TWI394711B - 獨立式靜電摻雜碳奈米管裝置和其製造方法 - Google Patents

獨立式靜電摻雜碳奈米管裝置和其製造方法 Download PDF

Info

Publication number
TWI394711B
TWI394711B TW095104244A TW95104244A TWI394711B TW I394711 B TWI394711 B TW I394711B TW 095104244 A TW095104244 A TW 095104244A TW 95104244 A TW95104244 A TW 95104244A TW I394711 B TWI394711 B TW I394711B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
metal
metal electrode
electrostatically
metal contact
Prior art date
Application number
TW095104244A
Other languages
English (en)
Other versions
TW200639118A (en
Inventor
Ji-Ung Lee
Original Assignee
Gen Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Electric filed Critical Gen Electric
Publication of TW200639118A publication Critical patent/TW200639118A/zh
Application granted granted Critical
Publication of TWI394711B publication Critical patent/TWI394711B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00142Bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/02Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
    • G11C13/025Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/481Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors
    • H10K10/482Insulated gate field-effect transistors [IGFETs] characterised by the gate conductors the IGFET comprising multiple separately-addressable gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/936Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
    • Y10S977/938Field effect transistors, FETS, with nanowire- or nanotube-channel region

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Composite Materials (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Light Receiving Elements (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Photovoltaic Devices (AREA)

Description

獨立式靜電摻雜碳奈米管裝置和其製造方法
本發明一般係關於奈米技術的領域。比較明確地,本發明係關於一種用於形成一獨立式靜電摻雜碳奈米管裝置的方法及其相關的結構。
近年來碳奈米管已經引起廣大的注意,因為其可能當做奈米大小的電子裝置,比如二極體、電晶體、和半導體電路。結構上,一碳奈米管與碳的六邊形晶格捲成一圓柱體相似,並且可以屬於兩種變化形式之一,其一是一單壁形式;另一則是多重壁形式。這兩種形式中之任一可以整體或部分地呈現一金屬或一半導體材料的性質,視其排列方向(即組成幾何形狀)而定。
呈現出一半導體材料的性質之碳奈米管通常是利用各種化學方法摻雜而得。換句話說,不同的化學物質用於在該碳奈米管內產生P型(電洞為多數載體)區域和n型(電子為多數載體)區域。如此致使一P-N接面被施加一適當的電壓時,(以發光二極體(“LED”)的情況)就會發光。然而,用於摻雜一碳奈米管的化學方法遇到麻煩的問題,即該p型區域和該n型區域常是沒有充分地特性化,致使奈米大小的電子裝置之品質降低。
因此就需要一種方法及相關結構,用於形成一靜電摻雜碳奈米管裝置,其具有充分特性化的p型區域和n型區域,得以產生奈米電子裝置,比如發光二極體、光電檢測器、光電流裝置、感測器、以及電源裝置,都具有增強的品質特性。
本發明之實施例提供一種靜電摻雜的碳奈米管裝置,其包括一碳奈米管配置於一基板上,使得該碳奈米管之至少一部分是獨立式。
本發明之實施例提供一種光電流裝置,其包括一靜電摻雜的碳奈米管裝置。
本發明之實施例提供一種方法用於形成一獨立式的靜電摻雜碳奈米管裝置,該方法包括提供一碳奈米管於一基板上。該碳奈米管具有一第一端和一第二端,並在其間有一獨立的部分。
以下對本發明之較佳實施例的詳細敘述,將更充分瞭解本發明的一些和其他優點與特性,並配合所附圖式而提供。
本發明所敘述的實施例提供一種方法及相關結構,用於形成一靜電摻雜的碳奈米管裝置,其具有充分特性化的p型區域和n型區域,得以容許所產生奈米大小的電子裝置,比如光電流二極體、電源裝置、光電二極體、光電檢測器、發光二極體(“LED”),以及類似的裝置,都具有增強的品質特性。靜電摻雜碳奈米管裝置的一種特定型式,是一獨立式靜電摻雜碳奈米管裝置。比較明確地,本發明之實施例提供複數個摻雜電極的使用,其從複數個偏壓電極除去耦接。因此,一碳奈米管的摻雜是可以藉由改變該複數個偏壓電極之各個偏壓精細地調整。有利地,所敘述的方法和相關的結構能夠提供一碳奈米管具有一P-N接面、一P-I-P接面、一P-I-N接面、一N-I-P接面、一N-I-N接面、一P-N-P接面、或一N-P-N接面。
參考圖1,呈現的一靜電摻雜碳奈米管裝置10包括一碳奈米管12,具有一第一端14和一第二端16。該碳奈米管12可以是一單壁碳奈米管(“SWCNT”)或多重壁碳奈米管(“MWCNT”)。該碳奈米管12具有的長度介於約0.1微米與約10微米之間,並且具有的直徑介於約0.4奈米與約20奈米之間。然而,其他適合的尺寸也可以使用。一般來說,一碳奈米管可以表現如同一金屬或一半導體材料的性質,視其排列方向(即組成的幾何形狀)而定。理想地,本發明之碳奈米管12表現的性質如同一半導體材料。該碳奈米管12的第一端14是配置為相鄰一第一金屬接點18,並與其直接電接觸。類似地,該碳奈米管12的第二端16是配置為相鄰一第二金屬接點20,並與其直接電接觸。該第一金屬接點18和該第二金屬接點20是各自以Ti,Mo,Au,Cr或類似材料製成,並且各個具有的面積或尺寸是介於約0.1微米乘以約10微米與約1微米乘以約10微米之間。一般來說,能夠提供與該碳奈米管12的第一端14以及該碳奈米管12的第二端16具有充足的電接觸之任何尺寸都可以使用。該第一金屬接點18和該第二金屬接點20可以分別配置在該碳奈米管12的第一端14和該碳奈米管12的第二端16之上方或下方。
該第一金屬接點18和該第二金屬接點20是配置在一介電材料22的表面上。該介電材料22包括SiO2 ,Si3 N4 ,Al2 O3 ,ZrO2 ,或類似材料。一第一金屬電極24和一第二金屬電極26是配置在該介電材料22內,分別與該第一金屬接點18和該第二金屬接點20相鄰但相隔一段距離。因為這樣的間隔,該第一金屬電極24是電容式地耦接至該碳奈米管12的該第一端14,以及該第二金屬電極26是電容式地耦接至該碳奈米管12的該第二端16。理想地,該第一金屬電極24與該碳奈米管12的該第一端14之間的距離,以及該第二金屬電極26與該碳奈米管12的該第二端16之間的距離,分別是介於約2奈米與約100奈米之間。該第一金屬電極24和該第二金屬電極26是各自以Mo,Ti,Pt,Au,Cr或類似材料製成,而且各自具有的面積或尺寸是介於約0.1微米乘以約10微米與約1微米乘以約10微米之間。有利地,該第一金屬電極24和該第二金屬電極26的面積或尺寸之選擇,是為得到該第一金屬電極24與該第二金屬電極26之間有一希望的間隔。此間隔的影響將詳細敘述於後。理想地,該第一金屬電極24是與該第二金屬電極26隔開,其距離是介於約100奈米與約1微米之間。
該介電材料22是配置在一半導體材料28的表面上,比如Si,SiC或類似的材料。變化地,該介電材料22是配置在一金屬層28的表面上,比如Al,Cr,Mo,Ti,Pt或類似材料。如上所述,該碳奈米管12具有一第一端14和一第二端16,而且一中心部分30是配置在該碳奈米管12的該第一端14與該碳奈米管12的該第二端16之間。本發明之一實施例中,該半導體材料28的一部分是配置為相鄰該碳奈米管12的該中心部分30,但相隔一段距離;以及該介電材料22、該第一金屬電極24的一部分和該第二金屬電極26的一部分,配置於該半導體材料28與該碳奈米管12的該中心部分30之間。本發明之一變化實施例中,該半導體材料28的一部分是配置為相鄰該碳奈米管12的該中心部分30,但相隔一段距離,同時僅有該介電材料22是配置在該半導體材料28與該碳奈米管12的中心部分30之間。再次說明,此差別會關係到該第一金屬電極24與該第二金屬電極26之間的距離,而且其影響將詳細敘述於後。
參考圖2,用於形成一靜電摻雜碳奈米管裝置10(圖1)的結構以一電路圖表示。該第一金屬接點(“M1”)18是電耦接至該碳奈米管12的該第一端14,以及該第二金屬接點(“M2”)20是電耦接至該碳奈米管12的該第二端16。類似地,該第一金屬電極(“VC1”)24是電容式耦接至該碳奈米管12的該第一端14,以及該第二金屬電極(“VC2”)26是電容式耦接至該碳奈米管12的該第二端16。於此方面,VC1 24和VC2 26分別形成一第一閘和一第二閘。以上敘述的本發明之該變化實施例中,僅有該介電材料22(圖1)是配置在該半導體材料28與該碳奈米管12的該中心部分30之間。該半導體材料(“SI”)28是電容式耦接至該碳奈米管12的該中心部分30,並且形成一第三閘,其本來並不存在。
操作時,將一第一偏壓施加至VC1 24,致使該碳奈米管12的該第一端14摻雜。同樣地,將一第二偏壓施加至VC2 26,致使該碳奈米管12的該第二端16摻雜。視所施加的偏壓而定,該碳奈米管12的該第一端14和該碳奈米管12的該第二端16,可以各自以一p型半導體(電洞為多數載體)或一n型半導體(電子為多數載體)製成。假如該碳奈米管12的該第一端14是以一p型半導體製成,並且該碳奈米管12的該第二端16是以一n型半導體製成,或者反過來的情況,就會得到一P-N接面。一P-N接面可以用於形成一發光二極體(“LED”),如本技術領域中一般技術人員所熟知的。用於形成一靜電摻雜碳奈米管裝置10的結構之較佳電壓範圍,對於VC1 24和VC2 26是介於約+/-1伏特與約+/-30伏特之間。
以上敘述的本發明之變化實施例中,於只配置在SI 28與該碳奈米管12的該中心部分30之間介電材料22,SI 28是用於調變該碳奈米管12中心部分30的摻雜。因此,該碳奈米管12的該中心部分30可以是一p型半導體、一I型(原質)半導體、或一n型半導體。如此得到數個可能的架構,整理成以下的表1,還有數個可能的裝置,即本技術領域中一般技術人員所熟知的。
參考圖3和4,本發明之另一實施例中,一種用於形成一靜電摻雜碳奈米管裝置的方法,包括首先提供上述的半導體層28。再次說明,該半導體層28包括Si,SiC,或類似材料。變化地,可以提供一金屬層28,比如Al,Cr,Mo,Ti,Pt或類似材料。理想地,該半導體層28具有的厚度是介於約1微米與約550微米之間。一第一絕緣層40沉積或長成在該半導體層28的表面上,其利用一加熱氧化物、一化學蒸氣沉積介電、一電漿增強化學蒸氣沉積介電、一低壓化學蒸氣沉積介電、或類似方式形成。該第一絕緣層40包括SiO2 ,Si3 N4 ,Al2 O3 ,ZrO2 ,或類似材料。理想地,該第一絕緣層40具有的厚度是介於約2奈米與約100奈米之間。接著沉積或長成該第一絕緣層40之後,將一金屬電極材料印上圖樣並沉積在該第一絕緣層40的表面上,以形成上述的該第一金屬電極24和該第二金屬電極26。該金屬電極材料包括Mo,Ti,Pt,Au,Cr或類似材料。理想地,該第一金屬電極24和該第二金屬電極26各自具有的厚度是介於約10奈米與約100奈米之間。
參考圖5,然後將一第二絕緣層42沉積或長成於該第一絕緣層40的表面上,大致圍繞著該第一金屬電極24和該第二金屬電極26,其利用一化學蒸氣沉積介電、一電漿增強化學蒸氣沉積介電、一低壓化學蒸氣沉積介電、或類似的方式形成。該第二絕緣層42包括包括SiO2 ,Si3 N4 ,Al2 O3 ,ZrO2 ,或類似材料。理想地,該第二絕緣層42具有的厚度介於約2奈米與約100奈米。共同地,該第一絕緣層40和該第二絕緣層42形成上述的該介電層22。接著該第二絕緣層42沉積或長成之後,將一金屬接點材料印上圖樣並沉積於該第二絕緣層42的表面上,以形成上述的該第一金屬接點18和該第二金屬接點20。該金屬接點材料包括Ti,Mo,Au,Cr或類似材料。理想地,該第一金屬接點18和該第二金屬接點20各自具有的厚度介於約10奈米與約100奈米之間。
參考圖6,然後在適合用於長成一碳奈米管的一觸媒劑材料44印上圖樣,並沉積於該第一金屬接點18和該第二金屬接點20的表面上,其利用比如一騰空技術,為本技術領域中一般技術人員所熟知的。該觸媒劑材料44可以取其薄膜或奈米粒子的形式,包括在硝酸鐵中的Ni,Fe,Co,Mo,Al2 O3 或類似材料。理想地,該觸媒劑44具有的厚度是介於約0.1奈米與約1奈米之間。將該觸媒劑44沉積於該第一金屬接點18與該第二金屬接點20之前,該第一金屬接點18和該第二金屬接點20的表面以及該介電層22,可以選擇性地鍍上光阻。該光阻形成適當的圖樣用於沉積該觸媒劑44,之後就將其移除。應該瞭解到,該觸媒劑可以選擇性地沉積在該第一金屬接點18和該第二金屬接點20兩者之只有一個的表面上。接著沉積該觸媒劑44之後,即長成上述的該碳奈米管12,如圖7所呈現。理想地,該碳奈米管12是大致對準平行於該介電層22的表面。一般來說,該碳奈米管12是在耦接至一流動的碳(碳化氫)源之一化學蒸氣沉積(CVD)管內長成,比如甲烷源或乙炔源,且在介於約攝氏700至約1000度之間。該觸媒劑44於此溫度下形成複數“島狀物”,並且以碳成為超飽和。最後,該碳奈米管12從這些觸媒劑島狀物長成,此過程為本技術領域中一般技術人員所熟知的。
參考圖8,呈現的是具有一碳奈米管112之一獨立式靜電摻雜的碳奈米管裝置110。該獨立式靜電摻雜碳奈米管裝置110在光電流裝置、感測器、和/或電源裝置十分有用。當該碳奈米管12如圖顯示是懸掛式,完成的二極體表現一較理想的性質,且此一架構也較為適合用於電子裝置的一般用途以及光電流方面的較特殊用途。該碳奈米管112具有一第一端114和一第二端116,該碳奈米管112延伸至一第一金屬接點18與一第二金屬接點20之間,並經由該第一端114與該第一金屬接點18接觸,以及經由該第二端116與該第二金屬接點20接觸。該碳奈米管112可以是一單壁碳奈米管(“SWCNT”)或多重壁碳奈米管(“MWCNT”)之任一種。該碳奈米管112與該碳奈米管12(圖1)具有相似的實體外觀、架構、以及尺寸。該第一金屬接點18和該第二金屬接點20可以包括Ti,Mo,Au,Cr或類似材料,並且各自可以包括介於約0.1微米乘以約10微米與約1微米乘以約10微米之間的面積或尺寸。然而,一般來說應該理解到,任何能夠提供該碳奈米管112的端點具有充足電接觸之尺寸都可以使用。該第一金屬接點18和該第二金屬接點20,可以配置在該碳奈米管112的端點114和116之上方或下方。
該第一金屬接點18和該第二金屬接點20是配置在一基板22的表面上,比如一介電材料。該介電材料22可以由SiO2 ,Si3 N4 ,Al2 O3 ,ZrO2 ,或類似材料形成。一第一金屬電極24和一第二金屬電極26是配置在該介電材料22內,分別相鄰於該第一金屬接點18和該第二金屬接點20,但隔開一段距離。因為這樣的間隔,該第一金屬電極24是電容式耦接至該碳奈米管112的該第一端114,以及該第二金屬電極26是電容式耦接至該碳奈米管112的該第二端116。一些實施例中,該第一金屬電極24與該碳奈米管112的該第一端114之間距離以及該第二金屬電極26與該碳奈米管112的該第二端116之間距離,分別是介於約2奈米與約100奈米之間。該第一金屬電極24和該第二金屬電極26各自以Mo,Ti,Pt,Au,Cr或類似材料製成,並且各自具有的面積或尺寸介於約0.1微米乘以約10微米與約1微米乘以約10微米之間。有利地,該第一金屬電極24和該第二金屬電極26的面積或尺寸,可以選擇使得該第一金屬電極24與該第二金屬電極26之間達到一希望的間隔,該間隔的影響已經詳細敘述過。
該介電材料22是沉積於一基底材料28的表面上,該基底材料28可以是由Si,SiC或類似材料形成的一半導體材料製成。變化地,該基底材料28可以是一金屬層28,比如包括Al,Cr,Mo,Ti,Pt或類似材料的一層材料。一溝槽128是形成於該介電材料22內,因此容許該碳奈米管112得以在其位置形成獨立式。致使該碳奈米管112可以從該介電材料22成為獨立式,容許該碳奈米管112當做一P-N接面二極體且施加偏壓時,能夠增強發光。
特別參考圖9,該獨立式靜電摻雜的碳奈米管裝置110是以一電路圖表示。該第一金屬接點(“M1”)18是電耦接至該碳奈米管112的該第一端114,以及該第二金屬接點(“M2”)20是電耦接至該碳奈米管112的該第二端116。同樣地,該第一金屬電極(“VC1”)24是電容式耦接至該碳奈米管112的該第一端114,以及該第二金屬電極(“VC2”)26是電容式耦接至該碳奈米管112的該第二端116。在此方面,VC1 24和VC2 26分別形成一第一閘和一第二閘。
操作時,一第一偏壓施加至VC1 24致使該碳奈米管112的該第一端114進行靜電摻雜。同樣地,一第二偏壓施加至VC2 26致使該碳奈米管112的該第二端116進行靜電摻雜。視所施加的偏壓而定,該碳奈米管112的該第一端114和該碳奈米管112的該第二端116,可以各自以一p型半導體(電洞為多數載體)或一n型半導體(電子為多數載體)製成。假如該碳奈米管112的該第一端114是以一p型半導體製成,以及該碳奈米管112的該第二端116是以一n型半導體製成,或者反過來的情況,結果即是一P-N接面。一P-N接面可以用於形成一發光二極體(“LED”)、一光電流二極體、一電源裝置、一光電二極體、一光電檢測器、或類似裝置。用於形成一靜電摻雜碳奈米管裝置110的結構之較佳電壓範圍,對於VC1 24和VC2 26是介於約+/-1伏特與約+/-30伏特之間。
單壁的碳奈米管是直接的能帶間隙半導體,因此一或多個該獨立式靜電摻雜碳奈米管裝置110是可以用於一光電流裝置、感測器、和/或一電源裝置內。圖10呈現一單一獨立式靜電摻雜碳奈米管裝置110的光電流反應。該圖形顯示該獨立式靜電摻雜碳奈米管裝置110在漸進且較高的照明強度下,電流電壓特性的偏移情況。該漸進的偏移至第四象限表示較大的電壓正由該二極體所產生。
參考圖11至16,顯示的是用於形成一獨立式靜電摻雜碳奈米管裝置110的過程步驟。於一啟始步驟(圖11和12),將一絕緣層40沉積或長成在該半導體層28的表面上,該第一絕緣層40可以利用一加熱氧化物、一化學蒸氣沉積介電、一電漿增強化學蒸氣沉積介電、一低壓化學蒸氣沉積介電、或類似的方式形成。該第一絕緣層40可以包括SiO2 ,Si3 N4 ,Al2 O3 ,ZrO2 ,或類似材料。理想地,該第一絕緣層40具有的厚度介於約2奈米與約1000奈米之間。接著沉積或長成該第一絕緣層40之後,將一金屬電極印上圖樣並沉積在該第一絕緣層40的表面上,以形成上述的該第一金屬電極24和該第二金屬電極26。該金屬電極可以由Mo,Ti,Pt,Au,Cr或類似材料形成。理想地,該第一金屬電極24和該第二金屬電極26各自具有的厚度介於約10奈米與100奈米之間。
參考圖13,然後將一第二絕緣層42沉積或長成於該第一絕緣層40的表面上,大致圍繞著該第一金屬電極24和該第二金屬電極26。該第二絕緣層42可以利用一化學蒸氣沉積介電、一電漿增強化學蒸氣沉積介電、一低壓化學蒸氣沉積介電、或類似的方式形成。該第二絕緣層42可以包括SiO2 ,Si3 N4 ,Al2 O3 ,ZrO2 ,或類似材料。理想地,該第二絕緣層42具有的厚度介於約2奈米與約100奈米之間。共同地,該第一絕緣層40和該第二絕緣層42形成上述的該介電層22。接著沉積或長成該第二絕緣層42之後,將一金屬接點材料印上圖樣並且沉積於該第二絕緣層42的表面上,以形成上述的該第一金屬接點18和該第二金屬接點20(圖15)。該金屬接點材料可以包括Ti,Mo,Au,Cr或類似材料。理想地,該第一金屬接點18和該第二金屬接點20各自具有的厚度是介於10奈米與100奈米之間。
參考圖14,然後將適合用於長成一碳奈米管的一觸媒劑材料44印上圖樣,並且沉積於該第一金屬接點18和該第二金屬接點20的表面上,其利用比如一騰空技術,為本技術領域中一般技術人員所熟知的。該觸媒劑44可以取其一薄膜或一奈米粒子的形式,可以包括比如Ni,Fe,Co,或Mo的元素,或者比如硝酸鐵內Al2 O3 的混合物。一些實施例中,該觸媒劑材料44具有的厚度介於約0.1奈米與約1奈米之間。將該觸媒劑材料44沉積於該第一金屬接點18和該第二金屬接點20的表面上之前,該第一金屬接點18與該第二金屬接點20的表面以及該介電材料22,可以選擇性地鍍上光阻。該光阻的功能是為沉積該觸媒劑材料44用以形成適當圖樣,之後就會移除。應該注意到,該觸媒劑材料44可以選擇性地沉積在該第一金屬接點18和該第二金屬接點20兩者中之只有一個的表面上。
接著沉積該觸媒劑材料44之後,可以長成上述的該碳奈米管112,如圖15所示。理想地,該碳奈米管112是大致對準平行於該介電層22的表面。一般來說,該碳奈米管112是在耦接至一流動的碳(氫化碳)源的一化學蒸氣沉積(CVD)管內長成,比如一甲烷源或一乙炔源,溫度介於攝氏約700度與約1000度之間。該觸媒劑材料44在這些溫度下形成複數個“島狀物”,並且以碳成為飽和。結果,該碳奈米管112從這些觸媒劑島狀物中長成。此製程是本技術領域中一般技術人員所熟知的。最後如圖16所顯示,在該介電層22內蝕刻一溝槽128以使得該碳奈米管112成為獨立式。
現在參考圖17至21,顯示的是一種變化方法用於形成一獨立式靜電摻雜碳奈米管裝置110。於一啟始步驟(圖17),一絕緣層40是沉積或長成於該半導體層28的表面上,該第一絕緣層40可以利用一加熱氧化物、一化學蒸氣沉積介電、一電漿增強化學蒸氣沉積介電、一低壓化學蒸氣沉積介電、或類似的方式形成。接著沉積或長成該第一絕緣層40之後,在一金屬電極材料印上圖樣並沉積於該第一絕緣層40的表面上,以形成上述的該第一金屬電極24和該第二金屬電極26。
參考圖18,將該第一絕緣層40的一部分移除以形成一變化的第一絕緣層40a。適合的移除製程包括蝕刻和光微影技術。該第一和第二金屬電極24和26可以在一蝕刻或光微影步驟中當做遮罩。適合用於蝕刻該第一絕緣層40a的蝕刻劑材料包括濕蝕刻劑,比如用於SiO2 的緩衝氧化物、或電漿乾蝕刻劑。經由蝕刻過程在該第一與第二金屬電極24和26之間形成一開放區域127。參考圖21,然後沉積或長成一第二絕緣層42a於已蝕刻的該第一絕緣層40a之表面上,大致圍繞著該第一金屬電極24和第二金屬電極26。該第二絕緣層42a配合該已蝕刻的第一絕緣層40a。於該開口區域127的該第二絕緣層42a之配合,容許一溝槽128得以形成於該第一與第二金屬電極24和26之間。接著該第二絕緣層42a沉積或長成之後,將一金屬接點材料印上圖樣並沉積於該第二絕緣層42a的表面上,以形成該第一金屬接點18和該第二金屬接點20。
參考圖20,然後在適合用於長成一碳奈米管的一觸媒劑材料44印上圖樣,並且沉積於該第一金屬接點18和該第二金屬接點20的表面上,其利用比如一騰空技術,為本技術領域中一般技術人員所熟知的。將該觸媒劑材料44沉積於該第一金屬接點18和該第二金屬接點20的表面上之前,該第一金屬接點18和該第二金屬接點20的表面以及該介電材料22,可以選擇性地鍍上光阻。該光阻的功能是形成適當的圖樣用以沉積該觸媒劑材料44,之後就移除。應該注意到,該觸媒劑材料44可以選擇性地沉積在該第一金屬接點18和該第二金屬接點20兩者中之只有一個的表面上,接著沉積該觸媒劑材料44之後就長成上述的該碳奈米管112,如圖21所示。
在此本發明僅以有限數目的實施例詳細敘述,應該理解到本發明並不限於上述揭示的實施例,而是本發明能夠以整合任何數目的變化、選擇、替代、或沒有在此敘述的等同之安排來修改,但其相呼應本發明的精神和範圍。例如:本發明之實施例是以一單一的靜電摻雜碳奈米管之方式敘述,應該能夠理解到任何陣列或組合的靜電摻雜碳奈米管12和112,也可以配置以形成許多的電源裝置。此外,從已經敘述本發明之各種實施例,應該瞭解到本發明之方面可以包括僅僅這些敘述的實施例之一部分,尤其本發明不該視為由以上的敘述所限制,而只以所附的申請專利範圍為限。
10...靜電摻雜碳奈米管裝置
12、112...碳奈米管
14、114...第一端
16、116...第二端
18...第一金屬接點
20...第二金屬接點
22...介電材料
24...第一金屬電極
26...第二金屬電極
28...金屬層
30...中心部分
40...第一絕緣層
40a...變化的第一絕緣層
42...第二絕緣層
42a...第二絕緣層
44...觸媒劑材料
110...獨立式靜電摻雜碳奈米管裝置
127...開口區域
128...溝槽
圖1是根據本發明之一實施例所建構一靜電摻雜碳奈米管裝置的截面圖。
圖2是代表圖1中該靜電摻雜碳奈米管裝置的一電路圖。
圖3至7呈現根據本發明之一種方法用於形成一靜電摻雜碳奈米管裝置的截面圖。
圖8是根據本發明之一實施例所建構一獨立式靜電摻雜碳奈米管裝置的截面圖。
圖9是代表圖8中該獨立式靜電摻雜碳奈米管裝置的一電路圖。
圖10呈現由圖8中該獨立式靜電摻雜碳奈米管裝置得到的光電流圖形。
圖11至16根據本發明之一實施例呈現一種方法用於形成一獨立式靜電摻雜碳奈米管裝置的截面圖。
圖17至21根據本發明之一實施例呈現一種方法用於形成一獨立式靜電摻雜碳奈米管裝置的截面圖。
10...靜電摻雜碳奈米管裝置
12...碳奈米管
14...第一端
16...第二端
18...第一金屬接點
20...第二金屬接點
22...介電材料
24...第一金屬電極
26...第二金屬電極
28...金屬層
30...中心部分

Claims (8)

  1. 一種靜電摻雜碳奈米管裝置(110),包括一碳奈米管(112)配置在一基板(22)上,致使該碳奈米管之至少一部分是獨立的,其中該碳奈米管具有一第一端(114)和一第二端(116);一第一金屬接點(18),配置以直接相鄰該碳奈米管的該第一端(114);一第二金屬接點(20),配置以直接相鄰該碳奈米管的該第二端(116),其中該碳奈米管是電力耦接至該第一和第二金屬接點;一第一金屬電極(24),配置在該基板中與該碳奈米管的該第一端相鄰但相隔一段距離,其中該第一金屬電極是電容性耦接至該碳奈米管的該第一端,且可操作的用於接受一第一偏壓以靜電摻雜該碳奈米管的該第一端;以及一第二金屬電極(26),配置在該基板中與該碳奈米管的該第二端相鄰但相隔一段距離,其中該第二金屬電極是電容性耦接至該碳奈米管的該第二端,且可操作的用於接受一第二偏壓以靜電摻雜該碳奈米管的該第二端。
  2. 如申請專利範圍第1項之靜電摻雜碳奈米管裝置,其中該基板包括一溝槽(128)。
  3. 如申請專利範圍第1項之靜電摻雜碳奈米管裝置,其中該第一金屬電極和該第二金屬電極各自包括從鉬(Mo )、鈦(Ti)、鉑(Pt)和金(Au)組成之群組中選擇的一金屬。
  4. 如申請專利範圍第1項之靜電摻雜碳奈米管裝置,其中可以操作該第一偏壓以使該碳奈米管的該第一端成為一p型半導體(電洞為多數載體)或一n型半導體(電子為多數載體)。
  5. 如申請專利範圍第1項之靜電摻雜碳奈米管裝置,其中可以操作該第二偏壓以使該碳奈米管的該第二端成為一p型半導體(電洞為多數載體)和一n型半導體(電子為多數載體)其中一種。
  6. 一種光電流裝置,包括如申請專利範圍第1項之靜電摻雜碳奈米管裝置。
  7. 一種電源裝置,包括如申請專利範圍第1項之靜電摻雜碳奈米管裝置。
  8. 一種感測器,包括如申請專利範圍第1項之靜電摻雜碳奈米管裝置。
TW095104244A 2005-02-18 2006-02-08 獨立式靜電摻雜碳奈米管裝置和其製造方法 TWI394711B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/060,667 US7378715B2 (en) 2003-10-10 2005-02-18 Free-standing electrostatically-doped carbon nanotube device

Publications (2)

Publication Number Publication Date
TW200639118A TW200639118A (en) 2006-11-16
TWI394711B true TWI394711B (zh) 2013-05-01

Family

ID=36659701

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095104244A TWI394711B (zh) 2005-02-18 2006-02-08 獨立式靜電摻雜碳奈米管裝置和其製造方法

Country Status (6)

Country Link
US (2) US7378715B2 (zh)
EP (1) EP1696480A3 (zh)
JP (1) JP2006245566A (zh)
CN (1) CN100592546C (zh)
SG (1) SG125218A1 (zh)
TW (1) TWI394711B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7492015B2 (en) * 2005-11-10 2009-02-17 International Business Machines Corporation Complementary carbon nanotube triple gate technology
CN100428500C (zh) * 2006-01-13 2008-10-22 清华大学 基于一维半导体纳米结构的光电传感器及其制作方法
US20070200187A1 (en) * 2006-02-28 2007-08-30 Amlani Islamshah S Nanowire device and method of making
US7535014B2 (en) * 2006-06-09 2009-05-19 The United States Of America As Represented By The Secretary Of The Navy Integrally gated carbon nanotube field ionizer device and method of manufacture therefor
KR100923165B1 (ko) * 2006-12-04 2009-10-23 한국전자통신연구원 부양형 나노선 센서 및 그 제조 방법
JP5355423B2 (ja) * 2007-02-22 2013-11-27 ダウ コーニング コーポレーション 伝導性フィルムを調製するためのプロセスおよびそのプロセスを用いて調製した物品
US7858876B2 (en) * 2007-03-13 2010-12-28 Wisconsin Alumni Research Foundation Graphite-based photovoltaic cells
TWI405262B (zh) * 2007-07-17 2013-08-11 Creator Technology Bv 電子元件及電子元件之製法
US8378333B2 (en) * 2007-09-27 2013-02-19 University Of Maryland Lateral two-terminal nanotube devices and method for their formation
US8624224B2 (en) * 2008-01-24 2014-01-07 Nano-Electronic And Photonic Devices And Circuits, Llc Nanotube array bipolar transistors
WO2009107846A1 (ja) * 2008-02-29 2009-09-03 独立行政法人産業技術総合研究所 カーボンナノチューブ膜構造体及びその製造方法
US20100212727A1 (en) * 2009-02-26 2010-08-26 Ji Ung Lee Apparatus and methods for continuously growing carbon nanotubes and graphene sheets
US10032569B2 (en) * 2009-08-26 2018-07-24 University Of Maryland, College Park Nanodevice arrays for electrical energy storage, capture and management and method for their formation
US8912522B2 (en) * 2009-08-26 2014-12-16 University Of Maryland Nanodevice arrays for electrical energy storage, capture and management and method for their formation
US8246860B2 (en) * 2009-10-23 2012-08-21 Tsinghua University Carbon nanotube composite, method for making the same, and electrochemical capacitor using the same
EP2557567A1 (en) 2011-08-09 2013-02-13 Thomson Licensing Programmable read-only memory device and method of writing the same
CN102544379B (zh) * 2012-02-23 2014-11-05 苏州大学 方酸单根纳米线和n型硅异质结光电探测器及制备方法
CN103367554B (zh) * 2012-03-28 2016-03-30 清华大学 发光二极管的制备方法
CN103474525B (zh) * 2012-06-07 2016-04-27 清华大学 发光二极管的制备方法
JP5842262B2 (ja) * 2012-08-24 2016-01-13 国立大学法人大阪大学 有機薄膜トランジスタ及びその製造方法
JP7090400B2 (ja) 2017-03-08 2022-06-24 浜松ホトニクス株式会社 半導体光検出素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020173083A1 (en) * 2001-01-03 2002-11-21 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
US20040043527A1 (en) * 2002-09-04 2004-03-04 Nanomix, Inc. Sensitivity control for nanotube sensors

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124769A (en) * 1990-03-02 1992-06-23 Nippon Telegraph And Telephone Corporation Thin film transistor
US7416699B2 (en) * 1998-08-14 2008-08-26 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
WO2001044796A1 (en) * 1999-12-15 2001-06-21 Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube devices
KR100333376B1 (ko) * 2000-06-30 2002-04-18 박종섭 반도체 소자의 게이트 제조방법
GB2382718B (en) * 2000-07-18 2004-03-24 Lg Electronics Inc Field effect transistor using horizontally grown carbon nanotubes
DE10123876A1 (de) * 2001-05-16 2002-11-28 Infineon Technologies Ag Nanoröhren-Anordnung und Verfahren zum Herstellen einer Nanoröhren-Anordnung
AU2003224723A1 (en) * 2002-03-20 2003-10-08 The Board Of Trustees Of The Leland Stanford Junior University Molybdenum-based electrode with carbon nanotube growth
TW200425530A (en) * 2002-09-05 2004-11-16 Nanosys Inc Nanostructure and nanocomposite based compositions and photovoltaic devices
US7115916B2 (en) * 2002-09-26 2006-10-03 International Business Machines Corporation System and method for molecular optical emission
TW200418722A (en) * 2002-11-18 2004-10-01 Rensselaer Polytech Inst Nanotube polymer composite and methods of making same
AU2003250225A1 (en) * 2003-04-22 2004-11-19 Commissariat A L'energie Atomique A process for modifying at least one electrical property of a nanotube or a nanowire and a transistor incorporating it.
US6890780B2 (en) * 2003-10-10 2005-05-10 General Electric Company Method for forming an electrostatically-doped carbon nanotube device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020173083A1 (en) * 2001-01-03 2002-11-21 International Business Machines Corporation Methodology for electrically induced selective breakdown of nanotubes
US20040043527A1 (en) * 2002-09-04 2004-03-04 Nanomix, Inc. Sensitivity control for nanotube sensors

Also Published As

Publication number Publication date
CN1838446A (zh) 2006-09-27
SG125218A1 (en) 2006-09-29
US20070275487A1 (en) 2007-11-29
US20050166292A1 (en) 2005-07-28
JP2006245566A (ja) 2006-09-14
US7521275B2 (en) 2009-04-21
EP1696480A3 (en) 2009-07-29
US7378715B2 (en) 2008-05-27
CN100592546C (zh) 2010-02-24
EP1696480A2 (en) 2006-08-30
TW200639118A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
TWI394711B (zh) 獨立式靜電摻雜碳奈米管裝置和其製造方法
US6890780B2 (en) Method for forming an electrostatically-doped carbon nanotube device
Franklin et al. Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems
US8664657B2 (en) Electrical circuit with a nanostructure and method for producing a contact connection of a nanostructure
KR100624433B1 (ko) P형 반도체 탄소 나노튜브 및 그 제조 방법
CN101189372B (zh) 纳米结构在基底上的可控生长以及基于此的电子发射器件
CN107564947A (zh) 纳米异质结构
US7329902B2 (en) IR-light emitters based on SWNT's (single walled carbon nanotubes), semiconducting SWNTs-light emitting diodes and lasers
CN107564948A (zh) 纳米异质结构及纳米晶体管的制备方法
CN105810788B (zh) 发光二极管
CN102082159A (zh) 一种基于石墨烯的纳米尺度点光源及其制备方法
JP2009283303A (ja) カーボンナノチューブ発光素子、及び、その製造方法
US20080023839A9 (en) Molybdenum-based electrode with carbon nanotube growth
Fuhrer Single-walled carbon nanotubes for nanoelectronics
KR101274209B1 (ko) 발광 소자 및 그 제조 방법
TWI664735B (zh) 薄膜電晶體
TWI658600B (zh) 肖特基二極體及肖特基二極體陣列
US20120132892A1 (en) Nano Device
CN113120881B (zh) 半导体型碳纳米管的获取方法
CN108987576B (zh) 碳纳米管复合薄膜的制备方法、碳纳米管tft及其制备方法
JP2007137762A (ja) 多孔性テンプレートを利用するナノワイヤの製造方法、ならびにナノワイヤを用いたマルチプローブ、電界放出チップおよび素子
Tseng et al. Field emission characteristics of a single free standing carbon nanotube with gate electrode
Tsai et al. Fabrication and characterization of carbon nanotubes integrated on field-emission diode
JP2007103350A (ja) シリコン基板上のZnOナノチップ電極電界発光素子、およびその製造方法
US20120025166A1 (en) Method of fabricating nanosized filamentary carbon devices over a relatively large-area

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees