TWI381164B - 原子級尖銳銥針尖之製造方法及銥針 - Google Patents

原子級尖銳銥針尖之製造方法及銥針 Download PDF

Info

Publication number
TWI381164B
TWI381164B TW097107471A TW97107471A TWI381164B TW I381164 B TWI381164 B TW I381164B TW 097107471 A TW097107471 A TW 097107471A TW 97107471 A TW97107471 A TW 97107471A TW I381164 B TWI381164 B TW I381164B
Authority
TW
Taiwan
Prior art keywords
tip
atomic
needle
sharp cusp
manufacturing
Prior art date
Application number
TW097107471A
Other languages
English (en)
Other versions
TW200919485A (en
Inventor
Hong Shi Kuo
Ing Shouh Hwang
Tien T Tsong
Tsu Yi Fu
Original Assignee
Academia Sinica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academia Sinica filed Critical Academia Sinica
Publication of TW200919485A publication Critical patent/TW200919485A/zh
Application granted granted Critical
Publication of TWI381164B publication Critical patent/TWI381164B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • G01Q60/16Probes, their manufacture, or their related instrumentation, e.g. holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/26Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for needles; for teeth for card-clothing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • H01J1/3044Point emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/285Emission microscopes, e.g. field-emission microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/04Single or very large crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30407Microengineered point emitters
    • H01J2201/30411Microengineered point emitters conical shaped, e.g. Spindt type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30449Metals and metal alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/02Manufacture of cathodes
    • H01J2209/022Cold cathodes
    • H01J2209/0223Field emission cathodes
    • H01J2209/0226Sharpening or resharpening of emitting point or edge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3114Machining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/848Tube end modifications, e.g. capping, joining, splicing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/90Manufacture, treatment, or detection of nanostructure having step or means utilizing mechanical or thermal property, e.g. pressure, heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12389All metal or with adjacent metals having variation in thickness

Description

原子級尖銳銥針尖之製造方法及銥針
本發明係關於一種銥針及其製造方法,特別係關於具有原子級尖銳度的銥針尖及其製備方法。
可靠、穩定且具單原子尖銳度的場離子發射源(field ion source)或場電子發射源(field electron source)是增進掃描式顯微鏡解析度及影像對比的重要關鍵技術之一。掃描式顯微術是將帶電粒子束在試片上聚焦至一小且亮的聚焦點(spot),藉由掃描這聚焦粒子束,由點到線,再由線到面,逐步取得表面顯微影像或化學組成訊息。顯然的,聚焦點的尺寸及亮度決定了掃描式顯微鏡的解析度及訊躁比。為了有效聚焦粒子束,所有的帶電粒子必須同源自於一點,且粒子束能量分佈(energy spread)及張角(opening angle)應儘可能的小。
雖然具有原子尖銳度的針尖(由單一原子或小於15個原子所形成之針尖)能大幅提升顯微鏡之解析度與成像品質,可惜的是這樣具特殊結構的金屬針並不容易製得。習知技藝中,大都以非熱平衡的方式,製備單原子銳利度的金屬針尖,製備過程往往需使用特殊的設備及複雜的製程。例如,在形成單原子針尖的過程中,以場離子顯微鏡(field ion microscope,FIM)或場發射顯微鏡(field emission microcope,FEM),現場(in-situ)觀察針尖逐步細化過程,當針尖達到最尖細之狀態(例如單原子之尖細程度)時,必須迅速中斷尖細製程,以避免不容易形成的針尖再度鈍化。這些非平衡的針尖並不穩定,一旦受損,即難以再生,因此使用壽命短。習知技藝中,鎢(tungsten,W)是最常被用來形成探針之材料。然而鎢針尖在正電壓環境下,易受化學活性離子,如氧離子(O2 +)、氮離子(N2 +)及/或水離子(H2O+)等的侵蝕而受到損壞,因此大幅縮短了鎢針尖的使用期限。
上述這些缺點阻礙了極尖銳探針在重要科學設備上及工業上的應用性。因此需要提供簡單、可靠且低成本之製備原子級探針之方法,以得到穩定、可再生之原子級尖銳針尖,特別是單原子尖銳針尖。
為達上述、其它與本發明之目的,本發明提供一種原子級尖銳銥針尖的製造方法,包括下列步驟:細化一銥線的末端;以及於一第一溫度之環境下加熱該銥線,以於上述細化的末端上形成一三角錐結構,其中該三角錐結構之針尖具有原子級尖銳度。
本發明也提供一種銥針,包括:一細化的末端,其具有一表面;以及一三角錐結構,位於該表面上,其中該三角錐結構具有由少數銥原子所形成之一針尖,該針尖遠離該表面。
我們所揭露的發明具原子尖銳度之銥針尖(例如銥單原子針尖(iridium single-atom tip,Ir-SAT)),即使在外加高電壓之環境下,仍能保有良好的熱及化學穩定性。若是針尖意外地受損,也能夠輕易地重複再生數以百次。
在習知技藝中,微米級尖銳之探針係藉由各種研磨(polishing)方式製作。例如,於美國專利號案US 6,249,965中,以化學研磨法將金屬線材研磨成具微米尖銳探針(micrometer-sharp tip),針尖曲率半徑約為0.05-50 μm之半球狀(hemi-spherical)針尖。
在習知技藝中,如果想要取得具有奈米級或甚至是原子級針尖,除了先以研磨方式取得一微米針尖外,還需進一步使用特殊設備及複雜製程。例如,A.P.Jansssen等人(J.Phys.D4,118,1971)及H.W.Fink(IBM.J.Res.Dev.30,460,1986)利用離子反向轟擊法(ion back bombardment),在探針頂端,再轟擊出奈米級之微凸結構(protuberance)。另外,P.C.Bettler等人(Phys.Rev.119,85,1960)及V.T.Binh等人(Ultramicroscopy,42-44,80,1992)則是利用場表面融化法(field-surface-melting),並結合場形成效應(field forming effect),在原有微米級針尖前端再形成一奈米級的微凸結構。另外,M.Rezeq等人(J.Chem,Phys.,124,204716,2006)在真空環境下,以場效化學蝕刻法(field-assisted chemical etching)削減金屬針之末端邊緣(tip shank),以形 成一奈米尖銳探針(nanometer-sharp tip)。
雖然上述技藝所得到的奈米級針尖,在科學研究上已被證實係非常好的電子源及掃描探針,然這些針尖的形成,僅是整個過程中的一個暫態現象而已,是偶然得到的結果,製備過程困難、掌控不易且不可靠。所形成之針尖使用期限短,也很難於相同環境下被再生。
本發明提供形成堅固耐用的原子級尖銳銥針,特別是具有單原子尖銳度之銥針尖的製造方法,本發明所提出的製造方法簡單且可靠。有關各實施例之製造方式和使用方式係如下所詳述,並伴隨示意圖示加以說明。而在示意圖式中,為清楚和方便說明起見,有關實施例之形狀和厚度或有不符實際之情形。
於實施例中,銥線(iridium wire)先被蝕刻成具有細化的末端(sharp end)(或tapered end)之銥針(iridium needle)。接著將銥細化的末端表面暴露於含氧環境下,並進行退火製程,以於細化的末端表面上形成具有原子級尖銳度之銥針尖。銥針尖可僅由非常少數(例如少於15個)原子,通常只有單一原子所構成。
其中銥線可選自純銥(例如銥重量含量大於或等於90%)或銥合金。銥線可以係多晶或單晶結構。在第1圖所繪示的示意圖,係使用單晶<210>銥線為例。利用本發明所揭示方法處理細化的單晶<210>銥線10後,於細化的末端上可自發性地形成一奈米尺寸(nano-size)之三角錐結構14。奈米三角錐結構之針尖可自我對準(self-aligned)於銥線 之<210>方向。如圖所示,三角錐結構體14之針尖係在原有細化的末端其{210}面上向外延伸,最終收斂至僅有少數原子所構成的針尖。於一實施例中,三角錐結構14之針尖可由少數銥原子所形成。於較佳實施例中,三角錐結構14之針尖可由單一銥原子所形成。銥線10之細化的末端(tapered end)12通常其曲率半徑約為5~1000 nm之接近半球形[或楔形(wedge shpae)]的曲面。於一實施例中,半徑係被控制在200 nm以下(較佳為50~100 nm,或更佳為10~50 nm)。在第2圖所繪示的俯視圖中,三角錐結構14是形成於細化的末端的{210}面A上,其中{210}面A中<001>方向h之晶格面的距離約為3.84 Å,<1-20>方向k之晶格面的距離約為4.29 Å,三角錐結構14是由{31-1}面B、{311}面C及{110}面D所構成。細化的末端的半徑與將形成於其上之三角錐結構數量及尺寸有關。在一些實施例中,除細化的末端具有{210}面外,銥線(例如多晶或單晶銥線)之側面上,也可能形成其他{210}面,因此當進行完加熱步驟後,每個{210}面上可個別形成三角錐結構。每個三角錐結構指向偏離於銥線長軸方向約38度(兩{210}面之夾角)。
有關銥線細化可利用機械研磨法、電化學蝕刻法或離子研磨法等,使銥線之一端形成細化的末端。機械研磨法包含機械切割法(mechanical cutting),研磨液研磨法(slurry polishing)或其他適合之機械方法。離子研磨法包含利用離子或其他帶電粒子轟擊銥線。在利用電化學蝕刻法之實施 例中,可使用蝕刻銥材料之電解液,例如熔融鹽混合物(molten salt mixture)。適合之鹽的例子包含但不限於硝酸鈉(NaNO3)、氫氧化鈉(NaOH)、氫氧化鉀(KOH)、硝酸鉀(KNO3)及氯化鉀(KCl)。於其他實施例中,電解液亦可使用重量濃度約10~30%之氰酸鉀(KCN)水溶液。當銥線被置於電解液中,且被施予0.5~20 V(例如1~15 V,或2~10 V)之電壓,及1mA~1A之電流時,其一端能夠因電化學蝕刻作用而被細化。其中電解槽中的電壓或電流,可利用直流電源供應器或交流電源供應器供應。
銥表面可於蝕刻步驟後,退火步驟前,利用於一腔室內重覆被加熱至300~2000℃或被施予高正電場的方式,潔淨表面。在潔淨過程中,可通入氧氣進入腔室內以清除表面積碳。氧分壓可被控制介於10-8至10-5 Torr之間(例如10-7~10-6 Torr)。於腔室通入低壓氧氣前,腔室殘餘氣體(residual gas)之背景壓力(backbround pressure)應小於欲通入的氧氣壓力。亦可利用通入(purge)惰性氣體,例如氮氣或氬氣以縮短抽氣時間。於一些實施例中,可對銥金屬針施予500~2000℃之快速熱處理(flash),(溫度較佳為1000℃,更佳為1500℃,每次加熱少於10秒),一方面可移除銥表面的吸附污染物,另一方面可減少針尖末端鈍化的可能性。於某些實施例中,亦可利用場蒸發技術(field evaporation)清潔銥表面。例如,施予銥線的末端5~50 V/nm之高電場,使銥表面上之吸附污染物離子化或場蒸發(field evavporation)。
在清潔完銥線表面後,可對銥針進行退火,以形成具有原子尖銳度之針尖。所使用的退火溫度需低於潔淨表面的快速熱處理溫度。在一實施例中,銥線係於含有氧之腔室內,以300~600℃之溫度進行加熱。氧分壓可介於10-8至10-5 Torr之間。於其他實施例中,被細化的銥線可先被暴露於含氧環境,使銥線表面吸附氧分子,接著再於無氧之腔室內進行退火。退火時間並不限定於上述所描述形成三角錐結構於細化的末端其表面上所需要的時間。退火時間一般約為1~20分鐘。退火溫度可視實際狀況做適當調整。加熱方式可以是直接加熱(例如藉由電阻加熱)或間接加熱(例如藉由電子束轟擊加熱)。具有原子尖銳度之銥針尖的形成,其原理可能係由於Ermanoshi等人(Surface Science,549,1,2004;以及Surface Science,596,89,2006)所公開之理論,即由於氧吸附於銥表面上,加大了表面能的異向性(anisotropics)的結果。而具有原子尖銳度之銥針尖的形成機制亦不限定於上述理論。若針尖(例如銥單原子針尖(single-atom tip,SAT))或三角錐結構受到損壞,可如上所述之方法,再次將銥線置於含氧環境下進行退火,受損之針尖或三角錐結構即得以再生。
所形成之三角錐結構,其銥針尖可承受高電場(高至約53 V/nm),且相當穩定也不具化學活性。這些特性使得銥單原子針尖具有適合用於氣體場離子源(gas field ion source,GFIS)的兩項優勢條件。第一,明顯改善場離子源系統(FIS system)之解析度及亮度。本發明所揭示的銥單原 子針尖具有最小之離子發射尺寸,其尺寸小於目前常用的液態金屬離子源(liquid metal ion source,LMIS)2個數量級(order of magnitude)。離子束之張角(opening angle)(小於1),亦小於液態金屬離子源至少1個數量級。在正常的操作環境(如氣壓約10-4 Torr)下,自單原子針尖發射出之離子束,其亮度為微米級半球狀離子源的100倍。此外,所有氣體分子係在相同原子點被游離化與被加速射出,因此離子能量散佈較小。另外,由於總發射電流小於液態金屬離子源之總發射電流,因此粒子粒子間之庫侖相互作用(Coulomb interaction)所造成之影響可以忽略。相較於液態金屬離子源,銥單原子針尖之離子源能在較小發射電流之條件下,發射出具有相同亮度、低色像差及高穩定度的離子束。第二,能夠因應不同之應用而發射不同之離子。只需改變通入氣體,便能夠發射出各種化學種類之離子束。因此,銥單原子針尖可廣泛應用於離子束系統,例如聚焦式離子束顯微鏡(focused ion beam,FIB)、掃描式離子顯微鏡(scanning ion microscope,SIM)、二次離子質譜儀(secondary ion masss spectroscope,SIMS)、離子佈植機(ion implanter)、離子束微影技術(ion beam lithography)、反應性離子蝕刻(reactive ion etching,RIE)及類似之應用。
同上述理由,銥單原子針尖亦可用作場發射電子源或掃描探針。此外,由於自單原子針尖發射之電子束亮且具有同調性(coherence),因此上述電子束能夠應用於電子全像顯影技術(electron holography)或電子繞射技術中,以得 到樣品之三維影像。因此,銥單原子針尖可應用於場發射電子顯微鏡(field emission electron microscope)、電子能譜儀(electron energy spectroscope)、電子干涉系統(electron interferometry)、電子束微影術(E-beam lithography)、低能電子顯微鏡(low-energy electron microscope)及類似之應用。此外,銥單原子針尖亦可應用於如掃描穿隧顯微鏡(scanning tunneling microscope,STM)等類似之掃描探針顯微鏡中的掃描探針。
於一些實施例中,當於銥針之細化的末端曲面上形成數個三角錐結構,且每個三角錐結構各自具有一個銥單原子針尖時,可施予針較低之擷取電壓(extraction voltage),以控制僅有一個位於針尖軸向較突出的銥單原子針尖能夠發射帶電粒子,而其餘銥單原子針尖無法發射帶電粒子,而能夠達到用作單點電子源之目的。
為了讓本發明之上述和其他目的、特徵,及優點能更明顯易懂,下文特舉較佳實施例之實施方式,做詳細說明如下:
【實施例】
蝕刻
利用電化學法蝕刻一多晶銥線(其直徑約0.1 mm,長度約5 mm)以得到一細化的末端。製程詳述如下:
將硝酸鈉(NaNO3)及氫氧化鈉(NaOH)以1:1之重量比例,於一鉑坩堝內混合後,予以加熱以形成一熔融鹽混合 物。將銥線浸入熔融鹽混合物中,並於銥線及輔助電極(counter electrode)之間施予7~9 V(rms)之交流電,其頻率約為60~300 Hz。於進行完蝕刻後,利用水及丙酮清洗銥線。藉由掃描式電子顯微鏡的觀察可發現,被蝕刻後之銥線具有細化的末端,其半徑約200 nm。
表面清潔
接著將銥線置入含氧之腔室內,並加熱至約500℃持續約2秒或更短時間,再加熱至約1500℃持續約2秒或更短時間。氧分壓約為2×10-7 Torr。
單原子針尖之形成
於上述氧分壓(2×10-7 Torr)之環境下,將銥線以400~600℃之溫度退火5分鐘。
針尖特性
銥針尖之原子結構及三角錐結構之特徵可利用場離子顯微鏡(field ion microscope,FIM)觀察。場離子顯微觀察顯示三角錐結構,最上層為單一銥原子所構成,因此能夠證實銥線可經由上述製程形成銥單原子針尖。接著利用場蒸發技術(field-evaporation)將三角錐結構之最上層原子移除,以暴露第二層原子層,其被偵測到具有三個銥原子。當第二層原子層亦利用場蒸發技術予以移除後,可看到三條原子之稜線結構(atomic ridge),證實針尖為三面角錐結 構。
受到損壞之三角錐結構,其僅需要再一次重複上述「單原子針尖之形成」步驟中所描述之製程即可被再生。再生之三角錐結構具有相同原子堆疊結構。此外,銥線之細化的末端上僅形成一個三角錐結構,其理論可能係由於位於銥線細化的末端上的{210}面其面積非常小所造成之結果,但並不限定於此理論。當銥線之細化的末端半徑大於約200 nm以上時,可於{210}面上形成複數個角錐結構或截斷面角錐結構(truncated pyramid)。
銥單原子針尖之應用:氧離子發射
銥單原子針尖可依上述方式於一腔體內形成。通入氧氣至腔體內,直至氧壓達到約5×10-5 Torr。接著對針尖施予正高電壓,使其場發射一約3 pA之氧離子束。僅有一半張角約0.6度之氧離子束自單原子針尖頂點發射出。所發射之離子束其亮度可達約7×1010 A/(m2.Sr),高於氧電漿之亮度[約106 A/(m2.Sr)]四個級數以上,亦高於目前鎵聚焦離子(gallium focused ion beam)之亮度[約109 A/(m2.Sr)]。於整個測試過程中,發射電流穩定。銥單原子針尖可用以發射各種不同的離子束,包含活性O2 +離子、H+、He+、Ne+,及Ar+離子,發射時間持續150小時以上,沒有發現任何損壞或劣化現象。因此,銥單原子針尖適合用作點離子源。
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精 神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
10‧‧‧銥線
12‧‧‧細化的末端
14‧‧‧三角錐結構
第1圖顯示根據本發明實施例之銥針的剖面圖。
第2圖顯示根據本發明實施例之銥針的俯視圖。
10‧‧‧銥線
12‧‧‧細化的末端
14‧‧‧三角錐結構

Claims (24)

  1. 一種原子級尖銳銥針尖的製造方法,包括下列步驟:細化一銥線的末端;以及於一第一溫度之環境下加熱該銥線,以於上述細化的末端上形成一三角錐結構,其中該三角錐結構之針尖具有原子級尖銳度。
  2. 如申請專利範圍第1項所述之原子級尖銳銥針尖的製造方法,其中該銥線是<210>單晶線。
  3. 如申請專利範圍第1項所述之原子級尖銳銥針尖的製造方法,其中該銥線是多晶體。
  4. 如申請專利範圍第1項所述之原子級尖銳銥針尖的製造方法,其中該細化的末端的半徑是介於5 nm至200 nm之間。
  5. 如申請專利範圍第1項所述之原子級尖銳銥針尖的製造方法,其中該銥三角錐結構之針尖是由少數銥原子所形成。
  6. 如申請專利範圍第1項所述之原子級尖銳銥針尖的製造方法,其中該銥三角錐結構之針尖是由單一銥原子所形成。
  7. 如申請專利範圍第1項所述之原子級尖銳銥針尖的製造方法,其中該第一溫度係介於300至600℃。
  8. 如申請專利範圍第1項所述之原子級尖銳銥針尖的製造方法,其中該加熱步驟是在一含有氧的腔室中進行。
  9. 如申請專利範圍第8項所述之原子級尖銳銥針尖的製造方法,其中該腔室的氧壓介於10-8至10-5 Torr之間。
  10. 如申請專利範圍第9項所述之原子級尖銳銥針尖的製造方法,其中該第一溫度係介於300至600℃。
  11. 如申請專利範圍第1項所述之原子級尖銳銥針尖的製造方法,更包含於細化該銥線的末端後,以該第一溫度加熱該銥線之前,以高於該第一溫度之一第二溫度加熱該銥線。
  12. 如申請專利範圍第11項所述之原子級尖銳銥針尖的製造方法,其中是以介於600至2000℃之該第二溫度加熱該銥線少於10秒鐘後,再以該第一溫度加熱該銥線1至15分鐘。
  13. 如申請專利範圍第1項所述之原子級尖銳銥針尖的製造方法,其中該細化步驟是以電化學蝕刻法、機械研磨法或離子研磨法進行,且該細化的末端的半徑是介於5 nm至200 nm之間。
  14. 如申請專利範圍第13項所述之原子級尖銳銥針尖的製造方法,其中該電化學蝕刻法是在一電解液中,以0.5~20 V之電壓,及1 mA~1 A之電流條件下進行。
  15. 如申請專利範圍第14項所述之原子級尖銳銥針尖的製造方法,其中該電解液包含氰酸鉀(KCN)水溶液,或選自由包含硝酸鈉(NaNO3)、氫氧化鈉(NaOH)、氫氧化鉀(KOH)、硝酸鉀(KNO3)及氯化鉀(KCl)構成之族群之中兩種或更多種鹽所形成之一熔融混合物。
  16. 一種銥針,包括:一細化的末端,其具有一表面;以及一三角錐結構,位於該表面上,其中該三角錐結構具有由少數銥原子所形成之一針尖,該針尖遠離該表面。
  17. 如申請專利範圍第16項所述之銥針,其中該表面係{210}銥晶面。
  18. 如申請專利範圍第16項所述之銥針,其中該銥針係由一單晶<210>銥線或多晶銥所形成。
  19. 如申請專利範圍第16項所述之銥針,其中該細化的末端的半徑是介於5 nm至200 nm之間。
  20. 如申請專利範圍第19項所述之銥針,其中該針尖是由單一或少數銥原子所形成。
  21. 如申請專利範圍第20項所述之銥針,其中該細化的末端的半徑是介於5 nm至200 nm之間。
  22. 如申請專利範圍第20項所述之銥針,其中該表面是{210}銥晶面。
  23. 如申請專利範圍第22項所述之銥針,其中該銥針是由一單晶<210>銥線或多晶銥線所形成。
  24. 如申請專利範圍第16項所述之銥針,其中該三角錐結構是由{311}面及{110}面所構成。
TW097107471A 2007-10-26 2008-03-04 原子級尖銳銥針尖之製造方法及銥針 TWI381164B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/924,692 US7737414B2 (en) 2007-10-26 2007-10-26 Atomically sharp iridium tip

Publications (2)

Publication Number Publication Date
TW200919485A TW200919485A (en) 2009-05-01
TWI381164B true TWI381164B (zh) 2013-01-01

Family

ID=40583231

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097107471A TWI381164B (zh) 2007-10-26 2008-03-04 原子級尖銳銥針尖之製造方法及銥針

Country Status (3)

Country Link
US (1) US7737414B2 (zh)
JP (1) JP5421541B2 (zh)
TW (1) TWI381164B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110843B1 (en) * 2008-04-15 2011-08-24 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Stable emission gas ion source and method of operation thereof
WO2009140441A2 (en) * 2008-05-13 2009-11-19 Nanoink, Inc. Height sensing cantilever
WO2010132221A2 (en) 2009-05-12 2010-11-18 Carl Zeiss Nts, Llc. Gas field ion microscopes having multiple operation modes
US8847173B2 (en) 2010-08-06 2014-09-30 Hitachi High-Technologies Corporation Gas field ion source and method for using same, ion beam device, and emitter tip and method for manufacturing same
CN102842474B (zh) * 2011-06-22 2015-11-25 中国电子科技集团公司第三十八研究所 粒子源及其制造方法
JP6001292B2 (ja) * 2012-03-23 2016-10-05 株式会社日立ハイテクサイエンス エミッタの作製方法
US8765725B2 (en) 2012-05-08 2014-07-01 Aciex Therapeutics, Inc. Preparations of hydrophobic therapeutic agents, methods of manufacture and use thereof
EP2847207B1 (en) 2012-05-08 2019-03-27 Nicox Ophthalmics, Inc. Fluticasone propionate nanocrystals
US9815865B2 (en) 2013-01-07 2017-11-14 Nicox Ophthalmics, Inc. Preparations of hydrophobic therapeutic agents, methods of manufacture and use thereof
JP6266458B2 (ja) 2013-08-09 2018-01-24 株式会社日立ハイテクサイエンス イリジウムティップ、ガス電界電離イオン源、集束イオンビーム装置、電子源、電子顕微鏡、電子ビーム応用分析装置、イオン電子複合ビーム装置、走査プローブ顕微鏡、およびマスク修正装置
JP6490917B2 (ja) * 2013-08-23 2019-03-27 株式会社日立ハイテクサイエンス 修正装置
JP6560871B2 (ja) 2015-02-03 2019-08-14 株式会社日立ハイテクサイエンス 集束イオンビーム装置
US10083812B1 (en) * 2015-12-04 2018-09-25 Applied Physics Technologies, Inc. Thermionic-enhanced field emission electron source composed of transition metal carbide material with sharp emitter end-form
JP7007642B2 (ja) * 2017-11-30 2022-02-10 国立大学法人北陸先端科学技術大学院大学 単原子終端構造を有するティップおよび単原子終端構造を有するティップの製造方法
US11233017B2 (en) * 2019-10-03 2022-01-25 Texas Instruments Incorporated Ex-situ manufacture of metal micro-wires and FIB placement in IC circuits

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3775121A (en) * 1972-08-09 1973-11-27 Western Electric Co Method of selectively depositing a metal on a surface of a substrate
US5630932A (en) * 1995-09-06 1997-05-20 Molecular Imaging Corporation Tip etching system and method for etching platinum-containing wire
US6249965B1 (en) * 1997-10-15 2001-06-26 Huntington Medical Research Institutes Methods for making small-diameter iridium electrodes
IL122937A (en) * 1998-01-14 2003-05-29 Technion Res & Dev Foundation Process and apparatus for etching a semiconductor material
US7032437B2 (en) * 2000-09-08 2006-04-25 Fei Company Directed growth of nanotubes on a catalyst
US7082683B2 (en) * 2003-04-24 2006-08-01 Korea Institute Of Machinery & Materials Method for attaching rod-shaped nano structure to probe holder
US7368727B2 (en) * 2003-10-16 2008-05-06 Alis Technology Corporation Atomic level ion source and method of manufacture and operation
US7507320B2 (en) * 2004-10-09 2009-03-24 Academia Sinica Single-atom tip and preparation method thereof
US7098144B2 (en) * 2004-10-21 2006-08-29 Sharp Laboratories Of America, Inc. Iridium oxide nanotubes and method for forming same
JP4543129B2 (ja) * 2004-11-04 2010-09-15 学校法人早稲田大学 電子光学装置用電子ビーム源及びその製造方法
JP2006189276A (ja) * 2005-01-04 2006-07-20 Academia Sinica 単原子チップ及びその調製方法
US7309353B2 (en) * 2005-04-29 2007-12-18 Medtronic Vascular, Inc. Use of platinum group metals in vascular devices and method of texturing platinum group metals
US20090320991A1 (en) * 2005-09-30 2009-12-31 Paul Boyle Methods of synthesis of nanotubes and uses thereof
US7585474B2 (en) * 2005-10-13 2009-09-08 The Research Foundation Of State University Of New York Ternary oxide nanostructures and methods of making same
US7408366B2 (en) * 2006-02-13 2008-08-05 Georgia Tech Research Corporation Probe tips and method of making same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ivan Ermanoski, Kalman Pelhos, Wenhua Chen, Jamie S. Quinton, and Theodore E. Madey, "Oxygen-induced nano-faceting of Ir(210)", Surface Science, 549, 1, January 10, 2004, pp. 1-23. *
Tsu-Yi Fu, Lung-Chieh Cheng, C.-H. Nien, and Tien T. Tsong, "Method of Creating a Pd-covered Single-atom Sharp W Pyramidal Tip: Mechanism and Energetics of Its Formation", Physical Review B., 64, 11, 2001, pp. 113401-1~4. *

Also Published As

Publication number Publication date
JP2009107105A (ja) 2009-05-21
JP5421541B2 (ja) 2014-02-19
US7737414B2 (en) 2010-06-15
TW200919485A (en) 2009-05-01
US20090110951A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
TWI381164B (zh) 原子級尖銳銥針尖之製造方法及銥針
Kuo et al. Noble metal/W (111) single-atom tips and their field electron and ion emission characteristics
US11237188B2 (en) Scanning probe and electron microscope probes and their manufacture
Iwami et al. Preparation of silver tips for scanning tunneling microscopy imaging
JP6490917B2 (ja) 修正装置
CN109804450B (zh) 电子束装置
US9102190B2 (en) Method of fabricating nanotips with controlled profile
JP5559431B2 (ja) 粒子源及びその製造方法
Ottaviano et al. Scanning Auger microscopy study of W tips for scanning tunneling microscopy
JP6028277B2 (ja) 金属ホウ化物フィールドエミッター作製方法
JP4292108B2 (ja) 電子源及びその製造方法
JP4446667B2 (ja) Cnt(カーボンナノチューブ)チップ及びその製造方法、並びに電子銃及び走査型プローブ顕微鏡用探針
JP5173516B2 (ja) 電子源及び電子源の製造方法
US8460049B2 (en) Fabrication of super ion—electron source and nanoprobe by local electron bombardment
JP5119457B2 (ja) 電界放出型電子源及びその製造方法
Asai et al. Fabrication of Pt-and Au-coated W Nano Tip with Electroplated Films as a Noble-metal Source toward Viable Application for Long-life Electron Source
Rezeq et al. A well defined electron beam source produced by the controlled field assisted etchingof metal tips to< 1 nm radius
Kim et al. Effects of process parameters on the electrochemical etching of sharp metallic tips with an attached mass
Rokuta et al. Field Emission Microscopy Study of Au-Covered Nanopyramids with 211-Facet Sides Grown on Blunt W Tips via Assistive Remolding Treatment
Khursheed et al. Graphene Cold Field-Emission Sources for Electron Microscopy Applications
Qian et al. Electron-Beam-Induced Deposition of Carbon Nanorod via Spot Mode as Highly Stable and Sensitive AFM Probe Tip
JP2009187922A (ja) ダイヤモンド電子源の製造方法及びダイヤモンド電子源
Bieber et al. Applications of electron beam induced deposition in nanofabrication
Gnanavel et al. Nanoscale sculpting of ferromagnetic structures by electron beam ablation
Makela et al. Surface Morphology and Lifetime Assessment of Re-generable Field-Emission Cathodes at Elevated Background Pressure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees