TWI401712B - 用於磁鐵保護之封阻系統 - Google Patents

用於磁鐵保護之封阻系統 Download PDF

Info

Publication number
TWI401712B
TWI401712B TW096133288A TW96133288A TWI401712B TW I401712 B TWI401712 B TW I401712B TW 096133288 A TW096133288 A TW 096133288A TW 96133288 A TW96133288 A TW 96133288A TW I401712 B TWI401712 B TW I401712B
Authority
TW
Taiwan
Prior art keywords
coil
superconducting
magnetic field
superconducting coil
coils
Prior art date
Application number
TW096133288A
Other languages
English (en)
Other versions
TW200834618A (en
Inventor
Leslie Bromberg
Joseph V Minervini
Timothy Antaya
Joel Henry Schultz
Leonard Myatt
Original Assignee
Massachusetts Inst Technology
Mevion Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Inst Technology, Mevion Medical Systems Inc filed Critical Massachusetts Inst Technology
Publication of TW200834618A publication Critical patent/TW200834618A/zh
Application granted granted Critical
Publication of TWI401712B publication Critical patent/TWI401712B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • General Induction Heating (AREA)

Description

用於磁鐵保護之封阻系統
此發明係關於一種用以保護超導磁鐵的封阻系統。高性能超導磁鐵以具有零或接近零電阻率的高電流密度運轉。高電流密度及零或接近零電阻會最小化磁鐵繞組之大小,從而允許更小型的磁鐵及增強的磁場。
若溫度、磁場或電流在超導體之某區域中為太高,則該超導體會失去其超導特性且變為具電阻性或正常。通常而言,正常狀態中的超導體比銅更具電阻性。電流會在通常分流超導體的高導電率金屬(通常為銅或鋁)中流動。電流由於超導材料失去其超導能力而在正常導電材料區域中流動的繞組之區域係稱為封阻區或正常區。在正常區中,繞組係電阻性且由流經該區的電流產生熱。在許多實例中,此熱可以產生局部導體損壞。儘管存在分流超導繞組中的超導體之正常導電矩陣(例如銅或鋁),但是若亦使封阻區局部化,則高性能磁鐵可以在此正常導電材料中產生大量熱。為預防由於繞組中的強局部熱而破壞磁鐵,有必要藉由下列方式從磁鐵迅速地移除儲存磁能量:傾印外部電阻器或外部電能量儲存單元中的儲存磁能量,或相對較均勻地將能量沉積在磁鐵之體積內以最小化初始正常區之峰值溫度。
高性能磁鐵的特徵為較高電流、電流密度、以及比其他超導磁鐵高的峰值磁場、力以及儲存能量。高性能磁鐵由於所需要的高電壓而難以足夠快地從磁鐵移除能量。高電壓係需要對磁鐵迅速地放電之結果。更需要消散磁鐵繞組本身之體積之一實質部分中的磁能量。用以達到導體中的超導至正常轉變所需要的每單元體積的熱能量取決於磁鐵之性質。與液態He進行良好直接接觸的系統需要約1 J/cm3 的高能量輸入。然而,在缺少液態冷凍劑情況下藉由至一冷錨(例如低溫冷卻器)的直接熱傳導加以冷卻的乾式磁鐵需要每單位體積甚少的熱能量,通常少於100 mJ/cm3
超導繞組可在該繞組上具有磁場之分佈,因此某些區域具有大穩定性邊緣而且其他區域沒有。在此類實例中,繞組之一區段可變為正常,而其餘部分保持超導,且具有僅加熱磁鐵之一小部分的結果。在此類實例中可橫跨繞組發展大溫差,從而由於自加熱區域對未加熱區域之熱差膨脹的大機械應力之累積而產生損壞。在此實例中,有必要使磁鐵之冷穩定區域迅速地變為正常以避免亦可以損壞繞組的此類應力。
為達到磁鐵體積之實質部分中的儲存磁能量之內部消散(傾印),有必要在與電流的自然衰減時間相比時為較少之時間內主動地將導體繞組之大部分的溫度提升至電流共用溫度(電流開始在正常導電材料中流動情況下的溫度)以上。加熱使得超導體變為正常,從而迫使電流偏移至分流超導體的正常導電材料,並產生主體繞組中的實質熱消散及另外的總溫度增加。程序在繞組體積中產生更均勻的溫度,並且在已對磁鐵進行放電之後亦減少繞組的峰值溫度。
過去藉由使用局部焦耳(Joule)加熱器來完成導體繞組的加熱,該加熱係主動地獲得能量供給(藉由使用外部電源供應)或內部產生(藉由使用內部迴路,其係感應性地與主要磁場耦合,藉由主要磁鐵中的電流減少加以獲得能量供給或由內部變壓器所驅動)。
在低性能磁鐵中,線圈繞組包裝之表面的加熱由於封阻所允許的相對較長時間而足夠。透過導體層及絕緣體的熱擴散係高到足以允許以相對於線圈傾印時間標度的較短時間標度來加熱線圈斷面之實質部分。
在高性能磁鐵中,為最小化使線圈及/或加熱元件短路之可能性,將焦耳加熱元件定位在線圈繞組包裝之表面上,通常在加熱元件並非在直接機械負載路徑中的位置處。在此等高性能磁鐵中,允許傾印儲存能量之時間係足夠少,因此其通常不可能單獨地取決於橫跨導體層或沿導體的導熱率以提供線圈繞組之相對均勻的溫度。
已熟知導體繞組在處於超導狀態中時可藉由使用交流損失(由於交流磁場的出現而起的損失)來得以加熱。若干交流損失機制已知會出現在超導繞組中,包含渦電流損失、磁滯損失及耦合損失。渦電流損失係由透過正常導電材料(非超導部分)的磁場擴散所引起。磁滯損失係由於超導材料中的磁化效應,因為交流磁場會滲透超導體之表面。耦合損失係由於透過超導體/正常導電材料介面的損失,其係由於透過絞狀超導體之磁通連結。
藉由主要磁場之小漣波振盪,使用交流損失來加熱線圈的問題係,改變磁場所需要的功率係很高。若IDC 係產生主要磁場的電流,並且IAC 係交流電流,則交流磁場中的能量與主要磁場中的能量之比率係約IAC /IDC ,而且此比例會產生外部驅動式交流磁場中所需的很高功率。
此發明之另一目的係透過非導電程序來加熱超導磁鐵之導體的實質部分而不需要大的無效功率來保護磁鐵免遭破壞。
在本發明之一方面,用於磁鐵保護的封阻系統包含一直流超導線圈及一交流線圈系統,其係定位成接近於該直流超導線圈以產生交流磁場。交流磁場加熱直流線圈以引起直流超導線圈之實質部分上的超導至正常轉變。在一較佳具體實施例中,配置直流超導線圈及交流線圈系統以便直流超導線圈與交流線圈之間的互感係接近於零。直流超導線圈及交流線圈系統的磁場可彼此正交以提供低互感。唯一的要求係,交流磁場與主要線圈適當地耦合以產生實質交流損失(由於磁滯、耦合或渦電流加熱)。
交流線圈系統可包含複數個線圈。在一項具體實施例中,交流線圈系統係藉由交錯該複數個線圈之間的迴路或相等數目的迴路集來纏繞以減少在每一個線圈中產生的內部電壓。交流線圈系統中的每一個線圈可接近相對於直流超導線圈的零互感。或者,總交流線圈系統相對於直流線圈而接近於零互感,但是該交流線圈系統之複數個線圈之每一個分離線圈具有相對於直流超導線圈的一有限互感。一較佳具體實施例包含交流線圈系統與直流超導線圈之間的高電壓絕緣體。
在另一具體實施例中,該系統包含包圍直流超導線圈的導電熱毯。熱毯係用於乾式磁鐵(其缺乏液態冷卻劑),作為將自較差冷卻線圈區段的熱有效地傳導至冷卻電路之構件。熱毯包含間隙,其用以預防熱毯中的感應電流遮蔽藉由自直流超導線圈之交流線圈系統所產生的交流磁場。
交流磁場之適當頻率係在100 Hz至10 kHz之範圍內。交流磁場的適當量值係在50至300G之範圍內。
本發明之目的係減少驅動交流磁場所需要的無效功率,該等交流磁場產生超導繞組的足夠加熱,因此在主要超導線圈之大部分中於短時間間隔內產生封阻。
可根據磁場或互感來解釋以下說明的本發明之具體實施例。為減少用以加熱主要直流超導磁鐵之交流磁場中需要的能量,使交流磁場定向,在某些具體實施列中垂直於穩定狀態的主要磁場。接著藉由設計,交流磁場中的能量與主要直流磁場中的能量之比率依比例調整為(IAC /ISC )2 ,其中IAC 及ISC 分別係交流線圈及主要超導線圈的電流。因為比率IAC /ISC 係甚小於1,所以此組態中的能量係甚小於習知感應性加熱器中的能量,在該等習知導電加熱器中將主要磁場中的漣波振盪用以建立交流磁場,並且能量比例為IAC /ISC ,如以上所示。根據互感,若交流封阻感應線圈與直流線圈之間的互感係M,並且LAC 及LSC 分別係交流封阻感應線圈及主要超導線圈自感應,則交流磁場能量與直流主要磁場能量之比率係由下列運算式所提供:(MIAC ISC +LAC IAC 2 )/LSC ISC 2
此比率在M並非零的情況下係接近MIAC /LSC ISC ,但在M=0的情況下係LAC IAC 2 /LSC ISC 2 ~(IAC /ISC )2 。因此,在M係零的情況下,可以使無效能量與穩定狀態主要磁場能量之間的比率甚小,從而減小啟動磁鐵封阻所需要的功率。
自主要超導線圈集的直流磁場以及自封阻感應線圈集的交流磁場係正交之事實具有電性質,即兩個線圈線集之間的互感係0。在兩個線圈集之間不存在淨磁通連結,而且為一個集供電會避免在其加以相互耦合情況下所需要的無效功率。此準則接著可用以產生線圈幾何結構,其可用以在使用很小無效功率的同時封阻一超導磁鐵。
在以如圖1所示的螺線繞組之形狀的主要直流超導線圈8(其在徑向及垂直方向上產生磁場(針對主要超導線圈,其中軸10在垂直方向上對準))之情況下,在環形方向上(在與以螺線繞組之形狀的主要超導線圈中的繞組相同的方向上)產生磁場的交流封阻感應線圈配置滿足零互感之要求。此類磁場可藉由使用環形繞組12加以產生,該繞組包圍超導螺線繞組14,如圖1所示。一結構支撐物16加固直流線圈8。
條件M=0之優點係,沒有力作用於交流環形封阻感應線圈12與主要超導繞組14之間。交流封阻感應線圈12僅由於自負載而需要加以支撐。
此繞組配置的優點係,交流線圈12或線圈集不必與產生直流磁場的主要超導繞組或繞組集14接觸。將其定位成接近主要超導線圈係足夠。相反,先前技術之焦耳加熱器需要與主要超導線圈集親密接觸以便透過熱傳導來發送熱,因為輻射熱轉移係太慢。交流封阻感應線圈集12不必與主要超導繞組集14親密接觸的事實會最小化主要超導繞組或繞組集14與交流封阻感應線圈12或線圈集之間的短路之可能性,以及因在任一線圈集中或在兩個線圈集之間產生的高電壓而起的崩潰或由於封阻感應元件係在主要結構負載路徑中而起的機械損壞之可能性。
繞組12之交流磁場需要滲透超導繞組14。在圖1之螺線磁鐵的情況下,該等磁場滲透整個主要超導繞組或繞組集14,只要不存在一導電元件,其使遮蔽電流可在極向方向上(即,在與環形交流封阻感應繞組12中的電流之方向相同的方向上)不間斷地流動。以20指示此一導電制動器。
有用的係採用熱毯來包圍超導磁鐵以移除或擴散熱。熱毯的使用在無接取磁鐵周圍的所有表面之液態氦冷卻劑之乾式超導磁鐵的情況下尤其有用。此等熱毯亦可以為良好的導電體。
現在參考圖2,已藉由詳細分析決定,在包圍主要超導繞組或繞組集14的熱毯18之情況下,預防極向電流在熱毯18中流動的間隙20係使自封阻感應線圈集12的交流磁場可滲透整個超導繞組或繞組集14的全部需求。在無間隙20的情況下,在熱毯18中流動的渦電流將遮蔽交流磁場通量。
同一方法可用於其他類型的磁鐵。在主要超導線圈集本身係環形磁鐵的情況下,交流封阻感應線圈集可以係均勻地包圍環形磁場線圈的繞組。或者,在垂直方向及徑向上產生磁場的極向磁場線圈集將產生接近零的互感。
同一佈局在雙極/四極磁鐵情況下可用,在該磁鐵中交流封阻感應線圈集包圍雙極/四極磁鐵的每一個支腳(leg)。
以上說明藉由使用正交(垂直)磁場而消除線圈集之間的相互耦合。存在若干方式用以減少或消除交流封阻感應線圈與主要超導線圈之間的互感耦合而無需施加交流磁場應該垂直於主要磁場之要求。
圖3顯示鞍形封阻感應線圈22及24之組態,其中總互感係0,但每一個未成對的鞍形封阻感應線圈均具有相對於主要超導繞組或繞組集14的非零感應。顯示透過每一個鞍形線圈22、24的電流之方向。幾何結構為,在上部鞍形線圈22中感應的電壓係在量值上與在下部鞍形封阻感應線圈24中感應的電壓相等但在極性上與其相反,因此主要超導繞組或繞組集14與上部鞍形封阻感應線圈22之間的互感具有主要超導繞組或繞組集14與下部鞍形線圈24之間的互感之相反符號。在此情況下,透過主要超導繞組或繞組集14之導線的電壓將較低,但可存在高內部電壓。
若每一個線圈22、24係加以分離地驅動,則每一個線圈將需要大量無效功率及橫跨端子的高電壓。但若其得以串聯驅動,則具有另一個線圈系統之反相的一個線圈之無效功率會產生低功率,因為總互感係0。此配置在交流封阻感應線圈中產生內部電壓,此可加以處理,因為該等線圈不必與主要超導繞組或繞組集14接觸,且因此可加以適當地絕緣。
圖3之情況下,儘管兩個線圈之間的淨力係0,但在該等線圈之間產生扭矩。此等扭矩需要加以支撐。
交流感應線圈22、24中的內部高電壓(例如圖3所示的內部高電壓)可藉由交替迴路加以最小化,如圖4所示。由於上部鞍形封阻感應線圈22之迴路或迴路集26中的互感而起之電壓具有與下部鞍形封阻感應線圈24之迴路或迴路集28中的互感相反之極性。上部或下部鞍形線圈中的迴路具有相對於螺線磁鐵繞組14的相同感應量值,但符號不同。低電壓可以藉由交錯繞組來達到,因此繞組由上部鞍形封阻感應線圈22中的迴路或迴路集26組成,該迴路或迴路集係藉由分流30之一與下部鞍形封阻感應線圈24中的迴路或迴路集28電連接。最大電壓係減少上部與下部鞍形封阻線圈之間的分流之數目及任一線圈中的轉數之總數目。橫跨各層的最小電壓係單一迴路之電壓。
在圖5所示的具體實施例中,可以設計鞍形感應線圈32之形狀以便具有自主要超導繞組集14透過每一個鞍形封阻感應線圈32的零淨通量。此在交流封阻感應線圈32之某電流區段係在環形方向上的情況下得以自動滿足,並且其他元件係與磁場方向10對準(此等區段之每一個區段之兩者係在圖5中的每一個交流感應線圈32中加以說明)。在此情況下,主要超導繞組14與鞍形線圈32之間的互感係零,而且每一個鞍形封阻感應線圈32可以在沒有大無效功率情況下分離地加以驅動。然而,圖5所示的配置產生在主要超導繞組14中產生的電壓,其需要加以包含在設計中。此外,儘管不存在施加於每一個鞍形線圈的淨力,但是存在施加於封阻感應線圈32的淨扭矩,其需要加以支撐。
可最佳化本文揭示的交流封阻感應系統之頻率以最大化每無效功率的熱。一個選項係選擇該系統之頻率,其與渦電流滲透至該導體中的時間匹配。此等導體係較複雜,可能具有多個部分絕緣的絞股、各種形式的銅或其他矩陣材料、超導體及焊料、渦電流滲透時間,其係約一毫秒(頻率對應於約1 kHz)。當交流磁場之週期與渦電流滲透時間相當時,會出現與該導體的最佳耦合。在較低頻率情況下,感應電流會衰減;而在較高頻率情況下,該等電流不會滲透。另一方面,若加熱主要係由於磁滯,則加熱功率單一性地隨頻率而增加。
一較佳具體實施例使用從約100 Hz至約10 kHz的頻率。通常而言,約50至300高斯(Guass)峰值的交流磁場將足以在約100 ms內將超導體加熱至正常狀態。
本發明說明建立由未封阻區所分離的大量離散封阻位址之可能性。每一個感應封阻位址處的封阻藉由封阻區之加熱來傳播。以此方式,驅動封阻所需要的功率得以減少,其中藉由主要磁鐵中的儲存能量提供封阻整個主要磁鐵所需要的實質量之能量。圖5顯示一方案,其中多個交流線圈在主要磁鐵之一較小區中產生封阻,並且該封阻傳播至磁鐵的其餘部分。
已預想兩個電源供應。第一個電源供應係完全充電電容器庫,其以所需頻率與交流封阻感應線圈之感應共振。電容器驅動式電路可能必須產生比以下說明之驅動情況高的磁場以便儲存封阻磁鐵所需要的能量。第二個電源供應係驅動式電源供應。具有約0.1 m3 之導體體積的一線圈所需要的功率在約100 ms內係約10 kW。
本文揭示的組態之另一優點係,系統中的其他結構(例如圖1、3及5中的結構支撐物16)具有遮蔽電流,其最小化所需要的無效能量。因為其相對較大的大小,所以其篩檢該結構之主體內的磁場,即使其電阻率係甚高於該導體中的銅之電阻率亦如此。
儘管所說明的系統具有直流主要超導磁鐵,但是可以使用具有低頻率或脈衝式磁鐵/變壓器的同一概念。因此,以1 Hz運轉的系統將藉由交流磁場以100至10000 Hz的頻率加以封阻。以同一方式,可藉由一交流磁場封阻系統來保護一脈衝式線圈,該系統以甚高於脈衝持續時間之倒數的頻率運轉;等效地,交流磁場之週期應該短於脈衝式磁鐵之脈衝持續時間。
交流線圈可以為正常導電或其可以為超導式。
雖然已經顯示並說明本發明之特定具體實施例,但是熟習此項技術人士應明白可以進行各種變更及修改而不脫離本發明之更廣方面。預計在以上說明中包含並在附圖中顯示的所有事件應解釋為說明性而非限制性。
8...線圈
10...軸
12...環形繞組/感應線圈
14...超導繞組
16...結構支撐物
18...熱毯
20...間隙
22...線圈
24...線圈
26...迴路或迴路集
28...迴路或迴路集
30...分流
32...鞍形封阻感應線圈
圖1係本發明之感應性封阻系統之一具體實施例的斷面圖。
圖2係包含具有一間隙之熱毯的圖1之具體實施例的斷面圖。
圖3係依據本發明之封阻系統之另一具體實施例的透視圖。
圖4係藉由交錯迴路所纏繞的線圈系統之示意圖。
圖5係依據本發明之封阻系統之另一具體實施例的透視圖。
10...軸
14...超導繞組
16...結構支撐物
22...線圈
24...線圈

Claims (14)

  1. 一種用於磁鐵保護的封阻系統,其包括:一直流超導線圈;以及一交流線圈系統,其係定位成接近於該直流超導線圈以產生交流磁場,從而加熱該直流線圈以引起該直流超導線圈之一實質部分上的一超導至正常轉變。
  2. 如請求項1之系統,其中配置該直流超導線圈及該交流線圈系統以便該直流超導線圈與交流線圈之間的互感係接近於零。
  3. 如請求項2之系統,其中該直流超導線圈及該交流線圈系統之磁場係彼此正交。
  4. 如請求項1或請求項2之系統,其中該交流線圈系統包含複數個線圈。
  5. 如請求項4之系統,其中該交流線圈系統係藉由交錯該複數個線圈之間的迴路或相等數目的迴路集來纏繞以減少每一個線圈中產生的內部電壓。
  6. 如請求項4之系統,其中該交流線圈系統中的每一個線圈相對於該直流超導線圈而接近零互感。
  7. 如請求項4之系統,其中該總交流線圈系統相對於該直流線圈而接近零互感,但是該交流線圈系統之該複數個線圈之每一個分離線圈相對於該直流超導線圈而具有一有限的互感。
  8. 如請求項4之系統,其中由該複數個線圈封阻該直流超導線圈的多個區,其中經封阻之該等區係該直流超導線 圈之一小部分,其中透過藉由衰減儲存於該直流超導線圈之能量對經封阻之該等區加熱而將該封阻傳播至該直流超導線圈之其餘部分,封阻該直流超導線圈所需要的能量實質上減少。
  9. 如請求項8之系統,其進一步包含該交流線圈系統與該直流超導線圈之間的一高電壓絕緣體。
  10. 如請求項1之系統,其進一步包含包圍該直流超導線圈的一導電熱毯,該熱毯包含至少一個間隙以預防該熱毯中的感應電流遮蔽藉由自該直流超導線圈之該交流線圈系統所產生的交流磁場。
  11. 2或10之系統,其中該交流磁場之頻率係在100 Hz至10 kHz之範圍內。
  12. 2或10之系統,其中該交流磁場之量值係在50至300 G之範圍內。
  13. 2或10之系統,其中該直流超導線圈嚴格地說並非直流式而以甚低於該交流封阻系統的一頻率運轉。
  14. 2或10之系統,其中該直流超導線圈嚴格地說並非直流式而以甚長於該交流封阻系統之週期的一脈衝寬度運轉。
TW096133288A 2006-09-07 2007-09-06 用於磁鐵保護之封阻系統 TWI401712B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/517,490 US7701677B2 (en) 2006-09-07 2006-09-07 Inductive quench for magnet protection

Publications (2)

Publication Number Publication Date
TW200834618A TW200834618A (en) 2008-08-16
TWI401712B true TWI401712B (zh) 2013-07-11

Family

ID=39158018

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096133288A TWI401712B (zh) 2006-09-07 2007-09-06 用於磁鐵保護之封阻系統

Country Status (6)

Country Link
US (1) US7701677B2 (zh)
EP (1) EP2064564A4 (zh)
JP (2) JP2010503237A (zh)
KR (1) KR20090091111A (zh)
TW (1) TWI401712B (zh)
WO (1) WO2008030911A2 (zh)

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3294045B1 (en) 2004-07-21 2019-03-27 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
US9077022B2 (en) * 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
ES2730108T3 (es) 2005-11-18 2019-11-08 Mevion Medical Systems Inc Radioterapia de partículas cargadas
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US8288742B2 (en) * 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
WO2009142546A2 (en) * 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
WO2009142547A2 (en) * 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US8373143B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US8129699B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US8129694B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
CN102113419B (zh) * 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 多轴带电粒子癌症治疗方法和装置
WO2010101489A1 (en) 2009-03-04 2010-09-10 Zakrytoe Aktsionernoe Obshchestvo Protom Multi-field charged particle cancer therapy method and apparatus
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8436327B2 (en) * 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US8198607B2 (en) * 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US8519365B2 (en) * 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US8378321B2 (en) * 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US8188688B2 (en) * 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8624528B2 (en) * 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
CN102119585B (zh) 2008-05-22 2016-02-03 弗拉迪米尔·叶戈罗维奇·巴拉金 带电粒子癌症疗法患者定位的方法和装置
US8896239B2 (en) * 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8373146B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US8144832B2 (en) * 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
AU2009249867B2 (en) 2008-05-22 2013-05-02 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
CN102172106B (zh) * 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 带电粒子癌症疗法束路径控制方法和装置
EP2283712B1 (en) * 2008-05-22 2018-01-24 Vladimir Yegorovich Balakin X-ray apparatus used in conjunction with a charged particle cancer therapy system
US8229072B2 (en) * 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8627822B2 (en) * 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
GB2484066B (en) * 2010-09-22 2013-01-09 Siemens Plc Adhesively bonded cylindrical magnets comprising annular coils, and method of manufacture thereof
GB2488328B (en) * 2011-02-23 2014-04-09 Siemens Plc Superconducting electromagnets comprising coils bonded to a support structure
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
USRE45942E1 (en) 2012-02-21 2016-03-22 Siemens Plc Superconducting electromagnets comprising coils bonded to a support structure
WO2014011272A2 (en) 2012-04-11 2014-01-16 Brookhaven Science Associates, Llc Radio frequency-assisted fast superconducting switch
US8975836B2 (en) 2012-07-27 2015-03-10 Massachusetts Institute Of Technology Ultra-light, magnetically shielded, high-current, compact cyclotron
EP2901821B1 (en) 2012-09-28 2020-07-08 Mevion Medical Systems, Inc. Magnetic field regenerator
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
CN104822417B (zh) 2012-09-28 2018-04-13 梅维昂医疗系统股份有限公司 用于粒子加速器的控制系统
US8927950B2 (en) 2012-09-28 2015-01-06 Mevion Medical Systems, Inc. Focusing a particle beam
TWI604868B (zh) 2012-09-28 2017-11-11 美威高能離子醫療系統公司 粒子加速器及質子治療系統
ES2739634T3 (es) 2012-09-28 2020-02-03 Mevion Medical Systems Inc Control de terapia de partículas
EP2901823B1 (en) 2012-09-28 2021-12-08 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
JP6523957B2 (ja) 2012-09-28 2019-06-05 メビオン・メディカル・システムズ・インコーポレーテッド 磁場を変更するための磁性シム
TW201434508A (zh) 2012-09-28 2014-09-16 Mevion Medical Systems Inc 一粒子束之能量調整
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
JP6855240B2 (ja) 2013-09-27 2021-04-07 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビーム走査
CN103487460B (zh) * 2013-10-15 2016-01-06 中国农业大学 一种提高覆盖材料保温性能测试台测试精度的方法
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9721709B2 (en) 2014-06-04 2017-08-01 Novum Industria Llc Inductively decoupled dual SMES in a single cryostat
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
WO2017087541A1 (en) 2015-11-16 2017-05-26 Alexey Radovinsky Ironless, actively-shielded, variable field magnet for medical gantries
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
EP3906968A1 (en) 2016-07-08 2021-11-10 Mevion Medical Systems, Inc. Treatment planning
CA3050994A1 (en) * 2016-12-21 2018-06-28 Tokamak Energy Ltd Quench protection in superconducting magnets
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
WO2019006253A1 (en) 2017-06-30 2019-01-03 Mevion Medical Systems, Inc. CONFIGURABLE COLLIMATOR CONTROLLED BY LINEAR MOTORS
US10515749B2 (en) * 2017-10-20 2019-12-24 The Florida State University Research Foundation, Inc. Frequency loss induced quench protection system for high temperature superconductors and associated method of use
EP3934751A1 (en) 2019-03-08 2022-01-12 Mevion Medical Systems, Inc. Collimator and energy degrader for a particle therapy system
US11428764B2 (en) 2021-01-29 2022-08-30 Synaptive Medical Inc. Magnetic resonance imaging system and method for rapid shutdown and recharge of a superconducting magnet
US11948736B2 (en) 2022-04-06 2024-04-02 GE Precision Healthcare LLC Superconducting magnet systems and methods for making superconducting magnet systems having two-stage quenching

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278380A (en) * 1990-12-03 1994-01-11 Westinghouse Electric Corp. Superconducting magnet system with inductive quench heaters

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630299B2 (ja) * 1981-12-23 1994-04-20 富士電機株式会社 超電導磁石装置
DE3866409D1 (de) * 1987-03-30 1992-01-09 Siemens Ag Quenchausbreitungseinrichtung fuer einen supraleitenden magneten.
DE3866978D1 (de) * 1987-07-17 1992-01-30 Siemens Ag Aktiv geschirmter, supraleitender magnet eines kernspin-tomographen.
US4764837A (en) * 1987-11-16 1988-08-16 General Electric Company Superconductive circuit for controlling quench events
US4895831A (en) 1988-07-05 1990-01-23 General Electric Company Ceramic superconductor cryogenic current lead
JP2671431B2 (ja) 1988-09-14 1997-10-29 株式会社豊田自動織機製作所 超電導可逆可変インダクタ
JP2774672B2 (ja) * 1990-06-28 1998-07-09 東京電力株式会社 超電導限流器
US5241447A (en) * 1991-02-27 1993-08-31 The United States Of America As Represented By The Secretary Of The Air Force Magnetic switch structure and method employing superconductive material
US5426366A (en) * 1992-12-11 1995-06-20 U.S. Philips Corporation Magnetic resonance apparatus comprising a superconducting magnet
JPH07142241A (ja) * 1993-11-19 1995-06-02 Toshiba Corp 超電導磁石装置
JPH10116725A (ja) * 1996-08-22 1998-05-06 Fuji Electric Co Ltd 超電導磁石装置
US5731939A (en) * 1996-09-04 1998-03-24 General Electric Company Quench-protecting electrical circuit for a superconducting magnet
JP4028917B2 (ja) * 1997-09-29 2008-01-09 株式会社神戸製鋼所 超電導磁石装置のクエンチ保護方法およびクエンチ保護回路
US6201392B1 (en) 1997-11-07 2001-03-13 Varian, Inc. Coplanar RF probe coil arrangement for multifrequency excitation
US5892644A (en) 1997-11-20 1999-04-06 The University Of Chicago Passive fault current limiting device
US6147844A (en) * 1998-12-30 2000-11-14 General Electric Company Quench protection for persistant superconducting magnets for magnetic resonance imaging
JP2001061228A (ja) 1999-01-28 2001-03-06 Sumitomo Electric Ind Ltd 限流器
GB2363255A (en) * 2000-06-07 2001-12-12 Abb Ab Superconducting magnetic energy storage using inductive couplings
US6717781B2 (en) * 2001-09-25 2004-04-06 Ge Medical Systems Global Technology Company, Llc Balanced quench protection circuit
US6958893B2 (en) * 2003-06-30 2005-10-25 Superpower Inc. Superconducting matrix fault current limiter with current-driven trigger mechanism
US7116535B2 (en) * 2004-04-16 2006-10-03 General Electric Company Methods and apparatus for protecting an MR imaging system
GB0412091D0 (en) * 2004-05-29 2004-06-30 Oxford Magnet Tech Capacitor coupled quench propagation circuit
GB2422958B (en) * 2005-02-04 2008-07-09 Siemens Magnet Technology Ltd Quench protection circuit for a superconducting magnet
GB2423871B (en) * 2005-03-04 2007-12-12 Siemens Magnet Technology Ltd Superconducting magnet system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278380A (en) * 1990-12-03 1994-01-11 Westinghouse Electric Corp. Superconducting magnet system with inductive quench heaters

Also Published As

Publication number Publication date
WO2008030911A3 (en) 2008-06-19
EP2064564A4 (en) 2013-05-15
WO2008030911A8 (en) 2008-04-24
EP2064564A2 (en) 2009-06-03
JP2014060436A (ja) 2014-04-03
US20080062588A1 (en) 2008-03-13
TW200834618A (en) 2008-08-16
US7701677B2 (en) 2010-04-20
JP2010503237A (ja) 2010-01-28
WO2008030911A2 (en) 2008-03-13
KR20090091111A (ko) 2009-08-26

Similar Documents

Publication Publication Date Title
TWI401712B (zh) 用於磁鐵保護之封阻系統
EP3033754B1 (en) Device for a current limiter and a current limiter comprising said device
JP7171574B2 (ja) クエンチ保護システムを含むトロイダル磁場コイル又はポロイダル磁場コイルアセンブリ
US7649720B2 (en) Quench protection of HTS superconducting magnets
JP2007158292A (ja) 抵抗型超電導限流器
JP2003197418A (ja) 平衡型クエンチ保護回路
US6507259B2 (en) Actively shielded superconducting magnet with protection means
KR20210093983A (ko) 부분적으로 절연된 초전도 자석의 빠른 덤프
Wozniak et al. Fast quench propagation conductor for protecting canted cos-theta magnets
Song et al. Electrical and thermal modeling of pulsed magnets using finite element analysis
Zhao et al. Numerical study on thermal stability of no-insulation coils using a three-dimensional finite-element model
JP2023518845A (ja) 非絶縁超伝導磁石のための受動的クエンチ保護技法
Stenvall et al. Electromagnetic viewpoints on a 200 kW MgB2 induction heater
US20230395296A1 (en) High temperature superconductor field coil
US20230097465A1 (en) Emergency Shutdown of A No-Insulation Magnet
JP2905317B2 (ja) 超電導電磁石
JPS58110014A (ja) 超電導磁石装置
Christianson et al. Design and Projected Performance of the Westinghouse µSMES Unit
Bromberg et al. Use of inductive heating for superconducting magnet protection
Keilin et al. Plane-turns superconducting magnets: Option for fusion
JPH04578B2 (zh)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees