TWI404122B - 增進半-極性(Al,In,Ga,B)N藉由金屬有機化學氣相沈積生長之方法 - Google Patents

增進半-極性(Al,In,Ga,B)N藉由金屬有機化學氣相沈積生長之方法 Download PDF

Info

Publication number
TWI404122B
TWI404122B TW095133385A TW95133385A TWI404122B TW I404122 B TWI404122 B TW I404122B TW 095133385 A TW095133385 A TW 095133385A TW 95133385 A TW95133385 A TW 95133385A TW I404122 B TWI404122 B TW I404122B
Authority
TW
Taiwan
Prior art keywords
semi
group iii
iii nitride
polar group
nitride
Prior art date
Application number
TW095133385A
Other languages
English (en)
Other versions
TW200723369A (en
Inventor
Michael Iza
Troy J Baker
Benjamin A Haskell
Steven P Denbaars
Shuji Nakamura
Original Assignee
Univ California
Japan Science & Tech Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ California, Japan Science & Tech Agency filed Critical Univ California
Publication of TW200723369A publication Critical patent/TW200723369A/zh
Application granted granted Critical
Publication of TWI404122B publication Critical patent/TWI404122B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02647Lateral overgrowth

Description

增進半-極性(Al,In,Ga,B)N藉由金屬有機化學氣相沈積生長之方法
本發明係關於半導體材料、方法及裝置,且更特定言之係關於一種經由金屬有機化學氣相沈積增進半-極性(Al、In、Ga、B)N生長的方法。
(注:本申請案在說明書全文內藉由方括號內的一或多個參考數字(例如[Ref.x])引用多種不同公開案及專利。依照此等參考數字可於以下標題為"參考文獻"的部分中找到此等不同公開案及專利之列表。此等公開案及專利中之每一者均以引用的方式併入本文中。)
氮化鎵(GaN)及其中併入鋁及銦所形成的三員及四員化合物(AlGaN、InGaN、AlInGaN)對於製造可見及紫外光電裝置與高功率電子裝置之有效性已良好建立。此等裝置通常使用包括分子束磊晶法(MBE)、金屬有機化學氣相沈積(MOCVD)、氫化物氣相磊晶法(HVPE)的生長技術磊晶性生長。
GaN及其合金絕大多數以六方纖鋅礦晶體結構穩定存在,其中該結構可由兩個(或三個)相對彼此旋轉120°之相當基面軸(a -軸)描述,其所有皆垂直於唯一的c -軸。III族及氮原子佔據沿晶體c-軸交替之c -平面。此等包括於纖鋅礦晶體結構內的對稱元素表明:III族氮化物擁有沿此c -軸的體相自發極化,且該纖鋅礦晶體結構展現壓電極化。
當前用於電子及光電裝置之氮化物技術係採用沿極性c -方向生長的氮化物膜。然而,因強烈壓電及自發極化之存在,基於III族氮化物的光電及電子裝置中的習知c -平面量子井結構遭受非吾人所樂見之量子約束斯塔克效應(QCSE)。沿c -方向的內建式電場導致電子及電洞之空間分離,其接著限制載流子再結合效率、降低振子強度且使發射紅移。
一消除GaN光電技術裝置中自發及壓電極化效應之途徑係於晶體之非-極性平面上生長該裝置。此等平面包含等量的Ga及N原子,且呈電中性。此外,後續非-極性層彼此晶體學上相當,故該晶體沿該生長方向不會被極化。在GaN中,兩個對稱性相當之非-極性平面的此等家族係為{110}家族(共同已知為a -平面)及{100}家族(共同已知為m -平面)。不幸地,儘管University of California的研究人員(本發明之受讓人)之研究取得進展,但非-極性氮化物之生長仍存在挑戰,且尚未在III族氮化物工業中予以廣泛採用。
另一降低或可能消除GaN光電裝置中極化效應之途徑係於晶體之半-極性平面上生長該等裝置。術語半-極性平面可用於指廣泛多種擁有兩個非零hik 米勒指數及一非零l 米勒指數之平面。在c -平面GaN異質磊晶法中,一些常觀察到之半-極性平面之實例包括發現於凹坑中晶面中的{112}、{101}及{103}平面。此等平面亦恰為發明者已用平面膜形式生長之相同平面。纖鋅礦晶體結構中的其他半-極性平面的實例包括但不限於{102}、{201}及{104}。氮化物晶體極化向量既不位於此等平面內亦不垂直於此等平面,而位於相對該平面表面法線傾斜的一些角度處。例如,{101}及{103}平面相對於c -平面分別呈62.98。及32.06°。
除自發極化外,存在於氮化物內之第二極化形式為壓電極化。此壓電極化在材料經歷壓縮或拉伸應力時發生,如可在不同組成(且因此不同晶格常數)的(Al、In、Ga、B)N層生長於氮化物異質結構上時發生。舉例而言,在GaN模板上的薄AlGaN層將具有面內拉伸應力,在GaN模板上的薄InGaN層將具有面內壓縮應力,兩者均因與GaN匹配的晶格所致。因此,對於GaN上的InGaN量子井,壓電極化將指向與InGaN及GaN之自發極化方向相反的方向。對於與GaN晶格匹配的AlGaN層,壓電極化將指向與AlGaN及GaN之自發極化方向相同的方向。
使用半-極性平面超過c -平面氮化物之優點在於將降低總極化。對於特定平面上的特定合金組成可甚至達到零極化。此等情況將於以後的科學論文中予以詳細討論。其重點在於較之c -平面氮化物結構,極化將降低。
因不易獲得GaN塊狀晶體,故不可能簡單地切割晶體以呈現用於後續裝置再生長的表面。通常情況下,GaN膜初始係經異質磊晶性生長,即在提供與GaN之合理晶格匹配的外源性基板上生長。
已證實在圖案化之c -平面取向條紋之側壁上有半-極性GaN平面。Nishizuka等人[Ref.1]已藉由此技術生長出{112}InGaN量子井。其亦證實半-極性平面{112}之內量子效率高於c -平面之內量子效率,其由降低之極化產生。
然而,製造半-極性平面之此方法徹底不同於本發明之方法;前者為磊晶側向過度生長(ELO)技術之人工產物。ELO為用以降低GaN及其他半導體中之缺陷的麻煩加工及生長方法。該方法涉及圖案化遮罩材料(對GaN通常為SiO2 )之條紋。然後,GaN自遮罩之間的開口長出,接著在該遮罩上生長。為形成連續膜,GaN隨後藉由外延生長接合。可由生長參數來控制此等條紋之晶面。若在條紋接合之前停止生長,則可暴露小區域的半-極性平面。此區域可為至多10 μm寬。半-極性基板將不與基板表面平行。此可利用之表面區域太小以至無法將其加工成半-極性LED。此外,在傾斜的晶面上形成裝置結構較之在法平面上形成彼等結構顯著困難。亦及,並非所有氮化物組分均與ELO加工相容;同樣僅GaN之ELO得以廣泛實踐。
自20世紀90年代早期以來[Ref.2,3],在高品質氮化物之生長中已廣泛使用成核、緩衝及/或濕潤層。此技術通常在較厚(1 μm-5 μm)氮化物半導體材料之沈積之前採用多晶態及/或非晶形氮化物半導體材料之一薄層(50-2000)之使用。儘管在c -平面GaN薄膜的異質磊晶法中使用成核層(NL)之優點已良好建立,但成核層如何改良晶體品質之機制尚未良好瞭解。咸信NL提供隨後高品質氮化物材料沈積在其上的晶體位置[Ref.4,5]。稍後之沈積較之無NL沈積之氮化物展示晶體、電學及光學性質中之顯著改良。
儘管已廣泛證明NL對於氮化物薄膜之用途,但其包含僅生長於(0001)或c-平面晶體學方向的氮化物[Ref.6,7]。Ramdani等人[Ref.7]證實用以改良生長於尖晶石基板上的c-平面GaN之晶體品質的複數個緩衝層的使用。此方法相當不同於本發明,在於作者描述與(111)尖晶石有9%晶格失配的c -平面GaN之生長,如[Ref.7]中所述。由於製造裝置品質之c -平面GaN需要複數個緩衝層(共4個),故該方法亦非常麻煩。相反,本發明描述用以改良半-極性GaN之單一緩衝層之使用。
亦已由Akasaki等人[Ref.6]證實c -平面GaN膜的改良。如前討論,因強烈壓電及自發極化之存在,在此特定晶體學方向上之光電及電子裝置遭受非吾人所樂見之QCSE。本發明藉由用以改良半-極性氮化物薄膜之品質的單一緩衝層之使用來將自身區別於以上提及之方法。
則存在對生長其中大區域之(Al、In、Ga、B)N平行於基板表面的半-極性氮化物平面膜的改良方法的需要。本發明滿足此需要。
本發明描述一種允許生長其中大區域之(Al、In、Ga、B)N平行於基板表面的半-極性氮化物平面膜的方法。
具體言之,本發明揭示一種在一基板上經由金屬有機化學氣相沈積(MOCVD)生長一半-極性氮化物半導體薄膜的方法,其中一氮化物成核或緩衝層係於該半-極性氮化物半導體薄膜之生長前,生長於該基板上。該方法可進一步包含在生長該成核或緩衝層之前氮化該基板。
該成核或緩衝層可包含Alx Iny Ga1 x y N,其中X=1且y=0。
該半-極性氮化物半導體薄膜可包含多個具有變化或分等級之組成的層、一含有不同(Al、Ga、In、B)N組成之複數層的異質結構、一或多個不同(Al、Ga、In、B)N組成的層。該半-極性氮化物半導體薄膜可經請如Fe、Si及Mg之元素摻雜。
該半-極性氮化物半導體薄膜之一生長表面係平行於該基板表面,且該生長表面係大於一10微米寬之區域。舉例而言,該半-極性氮化物半導體薄膜可生長至覆蓋一直徑為2吋的基板。
該半-極性氮化物半導體薄膜可用作一用於後續生長之基板,諸如藉由氫化物氣相磊晶法(HVPE)、金屬有機化學氣相沈積(MOCVD)及/或分子束磊晶法(MBE)進行之生長。該半-極性氮化物半導體薄膜具有目前工藝水平下之氮化物半-極性電子裝置所需要之經改良之表面及晶體特徵。
一種裝置可使用該方法製造。
在以下較佳實施例之描述中,涉及形成本發明之部分的附隨圖式,且其中展示以實例說明的可實踐本發明的具體實施例。須瞭解,在不背離本發明之範疇下可利用其他實施例且可進行結構變化。
概述
本發明描述一種在<011>方向上具有斜切(miscut)之{100}MgAl2 O4 (尖晶石)基板上經由MOCVD生長裝置品質之半-極性平面{101}氮化物半導體薄膜的方法。半-極性氮化物半導體(如GaN之{101}及{103})之生長提供降低纖鋅礦結構III族氮化物裝置結構中極化效應之手段。術語氮化物係指具有式Ga n Al x In y B z N之(Ga、Al、In、B)N半導體之任何合金組分,其中0 n 1,0 x 1,0 y 1,0 z 1,且nxyz =1。
當前之氮化物裝置係在極性[0001]c -方向上生長,其導致垂直裝置中沿主傳導方向發生電荷分離。所得極化場對目前工藝水平下之光電裝置之效能有害。沿半-極性方向之此等裝置之生長藉由降低沿傳導方向之內建式電場可顯著地改良裝置之效能。本發明在藉由金屬有機化學氣相沈積生長時提供增進可獲得之{101}III族氮化物膜品質的方法。
技術描述
本發明係一種藉由緩衝層或晶核層之使用增進半-極性氮化物膜之生長的方法。此之實例為{101}GaN膜。在此實施例中,將<011>方向上具有斜切之{100}MgAl2 O4 尖晶石基板用於該生長製程。為獲得平面半-極性GaN,關鍵為在GaN生長之前使用具有高鋁組分之Alx Iny Ga1 x 1 N成核層。
此等膜係使用市售MOCVD系統生長。{101}GaN生長參數之一般要點為壓力在10托與1000托之間及溫度在400℃與1400℃之間。壓力與溫度之此變更為使用適宜基板生長半-極性GaN之穩定性的指示。不管反應器之類型,其磊晶關係及條件應保持正確。然而,生長此等平面之反應器條件可根據個別反應器及生長方法(例如HVPE、MOCVD及MBE)而變更。
製程步驟
圖1為根據以下段落中所描述之本發明之較佳實施例,說明在尖晶石基板上生長的半-極性氮化鎵(GaN)薄膜之MOCVD製程之步驟的流程圖。
步驟10代表裝載基板至MOCVD反應器之步驟。對於{101}GaN之生長,使用在<011>方向上具有斜切的(100)尖晶石基板。
步驟12代表加熱基板之步驟。打開反應器的加熱器,且在一定條件下漸漸升高至1150℃之設定點溫度以促進基板表面之氮化作用。通常,在大氣壓下,氮及/或氫及/或氨在基板上流動。
步驟14代表在基板上沈積/生長單一成核或緩衝層之步驟。到達設定點溫度之後,將氨流量設定於0.1 slpm至3.0 slpm之間。1分鐘至20分鐘後,隨後將反應器之設定點溫度升至1190℃,將反應器之壓力降至76托,且將0 sccm至3 sccm之三甲基鎵(TMGa)及/或20 sccm之三甲基鋁(TMAl)及/或120 sccm之三甲基銦(TMIn)引入至反應器內以引發基板上的Alx Iny Ga1 x y N成核或緩衝層之生長。1分鐘至40分鐘後,Alx Iny Ga1 x y N成核或緩衝層達至所要厚度。Alx Iny Ga1 x y N成核或緩衝層之x與y取值範圍:0 x 1,0 y 1。成核或緩衝層之典型厚度在20 nm至600 nm範圍內,最佳厚度為大約200 nm。
步驟16代表沈積/生長半-極性GaN膜之步驟。此時,關閉TMAl流且將TMGa升至9.5 sccm,歷時大約1小時至4小時之GaN生長。
步驟18代表冷卻基板之步驟。在達成所要GaN厚度之後,使TMGa流中斷且將反應器冷卻同時使氨或氮流動以保護GaN膜。
步驟20展示最終結果為半-極性(Al、In、Ga、B)N膜。此半-極性氮化物半導體薄膜可用作一用於後續生長之基板,諸如藉由氫化物氣相磊晶法(HVPE)、金屬有機化學氣相沈積(MOCVD)及/或分子束磊晶法(MBE)進行之生長。
一種裝置可使用圖1之方法製造。
較佳實施例上之可能修改與變更
本發明之覆蓋範疇超出所引用之特定實例。圖1代表的方法適用於在任何半-極性平面上之所有半導體氮化物。舉例而言,在步驟16中,吾人可在斜切(100)尖晶石基板上生長{101}AlN、InN、AlGaN、InGaN或AlInN。另一實例為在步驟16中,若使用諸如{104}4H-SiC之適當基板,則吾人可生長{102}氮化物,或吾人可在斜切m -平面Al2 O3 基板上生長半-極性平面{112}。此等實例及其它可能性仍得到平面半-極性膜之所有益處。圖1之方法覆蓋藉由使用步驟14中氮化物層或成核層生成半導體半-極性氮化物膜之任何生長技術。
反應器條件視反應器類型及設計而變更。以上圖1中所述之生長僅為已發現半-極性GaN之生長可用條件的一組條件的描述。亦已發現此等膜可在很寬的壓力、溫度、氣流等參數空間內生長,其所有將生成平面半-極性氮化物膜。
存在可在圖1之生長製程中變更的其他步驟。已發現氮化該基板改良一些膜的表面形態,且確定用於其他膜生長的實際平面。然而,這對於任何特定生長技術可為或可不為必需步驟。
以上圖1中所述之生長包含在AlInGaN成核層上GaN膜之生長。然而,在步驟16中任何半-極性氮化物半導體薄膜可生長於步驟14中之成核層上。該半-極性氮化物半導體薄膜包含多個具有變化或分等級之組成的層。大部分氮化物裝置包含含有不同(Al、Ga、In、B)N組分之複數層的異質結構。圖1之方法可在步驟16期間用於任何氮化物合金組分及任何數量之層或其組合的生長。舉例而言,該半-極性氮化物半導體薄膜可含有一或多個不同(Al、Ga、In、B)N組分的層。諸如Fe、Si及Mg之摻雜物常併入至步驟16之氮化物層中。此等及未具體列舉的其他摻雜物之併入與本發明之實踐相容。
優點及改良
現存之實踐為以垂直於表面的c -平面生長GaN。此平面具有對裝置效能有害之自發極化及壓電極化。半-極性氮化物膜超過c -平面氮化物膜之優點在於降低某些裝置之極化作用及相應增加其內量子效率。
非-極性平面可用以完全消除裝置中之極化作用。然而,此等膜十分難以生長,故非-極性氮化物裝置目前尚未得以生產。半-極性氮化物超過非-極性氮化物之優點在於生長之便利性。已發現半-極性平面具有其中其將生長之大參數空間。舉例而言,非-極性平面在大氣壓下將不生長,但在實驗上已證實半-極性膜可在62.5托至760托範圍內生長,但可能具有甚至較其更寬之範圍。
使用圖1之方法生長之平面半-極性膜超過ELO側壁平面半-極性膜之優點在於大表面區域可被加工為LED或其它裝置。另一優點在於使用圖1之方法生長之表面平行於基板表面,此不同於ELO側壁半-極性平面。舉例而言,較之先前對半-極性氮化物之生長所證實的數微米寬度(至多10微米寬度),樣品常生長至覆蓋直徑2吋之基板。
已展示在步驟16中之GaN生長之前使用在圖1之步驟14中形成之具有高鋁組分的Alx Iny Ga1 x y N(諸如x=1且y=0)成核層顯著地改良半-極性GaN薄膜之晶體品質。此在圖2(a)及圖2(b)之光學顯微照片中顯而易見。此等光學顯微照片展示較佳實施例中所述藉由併入緩衝層技術在表面品質及膜晶體品質中之驚人改良。在使用Alx Iny Ga1 x y N成核層(其中x=0且y=0)(圖2(a))的情況下,該氮化物膜生長實質上為多晶生長,且不存在單晶生長取向。因此,該膜具有在多個方向上定向的大量小GaN晶體。此品質之膜不能用於電子裝置之製造。另一方面,Alx Iny Ga1 x y N成核層(其中x=1且y=0)(圖2(b))之使用展示晶體品質中之實質改良。使用Alx Iny Ga1 x y N緩衝層(其中x=1且y=0)之半-極性GaN薄膜擁有目前工藝水平下之氮化物半-極性電子裝置所需之必需表面與晶體特徵。此等特徵為:膜中存在之平面晶體表面、小表面波動及少量晶體學缺陷。
圖3(a)與圖3(b)中分別展示在無成核層情況下藉由HVPE生長及在具有Alx Iny Ga1 x y N成核層(其中x=1且y=0)情況下藉由MOCVD生長之GaN膜的原子力顯微術(AFM)照片(請注意各AFM照片右側之不同比例尺大小)。典型的照片均方根(RMS)值(其可給出薄膜之奈米級表面粗糙度之指示)對HVPE生長之{101}GaN膜之5x5 μm正方形區域為約7 nm。另一方面,對在具有Alx Iny Ga1 x y N緩衝層(其中x=1且y=0)情況下藉由MOCVD生長之GaN膜之5x5 μm正方形區域之典型值為約4 nm。此指出如本發明之較佳實施例中所述藉由使用Alx Iny Ga1 x y N緩衝層(其中x=1且y=0)藉由MOCVD生長的膜展示經改良之表面品質,其在高品質半導體氮化物裝置之製造中必需。
圖4展示對軸上反射之ω-2θ掃描之x-射線繞射(XRD)。此掃描核實使用Alx Iny Ga1 x y N成核層(其中x=1且y=0)藉由MOCVD生長的膜(如本發明之較佳實施例中所述)事實上為{101}半-極性GaN。為評估該等膜之GaN微結構品質而執行對朝向[0002]或c -軸搖動之GaN{101}的XRDω 掃描。對在無緩衝層之情況下之HVPE生長的GaN而言,朝向[0002]搖動之GaN{101}之全寬半最大值(FWHM)(其為薄膜微結構品質之指標)通常為0.7度。另一方面,使用Alx Iny Ga1 x y N成核層(其中x=1且y=0)藉由MOCVD生長之{101}GaN的值為0.47度。此等值指出如本發明之較佳實施例所述使用Alx Iny Ga1 x y N成核層(其中x=1且y=0)藉由MOCVD生長之半-極性膜之微結構品質中的實質改良。
參考文獻
以下公開案以引用的方式併入本文中:[1]Nishizuka,K.,Applied Physics Letters,第85卷第15期,2004年10月11日。此論文為ELO材料之{112}GaN側壁之研究。
[2]H.Amano,N.Sawaki,I.Akasaki及Y.Toyoda,Applied Physics Letters第48卷(1986)第353頁。此論文描述AlN緩衝層對c-平面GaN晶體品質之改良的用途。
[3]S.Nakamura,Japanese Journal of Applied Physics第30卷,第10A期,1991年10月,第L1705-L1707頁。此論文描述GaN緩衝層對c-平面GaN晶體品質之改良的用途。
[4]D.D.Koleske,M.E.Coltrin,K.C.Cross,C.C.Mitchell,A.A.Allerman,Journal of Crystal Growth第273卷(2004)第86-99頁。此論文描述在藍寶石基板上之c-平面GaN之GaN緩衝層形態演化之效應。
[5]B.Moran,F.Wu,A.E.Romanov,U.K.Mishra,S.P.Denbaars,J.S.Speck,Journal of Crystal Growth第273卷(2004)第38-47頁。此論文描述在碳化矽基板上之c-平面GaN之AlN緩衝層形態演化之效應。
[6]美國專利第4,855,249號,1989年8月8日頒予Akasaki等人,標題為Process for growing III-Vcompound semiconductors on sapphire using a buffer layer。
[7]美國專利第5,741,724號,1998年4月21日頒予Ramdani等人,標題為Method of growing gallium nitride on a spinel substrate。
結論
此部分總結本發明之較佳實施例之描述。為達成說明及描述之目的已呈現前述對本發明之一或多個實施例之描述。不希望詳盡論證或限制本發明於所揭示之精確形式。依據以上教示,在基本上不偏離本發明本質情況下可能有多種修改及變更。希望本發明之範疇不由此詳述限制,而由附隨至其的申請專利範圍限制。
10...步驟
12...步驟
14...步驟
16...步驟
18...步驟
20...步驟
圖1為本發明之較佳實施例之流程圖。
圖2(a)及圖2(b)為生長於{100}尖晶石上之GaN之表面的顯微照片。在圖2(a)中,GaN係生長於Alx Iny Ga1 x y N成核層上,其中x=0且y=0,而在圖2(b)中,GaN係生長於Alx Iny Ga1 x y N成核層上,其中x=1且y=0。
圖3(a)及圖3(b)為生長於{100}尖晶石上的GaN之表面的原子力顯微術(AFM)照片。在圖3(a)中,GaN藉由HVPE在無成核層的情況下生長,而在圖3(b)中,GaN藉由MOCVD生長於Alx Iny Ga1 x y N成核層上,其中x=1且y=0。
圖4為藉由MOCVD以Alx Iny Ga1 x y N(其中x=1且y=0)生長的半-極性GaN層的ω-2θ(400)x-射線繞射(XRD)掃描。
10...步驟
12...步驟
14...步驟
16...步驟
18...步驟
20...步驟

Claims (34)

  1. 一種在一基板上生長一半-極性氮化物半導體膜之方法,其包含:(a)在一基板上、上方或覆蓋生長一氮化物成核或緩衝層;及(b)在該氮化物成核或緩衝層上、上方或覆蓋生長一半-極性III族氮化物半導體膜,其中該半-極性III族氮化物半導體膜之一生長表面係平行於該基板之表面,且其中該半-極性氮化物半導體膜在5μm x 5 μm區域上之表面粗糙度係小於7 nm。
  2. 如請求項1之方法,其中該氮化物成核或緩衝層包含Alx Iny Ga1-x-y N,其中x=1且y=0。
  3. 如請求項1之方法,其中該半-極性III族氮化物半導體膜包含多個具有變化或分等級之組成的層。
  4. 如請求項1之方法,其中該半-極性III族氮化物半導體膜含有一或多個具有不同(Al、Ga、In、B)N組成的層。
  5. 如請求項1之方法,其中該半-極性III族氮化物半導體膜包含一含有具不同(Al、Ga、In、B)N組成之複數層的異質結構。
  6. 如請求項1之方法,其中該半-極性III族氮化物半導體膜係經基本上由Fe、Si及Mg組成之元素摻雜。
  7. 如請求項1之方法,且該生長表面係大於一10微米寬之區域。
  8. 如請求項1之方法,其中該半-極性III族氮化物半導體膜 係生長至覆蓋一直徑2吋之基板。
  9. 如請求項1之方法,其進一步包含在生長該成核或緩衝層之前氮化該基板。
  10. 如請求項1之方法,其中該半-極性III族氮化物半導體膜係用作一用於後續生長之模板或基板,該後續生長藉由氫化物氣相磊晶法(HVPE)、金屬有機化學氣相沈積(MOCVD)或分子束磊晶法(MBE)進行。
  11. 一種半導體裝置,其係使用如請求項1之方法製造。
  12. 如請求項1之方法,其中該半-極性III族氮化物半導體膜之微結構品質係以具有不高於0.43度藉由x-射線繞射測量之全寬半最大值(FWHM)的搖動曲線為特徵。
  13. 如請求項1之方法,進一步包含將電子或光電裝置製造在生長表面上。
  14. 如請求項1之方法,其中該生長表面係平面的且該半-極性III族氮化物半導體膜為氮化鎵。
  15. 如請求項1之方法,其中該半-極性III族氮化物半導體膜為{10-11}III族氮化物。
  16. 如請求項1之方法,其中該半-極性III族氮化物半導體膜為{10-12}III族氮化物。
  17. 如請求項1之方法,其中該半-極性III族氮化物半導體膜為{10-14}III族氮化物。
  18. 如請求項1之方法,其中該半-極性III族氮化物半導體膜為{10-13}III族氮化物。
  19. 如請求項1之方法,其中該半-極性III族氮化物半導體膜 為{20-21}III族氮化物。
  20. 如請求項1之方法,其中該半-極性III族氮化物半導體膜為{11-22}III族氮化物。
  21. 如請求項1之方法,其中該氮化物成核或緩衝層係含鋁氮化物或Alx Iny Ga1-x-y N之成核或緩衝層,其中X>0且0y1。
  22. 如請求項1之方法,其中該表面粗糙度係不大於4 nm。
  23. 如請求項1之方法,其中在步驟(a)及(b)之生長係經由金屬有機化學氣相沈積(MOCVD)。
  24. 一種半導體裝置結構,其包含:在一基板上、上方或覆蓋之氮化物成核或緩衝層;及在該氮化物成核或緩衝層上、上方或覆蓋之一半-極性III族氮化物膜,其中該半-極性III族氮化物膜之一生長表面係平行於該基板之表面,且該半-極性III族氮化物膜之一或多個特徵為:該半-極性III族氮化物膜在5μm x 5 μm區域上之表面粗糙度係小於7 nm;且該半-極性III族氮化物膜之微結構品質係以具有不高於0.43度藉由x-射線繞射測量之全寬半最大值(FWHM)的搖動曲線為特徵。
  25. 如請求項24之裝置結構,其中該半-極性III族氮化物膜為平面氮化鎵。
  26. 如請求項25之裝置結構,其中該半-極性III族氮化物膜為{10-11}III族氮化物。
  27. 如請求項25之裝置結構,其中該半-極性III族氮化物膜為{10-12}III族氮化物。
  28. 如請求項25之裝置結構,其中該半-極性III族氮化物膜為{10-14}III族氮化物。
  29. 如請求項25之裝置結構,其中該半-極性III族氮化物膜為{10-13}III族氮化物。
  30. 如請求項25之裝置結構,其中該半-極性III族氮化物膜為{20-21}III族氮化物。
  31. 如請求項25之裝置結構,其中該半-極性III族氮化物膜為{11-22}III族氮化物。
  32. 如請求項24之裝置結構,其中該氮化物成核或緩衝層係含鋁氮化物或Alx Iny Ga1-x-y N之成核或緩衝層,其中X>0且0y1。
  33. 如請求項24之裝置結構,進一步包含在該生長表面上、上方或覆蓋之光電或電子裝置結構。
  34. 如請求項24之裝置結構,其中該表面粗糙度係不大於4 nm。
TW095133385A 2005-09-09 2006-09-08 增進半-極性(Al,In,Ga,B)N藉由金屬有機化學氣相沈積生長之方法 TWI404122B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US71549105P 2005-09-09 2005-09-09

Publications (2)

Publication Number Publication Date
TW200723369A TW200723369A (en) 2007-06-16
TWI404122B true TWI404122B (zh) 2013-08-01

Family

ID=37836513

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095133385A TWI404122B (zh) 2005-09-09 2006-09-08 增進半-極性(Al,In,Ga,B)N藉由金屬有機化學氣相沈積生長之方法

Country Status (6)

Country Link
US (1) US7575947B2 (zh)
EP (1) EP1935014A4 (zh)
JP (2) JP5270348B2 (zh)
KR (1) KR101347848B1 (zh)
TW (1) TWI404122B (zh)
WO (1) WO2007030709A2 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130119B2 (en) * 2006-12-11 2015-09-08 The Regents Of The University Of California Non-polar and semi-polar light emitting devices
TWI453813B (zh) * 2005-03-10 2014-09-21 Univ California 用於生長平坦半極性的氮化鎵之技術
JP5743127B2 (ja) * 2005-06-01 2015-07-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 半極性(Ga,Al,In,B)N薄膜、ヘテロ構造およびデバイスの成長と作製のための方法及び装置
WO2007098215A2 (en) 2006-02-17 2007-08-30 The Regents Of The University Of California Method for growth of semipolar (al,in,ga,b)n optoelectronic devices
JP2010512661A (ja) 2006-12-11 2010-04-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高特性無極性iii族窒化物光デバイスの有機金属化学気相成長法(mocvd)による成長
US8673074B2 (en) * 2008-07-16 2014-03-18 Ostendo Technologies, Inc. Growth of planar non-polar {1 -1 0 0} M-plane and semi-polar {1 1 -2 2} gallium nitride with hydride vapor phase epitaxy (HVPE)
KR100990645B1 (ko) 2008-12-15 2010-10-29 고려대학교 산학협력단 질화물 단결정의 제조 방법 및 이를 이용한 반도체 발광소자의 제조 방법
US8629065B2 (en) * 2009-11-06 2014-01-14 Ostendo Technologies, Inc. Growth of planar non-polar {10-10} M-plane gallium nitride with hydride vapor phase epitaxy (HVPE)
WO2011072014A1 (en) * 2009-12-08 2011-06-16 Lehigh Univeristy THERMOELECTRIC MATERIALS BASED ON SINGLE CRYSTAL AlInN-GaN GROWN BY METALORGANIC VAPOR PHASE EPITAXY
US8772758B2 (en) * 2011-05-13 2014-07-08 The Regents Of The University Of California Suppression of inclined defect formation and increase in critical thickness by silicon doping on non-c-plane (Al,Ga,In)N
US8698163B2 (en) * 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
WO2013157014A1 (en) 2012-04-20 2013-10-24 Tata Institute Of Fundamental Research Group iii-nitride semiconducting material and a method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741724A (en) * 1996-12-27 1998-04-21 Motorola Method of growing gallium nitride on a spinel substrate
US20040251471A1 (en) * 2001-10-26 2004-12-16 Robert Dwilinski Light emitting element structure using nitride bulk single crystal layer

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119196A (ja) * 1985-11-18 1987-05-30 Univ Nagoya 化合物半導体の成長方法
JP2704181B2 (ja) * 1989-02-13 1998-01-26 日本電信電話株式会社 化合物半導体単結晶薄膜の成長方法
CA2258080C (en) * 1997-04-11 2007-06-05 Nichia Chemical Industries, Ltd. Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device
JP3119200B2 (ja) * 1997-06-09 2000-12-18 日本電気株式会社 窒化物系化合物半導体の結晶成長方法および窒化ガリウム系発光素子
US6849472B2 (en) * 1997-09-30 2005-02-01 Lumileds Lighting U.S., Llc Nitride semiconductor device with reduced polarization fields
US6218280B1 (en) * 1998-06-18 2001-04-17 University Of Florida Method and apparatus for producing group-III nitrides
JP3592553B2 (ja) * 1998-10-15 2004-11-24 株式会社東芝 窒化ガリウム系半導体装置
WO2000033388A1 (en) * 1998-11-24 2000-06-08 Massachusetts Institute Of Technology METHOD OF PRODUCING DEVICE QUALITY (Al)InGaP ALLOYS ON LATTICE-MISMATCHED SUBSTRATES
KR100506077B1 (ko) * 2000-04-15 2005-08-04 삼성전기주식회사 유기금속기상화학증착법에 의한 고품위 ⅲ-족 질화물 박막성장 방법
US6599362B2 (en) * 2001-01-03 2003-07-29 Sandia Corporation Cantilever epitaxial process
US7501023B2 (en) * 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US7105865B2 (en) * 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
JP3768943B2 (ja) * 2001-09-28 2006-04-19 日本碍子株式会社 Iii族窒化物エピタキシャル基板、iii族窒化物素子用エピタキシャル基板及びiii族窒化物素子
JP4031628B2 (ja) * 2001-10-03 2008-01-09 松下電器産業株式会社 半導体多層膜結晶、およびそれを用いた発光素子、ならびに当該半導体多層膜結晶の成長方法
US6847057B1 (en) * 2003-08-01 2005-01-25 Lumileds Lighting U.S., Llc Semiconductor light emitting devices
US7432142B2 (en) * 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
TWI453813B (zh) * 2005-03-10 2014-09-21 Univ California 用於生長平坦半極性的氮化鎵之技術
JP5743127B2 (ja) * 2005-06-01 2015-07-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 半極性(Ga,Al,In,B)N薄膜、ヘテロ構造およびデバイスの成長と作製のための方法及び装置
WO2007009035A2 (en) * 2005-07-13 2007-01-18 The Regents Of The University Of California Lateral growth method for defect reduction of semipolar nitride films

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741724A (en) * 1996-12-27 1998-04-21 Motorola Method of growing gallium nitride on a spinel substrate
US20040251471A1 (en) * 2001-10-26 2004-12-16 Robert Dwilinski Light emitting element structure using nitride bulk single crystal layer

Also Published As

Publication number Publication date
EP1935014A4 (en) 2010-09-08
WO2007030709A3 (en) 2009-04-23
US20090184342A1 (en) 2009-07-23
JP2012209586A (ja) 2012-10-25
US7575947B2 (en) 2009-08-18
JP2009508336A (ja) 2009-02-26
KR20080063766A (ko) 2008-07-07
EP1935014A2 (en) 2008-06-25
WO2007030709A2 (en) 2007-03-15
TW200723369A (en) 2007-06-16
JP5270348B2 (ja) 2013-08-21
JP5645887B2 (ja) 2014-12-24
KR101347848B1 (ko) 2014-01-06

Similar Documents

Publication Publication Date Title
TWI404122B (zh) 增進半-極性(Al,In,Ga,B)N藉由金屬有機化學氣相沈積生長之方法
JP5838523B2 (ja) 半極性(Al,In,Ga,B)NまたはIII族窒化物の結晶
US7687293B2 (en) Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
US7976630B2 (en) Large-area seed for ammonothermal growth of bulk gallium nitride and method of manufacture
TWI453813B (zh) 用於生長平坦半極性的氮化鎵之技術
US8435879B2 (en) Method for making group III nitride articles
US20100075107A1 (en) Hexagonal wurtzite single crystal and hexagonal wurtzite single crystal substrate
US20120161287A1 (en) METHOD FOR ENHANCING GROWTH OF SEMI-POLAR (Al,In,Ga,B)N VIA METALORGANIC CHEMICAL VAPOR DEPOSITION
US20140183579A1 (en) Miscut semipolar optoelectronic device