TWI404633B - 相變化記憶材料 - Google Patents

相變化記憶材料 Download PDF

Info

Publication number
TWI404633B
TWI404633B TW98129195A TW98129195A TWI404633B TW I404633 B TWI404633 B TW I404633B TW 98129195 A TW98129195 A TW 98129195A TW 98129195 A TW98129195 A TW 98129195A TW I404633 B TWI404633 B TW I404633B
Authority
TW
Taiwan
Prior art keywords
phase
combination
atom
change memory
atomic
Prior art date
Application number
TW98129195A
Other languages
English (en)
Other versions
TW201026504A (en
Inventor
Bruce Gardiner Aitken
Charlene Marie Smith
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW201026504A publication Critical patent/TW201026504A/zh
Application granted granted Critical
Publication of TWI404633B publication Critical patent/TWI404633B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12674Ge- or Si-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12681Ga-, In-, Tl- or Group VA metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Semiconductor Memories (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Glass Compositions (AREA)

Description

相變化記憶材料
本發明係關於相改變記憶體材料以及特別是關於GeAS碲化物材料以使用作為相改變記憶應用,例如作為光學及電子數據儲存。
傳統的相改變記憶體裝置使用可以在兩種具有不同性質的相之間改變的材料。這些材料通常可以從非結晶相改變到結晶相,這些相可以被認為具有不同的性質,譬如不同的電阻率,導電性,和/或反射率。
藉由加熱非結晶材料到促進成核,晶體形成,接著結晶的溫度,可達到從非結晶相到結晶相的相改變。藉由加熱結晶相到熔化溫度以上,可使得相改變回到非結晶相。
現行使用譬如Ge,Sb,和Te合金的硫族化合物材料,在相改變記憶體應用例如儲存資訊在可寫入磁碟。
目前Matsushita/Panasonic和IBM公司已發展出數種相改變記憶體材料。代表性的材料包括GeTe-Sb2 Te3 連結,尤其是Ge2 Sb2 Te5 (GST),和Au,In-塗料Sb碲化物(AIST)的成分。這些材料以雷射加熱或電流脈衝可以在高導電性,高反射率結晶相和低導電性,低反射率非結晶相之間,以約10ns的時間刻度循環。
雖然一些傳統的材料,譬如GST和AIST有優良的特性,可用在無揮發性的記憶體應用,相改變記憶體材料最好有快速相轉移和/或較久的寫入/再寫能力。
本發明的實施範例是GeAsTe為主的組成份,用在超出標準GeSbTe系統的相改變記憶體應用。更者,如同特定GeAsTe成分可用來製造大塊玻璃,GeAsTe非結晶相的穩定性有可能大於不能形成大塊玻璃的GeSbTe類似物。這種特性可能導致增加的寫入/再寫週期數目,而不會降低導電性/反射率對比,以及較長的資料保存性。
本發明的一個實施範例是包含結晶薄膜的物體,包括的組成份具有至少一個六邊形的相,或者說可結晶的組成份在結晶形式可以有至少一個六邊形的相。
本發明的另一個實施範例是包括提供薄膜的方法,包含相改變記憶體非結晶材料,並轉換相改變記憶體非結晶材料成為六邊形的結晶相。
本發明的另一個實施範例是包括提供薄膜的方法,其包含六邊形結晶相的相改變記憶體結晶材料,並轉換六邊形結晶相成為非結晶相。
本發明其他特性及優點揭示於下列說明,以及部份可由說明清楚瞭解,或藉由實施下列說明以及申請專利範圍以及附圖而明瞭。
人們瞭解先前一般說明及下列詳細說明只作為範例性及說明性,以及預期提供概要或架構以瞭解申請專利範圍AKK界定出本發明原理及特性。
所包含附圖在於提供更進一步瞭解本發明,以及在此加入作為發明說明書之一部份。附圖顯示出本發明不同的實施例及隨同詳細說明以解釋本發明之原理及操作。
現在參考本發明優先實施例詳細作說明,其範例顯示於附圖中。儘可能地,整個附圖中相同的參考數字代表相同的或類似的元件。
本發明的一個實施範例是含結晶薄膜的物體,包括的組成份具有至少一個六邊形的相,或者說可結晶的組成份在結晶形式上可以有至少一個六邊形的相。
依據一些實施例,組成份以原子百分比包含:5%至45% Ge;5%至40% As,或As及Sb組合,其中As原子百分比大於Sb原子百分比;以及45%至65% Te。
依據一些實施例,組成份以原子百分比包含:10%至30% Ge;15%至30% As,或As及Sb組合,其中As原子百分比大於Sb原子百分比;以及50%至60% Te。
組成份能夠更進一步包含Al,Si,Ga,Se,In,Sn,Tl,Pb,Bi,P,S,或其組合。在一些實施例中Al,Si,Ga,Se,In,Sn,Tl,Pb,Bi,P,S,或其組合之原子百分比為20%或較少。在一些實施例中Al,Si,Ga,Se,In,Sn,Tl,Pb,Bi,P,S,或其組合之原子百分比為15%或較少。
依據一項實施範例,將薄膜沉積在基板上。依據一項實施範例,薄膜可以沉積在基板上。有些實施範例,基板包含玻璃,玻璃陶瓷,陶瓷,高分子,金屬,或其組合。
GeAsTe玻璃和其結晶類似物的相改變材料的玻璃狀態特性比譬如GST和AIST的傳統相改變材料穩定。依據本發明,廣範圍的GeAsTe玻璃在加熱時可以比上述的傳統材料轉換成更高反射率的晶相。Te-GeAs2 連結的玻璃,這種現象證明成分中包含45到65原子百分比的Te。在結晶時,很多這種材料構成至少兩種相:兩個結晶相,或一個結晶相和一個殘餘玻璃相。
具有As2 Te3 -GeTe連結成分的玻璃可結晶成單一相以顯示玻璃和結晶狀態間最大導電性/反射率對比。這種玻璃可以和晶相相容的組成塗料譬如Al,Si,Ga,Se,In,Sn,Tl,Pb,Bi,P,S,或其組合,而沒有在加熱狀態形成第二相。
依據本發明,範例性組成份顯示於表1及表2中。
本發明的另一個實施範例是提供薄膜的方法,其包含相改變記憶體非結晶材料,並將相改變記憶體非結晶材料轉換成六邊形結晶相。
可藉由加熱非結晶材料到促進成核,晶體形成,接著結晶的溫度,可從非結晶相相位改變到六邊形結晶相。
轉換相改變記憶體非結晶材料到六邊形結晶相的方法可包括加熱。等溫加熱例如可使用電阻和/或電感加熱的電加熱;雷射加熱;或利用加熱薄膜引發相改變。
依據一項實施例,相改變記憶體非結晶材料以原子百分比表示包含:5%至45% Ge;5%至40% As,或As及Sb組合,其中As原子百分比大於Sb原子百分比;以及45%至65% Te。
依據一些實施例,相改變記憶體非結晶材料以原子百分比表示包含:10%至30% Ge;15%至30% As,或As及Sb組合,其中As原子百分比大於Sb原子百分比;以及50%至60% Te。
相改變記憶體非結晶材料能夠更進一步包含Al,Si,Ga,Se,In,Sn,Tl,Pb,Bi,P,S,或其組合。在一些實施例中Al,Si,Ga,Se,In,Sn,Tl,Pb,Bi,P,S,或其組合之原子百分比為20%或較少。Al,Si,Ga,Se,In,Sn,Tl,Pb,Bi,P,S,或其組合之原子百分比為15%或較少。
本發明的又另一個實施範例是包括提供薄膜的方法,其包含具有六邊形晶相的相改變記憶體材料,並轉換六邊形結晶相成為非結晶相。
可藉由加熱結晶相到相改變記憶體材料的熔化溫度以上使得相改變到非結晶相。
在一些實施範例中,轉換具有六邊形結晶相的相改變記憶體材料到非結晶相的方法包括加熱。等溫加熱,例如可使用電阻和/或電感加熱的電加熱;雷射加熱;或利用加熱薄膜引發相改變。
依據一項實施例,相改變記憶體材料以原子百分比表示包含:5%至45% Ge;5%至40% As,或As及Sb組合,其中As原子百分比大於Sb原子百分比;以及45%至65% Te。
依據一些實施例,相改變記憶體材料以原子百分比表示包含:10%至30% Ge;15%至30% As,或As及Sb組合,其中As原子百分比大於Sb原子百分比;以及50%至60% Te。
相改變記憶體材料能夠更進一步包含Al,Si,Ga,Se,In,Sn,Tl,Pb,Bi,P,S,或其組合。在一些實施例中Al,Si,Ga,Se,In,Sn,Tl,Pb,Bi,P,S,或其組合之原子百分比為20%或較少。Al,Si,Ga,Se,In,Sn,Tl,Pb,Bi,P,S,或其組合之原子百分比為15%或較少。
可以熱結晶大塊GeAsTe玻璃如圖1的實心圓10所表示,產生一種高反射率的相或相組合。在具有As2 Te3 -GeTe連結12成分玻璃的例子,該相是一種混合層化合物同源的系列,可以下列式子表示:As2 Te3 (GeTe)n ,在其中n是整數。例如,以圓14表示的材料,Ge:As比是1:2,該相是GeAs2 Te4 ,亦即n=1。這些大塊玻璃可使用安瓿熔化的硫族化合物玻璃處理技術來準備。
在固態記憶體的應用上,這些材料是以薄膜的形式來使用。薄膜可以各種技術來製造,譬如磁控管,噴濺,熱蒸發,和脈衝雷射沉積。這些薄膜可以沉積到基板上,可利用在相改變記憶體裝置。
依據一項實施範例,薄膜的厚度是2微米或以下,譬如1微米或以下,譬如0.5微米或以下。在一些實施範例中,薄膜的厚度範圍從20奈米到1微米,譬如從40奈米到1微米,譬如從50奈米到1微米。雖然指定出特定的範圍,在其他實施範例中,範圍內的數值可包含小數。
範例:
使用脈衝雷射沉積GeAs2 Te4 薄膜,在這個例子中,以248-nm準分子光源和高真空(10-6 Torr)沉積室以沉積Ge14.3 As23.6 Te57.1 到Eagle XGTM基板上。執行9000到36000次脈衝電燒標的以準備真正連續的薄膜。薄膜物件的一部份在空氣中以250℃加熱10到180分鐘(可選擇加熱處理的溫度,藉著10℃/min速率的微差掃瞄測熱法來測量以符合大塊玻璃的尖峰結晶溫度)。
加熱物體的視覺檢查顯示了增加的反射率。如圖2所示,從量化的資料看到觀察的結果顯示,當加熱時間增加到10分鐘以上,在500-700nm下反射率的增加是從~40到~60。增加的反射率很明顯從沉積的物體和加熱10分鐘的物體,分別以線16和線18表示,到那些加熱30分鐘,60分鐘,和180分鐘的物體,分別以線20,24和線22表示。
掠射角X光繞射證實加熱30分鐘或更久的樣本反射率增加是由於GeAs2 Te4 的結晶作用。
圖4和圖5分別顯示傳統相改變記憶體材料GeSb2 Te4 和GeAsSbTe4 。這些薄膜結晶形式的相是立方體。這是由於在接近3.5,3.1,2.1和1.7A的d-間隔值,只呈現四個尖峰;這結論就是所謂的"岩鹽"或NaCl。
依據本發明,GeAs2 Te4 和GeAs1.9 Bi0.1 Te4 材料的X光繞射資料分別顯示於圖6和圖7。尖峰的增加個數和立方體材料比起來,證實依據本發明的材料包含六邊形的晶相。我們發現表1顯示的其他成分,其X光繞射資料的尖峰和六邊形的晶相一致。
其他薄膜物體Ge14.3 As28.6 Te57.1 在350℃的空氣中加熱1到10分鐘。這些物體的反射率資料顯示於圖3。增加的反射率很明顯從沉積物體以線26表示,到那些加熱1分鐘,5分鐘,和10分鐘的物體分別以線28,30和線32表示。
將表1中描述的成份重複執行此方法,也有類似的結果。我們希望源自As2 Te3 -GeTe連結成分的樣本,以及其他GeAsTe玻璃在大約下列組成範圍內原子百分比的其他薄膜:5-45% Ge,5-40% As,和45-65% Te以及更進一步包含Al,Si,Ga,Se,In,Sn,Tl,Pb,Bi,P,S,或其組合之組成份也得到類似的結果。
業界熟知此技術者瞭解本發明可作許多變化及改變而並不會脫離本發明之精神及範圍。因而,預期本發明含蓋這些變化以及改變,其屬於下列申請專利範圍以及同等物範圍內。
本發明下列特定實施例之詳細說明單獨地或隨同參考附圖將能夠最佳地瞭解。
圖1為GeAsTe材料組成份圖。
圖2為依據一項實施例材料反射性曲線圖。
圖3為依據一項實施例材料反射性曲線圖。
圖4及圖5為傳統相改變記憶體材料X-光繞射數據之曲線圖。
圖6及圖7為依據本發明相改變記憶體材料X-光繞射數據之曲線圖。

Claims (17)

  1. 一種物件,包含:a.一結晶薄膜,包含具有至少一六邊形的相的一組成份;或者b.一可結晶的組成份,在一結晶形式上可以具有至少一六邊形的相,其中該組成份以原子%計包含:5%至45% Ge;5%至40% As,或As及Sb之組合,其中As原子%大於Sb原子%;以及45%至65% Te,其中該組成份更進一步包含Al、Si、Ga、Se、In、Sn、Tl、Pb、Bi、P、S、或其組合。
  2. 依據申請專利範圍第1項之物件,其中該組成份以原子%計包含:10%至30% Ge;15%至30% As,或As及Sb之組合,其中As原子%大於Sb原子%;以及50%至60% Te。
  3. 依據申請專利範圍第1項之物件,其中Al、Si、Ga、Se、In、Sn、Tl、Pb、Bi、P、S、或其組合之原子%為20%或更少。
  4. 依據申請專利範圍第3項之物件,其中Al、Si、Ga、Se、In、Sn、Tl、Pb、Bi、P、S、或其組合之原子%為15%或更少。
  5. 依據申請專利範圍第1項之物件,其中該薄膜沉積在一基板上。
  6. 依據申請專利範圍第5項之物件,其中該基板包含玻璃、玻璃陶瓷、陶瓷、高分子、金屬、或其組合。
  7. 一種方法,包含以下步驟:提供一薄膜,該薄膜包含一相改變記憶體非結晶材料;以及轉換該相改變記憶體非結晶材料成為一六邊形的結晶相,其中該相改變記憶體非結晶材料以原子%計包含:5%至45% Ge;5%至40% As,或As及Sb之組合,其中As原子%大於Sb原子%;以及45%至65% Te,其中該相改變記憶體非結晶材料更進一步包含Al、Si、Ga、Se、In、Sn、Tl、Pb、Bi、P、S、或其組合。
  8. 依據申請專利範圍第7項之方法,其中轉換該相改變記憶體非結晶材料成為一六邊形的結晶相之步驟包含加熱。
  9. 依據申請專利範圍第7項之方法,其中該組成份以原子%計包含:10%至30% Ge;15%至30% As,或As及Sb之組合,其中As原子%大於Sb原子%;以及50%至60% Te。
  10. 依據申請專利範圍第7項之方法,其中Al、Si、Ga、Se、In、Sn、Tl、Pb、Bi、P、S、或其組合之原子%為20%或更少。
  11. 依據申請專利範圍第7項之方法,其中Al、Si、Ga、Se、In、Sn、Tl、Pb、Bi、P、S、或其組合之原子%為15%或更少。
  12. 一種方法,包含以下步驟:提供一薄膜,該薄膜包含具有一六邊形的結晶相之一相改變記憶體材料;以及轉換該六邊形的結晶相成為一非結晶相,其中該相改變記憶體材料以原子%計包含:5%至45% Ge; 5%至40% As,或As及Sb之組合,其中As原子%大於Sb原子%;以及45%至65% Te,其中該相改變記憶體材料更進一步包含Al、Si、Ga、Se、In、Sn、Tl、Pb、Bi、P、S,或其組合。
  13. 依據申請專利範圍第12項之方法,其中轉換具有該六邊形的結晶相之該相改變記憶體材料成為該非結晶相之步驟包含加熱。
  14. 依據申請專利範圍第12項之方法,其中該相改變記憶體材料以原子%計包含:10%至30% Ge;15%至30% As,或As及Sb之組合,其中As原子%大於Sb原子%;以及50%至60% Te。
  15. 依據申請專利範圍第12項之方法,其中Al、Si、Ga、Se、In、Sn、Tl、Pb、Bi、P、S、或其組合之原子%為20%或更少。
  16. 依據申請專利範圍第15項之方法,其中Al、Si、Ga、Se、In、Sn、Tl、Pb、Bi、P、S、或其組合之原子%為15%或更少。
  17. 一種包含依據申請專利範圍第1項之物件的相改變記憶體裝置。
TW98129195A 2008-08-29 2009-08-28 相變化記憶材料 TWI404633B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9286808P 2008-08-29 2008-08-29
US12/503,156 US8206804B2 (en) 2008-08-29 2009-07-15 Phase change memory materials

Publications (2)

Publication Number Publication Date
TW201026504A TW201026504A (en) 2010-07-16
TWI404633B true TWI404633B (zh) 2013-08-11

Family

ID=41507809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98129195A TWI404633B (zh) 2008-08-29 2009-08-28 相變化記憶材料

Country Status (7)

Country Link
US (1) US8206804B2 (zh)
EP (1) EP2335297A1 (zh)
JP (2) JP2012501511A (zh)
KR (1) KR101715956B1 (zh)
CN (1) CN102138233B (zh)
TW (1) TWI404633B (zh)
WO (1) WO2010024936A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10889887B2 (en) 2016-08-22 2021-01-12 Honeywell International Inc. Chalcogenide sputtering target and method of making the same
CN106601907B (zh) * 2016-12-14 2019-02-22 中国科学院上海微系统与信息技术研究所 一种选通管材料、选通管单元及其制作方法
CN109880451B (zh) * 2019-01-18 2020-12-18 申再军 基于相变的陶瓷包覆材料、墙体保温材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080145702A1 (en) * 2006-12-15 2008-06-19 Samsung Electronics Co., Ltd. Phase change layers having different crystal lattices in single layer, methods of forming the same, phase change memory devices and methods of manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005342A1 (en) * 1989-09-28 1991-04-18 Matsushita Electric Industrial Co., Ltd. Optical data recording medium and method of producing the same
JPH0562239A (ja) * 1991-06-20 1993-03-12 Hitachi Ltd 記録媒体及びこれを用いた情報の記録方法
DE60030493T2 (de) * 1999-05-19 2007-05-03 Mitsubishi Kagaku Media Co., Ltd. Optisches Aufzeichnungsmedium und Aufzeichnungsverfahren
US20020160305A1 (en) * 2001-03-08 2002-10-31 Mitsubishi Chemical Corporation Optical recording medium, method of writing and erasing information using the same, and process of producing the same
JP2003200665A (ja) * 2001-03-08 2003-07-15 Mitsubishi Chemicals Corp 光学的情報記録用媒体及びその記録消去方法並びに製造方法
US6930913B2 (en) 2002-02-20 2005-08-16 Stmicroelectronics S.R.L. Contact structure, phase change memory cell, and manufacturing method thereof with elimination of double contacts
TWI226058B (en) * 2002-09-11 2005-01-01 Tdk Corp Optical recording medium
KR100651657B1 (ko) * 2005-06-29 2006-12-01 한국과학기술연구원 고집적 비휘발성 메모리용 상변화 재료
US8188454B2 (en) * 2005-10-28 2012-05-29 Ovonyx, Inc. Forming a phase change memory with an ovonic threshold switch
JP4550042B2 (ja) * 2006-03-13 2010-09-22 株式会社リコー 光記録媒体
US7626190B2 (en) * 2006-06-02 2009-12-01 Infineon Technologies Ag Memory device, in particular phase change random access memory device with transistor, and method for fabricating a memory device
KR20090002506A (ko) * 2007-06-29 2009-01-09 제일모직주식회사 상변화 메모리 소자 연마용 cmp 슬러리 조성물 및 이를이용한 연마 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080145702A1 (en) * 2006-12-15 2008-06-19 Samsung Electronics Co., Ltd. Phase change layers having different crystal lattices in single layer, methods of forming the same, phase change memory devices and methods of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mehra R. M., "Suitability of Ge-As-Te system for optical data storage", Journal of Optics, May 1996, Vol. 27, No. 3, pages 139-143 *

Also Published As

Publication number Publication date
EP2335297A1 (en) 2011-06-22
US8206804B2 (en) 2012-06-26
JP6053041B2 (ja) 2016-12-27
KR20110059732A (ko) 2011-06-03
JP2012501511A (ja) 2012-01-19
TW201026504A (en) 2010-07-16
JP2015018596A (ja) 2015-01-29
CN102138233A (zh) 2011-07-27
US20100055493A1 (en) 2010-03-04
KR101715956B1 (ko) 2017-03-13
WO2010024936A1 (en) 2010-03-04
CN102138233B (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
US5128099A (en) Congruent state changeable optical memory material and device
Maeda et al. Reversible phase‐change optical data storage in InSbTe alloy films
Njoroge et al. Crystallization kinetics of sputter-deposited amorphous AgInSbTe films
Buller et al. Influence of partial substitution of Te by Se and Ge by Sn on the properties of the Blu-ray phase-change material Ge8Sb2Te11
WO2011030916A1 (ja) 相変化材料および相変化型メモリ素子
Kang et al. Structural transformation of SbxSe100− x thin films for phase change nonvolatile memory applications
Singh et al. Electrical, optical, and thermal properties of Sn-doped phase change material Ge 2 Sb 2 Te 5
TW487682B (en) Rewritable phase-change type optical information recording composition and optical disk containing the same
Hilmi et al. Epitaxial Ge2Sb2Te5 films on Si (111) prepared by pulsed laser deposition
TWI404633B (zh) 相變化記憶材料
Lie et al. Ge2Sb2Te5 thin film doped with silver
KR20080016120A (ko) 상변화 메모리 소자 및 이의 제조방법
US20070148862A1 (en) Phase-change memory layer and method of manufacturing the same and phase-change memory cell
WO2023008432A1 (ja) 相変化材料
Guo et al. Insulator–metal transition and ultrafast crystallization of Ga 40 Sb 60/Sn 15 Sb 85 multiple interfacial nanocomposite films
Yamada Development of materials for third generation optical storage media
Raoux et al. Materials engineering for phase change random access memory
Bilovol et al. Exploring the applicability of amorphous films of system In-Sb-Te as phase change materials
Lee et al. Crystallization behavior of Sb70Te30 and Ag3In5Sb60Te32 chalcogenide materials for optical media applications
Saito et al. Electrical Resistance and Structural Changes on Crystallizaiton Process of Amorphous Ge-Te Thin Films
Moez Study of structure, optical and dielectric properties of nano Sb2Te3 and Sb2Se3 thin films as a new optical recording material
WO2023012930A1 (ja) 相変化材料および相変化型メモリ素子
Shaabana et al. Investigations of crystallization kinetics and phase transformation of 1000 nm of Ge20Sb20Te60 thin film from electrical measurements
Yin et al. The mechanism of texture formation during crystallization process of Ge2Sb2Te5 thin films
Ivanova et al. Structural investigation of tellurium based thin films

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees