果注入氢,则如先前所述,许多氢离子在与硅原子碰撞期间使硅键断裂,并使这些键钝化,在一些情况下形成 了片晶缺陷。在室温情况下,这些片晶缺陷的宽在30至100埃的量级,并且其宽小于200埃。在注入之后解理之前,晶片是不具有比片晶缺陷更大的空洞的连续单层半导体施主体。附装有晶片20的接收体60经历升高的温度,例如在约200与约800摄氏度之间。在较高温度下,剥离进行得更快。在一些实施例中,引起剥离的温度在约200与约500摄氏度之间,退火时间在200摄氏度的情况下以小时为量级,而在500摄氏度的情况下以秒为量级。当温度升高时,随着越来越多的未键合气体原子在所有方向上扩散,片晶缺陷开始扩展,一些聚集在片晶缺陷中,并形成微裂纹。最终,微裂纹融合,并且膨胀气体施加的压力使得层40沿着解理平面30整体地从施主硅晶片20分离。接收体60的存在迫使微裂纹侧向扩展,形成沿着解理平面30的连续缝隙,而不是过早地与解理平面30垂直地扩展(这将引起第一表面10处的起凸和脱片)。 
注意,片晶缺陷仅在注入氢时形成。如果在没有氢的情况下注入氦或其他气体,注入原子将形成充满气体的微裂纹或气泡,然后沿着解理平面30剥离。 
显然,在附图中不能按照实际比例示出相对尺寸,例如,接收体60、晶片20和层40的厚度。 
先前提及,与氢共同注入的硼将使氢扩散得更快。为此,预期如果晶片20掺杂有硼(通常的p型杂质),则相比其是本征的或轻n掺杂的情况,可以在略低的温度下实现剥离。 
在可选实施例中,可以使用其他方法或方法的组合来引起层40的剥离。例如,可以采用由Henley等人的美国专利No.6,528,391的“Controlled cleavage process and device for patterned films”所述的方法,其通过引用结合于此。 
图4d示出了倒转的结构,接收体60位于底部。可见,由剥离步骤产生层40,并且层40包括第一表面10,并具有与第一表面10大体平行的第二表面62。如将要描述的,层40包括或成为,或将要成为光伏电池的一部分。第一表面10保持附装到接收体60。在一些实施例中,用于进行剥离的升高温度还将用于同时完成第一表面10与接收体60之间的接合处 理。 
公知的是,通过将气体离子注入到硅晶片中,将该硅晶片接合到氧化物晶片,并将薄皮的硅剥离到氧化物晶片上,来形成在半导体工业中使用的绝缘体上硅膜。然后,在剥离硅皮中制造诸如晶体管之类的半导体器件。 
尽管事实在于材料成本占了大部分商用太阳能电池的成本的较大比率,并且,太阳能厂商面临全球范围的硅短缺的问题,但是将气体离子注入到半导体晶片中并剥离薄硅皮的技术尚未用于成光伏电池。 
离子注入广泛地用于半导体器件的制造,但是对于广泛用于太阳能工业却被认为不实际,这是因为对于太阳能厂商而言,保持处理成本较低也通常是极为重要的。 
在半导体工业中使用的常规大剂量注入在高达约80keV的能量的情况下处于1×1014至3×1015个离子/cm2的范围中。例如,剥离具有1-10微米厚度的层,需要数百keV的注入能量,以及相对较高的剂量,例如4×1016至2×1017个离子/cm2。在更高能量情况下更高的注入剂量提高了注入的成本。 
本发明的发明人已经认识到,即使在层包括基极和/或发射极(电池的活性区域)的全部或部分的情况下,100微米或更小(例如,10微米)的层可以仍用于形成具有可接受转换效率的光伏电池。现在,在本文所述的实施例中气体离子的注入可以在现有的注入器上进行。本发明人相信,专用的高产量的注入器将显著降低此注入的成本。 
为了清楚起见,将提供数个制造具有0.2与100微米之间厚度的层的示例,其中层包括或是根据本发明实施例的光伏电池的一部分。为了提供完整的技术方案,将描述许多材料、条件和步骤。但是,应该理解,许多这些细节可以进行修改、讨论或省略,而结果仍落在本发明的范围内。在这些实施例中,描述了通过注入气体离子并将层剥离来解理半导体层。在这些实施例中也可以采用从半导体晶片解理层的其他方法。 
示例:标准前后接触电池 
该处理以合适半导体材料的施主体20开始。合适的施主体可以是任何实际使用厚度(例如从约300微米至约1000微米厚)的单晶硅晶片。在可选实施例中,晶片可以更厚;最大厚度仅受晶片处理的实际应用的限制。可选地,可以使用聚晶硅或多晶硅,也可以使用微晶硅,或者其他半导体材料(包括锗、硅锗、或者诸如GaAs、InP之类的III-V或II-VI半导体化合物等)的晶片或锭料。关于此,术语“多晶”通常表示具有微毫米量级尺寸的晶体的半导体材料,而“聚晶”半导体材料具有一千埃量级的更小晶粒。“微晶”半导体材料的晶粒非常小,例如100埃左右。例如,微晶硅可以完全是晶体,或者可以包括处于非晶阵列的这些微晶体。多晶或聚晶半导体被认为完全或基本上是晶体。 
形成单晶硅的处理通常导致圆形晶片,但是施主体也可以具有其他形状。在切割晶片之前,圆柱单晶锭料通常被机械加工为八边形横截面。多晶晶片通常是方形的。方形晶片的优点在于,与圆形或八边形晶片不同,其可以在光伏模组上边缘与边缘对准而不会在其之间具有未使用的间隙。晶片的直径或宽度可以是任意标准或定制的尺寸。为了简化,此讨论将描述将单晶硅晶片用作半导体施主体,但是应该理解,可以使用其他类型和材料的施主体。 
参考图5a,晶片20由优选地被轻掺杂为第一导电类型的单晶硅形成。本示例将描述相对轻p掺杂晶片20,但是应该理解,在本实施例和其他实施例中,掺杂类型可以相反。掺杂浓度可以在约1×1014与1×1018个原子/cm3之间;例如在约3×1014与1×1015个原子/cm3之间;例如约5×1014个原子/cm3。对于p型硅的理想阻抗可以是例如在约133与约0.04欧姆-cm之间,优选地约44至约13.5欧姆-cm,例如约27欧姆-cm。对于n型硅,理想的阻抗可以是在约44与0.02欧姆-cm之间,优选地在约15与约4.6欧姆-cm之间,例如约9欧姆-cm。 
可选地处理第一表面10以产生表面粗糙度,例如产生朗伯表面。层的最终厚度限制可实现的粗糙度。在常规的用于光伏电池的硅晶片中,从峰到谷测得的表面粗糙度可以在微米的量级。在本发明的实施例中,层的厚度可以在约0.2与约100微米之间。优选的厚度包括在约1与约80微米 之间;例如在约1与约20微米之间或在约2与20微米之间。实际上,在约0.2与约100微米之间的范围内的任意厚度都是可实现的;有利的厚度可以在约1与约1.5之间,2、3、5、8、10、20或50微米。 
如果最终厚度是约2微米,显然表面粗糙度不能是微米的量级。对于全部厚度,表面粗糙度的下限将是约500埃。上限将是膜厚度的约四分之一。对于1微米厚的层,表面粗糙度可以在约600埃与约2500埃之间。对于具有约10微米厚度的层,表面粗糙度将小于25000埃,例如在约600埃与25000埃之间。对于具有约晶片20微米厚度的层,表面粗糙度可以在约600埃与50000埃之间。 
能够以本领域公知的各种方法产生此表面粗糙度。例如,诸如KOH蚀刻之类的湿法蚀刻有选择地对硅晶体的某些平面比其他部分更快地蚀刻,产生了在(100)定向晶片上的一系列锥体,而(111)平面被优先更快地蚀刻。各向同性的干法蚀刻也可以用于产生纹理。可以使用任意其他公知的方法。图5a中示出了得到的纹理。表面粗糙度可以是随机的,或可以是周期性的,如“Niggeman等人的“Trapping Light in Organic PlasticSolar Cells with Integrated Diffraction Gratings”,Proceedings of the 17thEuropean Photovoltaic Solar Energy Conference,Munich,German,2001”所述的。 
在一些实施例中,扩散掺杂可以在第一表面10处执行。第一表面10将被大量掺杂与初始晶片20相同的导电类型,在此示例中为p掺杂。可以用常规的p型施主气体(例如B2H6或BCl3)来进行掺杂。在其他实施例中,此扩散掺杂步骤可以省略。 
接着,如前所述,注入离子(优选地为氢或氢和氦的组合)以界定解理平面30。在注入之前,优选地可以在第一表面10上形成薄氧化物层19,其可以是约100埃或更薄。氧化物层19可以用于减少注入期间的表面损伤。此氧化物,通常为二氧化硅,可以由任意传统方法形成。如果在注入之前进行扩散掺杂,则在扩散掺杂期间提供一些氧,将引起二氧化硅层19生长。 
注意,注入离子和注入损伤的最大分布的平面是共形的。第一表面10 处的任意不平整将被复现在解理平面30中。于是,在一些实施例中,可以优选地在注入步骤之后而非之前使表面10粗糙。 
在注入之后,去除氧化物层19,并清洁第一表面10。一旦已经进行了注入,只要满足特定条件(例如,升高的温度)就会发生剥离。因而,在期望发生剥离之前,需要将处理温度和时段保持在将引发剥离的温度和时段以下。通常,如果进行注入所通过的第一表面10附装到某种接收体以提供机械支撑,则剥离更容易控制,且更容易对层进行操控。在优选实施例中,为了最小化操控,此接收体实际上是在制造完成之后将成为光伏模组的一部分的衬顶或衬底。此接收体可以是任意合适的材料,例如半导体、玻璃、金属或聚合物。参考图5b,在本示例中,第一表面10所附装的接收体是衬底60。在本实施例中,衬底60可以是硼硅酸盐玻璃或能够耐受相对高温的某些其他材料。 
反射金属材料,例如钛或铝,应该接触第一表面10。在本实施例和其他实施例中,对于这种层的其他可选材料包括铬、钼、钽、锆、钒或钨。在一些实施例中,优选地将铝的薄层12沉积到第一表面10上。例如,铝可以溅射沉积到第一表面10上。可选地,衬底60的表面可以涂覆有铝或某些其他反射金属材料。随后的热步骤将使铝软化,使得其流动并产生与第一表面10的良好接触。在其他实施例中,铝层可以形成在第一表面10和衬底60两者上。 
参考图5c,现在可以如前所述在解理平面30处将层40从施主晶片20解理。通过剥离产生了第二表面62。在图5c中,倒转地示出该结构,衬底60位于底部。如已经讨论的,一定的表面粗糙度对于增强层40内的光捕捉和提高光伏电池的转换效率而言是理想的。剥离处理自身在第二表面62处产生了一些表面粗糙度。在一些实施例中,此粗糙度本身可以是足够的。在其他实施例中,如已经用于使第一表面10粗糙的处理那样,可以通过一些其他公知的处理,例如湿法或干法蚀刻,来修改或提高第二表面62的表面粗糙度。如果金属12是诸如铝之类的p型受体,则此时或此后的退火可以用于通过使来自金属层12的金属原子扩散到区16中,来形成或额外地掺杂p掺杂区16。 
接着,通过第二表面62将位于层40的顶部的区14掺杂为与初始晶片20的导电类型相反的导电类型。在此示例中,初始晶片20是轻p掺杂的,所以掺杂后的区14将是n型。可以通过任意传统手段来进行此掺杂。在优选实施例中,通过使用将提供n型掺杂剂的任意合适的施主气体(例如POCl3)的扩散掺杂来进行此掺杂步骤。 
扩散掺杂通常在相对高温的情况进行,例如在约700与约900摄氏度之间,不过,也可以替代地进行诸如等离子体增强扩散掺杂之类的低温方法。此升高的温度将引起来自铝层12的一些铝扩散在第一表面10中。此升高的温度可以用作先前所述的退火,以形成大量掺杂的p型区16,p型区16将用形成与铝层12良好的电接触。如果来自铝层12的p区16的掺杂充分,则先前在第一表面10处进行的用于形成此区域的扩散掺杂步骤可以省略。如果在n型扩散掺杂步骤期间存在氧,则将在第二表面62处形成二氧化硅的薄层(未示出)。 
例如通过沉积或生长优选地在第二表面62上形成抗反射层64。入射光通过第二表面62进入层40;因此,此层应该是透明的。在一些实施例种,抗反射层64是氮化硅,其具有约1.5至3.0的折射率;其厚度应该是例如在约500与约2000埃之间,例如约650埃。 
接着在层64上形成导线57。在一些实施例中,通过以导线的图案丝网印刷导电膏,接着将其高温(例如在约700与约900摄氏度)过火,来形成此导线。例如,如果层64是氮化硅,则公知使用含银的丝网印刷膏来进行丝网印刷。在过火期间,一些银扩散通过氮化硅,有效地形成了通过绝缘氮化硅层64的过孔,得到了与n掺杂硅区14的电接触。可以得到与残留在抗反射层64以上的银的接触。 
图5c示出了根据本发明的一个实施例的成品光伏电池。层40在第一表面10处接合到衬底60。入射光在第二表面62处进入层40。注意,层40的轻p掺杂的主体是此电池的基极,而大量掺杂的n区14是发射极;因此层40构成了光伏电池。当层40暴露于光时,在其内产生电流。对此电池的第一表面10和第二表面62两者进行电接触。导线57是与第二表面62的电接触。 
示例:前后接触,光刻导线 
可以通过其他方法优选地形成导线57。参考图6a,直到在第二表面62上形成抗反射层64的阶段点之前,此实施例的制造与先前实施例相同。在此阶段点,在抗反射层64中形成一系列平行的沟槽68,在每个沟槽68中将第二表面62的硅暴露。可以通过合适的方法,例如通过光刻掩模和蚀刻来形成沟槽68。可选地,可以在此阶段点用n型掺杂剂进行的第二扩散掺杂步骤,更多地对沟槽68中暴露的硅进行掺杂。 
图6b示出了导线57,其形成为与在沟槽57中暴露的n掺杂区14接触。可以通过任意方便的手段来形成导线57。可以优选地在抗反射层64上形成金属层,然后通过光刻掩模和蚀刻来形成导线57。在可选实施例中,通过例如丝网印刷形成铝导线,来形成导线57。 
示例:局部背接触 
在另一实施例中,局部地制造在电池背表面处的电接触。参考图7a,此实施例以轻p掺杂的晶片20开始,其可选地如先前实施例中那样在第一表面10处粗糙化。在一些实施例中,用作扩散阻挡的电介质层55沉积在第一表面10上。在一些实施例中,电介质层55是氮化硅或SiO2,并可以在约1000与约1200埃之间。过孔68形成在氮化硅层55中,并在每个过孔68中将第一表面10暴露。注意,在优选实施例中,过孔68是过孔,而非沟槽。进行扩散掺杂步骤,用p型掺杂剂掺杂第一表面10的暴露区域,并形成大量掺杂的p型区16。在一些实施例中,此扩散掺杂步骤可以省略。接着,如先前所述注入气体离子,界定解理平面30。 
如图7b所示,在氮化硅层55上形成铝层11,填充过孔并接触大量掺杂p型区16。在一些实施例中,铝层11可以约1微米厚。接着,晶片20在第一表面10处附装到衬底60。 
参考图7c,其示出了以衬底60位于底部而倒转的结构,如先前实施例中那样继续制造。通过从晶片20剥离形成层40,产生了第二表面62。第二表面62可以如先前实施例那样被粗糙化。通过在第二表面62处扩散 掺杂形成n掺杂区14。在此扩散掺杂步骤期间的升高的温度使得来自铝层11的一些铝扩散到层40中,在那里这些铝接触第一表面10处的硅,进一步掺杂了p掺杂区16。抗反射层64形成在第二表面62上。如先前实施例中那样,可以在形成n掺杂层14的扩散掺杂步骤期间,在第二表面62上生长薄氧化物层(未示出)。通过丝网印刷、光刻或通过一些其他方法来导线57,完成电池。 
示例:非晶体发射极和基极接触 
在另一实施例中,电池的大量掺杂区形成在非晶体半导体层中。参考图8a,为了形成此电池,在一个实施例中,初始晶片20是轻n掺杂(同样,在可选实施例中,导电类型可以相反)的。如先前实施例中那样,晶片20的第一表面10可选地被粗糙化。在清洁第一表面10之后,将本征(未掺杂)非晶体硅的层72沉积在第一表面10上,随后通过任意合适方法(例如通过等离子体化学汽相沉积(PECVD))沉积n掺杂的非晶体硅的层74。非晶体层72和74的合计厚度可以在约1000与约5000埃之间,例如约3000埃。在一个实施例中,本征层72是约1000埃厚,而n型非晶体层74是约2000埃厚。气体离子注入通过层74、72并注入到第一表面10中以如先前实施例中那样形成解理平面30。应该理解,必须调节注入能量,以补偿增加的非晶体层74和72的厚度。 
如先前实施例中那样,在n掺杂层74上或在衬底60上,或者在其两者上形成导电金属11,晶片20在第一表面10处附装到衬底60,并且本征层72、n掺杂层74和金属层11置于第一表面10与衬底60之间。金属层11可以是铝、钛或任意其他合适材料。为了帮助与每个电池的最终电连接,如果金属层11沉积在衬底60上,则其可以沉积为图案,使得各个晶片所将要附装的区域彼此隔离。金属层11的这些区域可以延伸到晶片区域外较短的距离,使得可以进行与它们的电接触。例如,可以通过遮蔽掩模的沉积;或者通过在例如通过布置在衬底60上的物理掩模沉积金属层11之后对金属层11进行蚀刻,来完成此图案。 
图8b示出了倒转的结构,衬底60位于底部。层40沿着解理平面30 从晶片20剥离,常生了第二表面62。第二表面62被可选地粗糙化,并被清洁。在第二表面62上沉积本征非晶体硅层76,随后沉积p掺杂非晶体层78。本征非晶体层76和p掺杂非晶体层78可以与本征非晶体层72和n掺杂非晶体层74分别大体相同,或可以不同。接着,通过合适方法在p型非晶体层78上形成抗反射层64,其可以是例如氮化硅。在可选实施例中,抗反射层64可以是透明导电氧化物(TCO)。如果此层是TCO,则其可以例如是氧化铟锡、氧化锡、氧化钛、氧化锌等。TCO将用作顶电极和抗反射层两者,并可以在约500与约1500埃之间厚,例如,约900埃厚。 
最后在抗反射层64上形成导线57。可以通过合适方法形成导线57。在优选实施例中,通过丝网印刷形成导线57。 
在此实施例中,层40是光伏电池的基极,或基极的一部分。大量掺杂的p型非晶体层78是发射极,或发射极的一部分。非晶体层76是本征的,但实际上,非晶体硅将包括缺陷,这些缺陷使得其表现为仿佛轻n型或轻p型。如果其表现为仿佛轻p型,则非晶体层76将用作发射极的一部分,而如果其表现为仿佛轻n型,则其将用作基极的一部分。 
如将要描述的,优选地一次将多个这些电池形成到单个衬底60上。在相同沉积步骤中在附装到衬底60上的多个层上P型非晶体层78的沉积以及在TCO情况下抗反射层64的沉积将使相邻的层通过这些沉积层电连接。在形成导线57之前,必须通过例如经由布置在衬底/层组合上的物理掩模对这些层进行蚀刻,或通过用激光使这些层消融,来使这些层电隔离。 
为了完成面板,各个电池应该被导线在一起,通常是以串联的构造,其中一个电池的N+极连接到相邻电池的P+极。这可以通过在导线57的成形期间对导线57进行图案化以与已经图案化在衬底60上的金属表面(如果存在的话)进行接触来完成。可选地,可以通过单独焊接来将导线57连接到衬底60中的金属图案。如果衬底60中没有金属图案,则可以使用激光从较小区域将整个层40消融,暴露其下的金属。这样暴露的金属可以通过例如焊接连接到相邻层的导线57。 
示例:背接触电池 
参考图9a,另一实施例开始于任一类型的轻掺杂的晶片20;此示例将初始晶片20描述为轻p掺杂的,但是应该理解,可以使用任一导电类型。第一表面10被可选地粗糙化,并被掺杂有第一导电类型的掺杂剂,例如p型,从而形成p掺杂区16。掺杂可以通过扩散掺杂来进行。扩散阻挡32沉积在第一表面10上;扩散阻挡32可以是氮化硅。参考图9b,去除氮化硅层32的区域,暴露第一表面10的一些部分。进行第二掺杂步骤,将第一表面10的暴露区域相反地掺杂为与第一导电类型相反的第二导电类型,例如n型,从而形成n掺杂区14,其以斜线示出。优选地,n掺杂区14和p掺杂区16两者都被掺杂导至少1018个原子/cm3的浓度。 
参考图9c,接着去除氮化硅层32,并将离子注入以界定解理平面30。在第一表面10上沉积或生长电介质层18(例如二氧化硅)。在电介质层18中蚀刻过孔,并在电介质层18上形成导线。导线形成为电隔离的两组;一个导线组57接触n掺杂区14,而另一个导线组58接触p掺杂区16。可以通过沉积金属并以光刻方式对其图案化,来形成导线组57和58。诸如旋涂玻璃之类的电介质22填充导线组57与58之间的间隙,并得到相对平坦的表面。此表面附装导衬底60。当表面是平坦的,并被均匀地附装到接收体(在此情况下为衬底60)时,剥离更整齐并更可控。 
图9d示出了倒转的结构,衬底60位于底部。层40沿着解理平面30从晶片20剥离,形成了第二表面62。优选地通过任意公知方法使第二表面62粗糙化。在一些实施例中,第二表面62被掺杂为与初始晶片20相同的导电类型。在此示例中,初始晶片20是n型;因此可以通过扩散掺杂用n型掺杂剂来掺杂此表面,以形成n掺杂区17。可以优选地在此扩散掺杂步骤期间使一些氧流动,其将使薄二氧化硅层(未示出)形成;此薄二氧化硅层将帮助使第二表面62处的悬空键钝化,减少再化合。 
接着形成抗反射层64;抗反射层64可以是氮化硅。通过PEVCD沉积的氮化硅包括一些氢,此氢将趋于使第二表面62处的这些悬空键钝化,减少再化合。可以选择沉积条件,以提高抗反射层64的氢含量,来 出于此目的提高氢含量。 
在此实施例中,仅对第一表面10进行导线组57和58形式的电接触。在层40的大量掺杂的p区16与轻n掺杂体之间形成了p-n二极管结。光电流在n掺杂区14与p掺杂区16之间流动。因此,不需要对第二表面62的电接触。在此实施例中,光伏电池的基极是层40的n掺杂体,而发射极是组合的大量掺杂p型区16;因此层40包括光伏电池的基极和发射极两者。在这部分描述的全部实施例中,当层40暴露于光时在其内产生电流。 
示例:剥离到具有TCO的衬顶 
在以上描述的实施例中,将层剥离到衬底,其中第一表面,即施主体的初始表面是成品电池的背表面,而通过剥离产生的第二表面是其中光进入电池的表面。层可以替代地剥离到衬顶,其中施主体的初始表面是光进入电池的表面,而通过剥离产生的第二表面是成品电池的背表面。将提供两个示例,不过还可以构思许多其他示例。 
参考图10a,在此示例中,半导体施主体20是轻p掺杂的硅晶片。晶片20的第一表面10可选地如先前实施例那样构造。接着,例如通过扩散掺杂进行的掺杂步骤形成了n掺杂区14。如果在此掺杂步骤期间存在氧,则将在第一表面10处生长薄氧化物(未示出)。应该理解,在全部实施例中,导电类型可以相反。气体离子通过第一表面10注入以界定解理平面30。 
第一表面10被清洁,去除在扩散掺杂期间形成的任何氧化物。在本示例中,TCO 80将置于第一表面10与衬顶60之间。此TCO 80是氧化铟锡、氧化钛、氧化锌或任意其他合适材料,并可以沉积在第一表面10上、沉积在衬顶60上或沉积在两者上。TCO 80用作接触和抗反射涂层两者,其厚度应该在约500与约1500埃之间,例如约900埃。晶片20在第一表面10处附装到衬顶60。注意,衬顶60是诸如玻璃之类的透明材料。 
参考图10b,在解理平面30处将层40从晶片20剥离,产生了第二表面62。第二表面62被可选地纹理化。在第二表面62上沉积导电层11。 导电层11优选地是金属,例如铝。如果导电层11是铝,则退火将形成p掺杂层16。如果一些其他材料用于导电层11,则必须在形成导电层11之前通过扩散掺杂步骤形成p掺杂层16。 
铝层11可以通过许多方法形成,例如通过用遮蔽掩模进行溅射。如果形成铝层11的方法使得相邻电池电连接,则必须去除置于其间的铝以将它们电隔离。 
图10b示出了成品电池,如同工作时那样,衬顶60位于顶部。入射光入射在衬顶60上,并在第二表面62处进入电池。 
示例:剥离到具有导线的衬顶 
如先前衬顶实施例中那样,在图11a中,轻掺杂的晶片20被可选地在第一表面10处纹理化,然后被掺杂以形成n型区14。在第一表面10处注入气体离子形成解理平面30。 
在此示例中,例如通过PECVE在第一表面10上形成抗反射层64(例如氮化硅)。例如通过光刻或通过激光划线,在抗反射层64中形成沟槽,以暴露第一表面10。导线57形成为接触n掺杂区14。导线可以通过任意合适方法(例如光刻掩模和蚀刻)由任意合适的导电材料(例如铝)形成。 
接着,诸如旋压玻璃之类的电介质22填充导线57之间的间隙,并得到相对平坦的表面。此表面附装到衬顶60。衬顶60是透明的。 
参考图11b,在解理平面30处将层40从晶片20剥离,产生了第二表面62。在此阶段点,制造如同先前实施例那样进行:第二表面62被可选地纹理化。在一些实施例中,进行扩散掺杂步骤,形成p掺杂区16,而在其他实施例中,可以省略此步骤。在第二表面62上形成导电层11,优选为铝,并且退火将形成p掺杂区16。图11b示出了成品电池,如电池工作期间那样,衬顶60位于顶部。 
示例:多结电池 
在可选实施例中,根据本发明形成的层可以用作串列或多结电池的一 部分。如图12所示,层40所附装到的衬底60可以已经包括光伏电池或电池90的一部分;入射光将首先入射在层40上,然后穿过层层40到达电池90。可选地,如图13所示,另一电池或电池92的一部分可以形成在层40以上,使得入射光首先传播经过电池92,然后经过层40。在其他实施例中,可以在层40以上和/或以下具有一个或多个电池或半导体层。其他电池可以由与层40相同的半导体材料或不同的半导体材料形成;示例包括锗、硅锗、GaAs、CdTe、InN等。层40可以包括光伏电池的基极或发射极或两者的至少一部分。 
串列或多结电池中的层40和额外的电池或半导体层可以是相同的半导体材料,但可以具有不同程度或级别的结晶。例如,层40可以是单晶硅,而额外的电池或半导体层是聚晶、多晶、微晶或非晶体硅,或反之亦然。形成串列或多结电池的额外电池可以用各种方式形成,例如,通过沉积、通过蒸镀、通过外延生长、通过根据本发明剥离额外的层、或通过任意其他合适方法。 
出于清楚完整的目的提供了多种实施例。显然,列出全部实施例是不切实际的。在本说明书的教导下,本发明的其他实施例将对本领域的普通技术人员而言是显而易见的。 
在形成第一层之后,半导体施主体可以第二次经历刚刚描述的注入和剥离处理,以形成第二层。此第二层可以相似地附装到接收体,并包括或成为光伏电池的一部分,或可以用于不同的用途。如可以构思的,根据层的厚度和初始施主体的厚度,可以形成许多层,直到施主体太薄而不能被安全地操控。可以优选地形成一个或多个层,然后将施主体再次出售以用于其他用途。例如,如果施主体是具有400微米起始厚度的单晶硅晶片,可以通过所述方法形成层,直到施主晶片的厚度已经减小到例如约350微米。对于许多应用而言,在400微米厚的晶片与350微米厚的晶片之间没有本质区别;因此,该晶片可以在仅损失少量或不损失商业价值的情况下被再次出售。 
例如,假定小于约1000微米的半导体施主晶片,可以从其剥离一个、两个、三个、四个或更多个层。每个层可以具有所述厚度,例如20 微米或更小。当已经进行了最终剥离步骤之后,施主晶片优选地至少180微米厚。至少180微米厚的晶片仍可以用于其他商用目的。 
还将理解的是,因为可以在不显著降低施主晶片的价值的情况下从晶片形成一个或多个层,所以急剧降低了材料成本。使用本发明的方法,先前被认为在光伏电池中不实际的材料现在却成为经济可行的。浮动区域(float-zone)硅晶片是非常高质量的晶片,其被热处理以去除杂质。通常浮动区域硅对于硅光伏电池的经济使用而言过于昂贵。但是,使用本发明的方法,可以廉价地制造浮动区域硅的层,提高了得到的光伏电池的效率。在从浮动区域硅晶片剥离一个或多个层之后,晶片可以被再次出售并用于其他用途。其他更高成本的原材料(例如除硅之外的半导体材料的晶片,例如单晶GaAs或单晶或多晶锗晶片)也可以是有利的。 
参考图14,可以制造由根据本发明的方法形成的包括多个层的光伏模组。诸如硅晶片之类的多个施主体可以如所述的被处理,用气体离子注入、接合或附装到作为衬底或衬顶的单个接收体88,并在单个剥离步骤中从每个施主晶片剥离层40。该模组包括接收体88和层40。这样的模组可以包括多个层40,例如两个、十二个或更多,例如在36与72个之间,或更多,或任意合适的数量。每个层40包括或成为光伏电池的一部分,例如,至少其基极或发射极的一部分。在优选实施例中,模组上的光伏电池被电连接;如本领域所公知的,它们可以串联连接。 
在本发明的其他实施例中,可以优选地在两个或更多接收体之间转移层以对每侧进行处理。例如,参考图15a,晶片20将在其第一表面10处附装到临时的耐高温接收体61。如图15b所示,在剥离产生具有第二表面62的层40之后,第二表面62将暴露于高温处理(例如扩散掺杂),而不会损伤接收体61。参考图15c,当处理完成之后,层40将从临时接收体61去除并转移到最终接收体60。预计多次转移将增加成本并降低产率,所以这些实施例,虽然也在本发明的范围内,但是基本较不优选。 
已经描述了形成附装到半导体、玻璃、金属或聚合物接收体的层,其中层包括或成为光伏电池的一部分。在可选实施例中,层可以由半导体材料形成或可以不由半导体材料形成,并可以用于不同用途。本发明的方法 在其中材料的薄层将要附装到接收体的任何情况下都是有效的;接收体可以是半导体、金属、聚合物或某些非绝缘材料。例如,一种导电类型或掺杂浓度的半导体层可以附装到被掺杂为不同导电类型或不同掺杂浓度的半导体接收体或具有半导体层的接收体。 
本文已经描述了详细制造方法,但是可以使用形成相同结构的任意其他方法而结果仍落在本发明的范围内。 
前述详细说明仅描述了本发明能够采取的许多形式中的仅小部分。为此,此详细说明意在解释,而非限制。包括全部等同方案在内的所附权利要求才意在界定本发明的范围。 

Claims (8)

1.一种光伏电池,其包括:
单晶硅层,其具有第一表面和与所述第一表面相对的第二表面,所述单晶硅层在所述第一表面与所述第二表面之间具有在1微米与20微米之间的厚度;
与所述第一表面接触的电介质层;以及
与所述电介质层接触的金属层,所述金属层经由被形成为通过所述电介质层的过孔与所述第一表面接触,
其中所述电介质层和所述金属层被布置在所述单晶硅层与对所述单晶硅层提供支撑的背侧支撑衬底之间,
其中所述金属层在全部所述过孔之间是连续的,并且
其中所述光伏电池包括所述单晶硅层。
2.根据权利要求1所述的光伏电池,其中所述电介质层包括氮化硅或二氧化硅。
3.根据权利要求1所述的光伏电池,其中所述金属层包括铝。
4.根据权利要求1所述的光伏电池,还包括与所述第二表面接触的抗反射层。
5.根据权利要求1所述的光伏电池,其中所述单晶硅层具有在1微米与5微米之间的厚度。
6.根据权利要求1所述的光伏电池,其中所述第二表面的至少一部分被n掺杂或p掺杂到至少1018个原子/cm3的浓度。
7.根据权利要求1所述的光伏电池,其中所述第二表面被粗糙化。
8.根据权利要求1所述的光伏电池,其中所述背侧支撑衬底包括玻璃。
CN2009100004980A 2008-02-05 2009-02-05 包括薄层的光伏电池 Expired - Fee Related CN101504957B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/026,530 US8481845B2 (en) 2008-02-05 2008-02-05 Method to form a photovoltaic cell comprising a thin lamina
US12/026,530 2008-02-05

Publications (2)

Publication Number Publication Date
CN101504957A CN101504957A (zh) 2009-08-12
CN101504957B true CN101504957B (zh) 2013-05-22

Family

ID=40668420

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2009100004980A Expired - Fee Related CN101504957B (zh) 2008-02-05 2009-02-05 包括薄层的光伏电池
CNA2009100004961A Pending CN101510573A (zh) 2008-02-05 2009-02-05 形成包括薄层的光伏电池的方法
CN201410165828.2A Pending CN104037258A (zh) 2008-02-05 2009-02-05 形成包括薄层的光伏电池的方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CNA2009100004961A Pending CN101510573A (zh) 2008-02-05 2009-02-05 形成包括薄层的光伏电池的方法
CN201410165828.2A Pending CN104037258A (zh) 2008-02-05 2009-02-05 形成包括薄层的光伏电池的方法

Country Status (5)

Country Link
US (6) US8481845B2 (zh)
EP (1) EP2088632A3 (zh)
CN (3) CN101504957B (zh)
TW (2) TWI440201B (zh)
WO (1) WO2009099943A2 (zh)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993410B2 (en) 2006-09-08 2015-03-31 Silicon Genesis Corporation Substrate cleaving under controlled stress conditions
KR101546112B1 (ko) 2007-11-02 2015-08-20 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 폴리머를 갖는 기판의 열처리에 의한 자립 고체상태 층의 제조
US8178419B2 (en) * 2008-02-05 2012-05-15 Twin Creeks Technologies, Inc. Method to texture a lamina surface within a photovoltaic cell
US8049104B2 (en) * 2009-09-30 2011-11-01 Twin Creek Technologies, Inc. Intermetal stack for use in a photovoltaic cell
US8501522B2 (en) 2008-05-30 2013-08-06 Gtat Corporation Intermetal stack for use in a photovoltaic cell
DE102008049664B3 (de) * 2008-09-30 2010-02-11 Infineon Technologies Austria Ag Verfahren zum Herstellen eines Halbleiterkörpers mit einem graduellen pn-Übergang
US8330040B2 (en) * 2008-12-03 2012-12-11 Applied Materials, Inc. Photovoltaic cells including spaced ramps and methods of manufacture
US8541680B2 (en) * 2008-12-03 2013-09-24 Applied Materials, Inc. Photovoltaic cells including peaks and methods of manufacture
US20100167454A1 (en) * 2008-12-31 2010-07-01 Twin Creeks Technologies, Inc. Double-sided donor for preparing a pair of thin laminae
US8921686B2 (en) 2009-03-12 2014-12-30 Gtat Corporation Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
US7964431B2 (en) * 2009-03-19 2011-06-21 Twin Creeks Technologies, Inc. Method to make electrical contact to a bonded face of a photovoltaic cell
US8193075B2 (en) * 2009-04-20 2012-06-05 Applied Materials, Inc. Remote hydrogen plasma with ion filter for terminating silicon dangling bonds
US8871109B2 (en) * 2009-04-28 2014-10-28 Gtat Corporation Method for preparing a donor surface for reuse
US8329557B2 (en) 2009-05-13 2012-12-11 Silicon Genesis Corporation Techniques for forming thin films by implantation with reduced channeling
US7754519B1 (en) * 2009-05-13 2010-07-13 Twin Creeks Technologies, Inc. Methods of forming a photovoltaic cell
US20100330731A1 (en) * 2009-06-27 2010-12-30 Twin Creeks Technologies, Inc. Method to form a thin semiconductor lamina adhered to a flexible substrate
US20100326510A1 (en) * 2009-06-27 2010-12-30 Twin Creeks Technologies, Inc. Thin semiconductor lamina adhered to a flexible substrate
US20110041910A1 (en) * 2009-08-18 2011-02-24 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
US20110056532A1 (en) * 2009-09-09 2011-03-10 Crystal Solar, Inc. Method for manufacturing thin crystalline solar cells pre-assembled on a panel
US20110073175A1 (en) * 2009-09-29 2011-03-31 Twin Creeks Technologies, Inc. Photovoltaic cell comprising a thin lamina having emitter formed at light-facing and back surfaces
US20110126890A1 (en) * 2009-11-30 2011-06-02 Nicholas Francis Borrelli Textured superstrates for photovoltaics
EP2510551B1 (en) * 2009-12-09 2017-08-02 Solexel, Inc. Method for manufacturing back contact back junction solar cells
US8257995B2 (en) * 2009-12-11 2012-09-04 Twin Creeks Technologies, Inc. Microwave anneal of a thin lamina for use in a photovoltaic cell
US8349626B2 (en) * 2010-03-23 2013-01-08 Gtat Corporation Creation of low-relief texture for a photovoltaic cell
US8148189B2 (en) * 2010-06-30 2012-04-03 Twin Creeks Technologies, Inc. Formed ceramic receiver element adhered to a semiconductor lamina
WO2012012166A1 (en) * 2010-06-30 2012-01-26 Innovalight, Inc Methods of forming a metal contact on a silicon substrate
US20120080083A1 (en) * 2010-09-30 2012-04-05 Twin Creeks Technologies, Inc. Semiconductor assembly with a metal oxide layer having intermediate refractive index
US8604330B1 (en) 2010-12-06 2013-12-10 4Power, Llc High-efficiency solar-cell arrays with integrated devices and methods for forming them
WO2012092145A2 (en) * 2010-12-29 2012-07-05 Twin Creeks Technologies, Inc. A method to form a device by constructing a support element on a thin semiconductor lamina
WO2012092026A2 (en) * 2010-12-29 2012-07-05 Twin Creeks Technologies, Inc. A method and apparatus for forming a thin lamina
US8173452B1 (en) 2010-12-29 2012-05-08 Twin Creeks Technologies, Inc. Method to form a device by constructing a support element on a thin semiconductor lamina
US8536448B2 (en) 2010-12-29 2013-09-17 Gtat Corporation Zener diode within a diode structure providing shunt protection
US8435804B2 (en) 2010-12-29 2013-05-07 Gtat Corporation Method and apparatus for forming a thin lamina
US20120258561A1 (en) * 2011-04-11 2012-10-11 Twin Creeks Technologies, Inc. Low-Temperature Method for Forming Amorphous Semiconductor Layers
GB2491209B (en) * 2011-05-27 2013-08-21 Renewable Energy Corp Asa Solar cell and method for producing same
US9224904B1 (en) * 2011-07-24 2015-12-29 Ananda Kumar Composite substrates of silicon and ceramic
KR20130062775A (ko) * 2011-12-05 2013-06-13 엘지전자 주식회사 태양 전지 및 이의 제조 방법
TWI506801B (zh) * 2011-12-09 2015-11-01 Hon Hai Prec Ind Co Ltd 太陽能電池組
US10072329B2 (en) * 2011-12-23 2018-09-11 Hong Kong Baptist University Sapphire thin film coated flexible substrate
US8916954B2 (en) 2012-02-05 2014-12-23 Gtat Corporation Multi-layer metal support
US20130200497A1 (en) * 2012-02-05 2013-08-08 Twin Creeks Technologies, Inc. Multi-layer metal support
US8841161B2 (en) 2012-02-05 2014-09-23 GTAT.Corporation Method for forming flexible solar cells
US8871608B2 (en) 2012-02-08 2014-10-28 Gtat Corporation Method for fabricating backside-illuminated sensors
CN104094418A (zh) * 2012-02-17 2014-10-08 应用材料公司 硅基太阳能电池的钝化薄膜堆叠
US8747598B2 (en) * 2012-04-25 2014-06-10 Gtat Corporation Method of forming a permanently supported lamina
US20130330871A1 (en) * 2012-06-12 2013-12-12 Twin Creeks Technologies, Inc. Methods for texturing a semiconductor material
US8785294B2 (en) 2012-07-26 2014-07-22 Gtat Corporation Silicon carbide lamina
US9499921B2 (en) 2012-07-30 2016-11-22 Rayton Solar Inc. Float zone silicon wafer manufacturing system and related process
US20140048201A1 (en) * 2012-08-15 2014-02-20 Gtat Corporation Bonding of thin lamina
US10304977B1 (en) * 2012-09-26 2019-05-28 National Technology & Engineering Solutions Of Sandia, Llc High performance ultra-thin solar cell structures
MY170447A (en) 2012-10-16 2019-07-31 Solexel Inc Systems and methods for monolithically integrated bypass switches in photovoltaic solar cells and modules
US9812592B2 (en) * 2012-12-21 2017-11-07 Sunpower Corporation Metal-foil-assisted fabrication of thin-silicon solar cell
CN103060920A (zh) * 2013-01-05 2013-04-24 武汉电信器件有限公司 一种高精度无污染的半导体晶片解理方法
WO2014193823A1 (en) * 2013-05-28 2014-12-04 Gtat Corporation A mobile electronic device cover plate comprising a thin sapphire layer
WO2014193819A1 (en) * 2013-05-28 2014-12-04 Gtat Corporation A mobile electronic device cover plate comprising graphene
US9437756B2 (en) 2013-09-27 2016-09-06 Sunpower Corporation Metallization of solar cells using metal foils
US9653638B2 (en) 2013-12-20 2017-05-16 Sunpower Corporation Contacts for solar cells formed by directing a laser beam with a particular shape on a metal foil over a dielectric region
US9178104B2 (en) 2013-12-20 2015-11-03 Sunpower Corporation Single-step metal bond and contact formation for solar cells
CN106133210B (zh) * 2014-02-18 2018-10-12 雷顿太阳能股份有限公司 浮区硅晶片制造系统
US9947812B2 (en) 2014-03-28 2018-04-17 Sunpower Corporation Metallization of solar cells
US9231129B2 (en) 2014-03-28 2016-01-05 Sunpower Corporation Foil-based metallization of solar cells
US20150349180A1 (en) * 2014-05-30 2015-12-03 David D. Smith Relative dopant concentration levels in solar cells
US9257575B1 (en) * 2014-09-18 2016-02-09 Sunpower Corporation Foil trim approaches for foil-based metallization of solar cells
US9620661B2 (en) 2014-12-19 2017-04-11 Sunpower Corporation Laser beam shaping for foil-based metallization of solar cells
FR3030888A1 (fr) * 2014-12-22 2016-06-24 Commissariat Energie Atomique Plaquette de silicium monolithique type p/type n
US10453978B2 (en) 2015-03-12 2019-10-22 International Business Machines Corporation Single crystalline CZTSSe photovoltaic device
US9559245B2 (en) * 2015-03-23 2017-01-31 Sunpower Corporation Blister-free polycrystalline silicon for solar cells
US9548421B2 (en) 2015-04-01 2017-01-17 International Business Machines Corporation Optoelectronic devices with back contact
US20160380127A1 (en) 2015-06-26 2016-12-29 Richard Hamilton SEWELL Leave-In Etch Mask for Foil-Based Metallization of Solar Cells
US9935214B2 (en) 2015-10-12 2018-04-03 International Business Machines Corporation Liftoff process for exfoliation of thin film photovoltaic devices and back contact formation
US9620655B1 (en) 2015-10-29 2017-04-11 Sunpower Corporation Laser foil trim approaches for foil-based metallization for solar cells
US11424373B2 (en) 2016-04-01 2022-08-23 Sunpower Corporation Thermocompression bonding approaches for foil-based metallization of non-metal surfaces of solar cells
US10290763B2 (en) 2016-05-13 2019-05-14 Sunpower Corporation Roll-to-roll metallization of solar cells
US9882071B2 (en) 2016-07-01 2018-01-30 Sunpower Corporation Laser techniques for foil-based metallization of solar cells
CN107623028B (zh) * 2016-07-13 2021-02-19 环球晶圆股份有限公司 半导体基板及其加工方法
US10115855B2 (en) 2016-09-30 2018-10-30 Sunpower Corporation Conductive foil based metallization of solar cells
US11631779B2 (en) * 2016-11-07 2023-04-18 Shin-Etsu Chemical Co., Ltd. Solar cell with high photoelectric conversion efficiency and method for manufacturing solar cell with high photoelectric conversion efficiency
US11908958B2 (en) 2016-12-30 2024-02-20 Maxeon Solar Pte. Ltd. Metallization structures for solar cells
CA3229046A1 (en) 2017-01-18 2018-08-09 Shine Technologies, Llc High power ion beam generator systems and methods
US10354980B1 (en) 2018-03-22 2019-07-16 Sandisk Technologies Llc Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same
US10354987B1 (en) 2018-03-22 2019-07-16 Sandisk Technologies Llc Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same
WO2019195806A2 (en) 2018-04-06 2019-10-10 Sunpower Corporation Local patterning and metallization of semiconductor structures using a laser beam
US11276785B2 (en) 2018-04-06 2022-03-15 Sunpower Corporation Laser assisted metallization process for solar cell fabrication
WO2019195804A1 (en) 2018-04-06 2019-10-10 Sunpower Corporation Laser assisted metallization process for solar cell circuit formation
CN112119508A (zh) 2018-04-06 2020-12-22 太阳能公司 用于太阳能电池串接的激光辅助金属化工艺
US11664472B2 (en) 2018-04-06 2023-05-30 Maxeon Solar Pte. Ltd. Laser assisted metallization process for solar cell stringing
US10381362B1 (en) 2018-05-15 2019-08-13 Sandisk Technologies Llc Three-dimensional memory device including inverted memory stack structures and methods of making the same
US10879260B2 (en) 2019-02-28 2020-12-29 Sandisk Technologies Llc Bonded assembly of a support die and plural memory dies containing laterally shifted vertical interconnections and methods for making the same
FR3098643B1 (fr) * 2019-07-09 2023-01-13 Commissariat Energie Atomique Fabrication d'un dispositif photosensible à semiconducteur
TW202310429A (zh) * 2021-07-16 2023-03-01 美商日升存儲公司 薄膜鐵電電晶體的三維記憶體串陣列

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374564A (en) * 1991-09-18 1994-12-20 Commissariat A L'energie Atomique Process for the production of thin semiconductor material films
TW366527B (en) * 1996-05-15 1999-08-11 Commissariat Energie Atomique A method of producing a thin layer of semiconductor material
US6403877B2 (en) * 1998-09-28 2002-06-11 Sharp Kabushiki Kaisha Space solar cell
JP2003017723A (ja) * 2001-06-29 2003-01-17 Shin Etsu Handotai Co Ltd 半導体薄膜の製造方法及び太陽電池の製造方法
CN1156027C (zh) * 1996-12-27 2004-06-30 佳能株式会社 制造半导体衬底的方法

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3411952A (en) * 1962-04-02 1968-11-19 Globe Union Inc Photovoltaic cell and solar cell panel
US3480473A (en) * 1966-06-24 1969-11-25 Kewanee Oil Co Method of producing polycrystalline photovoltaic cells
US4174561A (en) * 1976-02-09 1979-11-20 Semicon, Inc. Method of fabricating high intensity solar energy converter
GB1553356A (en) * 1976-12-27 1979-09-26 Hamasawa Kogyo Kk Solar battery
US4084985A (en) 1977-04-25 1978-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing solar energy panels by automation
DE2720327A1 (de) 1977-05-06 1978-11-09 Bbc Brown Boveri & Cie Verfahren zur herstellung von halbleiterbauelementen, insbesondere solarelementen
ES462987A1 (es) 1977-10-07 1978-06-01 Made Labor Sa Un procedimiento para la obtencion de 2-furil-(3,4-dimetil-2-piridil)-carbinol.
US4200472A (en) * 1978-06-05 1980-04-29 The Regents Of The University Of California Solar power system and high efficiency photovoltaic cells used therein
US4240842A (en) 1979-03-28 1980-12-23 Solarex Corporation Solar cell having contacts and antireflective coating
US4338481A (en) 1980-10-02 1982-07-06 Joseph Mandelkorn Very thin silicon wafer base solar cell
US4315097A (en) * 1980-10-27 1982-02-09 Mcdonnell Douglas Corporation Back contacted MIS photovoltaic cell
EP0070509B2 (en) 1981-07-17 1993-05-19 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Amorphous semiconductor and amorphous silicon photovoltaic device
JPS6032352A (ja) 1983-08-01 1985-02-19 Matsushita Electric Ind Co Ltd 太陽電池モジュ−ル
US4499658A (en) 1983-09-06 1985-02-19 Atlantic Richfield Company Solar cell laminates
US4836861A (en) * 1987-04-24 1989-06-06 Tactical Fabs, Inc. Solar cell and cell mount
US4897123A (en) 1987-11-28 1990-01-30 Mitsubishi Denki Kabushiki Kaisha Solar cells and method for producing solar cells
US4830038A (en) 1988-01-20 1989-05-16 Atlantic Richfield Company Photovoltaic module
US5057163A (en) 1988-05-04 1991-10-15 Astropower, Inc. Deposited-silicon film solar cell
US5034068A (en) 1990-02-23 1991-07-23 Spectrolab, Inc. Photovoltaic cell having structurally supporting open conductive back electrode structure, and method of fabricating the cell
US5273911A (en) * 1991-03-07 1993-12-28 Mitsubishi Denki Kabushiki Kaisha Method of producing a thin-film solar cell
WO1992022928A1 (en) * 1991-06-11 1992-12-23 Mobil Solar Energy Corporation Improved solar cell and method of making same
DE4442824C1 (de) 1994-12-01 1996-01-25 Siemens Ag Solarzelle mit Chalkopyrit-Absorberschicht
US6107213A (en) 1996-02-01 2000-08-22 Sony Corporation Method for making thin film semiconductor
SG65697A1 (en) 1996-11-15 1999-06-22 Canon Kk Process for producing semiconductor article
US5746372A (en) * 1996-12-12 1998-05-05 American Excelsior Company Biodegradable cup holder
KR100304161B1 (ko) * 1996-12-18 2001-11-30 미다라이 후지오 반도체부재의제조방법
US6552414B1 (en) 1996-12-24 2003-04-22 Imec Vzw Semiconductor device with selectively diffused regions
US6146979A (en) * 1997-05-12 2000-11-14 Silicon Genesis Corporation Pressurized microbubble thin film separation process using a reusable substrate
US6229165B1 (en) * 1997-08-29 2001-05-08 Ntt Electronics Corporation Semiconductor device
DE19808590C2 (de) * 1998-02-28 2003-03-20 Draeger Medical Ag Beatmungsanfeuchter
US6331208B1 (en) 1998-05-15 2001-12-18 Canon Kabushiki Kaisha Process for producing solar cell, process for producing thin-film semiconductor, process for separating thin-film semiconductor, and process for forming semiconductor
US6291326B1 (en) 1998-06-23 2001-09-18 Silicon Genesis Corporation Pre-semiconductor process implant and post-process film separation
JP4129500B2 (ja) * 1998-11-17 2008-08-06 サントル・デチュード・エ・ドゥ・レシェルシュ・メディカル・ダルシャン−セルマ 活性物質を細胞組織内へと直接的に搬送するためのデバイスおよびこのようなデバイスの埋設手段ならびにデバイス内に活性物質を注入することを意図した器具
US6262358B1 (en) 1999-02-18 2001-07-17 Sharp Kabushiki Kaisha Solar cell module and solar cell panel using the same
US6162232A (en) * 1999-03-18 2000-12-19 Shadduck; John H. Instruments and techniques for high-velocity fluid abrasion of epidermal layers with skin cooling
US6287290B1 (en) * 1999-07-02 2001-09-11 Pulmonx Methods, systems, and kits for lung volume reduction
JP4452789B2 (ja) 1999-09-01 2010-04-21 独立行政法人 日本原子力研究開発機構 シリコン系結晶薄板の製造方法および光電変換素子用基板の製造方法
US6500690B1 (en) 1999-10-27 2002-12-31 Kaneka Corporation Method of producing a thin-film photovoltaic device
AUPQ385899A0 (en) * 1999-11-04 1999-11-25 Pacific Solar Pty Limited Formation of contacts on thin films
US6464324B1 (en) 2000-01-31 2002-10-15 Picojet, Inc. Microfluid device and ultrasonic bonding process
US20020189665A1 (en) 2000-04-10 2002-12-19 Davis, Joseph & Negley Preparation of CIGS-based solar cells using a buffered electrodeposition bath
US6690014B1 (en) 2000-04-25 2004-02-10 Raytheon Company Microbolometer and method for forming
US6563133B1 (en) 2000-08-09 2003-05-13 Ziptronix, Inc. Method of epitaxial-like wafer bonding at low temperature and bonded structure
US6273333B1 (en) * 2000-10-10 2001-08-14 Eric Ward Combination coaster and cup holder
FR2894990B1 (fr) * 2005-12-21 2008-02-22 Soitec Silicon On Insulator Procede de fabrication de substrats, notamment pour l'optique,l'electronique ou l'optoelectronique et substrat obtenu selon ledit procede
JP3697214B2 (ja) 2001-03-16 2005-09-21 キヤノン株式会社 半導体膜の製造方法
US7238622B2 (en) 2001-04-17 2007-07-03 California Institute Of Technology Wafer bonded virtual substrate and method for forming the same
US7019339B2 (en) 2001-04-17 2006-03-28 California Institute Of Technology Method of using a germanium layer transfer to Si for photovoltaic applications and heterostructure made thereby
US7420147B2 (en) 2001-09-12 2008-09-02 Reveo, Inc. Microchannel plate and method of manufacturing microchannel plate
FR2831714B1 (fr) * 2001-10-30 2004-06-18 Dgtec Assemblage de cellules photovoltaiques
FR2834820B1 (fr) 2002-01-16 2005-03-18 Procede de clivage de couches d'une tranche de materiau
US7056815B1 (en) 2002-11-12 2006-06-06 The Regents Of The University Of Michigan Narrow energy band gap gallium arsenide nitride semi-conductors and an ion-cut-synthesis method for producing the same
US7176528B2 (en) * 2003-02-18 2007-02-13 Corning Incorporated Glass-based SOI structures
US7388147B2 (en) * 2003-04-10 2008-06-17 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
US7462774B2 (en) 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7377278B2 (en) * 2003-06-05 2008-05-27 Portaero, Inc. Intra-thoracic collateral ventilation bypass system and method
US20060021565A1 (en) 2004-07-30 2006-02-02 Aonex Technologies, Inc. GaInP / GaAs / Si triple junction solar cell enabled by wafer bonding and layer transfer
DE112005003549B4 (de) 2005-05-11 2011-03-17 Mitsubishi Electric Corp. Verfahren zur Herstellung von Siliziumblöcken und Siliziumwafern
JP5128781B2 (ja) 2006-03-13 2013-01-23 信越化学工業株式会社 光電変換素子用基板の製造方法
US7863157B2 (en) 2006-03-17 2011-01-04 Silicon Genesis Corporation Method and structure for fabricating solar cells using a layer transfer process
EP2002484A4 (en) * 2006-04-05 2016-06-08 Silicon Genesis Corp METHOD AND STRUCTURE FOR MANUFACTURING PHOTOVOLTAIC CELLS USING A LAYER TRANSFER PROCESS
US20070277874A1 (en) 2006-05-31 2007-12-06 David Francis Dawson-Elli Thin film photovoltaic structure
AU2007277025A1 (en) 2006-07-28 2008-01-31 Megawatt Solar Llc Reflector assemblies, systems, and methods for collecting solar radiation for photovoltaic electricity generation
US7700878B2 (en) * 2006-08-31 2010-04-20 Antaya Technologies Corporation Buss bar strip
US7811900B2 (en) 2006-09-08 2010-10-12 Silicon Genesis Corporation Method and structure for fabricating solar cells using a thick layer transfer process
US20080070340A1 (en) 2006-09-14 2008-03-20 Nicholas Francis Borrelli Image sensor using thin-film SOI
US20080188011A1 (en) 2007-01-26 2008-08-07 Silicon Genesis Corporation Apparatus and method of temperature conrol during cleaving processes of thick film materials
US7910458B2 (en) 2007-01-29 2011-03-22 Silicon Genesis Corporation Method and structure using selected implant angles using a linear accelerator process for manufacture of free standing films of materials

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374564A (en) * 1991-09-18 1994-12-20 Commissariat A L'energie Atomique Process for the production of thin semiconductor material films
TW366527B (en) * 1996-05-15 1999-08-11 Commissariat Energie Atomique A method of producing a thin layer of semiconductor material
CN1156027C (zh) * 1996-12-27 2004-06-30 佳能株式会社 制造半导体衬底的方法
US6403877B2 (en) * 1998-09-28 2002-06-11 Sharp Kabushiki Kaisha Space solar cell
JP2003017723A (ja) * 2001-06-29 2003-01-17 Shin Etsu Handotai Co Ltd 半導体薄膜の製造方法及び太陽電池の製造方法

Also Published As

Publication number Publication date
US20100009488A1 (en) 2010-01-14
TWI440201B (zh) 2014-06-01
CN101510573A (zh) 2009-08-19
CN101504957A (zh) 2009-08-12
CN104037258A (zh) 2014-09-10
TW200943574A (en) 2009-10-16
US20090194163A1 (en) 2009-08-06
US20090197367A1 (en) 2009-08-06
US7842585B2 (en) 2010-11-30
US8247260B2 (en) 2012-08-21
TWI481053B (zh) 2015-04-11
US20090194162A1 (en) 2009-08-06
EP2088632A3 (en) 2011-03-23
US20090197368A1 (en) 2009-08-06
WO2009099943A2 (en) 2009-08-13
EP2088632A2 (en) 2009-08-12
US8481845B2 (en) 2013-07-09
US20090194164A1 (en) 2009-08-06
TW200943575A (en) 2009-10-16
WO2009099943A3 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
CN101504957B (zh) 包括薄层的光伏电池
US7964431B2 (en) Method to make electrical contact to a bonded face of a photovoltaic cell
JP7168809B1 (ja) 太陽電池およびその製造方法、光起電力モジュール
JP2015111721A (ja) In−situ表面不動態化を伴うイオン注入された選択エミッタ太陽電池
US20090242010A1 (en) Method to Form a Photovoltaic Cell Comprising a Thin Lamina Bonded to a Discrete Receiver Element
TW201007958A (en) Photovoltaic cell comprising a thin lamina having a rear junction and method of making
KR20180045587A (ko) 태양전지 및 이의 제조방법
CN117374169B (zh) 背接触太阳能电池的制备方法及背接触太阳能电池
KR101396027B1 (ko) 고효율 후면 접촉 후면 접합 태양 전지의 이온 주입 및 어닐링
US20100224238A1 (en) Photovoltaic cell comprising an mis-type tunnel diode
JPH1140832A (ja) 薄膜太陽電池およびその製造方法
TW201440235A (zh) 具有加強射極層之背接面太陽能電池
CN104810414B (zh) 太阳能电池及其制造方法
CN101752455B (zh) 太阳能电池的制造方法
US20090242031A1 (en) Photovoltaic Assembly Including a Conductive Layer Between a Semiconductor Lamina and a Receiver Element
KR101115195B1 (ko) 실리콘 이종접합 태양전지 및 이를 제조하는 방법
US20140352770A1 (en) Solar cell and method for manufacturing the same
EP2088633A2 (en) Method to form a photovoltaic cell comprising a thin lamina
KR102345237B1 (ko) 다기능 다공성 박막을 갖는 태양광 실리콘 웨이퍼 및 이를 제조하는 방법
US7994064B2 (en) Selective etch for damage at exfoliated surface
AU2023206210A1 (en) Solar cell, method for manufacturing solar cell, and photovoltaic module
KR101188985B1 (ko) 전후면전계 태양전지 및 그 제조방법
Gordon et al. Processing and characterization of efficient thin-film polycrystalline silicon solar cells
JP2002198548A (ja) 光電変換装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130522

Termination date: 20170205