JP7171574B2 - クエンチ保護システムを含むトロイダル磁場コイル又はポロイダル磁場コイルアセンブリ - Google Patents
クエンチ保護システムを含むトロイダル磁場コイル又はポロイダル磁場コイルアセンブリ Download PDFInfo
- Publication number
- JP7171574B2 JP7171574B2 JP2019533210A JP2019533210A JP7171574B2 JP 7171574 B2 JP7171574 B2 JP 7171574B2 JP 2019533210 A JP2019533210 A JP 2019533210A JP 2019533210 A JP2019533210 A JP 2019533210A JP 7171574 B2 JP7171574 B2 JP 7171574B2
- Authority
- JP
- Japan
- Prior art keywords
- hts
- field coil
- lts
- quench
- toroidal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010791 quenching Methods 0.000 title claims description 111
- 239000000463 material Substances 0.000 claims description 63
- 239000010949 copper Substances 0.000 claims description 34
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 30
- 229910052802 copper Inorganic materials 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 27
- 230000000171 quenching effect Effects 0.000 claims description 21
- 230000004927 fusion Effects 0.000 claims description 13
- 239000003381 stabilizer Substances 0.000 claims description 11
- 239000004020 conductor Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000004044 response Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000000758 substrate Substances 0.000 claims description 2
- 230000000087 stabilizing effect Effects 0.000 claims 1
- 239000002887 superconductor Substances 0.000 description 23
- 210000002381 plasma Anatomy 0.000 description 19
- 230000004907 flux Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010885 neutral beam injection Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/001—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/05—Thermonuclear fusion reactors with magnetic or electric plasma confinement
- G21B1/057—Tokamaks
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/05—Thermonuclear fusion reactors with magnetic or electric plasma confinement
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/11—Details
- G21B1/21—Electric power supply systems, e.g. for magnet systems, switching devices, storage devices, circuit arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/02—Quenching; Protection arrangements during quenching
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Power Engineering (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
Claims (19)
- 高温超伝導(HTS)材料を含む中心柱と、複数のリターンリムとを含むトロイダル磁場コイルであって、
各リターンリムは、
超伝導材料を含むクエンチ可能部分であって、前記トロイダル磁場コイルの磁場に寄与するように構成されるクエンチ可能部分と、
HTS材料を含む2つの高温超伝導(HTS)部分であって、前記クエンチ可能部分を前記中心柱に電気的に接続し、かつ前記中心柱及び前記クエンチ可能部分と直列であるHTS部分と、
前記クエンチ可能部分に関連付けられ、前記クエンチ可能部分をクエンチするように構成されるクエンチシステムと
を含み、
前記トロイダル磁場コイルは、
前記トロイダル磁場コイルにおけるクエンチを検出し、前記クエンチの検出に応答して、前記トロイダル磁場コイルから1つ以上のクエンチ可能部分にエネルギーを放出するために、前記クエンチシステムに前記1つ以上のクエンチ可能部分の超伝導材料をクエンチさせるように構成されるクエンチ保護システムと、
各クエンチ可能部分を前記超伝導材料が超伝導である温度まで冷却するように構成される冷却システムと
をさらに含み、
各クエンチ可能部分は、前記トロイダル磁場コイルから前記クエンチ可能部分にエネルギーが放出されるときに前記クエンチ可能部分の温度を700K未満に保つのに十分な熱容量と、前記HTS部分のクエンチされた部分の温度が300K未満に留まるのに十分な速さで前記トロイダル磁場コイルの電流の減衰を引き起こすのに十分な抵抗率とを有する、トロイダル磁場コイル。 - 各クエンチ可能部分の熱容量は、前記トロイダル磁場コイルから前記クエンチ可能部分にエネルギーが放出されるときに前記クエンチ可能部分の温度を300K未満に保つのに十分である、請求項1に記載のトロイダル磁場コイル。
- 各クエンチ可能部分の抵抗率は、前記HTS部分のクエンチされた部分の温度が100K未満に留まるのに十分な速さで前記トロイダル磁場コイルの電流の減衰を引き起こすのに十分である、請求項1又は2に記載のトロイダル磁場コイル。
- 各クエンチ可能部分が、非超伝導安定化材をさらに含む、請求項1から3のいずれか一項に記載のトロイダル磁場コイル。
- 前記非超伝導安定化材は、体積熱容量に対する抵抗率の比が銅よりも大きい金属を含む、請求項4に記載のトロイダル磁場コイル。
- 前記冷却システムは、前記HTS材料が超伝導性である温度まで前記中心柱を冷却するようにさらに構成される、請求項1から5のいずれか一項に記載のトロイダル磁場コイル。
- 前記HTS部分及び前記クエンチ可能部分のそれぞれが、前記HTS材料又は前記超伝導材料に電気的に接続された銅素子を有する接合部を含み、前記HTS部分及び前記クエンチ可能部分は前記銅素子を介して接続される、請求項1から6のいずれか一項に記載のトロイダル磁場コイル。
- 前記クエンチ可能部分は低温超伝導(LTS)材料を含む、請求項1から7のいずれか一項記載のトロイダル磁場コイル。
- 前記冷却システムは、前記クエンチ可能部分を4.2Kまで冷却するように構成される、請求項8に記載のトロイダル磁場コイル。
- 前記冷却システムは、前記2つのHTS部分がそれらに沿って温度勾配を有する電流リードとして働くように、前記トロイダル磁場コイルの動作中に前記クエンチ可能部分を前記中心柱の温度より低い温度まで冷却するように構成される、請求項8又は9に記載のトロイダル磁場コイル。
- 各クエンチシステムは、前記LTS材料を加熱すること又は前記LTS材料内に交流損失を引き起こすことの一方によってクエンチを引き起こすように構成される、請求項8から10のいずれか一項に記載のトロイダル磁場コイル。
- 前記クエンチ可能部分は、HTS材料と、前記HTS材料に隣接して置かれたヒーターとを含み、前記クエンチ保護システムは、前記ヒーターに前記HTS材料を加熱させることによって前記クエンチ可能部分内の前記超伝導材料をクエンチするように構成される、請求項1から7のいずれか一項に記載のトロイダル磁場コイル。
- 前記クエンチ可能部分は、HTSテープのタイプ0対のスタックとして構成され、各タイプ0対は2つのHTSテープを含み、前記2つのHTSテープは銅で分離されかつ前記2つのHTSテープのHTS層が前記2つのHTSテープの基板の間にあるように配置され、各タイプ0対は、前記HTSテープの間で前記銅に埋め込まれたヒーターストリップを有する、請求項12に記載のトロイダル磁場コイル。
- 前記ヒーターストリップは、隣接するヒーターストリップに沿って流れる電流が反対方向になるように接続される、請求項13に記載のトロイダル磁場コイル。
- 前記クエンチ保護システムは、前記中心柱及び/又は前記HTS部分におけるクエンチを検出するように構成される、請求項1から14のいずれか一項に記載のトロイダル磁場コイル。
- 中心柱と、高温超伝導(HTS)材料のターンを含む複数のリターンリムとを含むトロイダル磁場コイルであって、
前記中心柱は、
LTS材料を含む低温超伝導(LTS)コアであって、前記中心柱の軸に沿って配置され、前記トロイダル磁場コイルの磁場に寄与するように構成されるLTSコアと、
前記LTSコアを囲み、HTS材料を含む高温超伝導(HTS)外層と
を含み、
前記LTSコアは、前記リターンリムの少なくともいくつかのターンと直列であり、前記LTSコアにクエンチを引き起こすように構成されたクエンチシステムを含み、
前記トロイダル磁場コイルは、
前記リターンリム又は前記HTS外層におけるクエンチを検出し、前記クエンチの検出に応答して、前記トロイダル磁場コイルから前記LTSコアにエネルギーを放出するために、前記クエンチシステムに前記LTSコア内のLTS材料をクエンチさせるように構成されるクエンチ保護システムと、
前記LTS材料が超伝導である温度まで前記LTSコアを冷却するように構成される冷却システムと
をさらに含み、
前記LTSコアは、前記トロイダル磁場コイルから前記LTSコアにエネルギーが放出されるときに前記LTSの温度を700K未満に保つのに十分な熱容量と、前記リターンリム又は前記HTS外層のクエンチされた部分の温度が300K未満に留まるのに十分な速さで磁石の電流を減衰させるのに十分な抵抗率とを有する、トロイダル磁場コイル。 - 球状トカマクに使用するためのポロイダル磁場コイルアセンブリであって、
高温超伝導(HTS)材料を含む第1ポロイダル磁場コイルと、
低温超伝導(LTS)材料を含み、前記第1ポロイダル磁場コイルと直列に接続された第2ポロイダル磁場コイルと、
前記第2ポロイダル磁場コイルに関連付けられ、前記第2ポロイダル磁場コイルをクエンチするように構成されるクエンチシステムと、
前記第1ポロイダル磁場コイルにおけるクエンチを検出し、前記クエンチの検出に応答して、前記第2ポロイダル磁場コイルに蓄積された磁気エネルギーを放出するために前記クエンチシステムに前記第2ポロイダル磁場コイルをクエンチさせるように構成されるクエンチ保護システムと、
前記第2ポロイダル磁場コイルを前記LTS材料が超伝導である温度まで冷却するための冷却システムと
を含み、
前記第2ポロイダル磁場コイルは、前記第2ポロイダル磁場コイルにエネルギーが放出されるときに前記LTSの温度を700K未満に保つのに十分な熱容量と、前記第1ポロイダル磁場コイルのクエンチされた部分の温度が300K未満に留まるのに十分な速さで磁石の電流の減衰を引き起こすのに十分な抵抗率とを有する、ポロイダル磁場コイルアセンブリ。 - 請求項1から17のいずれか一項に記載のトロイダル磁場コイル及び/又はポロイダル磁場コイルアセンブリを含む核融合炉。
- 前記核融合炉は球状トカマク核融合炉である、請求項18に記載の核融合炉。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1621902.4 | 2016-12-21 | ||
GBGB1621902.4A GB201621902D0 (en) | 2016-12-21 | 2016-12-21 | Hybrid hts/lts field coils |
GB1703132.9 | 2017-02-27 | ||
GBGB1703132.9A GB201703132D0 (en) | 2017-02-27 | 2017-02-27 | Quench protection in superconducting magnets |
PCT/GB2017/053749 WO2018115818A1 (en) | 2016-12-21 | 2017-12-14 | Quench protection in superconducting magnets |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020515036A JP2020515036A (ja) | 2020-05-21 |
JP7171574B2 true JP7171574B2 (ja) | 2022-11-15 |
Family
ID=60782246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019533210A Active JP7171574B2 (ja) | 2016-12-21 | 2017-12-14 | クエンチ保護システムを含むトロイダル磁場コイル又はポロイダル磁場コイルアセンブリ |
Country Status (8)
Country | Link |
---|---|
US (1) | US11190006B2 (ja) |
EP (1) | EP3559955B1 (ja) |
JP (1) | JP7171574B2 (ja) |
KR (1) | KR102378965B1 (ja) |
CN (1) | CN110494925B (ja) |
CA (1) | CA3050994A1 (ja) |
RU (1) | RU2754574C2 (ja) |
WO (1) | WO2018115818A1 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2565779A (en) * | 2017-08-21 | 2019-02-27 | Tokamak Energy Ltd | Field coil with exfoliated tape |
GB201801604D0 (en) * | 2018-01-31 | 2018-03-14 | Tokamak Energy Ltd | magnetic quench induction system |
PL3864679T3 (pl) * | 2018-10-15 | 2023-03-13 | Tokamak Energy Ltd | Wysokotemperaturowy magnes nadprzewodzący |
AU2019382966B2 (en) * | 2018-11-22 | 2024-09-26 | Tokamak Energy Ltd | Rapid dump of partially insulated superconducting magnet |
GB201905166D0 (en) * | 2019-04-11 | 2019-05-29 | Tokamak Energy Ltd | Partial insulation magnet with directed quench energy dump |
WO2021257145A2 (en) * | 2020-03-26 | 2021-12-23 | Massachusetts Institute Of Technology | Demountable solder joints for coupling superconducting current paths |
CN113936816B (zh) * | 2020-07-14 | 2023-11-17 | 新奥科技发展有限公司 | 环向场线圈及聚变装置 |
CN113936815B (zh) * | 2020-07-14 | 2023-11-17 | 新奥科技发展有限公司 | 环向场线圈及聚变装置 |
CN114360841B (zh) * | 2021-11-30 | 2022-11-18 | 核工业西南物理研究院 | 一种可拆卸的大电流板式环向场磁体线圈 |
CN114221298B (zh) * | 2021-12-15 | 2023-11-14 | 中国科学院电工研究所 | 一种高场高均匀度超导磁体失超保护电路 |
CN117457240B (zh) | 2023-12-25 | 2024-03-26 | 中国科学院合肥物质科学研究院 | 一种磁约束聚变反应堆 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005353777A (ja) | 2004-06-10 | 2005-12-22 | Hitachi Ltd | 超伝導コイルの保護装置 |
JP2009246162A (ja) | 2008-03-31 | 2009-10-22 | Toshiba Corp | 超電導コイル装置および超電導コイル異常検出装置ならびに超電導コイル装置運転方法 |
JP2017168816A (ja) | 2015-12-28 | 2017-09-21 | ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH | 超伝導磁石コイルシステム |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6270411U (ja) * | 1985-10-21 | 1987-05-02 | ||
JP2726499B2 (ja) * | 1989-07-06 | 1998-03-11 | 古河電気工業株式会社 | 超電導利用機器 |
JP2564717B2 (ja) * | 1991-09-12 | 1996-12-18 | 株式会社日立製作所 | 核融合装置のプラズマ位置形状制御装置 |
JPH06347575A (ja) * | 1993-06-04 | 1994-12-22 | Japan Atom Energy Res Inst | 超電導コイルのクエンチ保護付き磁場発生装置およびクエンチ保護コイル |
JPH07235412A (ja) * | 1994-02-24 | 1995-09-05 | Mitsubishi Electric Corp | 超電導マグネット装置 |
US5627709A (en) | 1995-08-11 | 1997-05-06 | General Electric Company | Electrical circuit for protecting a superconducting magnet during a quench |
EP0808009A3 (en) | 1996-04-19 | 1998-10-28 | Kabushiki Kaisha Y.Y.L. | Superconducting system |
JP4028917B2 (ja) * | 1997-09-29 | 2008-01-09 | 株式会社神戸製鋼所 | 超電導磁石装置のクエンチ保護方法およびクエンチ保護回路 |
US6900714B1 (en) | 2004-06-30 | 2005-05-31 | General Electric Company | System and method for quench and over-current protection of superconductor |
DE102005047938B4 (de) | 2005-10-06 | 2022-01-27 | Bruker Biospin Gmbh | Supraleitendes Magnetspulensystem mit Quenchschutz |
US7701677B2 (en) * | 2006-09-07 | 2010-04-20 | Massachusetts Institute Of Technology | Inductive quench for magnet protection |
KR100929657B1 (ko) * | 2007-08-23 | 2009-12-03 | 한국기초과학지원연구원 | 초전도 토카막 장치의 켄치 검출장치 및 실시간 켄치 감시시스템 |
KR101049764B1 (ko) | 2009-03-10 | 2011-07-19 | (주)나라테크놀로지 | 휴대용 단말기의 스윙 힌지장치 |
JP2010272616A (ja) * | 2009-05-20 | 2010-12-02 | Hitachi Ltd | 超伝導回路保護装置および超伝導磁石装置 |
DE102009029379B4 (de) | 2009-09-11 | 2012-12-27 | Bruker Biospin Gmbh | Supraleitendes Magnetspulensystem mit Quenchschutz zur Vermeidung lokaler Stromüberhöhungen |
JP2011238455A (ja) * | 2010-05-10 | 2011-11-24 | Fujikura Ltd | 超電導線材、超電導コイル、及び超電導保護装置 |
WO2013030554A1 (en) * | 2011-09-02 | 2013-03-07 | Tokamak Solutions Uk Limited | Efficient compact fusion reactor |
US8482369B2 (en) | 2011-10-31 | 2013-07-09 | General Electric Company | Single switch dump resistor ladder network for magnet quench protection |
US20130293987A1 (en) | 2012-03-27 | 2013-11-07 | Brookhaven Science Associates, Llc | Quench Detection System for Superconducting Magnets |
US9934876B2 (en) * | 2013-04-03 | 2018-04-03 | Lockheed Martin Corporation | Magnetic field plasma confinement for compact fusion power |
US20160351310A1 (en) | 2013-05-29 | 2016-12-01 | Christopher Mark Rey | Low Temperature Superconductive and High Temperature Superconductive Amalgam Magnet |
EP3014634B1 (en) * | 2013-06-28 | 2020-03-25 | European Organization For Nuclear Research Cern | Ac-current induced quench protection system |
GB2510447B (en) * | 2013-09-13 | 2015-02-18 | Tokamak Energy Ltd | Toroidal field coil for use in a fusion reactor |
CN105794006B (zh) | 2013-12-20 | 2018-06-12 | 株式会社日立制作所 | 超导磁铁、mri以及nmr |
GB2525021A (en) | 2014-04-10 | 2015-10-14 | Tokamak Energy Ltd | Efficient compact fusion reactor |
US9767948B2 (en) | 2014-05-30 | 2017-09-19 | Novum Industria Llc | Light-weight, efficient superconducting magnetic energy storage systems |
GB2529412A (en) * | 2014-08-18 | 2016-02-24 | Tokamak Energy Ltd | Hybrid magnet for use in fusion reactors |
GB201515979D0 (en) * | 2015-09-09 | 2015-10-21 | Tokamak Energy Ltd | Quench protection in superconducting magnets |
-
2017
- 2017-12-14 RU RU2019122455A patent/RU2754574C2/ru active
- 2017-12-14 EP EP17818230.9A patent/EP3559955B1/en active Active
- 2017-12-14 KR KR1020197021233A patent/KR102378965B1/ko active IP Right Grant
- 2017-12-14 WO PCT/GB2017/053749 patent/WO2018115818A1/en unknown
- 2017-12-14 CA CA3050994A patent/CA3050994A1/en active Pending
- 2017-12-14 CN CN201780079770.1A patent/CN110494925B/zh active Active
- 2017-12-14 US US16/470,658 patent/US11190006B2/en active Active
- 2017-12-14 JP JP2019533210A patent/JP7171574B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005353777A (ja) | 2004-06-10 | 2005-12-22 | Hitachi Ltd | 超伝導コイルの保護装置 |
JP2009246162A (ja) | 2008-03-31 | 2009-10-22 | Toshiba Corp | 超電導コイル装置および超電導コイル異常検出装置ならびに超電導コイル装置運転方法 |
JP2017168816A (ja) | 2015-12-28 | 2017-09-21 | ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH | 超伝導磁石コイルシステム |
Also Published As
Publication number | Publication date |
---|---|
US11190006B2 (en) | 2021-11-30 |
CN110494925B (zh) | 2023-10-20 |
US20200091702A1 (en) | 2020-03-19 |
RU2754574C2 (ru) | 2021-09-03 |
RU2019122455A3 (ja) | 2021-02-11 |
RU2019122455A (ru) | 2021-01-22 |
CN110494925A (zh) | 2019-11-22 |
KR102378965B1 (ko) | 2022-03-25 |
JP2020515036A (ja) | 2020-05-21 |
EP3559955A1 (en) | 2019-10-30 |
KR20190094457A (ko) | 2019-08-13 |
WO2018115818A1 (en) | 2018-06-28 |
CA3050994A1 (en) | 2018-06-28 |
EP3559955B1 (en) | 2020-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7171574B2 (ja) | クエンチ保護システムを含むトロイダル磁場コイル又はポロイダル磁場コイルアセンブリ | |
US7701677B2 (en) | Inductive quench for magnet protection | |
EP3940725B1 (en) | Toroidal field coil assembly | |
JP2022508189A (ja) | 高温超伝導体磁石システム、及び高温超伝導体界磁コイルのランプダウン又は加熱方法 | |
Bottura | Cable stability | |
JP5055348B2 (ja) | 超電導磁石 | |
JP2024503776A (ja) | 高温超伝導体界磁コイル | |
Zlobin et al. | Superconducting magnets for accelerators | |
KR102545244B1 (ko) | Hts 자석 ??칭 개시 시스템 | |
RU2784406C2 (ru) | Система инициирования нарушения сверхпроводимости втсп-магнита | |
KR102715485B1 (ko) | 부분적으로 절연된 초전도 자석의 빠른 덤프 | |
RU2799587C2 (ru) | Быстрый сброс частично изолированного сверхпроводящего магнита | |
Michael et al. | Performance of the Conduction‐Cooled LDX Levitation Coil | |
Part | Future Needs and Requirements | |
Bottura et al. | A Cable-in-Conduit superconductor for pulsed accelerator magnets | |
KR20240151271A (ko) | 부분적으로 절연된 초전도 자석의 빠른 덤프 | |
Luton Jr et al. | Toroidal magnet system conceptual design for the ELMO Bumpy Torus Reactor | |
Masullo et al. | REVIEW ON STABILITY AND PROTECTION OF SUPER< X> NDUCTING MAGNEfS | |
Jin | High Tc superconducting ceramics and their application in the design and construction of electrical fault current limiters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211130 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220517 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221102 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7171574 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |