TWI376502B - Multi-axis capacitive accelerometer - Google Patents

Multi-axis capacitive accelerometer Download PDF

Info

Publication number
TWI376502B
TWI376502B TW97151113A TW97151113A TWI376502B TW I376502 B TWI376502 B TW I376502B TW 97151113 A TW97151113 A TW 97151113A TW 97151113 A TW97151113 A TW 97151113A TW I376502 B TWI376502 B TW I376502B
Authority
TW
Taiwan
Prior art keywords
mass
fixed
axis
capacitor
comb
Prior art date
Application number
TW97151113A
Other languages
Chinese (zh)
Other versions
TW201020549A (en
Inventor
Yu Wen Hsu
Shih Chen
Hsin Tang Chien
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to US12/618,791 priority Critical patent/US8205498B2/en
Publication of TW201020549A publication Critical patent/TW201020549A/en
Application granted granted Critical
Publication of TWI376502B publication Critical patent/TWI376502B/en

Links

Landscapes

  • Pressure Sensors (AREA)

Description

P27970096TWCI 29767-] twf.doc/d 六'發明說明: 【發明所屬之技術領域】 本發明是有關於一種電容式加速度計,且特別是有關 於一種多軸電容式加速度計之設計。 【先前技術】 加速度计目前在市場上已逐漸被普遍地使用於許多 裝置中以做為運動感測器’如遊戥機、健康監控、手機界 面控制與自動靜音、慣性游標指向器等領域。 傳統微機電三軸加速度計大都採用單軸組合的三軸 設計’意即其用以感測X軸、γ軸及Z軸加速度的質量塊 及感測元件係分別獨立設置。這種設置方式雖然在加速度 感測上可達到降低它軸靈敏度的目的,但是其缺點是為達 到低機械雜汛的目標,往往造成元件尺寸太大,或為達到 尺寸小的目標’使得機械雜訊不易降低,而元件尺寸與成 本是有直接密切的關聯。因此’為了降低生產成本及縮小 加速度計尺寸,採用三軸一體的加速度計設計是一可行的 方法。然而’三轴一體的加速度計現今仍存在著各轴向之 相互干擾與線性度有待提升的問題。 美國第7258011號專利案之圖1及圖2分別為習知一 種加速度計的俯視圖及剖視侧示圖,其所揭露的加速度計 50主要疋利用連接體(linkage)的結構來連接三轴的彈簧結 構、軸質量塊52與外側的z軸旋轉結構(paddie)54。z 軸的度敏度因Z軸旋轉結構54的質量較小而表現較差。 此外’其Z軸之感測質量在受力時會有線性位移與旋轉, 1376502 P27970096TWCI 29767-ltwf.doc/d 這種運動行為將使得元件產生非線性度之效應β 美國第7258012號專利案之圖3為習知的另一種加速 度計的俯視圖,其所揭露的加速度計,因其設計使用 CMOS MEMS的製作方式且採用單一的^:軸結構在質量塊 中心,而其Z軸的感測電容結構則是採用梳狀結構,當結 構受到延其Z軸之轉動轴方向的振動力時,其z轴結構容 易產生旋轉而造成Z方向加速度計的它軸靈敏度受影響, 雖然可以透過梳狀結構的排列設計來克服,但如此也將造 成真正貢獻於感測電容可用的梳狀結構數目降低,進而造 成電容量的不足,增加電路設計的負擔;如果採用用兩組 To廳η結構’則將可以提供足夠梳狀結構的數目,使得電 容量得以增加,如此也可以降低讀取電路設計上的複雜 度。事實上,目前大部分三軸—體加速度計的結構設計, 都面_它滅敏度與祕度性能提升的問題。一般而 言於三轴一體加速度計的設計,,ζ軸τ〇 時,因為必須考慮χγ軸結構質量 t T i rf其有效峰使料降低;另外,當 χγ_構之内,如果製作方式是 使用J 一基材上的兩電極與結構形成差動電容時,雖献此 稱’也會造成其必須使用-部份區域僅做 而無法貢獻於感測之用途,而使 …質里千衡用 呌目丨丨趑άΓ" 6缺π氺祉 使用兩、且Torsion結構的設 5十則將可以自然形成對稱而無須強迫將轉動軸放於XY軸 1376502 P27970096TWC1 29767-ltwf.doc/d 結構質量塊的中心,就可以達到提升面積使用效率和降低 Z軸之它軸靈敏度的目的。 【發明内容】 為了改善傳統三軸一體加速度計結構所產生的它軸 靈敏度與線性度問題,並同時達到縮小尺寸的目標,本發 明提出一種多轴電容式加逮度計,可·降低各軸向之加速度 感測相互干擾的現象,同時達到高線性度與靈敏度的優點。 本明提出^種多轴電容式加速度計,包括一基板及 一結構層。基板的一表面上設置多個感測電極。結構層包 括多個固定座、一第一質量塊、一第一彈性結構、多個固 疋感測塊、一第二質量塊、一第三質量塊、一第二彈性結 構及一第二彈性結構。固定座固定於基板的表面上。第一 質夏塊浮置於基板的表面上方,第一質量塊具有一中心軸 以及位於第一質量塊内部的一第一開口及一第二開口。第 開口及第—開口對應於感測電極並且以第—質量塊的中 〜軸為中心而對稱地配置於中心軸的相對兩側。第一彈性 、、Ό構連接固足座與弟一質量塊。固定感測塊鄰近第一質量 ,並固疋於基板的表面上,其中每一固定感測塊與第一質 夏塊之間形成一電容結構。第二質量塊及第三質量塊浮置 於基板的感測電極上方並且分別位於第一質量塊的第一開 :及第二開口内’第二質量塊及第三質量塊與基板上的感 二電極形成感測電容◎第二質量塊及第三質量塊分別藉由 弟〜彈性結構及第三彈性結構非對稱地懸掛在第—質量塊 上,以分別沿一轉動轴在受力時作轉動,且第二質量塊及 7 1376502 P27970096TWC1 29767-1 twf.doc/d 第二質置塊的轉動轴相互平行並以第一質量塊的中心軸為 t心而對稱地配置於中心軸的相對兩側。 在本發明之-實施例中,上述之固定感測塊位 一 質量塊的外侧。 有之—實施例中,上述之第—f量塊内部更具 口 ^ 口,且至少部分固定感測塊分別位於第三開 ,本發明之—實施例中,上述之每一組由一固 ί ί #電μ構包括由第—質量塊延伸 出來的-梳狀電極及由岐感職其巾之—延伸出來 i狀電極具有多個梳狀電容板。固定梳狀 狀電容板與固定梳狀電構的梳 軸方向)加速度的電容結構,其令 第:方向(例如Υ 且位於同一平面上。各a/^弟方向與第二方向正交 定梳狀抛㈣電容板與固 ,=_叫4方向)加速度的可成為 在本發明之—♦ AM A , 甩备、、Ό構。 於第-質量塊之相對兩側的奴固3包括分別配置 塊。 塊及一第二固定 1376502 P27970096TWC1 29767-ltwf.doc/d &本發明’上述之第—彈性結構包括分 別對應於第一固定塊及第二固定塊的—第一彈薯及一BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a capacitive accelerometer, and more particularly to the design of a multi-axis capacitive accelerometer. [Prior Art] Accelerometers are currently widely used in many devices in the market as motion sensors such as swimmers, health monitoring, mobile interface control and automatic mute, and inertial cursor pointing devices. Conventional micro-electromechanical three-axis accelerometers mostly use a three-axis design with a single-axis combination, which means that the mass blocks and sensing elements used to sense the X-axis, γ-axis and Z-axis acceleration are independently set. Although this arrangement can achieve the purpose of reducing the sensitivity of the shaft in acceleration sensing, the disadvantage is that in order to achieve the goal of low mechanical noise, the component size is often too large, or the target of small size is made to make the machine miscellaneous. The message is not easy to reduce, and the component size and cost are directly related. Therefore, in order to reduce the production cost and reduce the size of the accelerometer, it is a feasible method to adopt a three-axis integrated accelerometer design. However, the 'three-axis integrated accelerometer still has the problem that the mutual mutual interference and linearity need to be improved. FIG. 1 and FIG. 2 of the US Pat. No. 7258011 are respectively a top view and a cross-sectional side view of a conventional accelerometer, and the disclosed accelerometer 50 mainly uses a structure of a link to connect three axes. The spring structure, the shaft mass 52 and the outer z-axis paddy 54. The sensitivity of the z-axis is poor due to the small mass of the Z-axis rotating structure 54. In addition, the sensing quality of the Z-axis will have linear displacement and rotation when subjected to force. 1376502 P27970096TWCI 29767-ltwf.doc/d This kind of motion behavior will cause the nonlinearity of the component. β US Pat. No. 72,580,012 3 is a top view of another conventional accelerometer, the disclosed accelerometer is designed using CMOS MEMS and adopts a single ^:axis structure at the center of the mass, and its Z-axis sensing capacitance The structure adopts a comb structure. When the structure is subjected to the vibration force in the direction of the rotation axis of the Z axis, the z-axis structure is likely to rotate, and the sensitivity of the axis of the Z-direction accelerometer is affected, although it can pass through the comb structure. The arrangement design is overcome, but this will also reduce the number of comb structures that can really contribute to the sensing capacitance, which will result in insufficient capacitance and increase the burden of circuit design. If two sets of To Hall η structures are used, then It is possible to provide a sufficient number of comb structures so that the capacitance can be increased, which can also reduce the complexity of the design of the read circuit. In fact, most of the current three-axis-body accelerometers are designed to have the problem of improved sensitivity and accuracy. Generally speaking, in the design of a three-axis integrated accelerometer, when the ζ axis τ〇, the γ-axis structure mass t T i rf must be considered to reduce the effective peak; in addition, when χγ_ is constructed, if the production method is When using a two-electrode on a J-substrate to form a differential capacitor with a structure, the so-called 'will also cause it to be used--some areas are only used and cannot contribute to the purpose of sensing, so that... Use 呌 丨丨趑άΓ quot 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 At the center of the block, it is possible to increase the efficiency of the area and reduce the sensitivity of the axis of the Z axis. SUMMARY OF THE INVENTION In order to improve the axis sensitivity and linearity problem of the conventional three-axis integrated accelerometer structure and achieve the goal of downsizing at the same time, the present invention proposes a multi-axis capacitive type arresting meter, which can reduce each axis. The acceleration is sensed to interfere with each other while achieving the advantages of high linearity and sensitivity. The present invention proposes a multi-axis capacitive accelerometer comprising a substrate and a structural layer. A plurality of sensing electrodes are disposed on one surface of the substrate. The structural layer includes a plurality of fixing bases, a first mass, a first elastic structure, a plurality of solid sensing blocks, a second mass, a third mass, a second elastic structure and a second elastic structure. The mount is fixed to the surface of the substrate. The first summer block floats above the surface of the substrate, and the first mass has a central axis and a first opening and a second opening inside the first mass. The first opening and the first opening correspond to the sensing electrodes and are symmetrically disposed on opposite sides of the central axis centering on the center-axis of the first mass. The first elasticity, the Ό structure connects the solid seat and the younger one. The fixed sensing block is adjacent to the first mass and is fixed on the surface of the substrate, wherein a capacitance structure is formed between each of the fixed sensing blocks and the first summer block. The second mass and the third mass float above the sensing electrodes of the substrate and are respectively located in the first opening of the first mass: and the second opening: the sense of the second mass and the third mass and the substrate The two electrodes form a sensing capacitor ◎ the second mass and the third mass are respectively suspended asymmetrically on the first mass by the elastic structure and the third elastic structure, respectively, to be respectively subjected to a force along a rotating axis Rotating, and the second mass and 7 1376502 P27970096TWC1 29767-1 twf.doc/d The rotation axes of the second mass are parallel to each other and are symmetrically arranged on the central axis with the central axis of the first mass being t-center On both sides. In the embodiment of the invention, the fixed sensing block is located outside of the mass. In the embodiment, the first-fth block has a mouth inside, and at least a part of the fixed sensing blocks are respectively located in the third opening. In the embodiment of the present invention, each of the groups is The electro-mechanism includes a comb-shaped electrode extending from the first mass and an extension of the i-shaped electrode having a plurality of comb-shaped capacitive plates. a capacitive structure of a fixed comb-shaped capacitor plate and a fixed comb-like electrical structure in the direction of the comb axis, which causes the first direction (for example, Υ and lies on the same plane. Each a/^ direction is orthogonally fixed with the second direction The throwing (four) capacitive plate and solid, = _ called 4 direction) acceleration can be used in the present invention - ♦ AM A, preparation, and structure. The slaves 3 on opposite sides of the first mass include separate blocks. Block and a second fixing 1376502 P27970096TWC1 29767-ltwf.doc/d & The present invention - the first elastic structure includes - the first spring and one corresponding to the first fixed block and the second fixed block, respectively

X 彈貫’其中第-彈黃及第二彈簧提供沿第一方向(例如 軸方向)與第二方向(例如γ軸方向)的回復力。 在本發明之-實施例中,上述之第—質量塊對稱於中 心軸,且分別透過第-彈簧及第二彈簧連接於第—固定塊 及第二固定塊。The X-elastic portion wherein the first-elastic yellow and the second spring provide a restoring force in a first direction (e.g., an axial direction) and a second direction (e.g., a γ-axis direction). In an embodiment of the invention, the first mass is symmetric with respect to the central axis, and is coupled to the first fixed block and the second fixed block through the first spring and the second spring, respectively.

在本發明之-實施例中,上述之第二彈性結構包括一 第三彈簧及-第四彈簀’位於崎應的轉動軸上並銜接第 一質量塊與第二質量塊。 ^在本發明之一實施例中,上述之第三彈性結構包括一 第五彈簧及一第六彈簧,位於所對應的轉動軸上並銜接第 一質量塊與第三質量塊。 在本發明之一實施例中,上述之第一質量塊具有面對 基板的一底面,且底面上具有多個凸起。In an embodiment of the invention, the second elastic structure comprises a third spring and a fourth magazine aposing on the axis of rotation of the yoke and engaging the first mass and the second mass. In one embodiment of the invention, the third elastic structure includes a fifth spring and a sixth spring disposed on the corresponding rotating shaft and engaging the first mass and the third mass. In an embodiment of the invention, the first mass has a bottom surface facing the substrate and a plurality of protrusions on the bottom surface.

在本發明之一實施例中,上述之第二與第三質量塊上 具有多個微礼洞,可減少阻尼產生。 本發明另提出一種多軸電容式加速度計,其包括一基 板以及一結構層。基板上具有多個感測電極,而結構層浮 置於基板上。結構層包括:多個固定座,固定在該基板上; 多個彈性結構,至少包括一第一彈性結構、—第二彈性結 構和一第三彈性結構;一第一質量塊,透過第一彈性結構 被懸掛設置在基板上,並與固定座連接’用以感測在一平 面上的第一方向(例如X軸方向)或第二方向(例如γ軸方向) 9 P27970096TWC1 29767-ltwf.doc/d 上的加速度,而對應地沿第一方向(例如X軸方向)或第二 方向(例如Y軸方向)平移;一第二質量塊,透過第二彈性 結構被懸掛設置在第一質量塊内,而第二質量塊可以沿著 與第一質量塊平移方向的同平面的垂直方向作平移;多個 第一固定感測塊,配置在第一質量塊内,其中每一第一固 定感測塊與第一質量塊或第一質置塊之間形成一第_電容 結構;一第三質量塊與一第四質量塊,對應於基板上的感 測電極並且以第一質量塊的一中心軸為中心而對稱地配置 於中心軸的相對兩側,第三質量塊與第四質量塊分別透過 第三彈性結構以非對稱的方式懸掛設置在第二質量塊内, 且沿第一方向(例如X軸方向)具有一轉動轴,使第一質量 塊在第二方向(例如γ軸方向)上呈現不對稱性,並在第一 質量塊在一第三方向(例如Z軸方向)受力時,以轉動轴為 中心轉動,其中第一方向(例如X軸方向)、第二方向(例如 γ輛方向)和第三方向(例如z軸方向)彼此正交;以及,多 個第二固定感測塊,配置在第二質量塊内,其中每一第二 固疋感測塊與第二質量塊之間形成一弟一電容結構。 在本發明之一實施例中,上述之每—第一電容結構包 括由第一質量塊或第二質量塊延伸出來的一梳狀電極,其 具有多個梳狀電容板;以及,由第一固定感測塊其中之一 延伸出來的一固定梳狀電極,其具有多個固定梳狀電容 板。梳狀電容板與固定梳狀電容板相互平行且交替配置。 在本發明之一實施例中,上述之每一第一電容結構的 梳狀電容板與固定梳狀電容板沿著第一方向(例如X軸方 1376502 P27970096TWCI 29767-ltwf.doc/d 向)延伸,以感測第二方向(例如Y軸方向)的加速度。 在本發明之一實施例_,上述之每—第二電容結構包 括由第二質量塊延伸出來的一梳狀電極,其具有多個梳狀 電容板;以及,由第二固定感測塊其中之一延伸出來的一 固定梳狀電極,其具有多個固定梳狀電容板。梳狀電容板 與固疋梳狀電容板相互平行且交替配置。 在本發明之一實施例中,上述之每—第二電容結構的 梳狀電容板與固定梳狀電容板沿著第二方向(例如γ轴方 向)延伸,以感測第一方向(例如χ軸方向)的加速度。 在本發明之-實施例中,上述之第_彈性結^連接在 第-質量塊與©定座之間,使第—質量塊能沿第—方向(例 如x軸方向)或第二方向(例如Y軸方向)平移。 =發明之-實施财,上述之第二彈性結構連接在 苐一質量塊與第一質量塊之問,/由 ^ ^ 矛貝里龙(間,使第一質量塊能沿與第一 質里塊平移方向的同平面的垂直方向作平移。. 在第ίίϊ:之:實ί例中’上述之第三彈性結構被配置 旦备-質里驗第二質1塊之間以及第二質量塊盘第四質 ,並分別對應連接轉動軸的兩端,以使得第三質 里鬼與弟四質量塊能以轉動轴為中心轉動。 軸的2發明之—貫施例中,上述之感測電極配置在轉動 的-ΐί發實施例中’上述之f量塊具有面對基板 的底面,且底面上具有多個凸起。 在本發明之一實施例中,上述之第三與第四質量塊上 11 1376502 P27970096TWC1 29767-ltwf.doc/d 具有多個微孔洞,可減少阻尼產生β 在本發明之一實施例中,上述之第一質量塊具有一第 四開口,第四開口内設有第二質量塊,及第二質量塊具有 —第五開口與一第六開口,而第五開口内設有第三質量 塊,第六開口内設有第四質量塊。 在本發明之一實施例中,上述之第一彈性結構分別連 接固定座與第一質量塊,而第二彈性結構分別連接第〆質 量塊與第二質量塊。 基於上述’本發明的多軸電容式加速度在結構層内部 設置可沿其中心軸對稱轉動的多個質量塊。該些質量塊為 非對稱結構,因此受力時將會轉動,轉動時並無線性位移, 所以具有較佳的線性度。另外,第二質量塊及第三質量塊 受力而分別轉動時,在第一與第二方向的它轴受力會互相 抵消,因此避免了它軸的影響。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 圖4為本發明一實施例之多軸電容式加速度計的俯視 圖。圖5為圖4沿14線的剖視圖。請參考圖4及圖5,本 實施例的多軸電容式加速度計1〇〇〇包括一基板11〇〇及一 結構層1200。基板1100的一表面1110上設置多個感測電 極1120。結構層12〇〇包括多個固定座121〇、一第一質量 塊1220、一第一彈性結構123〇、多個固定感測塊124〇、 一第二質量塊1250、一第三質量塊126〇、一第二彈性結構 12 1376502 P27970096TWC1 29767-Itwf.doc/d 1270及一第三彈性結構1280。 第一質量塊122〇設置於基板1100的表面1110上方, 第一質量塊1220具有一中心軸1222以及位於第一質量塊 1220内部的一第一開口 1224及一第二開口 1226。第一開 口 1224及第二開口 1226以第一質量塊1220的中心軸1222 為中心而對稱地配置於中心轴1222的相對兩側。第一彈性 結構1230連接固定座1210與第一質量塊1220。因此,第 一質量塊1220可浮置於基板11〇〇上方。同時,固定座1210 ® 包括一第一固定塊1212及一第二固定塊1214。第一固定 塊1212及第二固定塊1214分別固定於基板11〇〇的表面 1110上’且分別位於第一質量塊1220的相對之兩外側。 固定感測塊1240包括多個第一固定感測塊1242及多 個第二固定感測塊1244。第一固定感測塊1242及第二固 定感測塊1244鄰近且位於第一質量塊122〇之外側並固定 於基板1100的表面1110上,其中每一第一固定感測塊 1242及每一第二固定感測塊1244分別與第一質量塊1220 Φ 之間形成一第一電容結構100及一第二電容結構200,分 別用以藉其電容變化量感測γ軸方向及χ軸方向的加速 度。第二質量塊1250及第三質量塊126〇浮置於感測電極 1120上方並且分別位於第一質量塊122〇的第一開口 1224 及第二開口 1226内,而第二質量塊125〇及第三質量塊 1260分別與基板1100上之感測電極η2〇形成一感測電 谷,藉其與感測電極1120之間的電容變化量感測ζ軸方 向的加速度。 13 1376502 P27970096TWC1 29767-ltwf.doc/d 詳細而言,第二質量塊1250及第三質量塊126 藉由第二彈性結構1270及第三彈性結構128〇非對 ,在第-質量塊1220上,且分別沿—第一轉動轴a及二、 第二轉動B在受力時轉動’贿其與感測電極 之間產生電容變化量。第二質量塊125〇的第—轉動轴 及第三質量塊126G的第二轉動軸b相互平行並以第 量塊1220的中心軸1222為中心而對稱地配置於中心轴 1222的相對兩侧。換言之,第二質量塊125〇及第三 塊1260可對稱地轉動(如圖5所繪示之虛線部分)。第= 質量塊1250及第三質量塊126〇因為非對稱結構,因此; 轴受力時將會_,轉動時並無z軸方向位移,所以 ==線性^。另外第二質量塊125()及第三質量塊_ 度的景If ^響第—f量塊122G,因此避免了它軸靈敏 睛參考圖4,每—第一電容結構1〇〇包括由第—質量 地延伸出的—固定植狀電極m。梳狀電極110 電容板112。固定梳狀電極120具有多個固 I。相互平行且交替m各板m與固定梳狀電容板 ,L 又替配置。母—第二電容結構200亦呈備 如上,之粒結構特徵,在此不予贅述。 '、 電容ί ΠΓί f結構1GG的梳狀電容板112與固定梳狀 伸U、:考與基板膽表面U1。平行的X軸方向延 母弟—電容結構200的梳狀電容板212與固定梳狀 1376502 P27970096TWC1 29767-ltwf.doc/d =容板222沿著與基板議表面⑽平行的 伸轴方狀Y轴方向正交1 —電容結構動及第 一电合結構200猎由上这配置方式,可分別透過第一質量 塊mo在γ軸方向及X軸方向之移動而產生電容變化, 以對I軸方向及乂軸方向的加速度進行感測。詳言之第 -電谷結構10 0是用以感測Y軸方向的加速度,而第二電 谷結構200是用以感測X軸方向的加速度。In an embodiment of the invention, the plurality of micro-holes are provided on the second and third masses to reduce damping. The invention further provides a multi-axis capacitive accelerometer comprising a substrate and a structural layer. The substrate has a plurality of sensing electrodes, and the structural layer floats on the substrate. The structural layer includes: a plurality of fixing bases fixed on the substrate; a plurality of elastic structures including at least a first elastic structure, a second elastic structure and a third elastic structure; and a first mass that transmits the first elasticity The structure is suspended from the substrate and connected to the mount to sense a first direction (eg, an X-axis direction) or a second direction (eg, a γ-axis direction) on a plane. 9 P27970096TWC1 29767-ltwf.doc/ The acceleration on d is correspondingly translated in a first direction (for example, an X-axis direction) or a second direction (for example, a Y-axis direction); a second mass is suspended in the first mass through the second elastic structure And the second mass can be translated in a vertical direction of the same plane as the translation direction of the first mass; the plurality of first fixed sensing blocks are disposed in the first mass, wherein each of the first fixed sensing Forming a _ capacitor structure between the block and the first mass or the first mass; a third mass and a fourth mass corresponding to the sensing electrodes on the substrate and being a center of the first mass Axis is centered and symmetrical Disposed on opposite sides of the central axis, the third mass and the fourth mass are respectively suspended in the second mass through the third elastic structure in an asymmetric manner, and have a first direction (for example, an X-axis direction) a rotating shaft, the first mass is asymmetric in the second direction (for example, the γ-axis direction), and when the first mass is stressed in a third direction (for example, the Z-axis direction), the rotating axis is Center rotation, wherein the first direction (eg, the X-axis direction), the second direction (eg, the gamma direction), and the third direction (eg, the z-axis direction) are orthogonal to each other; and, the plurality of second fixed sensing blocks are disposed at In the second mass, a capacitance structure is formed between each of the second solid sensing blocks and the second mass. In an embodiment of the invention, each of the first capacitor structures includes a comb electrode extending from the first mass or the second mass, having a plurality of comb capacitor plates; and, by the first A fixed comb electrode extending from one of the fixed sensing blocks has a plurality of fixed comb capacitor plates. The comb capacitor plate and the fixed comb capacitor plate are parallel and alternately arranged. In an embodiment of the invention, the comb capacitor plate and the fixed comb capacitor plate of each of the first capacitor structures extend along a first direction (for example, an X-axis side 1372502 P27970096TWCI 29767-ltwf.doc/d direction) To sense the acceleration in the second direction (for example, the Y-axis direction). In an embodiment of the present invention, each of the second capacitor structures includes a comb electrode extending from the second mass, having a plurality of comb capacitor plates; and, by the second fixed sensing block A fixed comb electrode extending from one of the plurality has a fixed comb capacitor plate. The comb capacitor plate and the solid comb capacitor plate are parallel and alternately arranged. In an embodiment of the invention, the comb capacitor plate and the fixed comb capacitor plate of each of the second capacitor structures extend along a second direction (for example, a γ-axis direction) to sense the first direction (for example, χ Acceleration in the direction of the axis. In an embodiment of the invention, the _elastic coupling is coupled between the first mass and the ©, such that the first mass can be along the first direction (eg, the x-axis direction) or the second direction ( For example, the Y-axis direction) translates. =Inventive-implementation, the second elastic structure described above is connected to the first mass and the first mass, / ^^ 矛贝里龙 (between the first mass and the first mass) The vertical direction of the same plane in the direction of translation of the block is translated. In the ίίϊ:: in the example, the third elastic structure described above is configured to be prepared, and the second mass is between the first mass and the second mass. The disc is of the fourth quality and correspondingly connected to the two ends of the rotating shaft, so that the third mass of the ghost and the fourth mass can rotate around the rotating shaft. In the embodiment of the shaft, the above sensing The electrode arrangement is in a rotating embodiment. The above-mentioned f-quantity block has a bottom surface facing the substrate and has a plurality of protrusions on the bottom surface. In one embodiment of the invention, the third and fourth masses described above Block 1 11376502 P27970096TWC1 29767-ltwf.doc/d has a plurality of micro-holes to reduce damping generation β. In one embodiment of the invention, the first mass has a fourth opening, and the fourth opening is provided There is a second mass, and the second mass has a fifth opening and a sixth a third mass is disposed in the fifth opening, and a fourth mass is disposed in the sixth opening. In an embodiment of the invention, the first elastic structure is respectively connected to the fixed seat and the first mass. The second elastic structure is respectively connected to the second mass and the second mass. The multi-axis capacitive acceleration according to the above invention is provided with a plurality of masses which can be symmetrically rotated along the central axis thereof inside the structural layer. It is an asymmetrical structure, so it will rotate when subjected to force, and there is no linear displacement when rotating, so it has better linearity. In addition, when the second mass and the third mass are rotated by force, respectively, in the first The axial direction of the second direction will cancel each other out, thus avoiding the influence of its shaft. In order to make the above features and advantages of the present invention more apparent, the following embodiments are described in detail with reference to the accompanying drawings. [Embodiment] Fig. 4 is a plan view of a multi-axis capacitive accelerometer according to an embodiment of the present invention, and Fig. 5 is a cross-sectional view taken along line 14 of Fig. 4. Referring to Fig. 4 and Fig. 5, the multiaxial capacitor of this embodiment Plus The meter 1 includes a substrate 11 and a structural layer 1200. A plurality of sensing electrodes 1120 are disposed on a surface 1110 of the substrate 1100. The structural layer 12 includes a plurality of fixings 121, a first quality Block 1220, a first elastic structure 123〇, a plurality of fixed sensing blocks 124〇, a second mass 1250, a third mass 126〇, a second elastic structure 12 1376502 P27970096TWC1 29767-Itwf.doc/d The first mass 1222 has a central axis 1222 and a first opening 1224 and a first inside the first mass 1220. Second opening 1226. The first opening 1224 and the second opening 1226 are symmetrically disposed on opposite sides of the central axis 1222 centering on the central axis 1222 of the first mass 1220. The first resilient structure 1230 connects the mount 1210 with the first mass 1220. Therefore, the first mass 1220 can float above the substrate 11A. At the same time, the fixing seat 1210 ® includes a first fixing block 1212 and a second fixing block 1214. The first fixing block 1212 and the second fixing block 1214 are respectively fixed on the surface 1110 of the substrate 11A and are respectively located on opposite outer sides of the first mass 1220. The fixed sensing block 1240 includes a plurality of first fixed sensing blocks 1242 and a plurality of second fixed sensing blocks 1244. The first fixed sensing block 1242 and the second fixed sensing block 1244 are adjacent to and located on the outer side of the first mass 122 并 and are fixed on the surface 1110 of the substrate 1100 , wherein each of the first fixed sensing blocks 1242 and each The first fixed sensing block 1244 and the first mass 1220 Φ respectively form a first capacitor structure 100 and a second capacitor structure 200 for sensing the accelerations in the γ-axis direction and the χ-axis direction by the capacitance change amount thereof. The second mass 1250 and the third mass 126 are floated above the sensing electrode 1120 and are respectively located in the first opening 1224 and the second opening 1226 of the first mass 122〇, and the second mass 125 and the first The three masses 1260 respectively form a sensing electric valley with the sensing electrodes η2 上 on the substrate 1100, and the acceleration in the x-axis direction is sensed by the capacitance change amount between the sensing electrodes 1120 and the sensing electrodes 1120. 13 1376502 P27970096TWC1 29767-ltwf.doc/d In detail, the second mass 1250 and the third mass 126 are non-paired by the second elastic structure 1270 and the third elastic structure 128, on the first mass 1220, And respectively, along the first rotation axis a and the second rotation B, when the force is applied, the amount of capacitance change is generated between the bribe and the sensing electrode. The first rotational axis of the second mass 125〇 and the second rotational axis b of the third mass 126G are parallel to each other and are symmetrically disposed on opposite sides of the central axis 1222 centering on the central axis 1222 of the first block 1220. In other words, the second mass 125 〇 and the third block 1260 can be rotated symmetrically (as shown by the dashed portion in Fig. 5). The first = mass 1250 and the third mass 126 are because of the asymmetrical structure; therefore, the shaft will be _ when it is stressed, and there is no displacement in the z-axis when it is rotated, so == linear ^. In addition, the second mass 125 () and the third mass _ degree of Scene If ^ ring the first -f amount block 122G, thus avoiding its axis sensitive eye with reference to Figure 4, each - the first capacitive structure 1 〇〇 includes - a mass-extended - fixed planting electrode m. Comb electrode 110 capacitor plate 112. The fixed comb electrode 120 has a plurality of solids I. Parallel to each other and alternate m plates m and fixed comb capacitor plates, L is replaced. The mother-second capacitor structure 200 is also provided as above, and the granular structure is not described herein. ', Capacitor ί ΠΓ ί f structure 1GG comb capacitor plate 112 and fixed comb extension U,: test and substrate surface U1. The parallel X-axis direction extends the mother-comb-capacitor plate 212 of the capacitor structure 200 and the fixed comb shape 1376502 P27970096TWC1 29767-ltwf.doc/d = the plate 222 extends along the axis parallel to the substrate surface (10) The direction orthogonal 1 - the capacitive structure and the first electrical structure 200 are configured by the above arrangement, and the capacitance change can be generated by the movement of the first mass mo in the γ axis direction and the X axis direction, respectively, to the I axis direction The acceleration in the direction of the x-axis is sensed. In detail, the first-electric valley structure 100 is for sensing the acceleration in the Y-axis direction, and the second valley structure 200 is for sensing the acceleration in the X-axis direction.

»月再參考圖4’第-彈性結構123()包括分別對應於第 一固定塊1212及第二固定塊1214的一第—彈簧1232及一 第一彈κ 1234 ’其中第-彈簧1232及第二彈簧1234提供 各別獨立之沿X軸方向與γ軸方向的回復力,以使又軸 方向與γ轴方向的感測不會相互干擾。第一彈簧1232或 第二彈簣1234可為一 L型結構。此外,第一質量塊122〇 分別透過第一彈簧1232及第二彈簧1234而連接於第一固 定塊1212及第二固定塊1214。 在本實施例中,第二彈性結構1270包括一第三彈簧 1272及一第四彈簧1274,位於第一轉動軸A上並分別位 於第二質量塊1250的相對兩側,使得第二質量塊125〇以 第一轉動軸A因非對稱而轉動。第三彈性結構128〇包括 一弟五彈簧1282及一第六彈簧1284,位於第二轉動軸b 上並分別位於第三質量塊126〇的相對兩側,使得第三質量 塊1260以第二轉動軸b因非對稱而轉動。 此外,請參考圖5,第一質量塊1220具有面對基板 1100的一底面1228,且底面1228上具有多個凸起300, ]5 1376502 P27970096TWC1 29767-ltwf.doc/d 以避免第一質量塊1220與基板1100在接觸時產生吸附效 應(sticktion)而影響其加速度感測之效能。詳細而言,由於 第一質量塊1220和基板1100間具有極小的間距,第一質 量塊1220在製程或使用中因水氣而可能與基板11〇〇黏 住,而凸起300有助於降低此種現象之發生。此外,第二 質量塊1250與第三質量塊1260上也可具有多個微孔洞, 以減少阻尼產生。 圖6為圖4之多軸電容式加速度計的局部側視圖。請 參考圖6 ’在本實施例中,基板11 〇〇例如是一玻璃晶片。 玻璃晶片包括一玻璃基材1130及配置於其上的導電層 1140(例如為導線及焊墊)。結構層12〇〇例如是一砍晶片, 其申繪示於圖4及圖5的第一質量塊1220、凸起300、第 二質量塊1250、第三質量塊1260、第一彈性結構1230、 第一彈性結構1270、第三彈性結構1280、固定座1210、 固疋感測塊1240、梳狀電極11〇 (210)及固定梳狀電極 120 (220)可透過乾蝕刻製程而為一體成形的結構。矽晶 • 片(結構層可藉由陽極晶片製程與破璃晶片(基板 11〇〇)結合。此外,結構層1200之固定座1210的底部具有 接觸金屬1216,用以將產生的感測訊號傳遞至基板11〇〇 上之焊墊及導線。 圖7為本發明另一實施例之多轴電容式加速度計的俯 視圖。請參考圖7,相較於圖4及圖5之多軸電容式加速 度。十本貝施例的第一質量塊2220内部更具有多個第三開 口 2228,且部分固定感測塊2240、部分梳狀電容板512 16 1376502 P27970096TWC 丨 29767-ltwf.doc/d 及部分固定梳狀電容板522位於第三開口 2228内而具有與 珂述實施例相同之感測功能。詳言之,透過此種配置方式, 使仔弟一電谷結構500位於第_質量塊2220的内部。位於 第三開口 2228内的部分梳狀電極510與部分固定梳狀電極 520構成電容結構,以感測X軸方向的加速度。另一方面, 第一電容結構400還是配置在第一質量塊222〇的外部,用 以感測Y軸方向的加速度。以下詳細介紹本實施例之多轴 電容式加速度計2000。 請參考圖7’本實施例的多軸電容式加速度計2000包 括一基板2100及一結構層2200。結構層2200包括多個固 定座2210、一第一質量塊2220、一第一彈性結構2230、 多個固定感測塊2240、一第二質量塊2250、一第三質量塊 2260、一第二彈性結構2270及一第三彈性結構2280。 第一質.量塊2220設置於基板2100上方,第一質量塊 2220具有一 _心軸2222以及位於第一質量塊2220内部的 一第一開口 2224、一第二開口 2226及多個第三開口 2228 (繪示為兩個)。第一開口 2224及第二開口 2226以第一 質量塊2220的中心軸2222為中心而對耩地配置於中心軸 2222的相對兩側。第一彈性結構2230連接固定座2210與 第一質量塊2220。因此,第一質量塊2220可浮置於基板 2100上方。同時,固定座2210包括一第一固定塊2212及 一第二固定塊2214。第一固定塊2212及第二固定塊2214 分別固定於基板2100的表面2110上,且分別位於第一質 量塊2220的相對之兩外側。 17 1376502 P27970096TWCI. 29767-Itwf.doc/d 固定感測塊2240包括多個第一固定感測塊2242及多 個第二固定感測塊2244。第—固定感測塊2242鄰近且位 於第一質罝塊2220之外側並固定於基板21〇〇上,第二固 定感測塊2244位於第三開口 2228内並固定於基板21〇〇 上(此特徵為本實施例之多轴電容式加速度計2〇〇〇與圖4 之多軸電容式加速度計1〇〇〇的主要不同處),其中每一第 一固疋感測塊2242及母一第二固定感測塊2244分別與第 一質量塊2220之間形成〜第一電容結構4〇〇及一第二電容 春結構500,分別用以藉其電容變化量感測γ軸方向及χ轴 方向的加速度。第二質量塊2250及第三質量塊226〇浮置 於位於基板2100表面上之感測電極(未繪示,其配置方式 與圖5之感測電極1120類似)上方並且分別位於第一質量 塊2220的第〆開口 2224及第二開口 2226内,而第二質量 塊2250及第三質量塊1260分別與基板2100上之感測電極 形成一感測電容’藉其與感測電極之間的電容變化量感測 Ζ軸方向的加速度。 鲁 詳細而言’第一質置塊225〇及第三質量塊2260·分別 藉由第二彈性結構2270及第三彈性結構2280非對稱地懸 掛在第一質量塊2220上,且分別沿一第一轉動轴c及一 第二轉動軸D在受力時而轉動’以使其與感測電極(如圖5 之Π20的感測電極)之間產生電容變化量。第二質量塊 2250的第一轉動軸C及第三質量塊2260的第二轉動軸ρ 相互平行並以第一質量塊2220的中心軸2222為中心而對 稱地配置於中心軸2222的相對兩側。換言之,第二質量塊 18 1376502 P27970096TWC1 29767-Itwf.doc/d 會衫,第二質夏塊2220 ’因此避免了它軸靈敏度的影響。 每一第一電容結構400包括由第一質量塊222〇水平 地延伸出的一梳狀電極41〇及由固定感測塊224〇水平地延Referring again to FIG. 4', the first elastic structure 123() includes a first spring 1232 and a first spring κ 1234 corresponding to the first fixed block 1212 and the second fixed block 1214, respectively, wherein the first spring 1232 and the first The two springs 1234 provide respective independent restoring forces in the X-axis direction and the γ-axis direction so that the sensing of the re-axis direction and the γ-axis direction do not interfere with each other. The first spring 1232 or the second magazine 1234 may have an L-shaped configuration. Further, the first mass 122 is connected to the first fixing block 1212 and the second fixing block 1214 via the first spring 1232 and the second spring 1234, respectively. In the present embodiment, the second elastic structure 1270 includes a third spring 1272 and a fourth spring 1274 on the first rotating axis A and respectively located on opposite sides of the second mass 1250 such that the second mass 125 The first axis of rotation A is rotated by asymmetry. The third elastic structure 128 includes a fifth spring 1282 and a sixth spring 1284 on the second rotating shaft b and respectively located on opposite sides of the third mass 126, so that the third mass 1260 is rotated by the second. The shaft b rotates due to asymmetry. In addition, referring to FIG. 5, the first mass 1220 has a bottom surface 1228 facing the substrate 1100, and the bottom surface 1228 has a plurality of protrusions 300, 5 1376502 P27970096TWC1 29767-ltwf.doc/d to avoid the first mass When the 1220 is in contact with the substrate 1100, a sticking effect is generated to affect the performance of the acceleration sensing. In detail, since the first mass 1220 and the substrate 1100 have a very small spacing, the first mass 1220 may adhere to the substrate 11 due to moisture during the process or use, and the protrusion 300 helps to reduce This phenomenon occurs. In addition, the second mass 1250 and the third mass 1260 may also have a plurality of micro-holes to reduce damping. Figure 6 is a partial side elevational view of the multi-axis capacitive accelerometer of Figure 4. Please refer to FIG. 6'. In the present embodiment, the substrate 11 is, for example, a glass wafer. The glass wafer includes a glass substrate 1130 and a conductive layer 1140 (e.g., wires and pads) disposed thereon. The structural layer 12 is, for example, a chopped wafer, which is illustrated in FIG. 4 and FIG. 5, the first mass 1220, the protrusion 300, the second mass 1250, the third mass 1260, the first elastic structure 1230, The first elastic structure 1270, the third elastic structure 1280, the fixing base 1210, the solid sensing block 1240, the comb electrode 11 (210), and the fixed comb electrode 120 (220) are integrally formed by a dry etching process. structure. The germanium wafer (the structural layer can be combined with the glass wafer (substrate 11 〇〇) by the anode wafer process. In addition, the bottom of the fixing layer 1210 of the structural layer 1200 has a contact metal 1216 for transmitting the generated sensing signal. FIG. 7 is a top view of a multi-axis capacitive accelerometer according to another embodiment of the present invention. Referring to FIG. 7, the multi-axis capacitive acceleration is compared with FIG. 4 and FIG. The first mass 2220 of the Shibenbei embodiment further has a plurality of third openings 2228, and a part of the fixed sensing block 2240, a partial comb capacitor plate 512 16 1376502 P27970096TWC 丨29767-ltwf.doc/d and a partial fixed The comb capacitor plate 522 is located in the third opening 2228 and has the same sensing function as the embodiment described above. In detail, through this arrangement, the younger grid structure 500 is located inside the first quality block 2220. The partial comb electrode 510 and the partially fixed comb electrode 520 located in the third opening 2228 constitute a capacitor structure to sense the acceleration in the X-axis direction. On the other hand, the first capacitor structure 400 is also disposed on the first mass 222. Outside For sensing the acceleration in the Y-axis direction. The multi-axis capacitive accelerometer 2000 of the present embodiment is described in detail below. Please refer to FIG. 7 'The multi-axis capacitive accelerometer 2000 of the present embodiment includes a substrate 2100 and a structural layer. 2200. The structural layer 2200 includes a plurality of fixing bases 2210, a first mass 2220, a first elastic structure 2230, a plurality of fixed sensing blocks 2240, a second mass 2250, a third mass 2260, and a first The second elastic structure 2270 and the third elastic structure 2280. The first mass block 2220 is disposed above the substrate 2100, and the first mass 2220 has a first mandrel 2222 and a first opening 2224 located inside the first mass 2220. a second opening 2226 and a plurality of third openings 2228 (shown as two). The first opening 2224 and the second opening 2226 are disposed on the central axis centering on the central axis 2222 of the first mass 2220 The first elastic block 2220 is connected to the first mass 2220. Therefore, the first mass 2220 can float above the substrate 2100. At the same time, the fixing base 2210 includes a first fixing block 2212 and One second The first fixing block 2212 and the second fixing block 2214 are respectively fixed on the surface 2110 of the substrate 2100 and respectively located on opposite outer sides of the first mass 2220. 17 1376502 P27970096TWCI. 29767-Itwf.doc/d The fixed sensing block 2240 includes a plurality of first fixed sensing blocks 2242 and a plurality of second fixed sensing blocks 2244. The first fixed sensing block 2242 is adjacent to and located on the outer side of the first mass block 2220 and is fixed on the substrate 21 , and the second fixed sensing block 2244 is located in the third opening 2228 and is fixed on the substrate 21 . The main difference between the multi-axis capacitive accelerometer 2 为本 of the embodiment and the multi-axis capacitive accelerometer 1 图 of FIG. 4 is that each of the first solid sensing blocks 2242 and the first one The second fixed sensing block 2244 forms a first capacitor structure 4〇〇 and a second capacitor spring structure 500 between the first mass block 2220 and the first mass block 2220, respectively, for sensing the γ-axis direction and the χ-axis direction by the capacitance change amount thereof. Acceleration. The second mass 2250 and the third mass 226 are floating above the sensing electrodes (not shown, which are arranged similarly to the sensing electrodes 1120 of FIG. 5) on the surface of the substrate 2100 and are respectively located at the first mass. The second opening 2224 and the second opening 2226 of the 2220, and the second mass 2250 and the third mass 1260 respectively form a sensing capacitance with the sensing electrode on the substrate 2100, and the capacitance between the sensing electrode and the sensing electrode The amount of change senses the acceleration in the x-axis direction. In detail, the first mass 225 〇 and the third mass 2260 are suspended asymmetrically on the first mass 2220 by the second elastic structure 2270 and the third elastic structure 2280, respectively, and respectively A rotation axis c and a second rotation axis D are rotated 'when subjected to a force to cause a capacitance change amount with the sensing electrode (such as the sensing electrode of FIG. 5). The first rotation axis C of the second mass 2250 and the second rotation axis ρ of the third mass 2260 are parallel to each other and are symmetrically disposed on opposite sides of the central axis 2222 centering on the central axis 2222 of the first mass 2220. . In other words, the second mass 18 1376502 P27970096TWC1 29767-Itwf.doc/d, the second summer block 2220' thus avoids the effects of its axis sensitivity. Each of the first capacitor structures 400 includes a comb electrode 41 〇 extending horizontally from the first mass 222 〇 and horizontally extended by the fixed sensing block 224 〇

伸^的-固;t梳狀電極42“梳狀電極具有多個梳狀 電容板412。固定錄電極·具有乡_錯狀電容板 j2,且梳狀電容板412與固定梳狀電容板似2相互平行且 又替配置。每-第二電容結構亦具備如上述之等效結 構特徵,在此不予贅述。 每一第一電容結構4〇〇的梳狀電容板412與固 J容ί :22沿著與基板2100表面平行的X軸方向延;。 母一第-電容結構5 00的梳狀電容板5 i2與固定梳々The comb electrode 42 has a plurality of comb capacitor plates 412. The fixed recording electrode has a home-shaped capacitor plate j2, and the comb capacitor plate 412 is similar to the fixed comb capacitor plate. 2 are parallel and alternately arranged. Each of the second capacitor structures also has the equivalent structural features as described above, and will not be described herein. Each of the first capacitor structures 4 〇〇 comb capacitor plates 412 and solid J ί : 22 along the X-axis direction parallel to the surface of the substrate 2100; the comb-capacitor plate 5 i2 of the mother-first capacitance structure 500 and the fixed bar

225〇及第二質;^塊226G可對稱地轉動。第二質量塊225〇 及第二貝里塊226G因為非對稱結構,因此z钟受力時將 會轉動,轉動時並無Z財向鄉,所以具有較佳的線性 度。另外第二質量塊2250及第三質量塊226()轉動時並不 板522沿著與基板2100表面平行的Y軸方向延伸,Z 軸方向與Y軸方向正交。第—電容結構働及第二〜社 構500藉由上述配置方式,可分別透過第一質量塊包^ 在Y軸方向及X轴方向之移動而產生電容變化,以 軸方向及X軸方向的加速度進行感測。詳言之,第 結構400是用以感測γ轴方向的加速度,而第 = 500是用以感測χ軸方向的加速度。 兒〜構 第彈性結構2230包括分別對應於第—固定 及第二固定塊2214的一第一彈簧2232及—第二^ 一^洋黃 19 1376502 P27970096TWC1. 29767-ltwf.doc/d 2234,其中第一彈簧2232及第二彈簧2234提供各別獨立 之沿X軸方向與γ軸方向的回復力,以使χ軸方向與Y 轴方向的感測不會相互干擾。第一彈簧2232或第二彈簧 2234可為一 L型結構。此外,第一質量塊222〇分別透過 第一彈簧2232及第二彈簧2234而連捿於第一固定塊2212 及第二固定塊2214。 在本實施例中,第二彈性結構2270包括一第三彈筈 2272及一第四彈簧2274,位於第一轉動轴c上並分別位 於弟一質量塊2250的相對兩側,使得第二質量塊2250以 第一轉動軸C因非對稱而轉動。第三彈性結構228〇包括 一第五彈簧2282及一第六彈簧2284,位於第二轉動軸D 上並刀別位於弟二貝置塊2260的相對兩側,使得第三質量 塊2260以第二轉動軸D因非對稱而轉動。 此外,第一質量塊2220之面對基板2100的一底面可 以具有多個凸起(未繪示,其配置方式與圖5之凸起3〇〇 類似),以避免第一質量塊2220與基板2100在接觸時產 生吸附效應(sticktion)而影響其加速度感測之效能。詳細而 吕’由於第一質夏塊2220和基板2100間具有極小的間距, 第一質量塊2220在製程或使用中因水氣而可能與基板 2100黏住,而凸起有助於降低此種現象之發生。此外,第 二質量塊2250與第三質量塊2260上也可具有多個微孔 洞,以減少阻尼產生。 在本貫私例中’基板2100例如是—玻璃晶片。玻璃 晶片包括一玻璃基材及配置於其上的導電層(未繪示,例 20 1376502 P27970096TWCI 29767-Itwf.doc/d 如為導線及焊塾’類似於圖6中之配置方式)。結構層2200 例如是一矽晶片’其中第一質量塊2220、上述之凸起、第 一質置塊2250、第三質量塊2260、第一彈性結構2230、 第二彈性結構2270、第三彈性結構2280、固定座221()、 固定感測塊2240、梳狀電極410 (510)及固定梳狀電極 420 (520)可透過乾蝕刻製程而為一體成形的結構。梦晶 片(結構層2200)可藉由陽極晶片製程與玻璃晶片(基板225 〇 and the second mass; ^ block 226G can be rotated symmetrically. Since the second mass 225 〇 and the second berry block 226G have an asymmetrical structure, the z-clock will rotate when subjected to a force, and there is no Z-Chengxiang when rotating, so that the linearity is better. Further, when the second mass 2250 and the third mass 226() are rotated, the plate 522 does not extend in the Y-axis direction parallel to the surface of the substrate 2100, and the Z-axis direction is orthogonal to the Y-axis direction. The first-capacitor structure 働 and the second-to-mechanism 500 can respectively generate a change in capacitance in the Y-axis direction and the X-axis direction through the movement of the first mass block in the Y-axis direction and the X-axis direction, respectively, in the axial direction and the X-axis direction. The acceleration is sensed. In detail, the first structure 400 is for sensing the acceleration in the γ-axis direction, and the fifth = 500 is for sensing the acceleration in the x-axis direction. The first elastic structure 2230 includes a first spring 2232 corresponding to the first fixing and second fixing block 2214, and a second one of the first spring 2 19 376502 P27970096TWC1. 29767-ltwf.doc/d 2234, wherein A spring 2232 and a second spring 2234 provide separate restoring forces in the X-axis direction and the γ-axis direction so that the sensing in the x-axis direction and the Y-axis direction do not interfere with each other. The first spring 2232 or the second spring 2234 can be an L-shaped structure. In addition, the first mass 222 is connected to the first fixing block 2212 and the second fixing block 2214 through the first spring 2232 and the second spring 2234, respectively. In this embodiment, the second elastic structure 2270 includes a third magazine 2272 and a fourth spring 2274 on the first rotation axis c and respectively located on opposite sides of the first mass 2250, so that the second mass 2250 is rotated by the first rotation axis C due to asymmetry. The third elastic structure 228 includes a fifth spring 2282 and a sixth spring 2284 on the second rotating shaft D and located on opposite sides of the second block 2260 such that the third mass 2260 is second. The rotation axis D rotates due to asymmetry. In addition, a bottom surface of the first mass 2220 facing the substrate 2100 may have a plurality of protrusions (not shown, which are arranged in a similar manner to the protrusions 3 of FIG. 5) to avoid the first mass 2220 and the substrate. The 2100 produces a sticking effect upon contact that affects the performance of its acceleration sensing. In detail, due to the extremely small spacing between the first summer block 2220 and the substrate 2100, the first mass 2220 may adhere to the substrate 2100 due to moisture during the process or use, and the protrusions help to reduce this. The phenomenon occurs. In addition, the second mass 2250 and the third mass 2260 may also have a plurality of micro-holes to reduce damping. In the present invention, the substrate 2100 is, for example, a glass wafer. The glass wafer includes a glass substrate and a conductive layer disposed thereon (not shown, Example 20 1376502 P27970096TWCI 29767-Itwf.doc/d, such as wires and pads) similar to the configuration of Figure 6. The structural layer 2200 is, for example, a germanium wafer, wherein the first mass 2220, the protrusions, the first mass 2250, the third mass 2260, the first elastic structure 2230, the second elastic structure 2270, and the third elastic structure 2280, the fixing base 221 (), the fixed sensing block 2240, the comb electrode 410 (510) and the fixed comb electrode 420 (520) are integrally formed by a dry etching process. Dream wafer (structure layer 2200) can be fabricated by anode wafer process and glass wafer (substrate)

2100)結合。此外,結構層22〇〇之固定座221〇的底部具有 接觸金屬,用以將產生的感測訊號傳遞至基板2100上之焊 墊及導線。 值得注意的是,本發明不限制固定感測塊及電容結構 =於第-質量塊之内部或外部。在另—未繪示的實施例 中’更可將所有㈣定感測塊及電容結構配置於第一質量 塊的内部而具有與前述實施例相同之感測功能。 ,接上述所有實施例的變化,以下更提出另—實施 二中對於已㉔在前述實施例中播述且可被合理應用於 以下貫施例的内容’將不再詳細贅述。 、 視H 發明又—實施例之多轴電容式加速度計的俯 Γ〇Γ〇。以Λ 4軸電容式加速度計遲包括一基板 所⑹上具有如前述實施例 上。^構層侧浮置於基板删 ::=31”定在基板=二= 疋生〇例如是設置在下述的第-質量塊3300内 1376502 P27970096TWC1 29767-ltwf.doc/d 部。第^質量塊33GG具有-第四開σ 331Q,第四開口 33l〇 内設有-第二質量塊3_。第二質量塊期具有一第五 開口 3410與-第六開口 342〇,第五開口侧内設有一第 二質夏塊3500’而第六開σ 342()内設有—第四質量塊 3600^由至少-第-彈性結構32ω、—第二雅結構322〇 和一第二彈性結構3230所組成的多個彈性結構,其中第〆 彈性結構3210分別連接固定座μ⑻與第一質量塊幻, 而第二彈性結構3220分別連接第一質量塊33〇〇與第二質 修 量塊3400。此外’第一質量塊3300透過第一彈性結構3210 被懸掛設置在基板3010上,並與固定座31〇〇連接,用以 感測在一平面上的第一方向(本實施例以χ軸方向為例)或 第二方向(本實施例以γ軸方向為例)上的加速度,而對應 地沿X軸方向或Υ轴方向平移。第二質量塊34〇〇透過第 二彈性結構.3220被懸掛設置在第一質量塊3300内,而第 二質量塊3400可以沿著與第一質量塊330〇平移方向的同 平面的垂直方向作平移。例如,當第一質量塊3300沿X φ. 軸方向平移時,第二質量塊3400沿Υ轴方向平移。 請繼續參照圖8,多個第一固定感測塊1710,配置在 第一質量塊3300内,其中每一第一固定感測塊3710與第 一質量塊3300或第二質量塊3400之間形成一第一電容結 構3810。此外,第三質量塊3500與第四質量塊36〇〇對應 於基板3010上的感測電極(未繪示),並且以第一質量塊 3300的一中心車由為中心而對稱地配置於中心軸的相對兩 側。第三質量塊3500與第四質量塊3600分別透過第三彈 22 1376502 P27970096TWCI 29767-lhvf.doc/d 性結構323〇以非對稱的方式懸掛設置在第二質量塊3彻 内,且沿X轴方向具有—轉動轴391〇,使第一質量塊· 在Y軸方向上呈現不對稱性。當第一質量塊33〇〇在—第 二方向(本貫施例以Z軸方向為例)受力時,第三質量塊 3500與第四質量塊3_會以轉動軸391〇為中心轉動其 中X轴方向、Y軸方向和Z轴方向彼此正交。前述的感測 電極例如是配置在轉動轴391()的兩側。另外,多個第二固 疋感測塊3720配置在第二質量塊34〇〇内,其中每一第二 固定感測塊3720與第二質量塊34〇〇之間形成一第二電容 結構3820。 在本貫施例中,每一第—電容結構381〇包括由第一 質量瑰3300或第二質量塊觸延伸出來的具有多個梳狀 電容板的一梳狀電極3812以及由第一固定感測塊371〇延 伸出來具有多個固定梳狀電容板的一固定梳狀電極 3814。梳狀電極3812的梳狀電容板與固定梳狀電極3814 的固定梳狀電容板相互平行且交替配置,並且例如是沿著 • X軸方向延伸,以感測Y軸方向的加速度。此外,每一第 二電容結構3820包括由第二質量塊34〇〇延伸出來的具有 多個梳狀電容板的一梳狀電極3822以及由第二固定感測 塊3720延伸出來的具有多個固定梳狀電容板的一固定梳 狀電極3824。梳狀電極3822的梳狀電容板與固定梳狀電 極3824的固定梳狀電容板相互平行且交替配置,並且例如 是沿著Y軸方向延伸,以感測X軸方向的加速度。 此外,第一彈性結構3210連接在第一質量塊3300與 23 1376502 P27970096TWC1 29767-ltwf.d〇c/d2100) Combination. In addition, the bottom of the fixing layer 221 of the structural layer 22 has a contact metal for transmitting the generated sensing signals to the pads and wires on the substrate 2100. It should be noted that the present invention does not limit the fixed sensing block and the capacitor structure = inside or outside the first mass. In another embodiment, not shown, all of the (four) fixed sensing blocks and capacitor structures may be disposed inside the first mass to have the same sensing function as the previous embodiment. The changes of all the above embodiments are further described below, and the contents of the second embodiment that have been broadcast in the foregoing embodiments and can be reasonably applied to the following embodiments will not be described in detail. According to the invention of H, the multi-axis capacitive accelerometer of the embodiment is tilted. The Λ 4-axis capacitive accelerometer is included on a substrate (6) as in the previous embodiment. ^The structure side floats on the substrate::=31" is set on the substrate =2 = 疋 〇 〇 〇 〇 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 137 33GG has a fourth opening σ 331Q, and a fourth mass 33_ is provided in the fourth opening 33l. The second mass stage has a fifth opening 3410 and a sixth opening 342〇, and a fifth opening side is provided with a The second summer block 3500' and the sixth open σ 342() are provided with a fourth mass 3600^ composed of at least a first-elastic structure 32ω, a second ya structure 322〇 and a second elastic structure 3230. The plurality of elastic structures, wherein the second elastic structure 3210 connects the fixed seat μ (8) and the first mass block, respectively, and the second elastic structure 3220 connects the first mass 33〇〇 and the second quality repair block 3400, respectively. The first mass 3300 is suspended from the substrate 3010 through the first elastic structure 3210, and is connected to the fixing base 31 to sense the first direction on a plane (this embodiment takes the x-axis direction as an example). Or the acceleration in the second direction (in the embodiment, taking the γ-axis direction as an example), and correspondingly The X-axis direction or the Υ-axis direction translates. The second mass 34 被 is suspended through the second elastic structure .3220 and disposed in the first mass 3300, and the second mass 3400 can be along the first mass 330 〇 The vertical direction of the same plane in the translation direction is translated. For example, when the first mass 3300 is translated in the X φ. axis direction, the second mass 3400 is translated in the x-axis direction. Referring to FIG. 8, a plurality of first fixations The sensing block 1710 is disposed in the first mass 3300, wherein each first fixed sensing block 3710 forms a first capacitive structure 3810 with the first mass 3300 or the second mass 3400. In addition, the third The mass 3500 and the fourth mass 36〇〇 correspond to sensing electrodes (not shown) on the substrate 3010, and are symmetrically disposed on the center axis with respect to a central vehicle of the first mass 3300. The third mass 3500 and the fourth mass 3600 are respectively suspended in the second mass 3 through the third bomb 22 1376502 P27970096TWCI 29767-lhvf.doc/d structure 323〇, and are arranged in an asymmetric manner. The X-axis direction has a rotation axis 391〇, so that The first mass has an asymmetry in the Y-axis direction. When the first mass 33 is in the second direction (the present embodiment is exemplified in the Z-axis direction), the third mass 3500 is The fourth mass 3_ is rotated about the rotation axis 391〇, wherein the X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to each other. The aforementioned sensing electrodes are disposed, for example, on both sides of the rotation shaft 391 (). The plurality of second solid sensing blocks 3720 are disposed in the second mass 34 , wherein a second capacitive structure 3820 is formed between each of the second fixed sensing blocks 3720 and the second mass 34 . In the present embodiment, each of the first capacitor structures 381A includes a comb electrode 3812 having a plurality of comb capacitor plates extending from the first mass 3300 or the second mass, and the first fixed feeling The block 371A extends a fixed comb electrode 3814 having a plurality of fixed comb capacitor plates. The comb capacitor plates of the comb electrodes 3812 and the fixed comb capacitor plates of the fixed comb electrodes 3814 are arranged in parallel and alternately with each other, and extend, for example, along the X-axis direction to sense the acceleration in the Y-axis direction. In addition, each of the second capacitor structures 3820 includes a comb electrode 3822 having a plurality of comb capacitor plates extending from the second mass 34 以及 and a plurality of fixings extending from the second fixed sensing block 3720. A fixed comb electrode 3824 of the comb capacitor plate. The comb-shaped capacitor plates of the comb-shaped electrode 3822 and the fixed comb-shaped capacitor plates of the fixed comb-shaped electrode 3824 are arranged in parallel and alternately with each other, and extend, for example, in the Y-axis direction to sense the acceleration in the X-axis direction. In addition, the first elastic structure 3210 is connected to the first mass 3300 and 23 1376502 P27970096TWC1 29767-ltwf.d〇c/d

固定座3100之間,使第一質量塊3300能沿X軸方向或γ 軸方向平移。第二彈性結構3220連接在第二質量塊34〇〇 與第一質量塊3300之間,使第二質量塊3400能沿與第一 質量塊3300平移方向的同平面的垂直方向作平移。換言 之,藉由第一彈性結構3210與第二彈性結構3220可以使 得第一質量塊3300與第二質量塊3400在一平面上平移。 另外,第三彈性結構3230被配置在第二質量塊34〇〇與第 二貝里塊3500之間以及第二質量塊3400與第四質量塊 3600之間。第三彈性結構323〇分別對應連接轉動軸391〇 的兩,以使得第三質量塊3500與第四質量塊3600能以 轉動軸3910為中心轉動。 當然,本實施例之第一質量塊3300的底面也可以形 成有如同前述實施例所述的多個凸起’以避免第一質量塊 3300與基板3010在接觸時產生吸附效應而影響其加速度 感測之效能。此外,第三質量塊35〇〇與第四^量、塊36& 上也可具有多個微孔洞,以減少阻尼產生。Between the mounts 3100, the first mass 3300 can be translated in the X-axis direction or the γ-axis direction. The second elastic structure 3220 is coupled between the second mass 34 〇〇 and the first mass 3300 such that the second mass 3400 can translate in a direction perpendicular to the same plane as the translation direction of the first mass 3300. In other words, the first mass 3300 and the second mass 3400 can be translated in a plane by the first elastic structure 3210 and the second elastic structure 3220. In addition, the third elastic structure 3230 is disposed between the second mass 34 〇〇 and the second berry block 3500 and between the second mass 3400 and the fourth mass 3600. The third elastic structures 323'' respectively correspond to the two connecting the rotating shafts 391'', so that the third masses 3500 and the fourth masses 3600 can be rotated about the rotating shaft 3910. Of course, the bottom surface of the first mass 3300 of the embodiment may also be formed with a plurality of protrusions as described in the foregoing embodiments to prevent the first mass 3300 from colliding with the substrate 3010 to affect the acceleration. Test the effectiveness. In addition, the third mass 35〇〇 and the fourth amount, the block 36& may also have a plurality of micro-holes to reduce damping generation.

>以上各貧施例的彈性結構可為彈片或彈簧或及其等 效之構件等均為本發明之創作精神所包括之範圍内。/、 ,上輯,本發_多軸電容式加速 部配置多個獨立的質量塊,且該些質量塊 =内 對稱於第—質量*中 Μ及動軸 心軸對相對第—質量塊之中 ==轉動。該些質量塊因為非對稱結構,因此受力 、胃軺動,轉動時並無線性位移,所以具有較佳 X另外,該些質量塊轉動時並不會影響用以感測平面加 24 1376502 P27970096TWC1 29767-ltwf.doc/d 速度的質量塊,並且具有較大的質量,因此有助於提高成 測的準確度與靈敏度。此外,本發明針對平面感測提供^ 兩個轴向的獨立運動機制:例如設置相互獨立且可提供不 同^向(如兩個正交方向)回復力的彈性結構來帶動質量塊 平和或疋採用兩個獨立的質量塊來進行同平面上的不同 移。因此,本發明之多㈣容式加速度計在平面 擾。δ向(如χ轴方向與Υ軸方向)的感測不會相互干 本發ί然if曰月已以實施例揭露如上,然其並非用以限定 本發明之精:屬領域中具有通常知"^者,在不脫離 發明之保計犯11内’ *可作些許之更動與、卿,故本 【圖式簡單^明^視後附之申請專利範圍所界定者為準。 圖1為抑a 圖2為_ 〇一種多軸電容式加速度計的俯視圖。 圖3為^ 1之多軸電容式加速度計的剖視側視圖。 圖4為Z知另—種多軸電容式加速度計的俯視圖。 圖。 ^明一貫施例之多軸電容式加速度計的俯視 圖5表闰Ί 圖4=沿1-1線的剖視圖。 圖7為"之夕軸電容式加速度計的局部側視圖。 視圖。’’、、本發明另—實施例之多軸電容式加速度計的俯 視圖圖8為本發明又—實施例之多軸電容式加速度計的俯 25 1376502 P27970096TWC1 29767-ltwf.doc/d 【主要元件符號說明】 50、60 :加速度計 52 :質量塊 54 :旋轉結構 100、400 :第一電容結構 110、210、410、510 :梳狀電極 112、212、412、512 :梳狀電容板 122、222、422、522 :固定梳狀電容板 ® 120、220、420、520 :固定梳狀電極 200、500 :第二電容結構 300 :凸起 1000、2000 :多軸電容式加速度計 1100、2100 :基板 1110 :表面 1120 :感測電極 1200、2200 :結構層 • 1210、2210 :固定座 1212、2212 :第一固定塊 1214、2214 :第二固定塊 1216 :接觸金屬 1220、2220 :第一質量塊 1222、2222 :中心軸 1224、2224 :第一開口 1226、2226 :第二開口 26 1376502 P27970096TWC1 29767-ltwf.doc/d 1228 :底面> The elastic structure of the above various embodiments may be a shrapnel or a spring or an equivalent member thereof, and the like, which are included in the spirit of the present invention. /, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Medium == turn. Because of the asymmetric structure, the masses are stressed, the stomach is twitching, and there is no linear displacement when rotating, so it has better X. In addition, the masses do not affect the sensing plane plus 24 1376502 P27970096TWC1 when rotating. 29767-ltwf.doc/d The mass of the speed, and has a large mass, thus helping to improve the accuracy and sensitivity of the measurement. In addition, the present invention provides two axial independent motion mechanisms for planar sensing: for example, an elastic structure that is independent of each other and that provides different recovery directions (eg, two orthogonal directions) to drive the mass to be flat or Two separate masses for different shifts in the same plane. Therefore, the multi-fourth capacitive accelerometer of the present invention is disturbed in the plane. The sensing of the δ direction (such as the χ-axis direction and the Υ-axis direction) does not interfere with each other. However, the above has been disclosed by way of example, but it is not intended to limit the essence of the present invention: "^, in the case of the insured criminals who do not leave the invention's * can make some changes to and the Qing, so this [simplified figure ^ Ming ^ see the scope of the patent application as defined. Figure 1 is a top view of Figure 2. Figure 2 is a multi-axis capacitive accelerometer. 3 is a cross-sectional side view of the multi-axis capacitive accelerometer of FIG. 4 is a top plan view of a multi-axis capacitive accelerometer. Figure. ^Top view of the multi-axis capacitive accelerometer consistently applied. Figure 5 shows the cross-sectional view along line 1-1. Figure 7 is a partial side elevational view of the "single axis capacitive accelerometer. view. A top view of a multi-axis capacitive accelerometer according to another embodiment of the present invention is shown in FIG. 8 as a multi-axis capacitive accelerometer according to another embodiment of the present invention. 25 1376502 P27970096TWC1 29767-ltwf.doc/d [Main components DESCRIPTION OF REFERENCE NUMERALS 50, 60: accelerometer 52: mass 54: rotating structure 100, 400: first capacitor structure 110, 210, 410, 510: comb electrodes 112, 212, 412, 512: comb capacitor plate 122, 222, 422, 522: fixed comb capacitor plates® 120, 220, 420, 520: fixed comb electrodes 200, 500: second capacitor structure 300: bumps 1000, 2000: multi-axis capacitive accelerometers 1100, 2100: Substrate 1110: surface 1120: sensing electrode 1200, 2200: structural layer • 1210, 2210: fixing seat 1212, 2212: first fixing block 1214, 2214: second fixing block 1216: contact metal 1220, 2220: first mass 1222, 2222: central shaft 1224, 2224: first opening 1226, 2226: second opening 26 1376502 P27970096TWC1 29767-ltwf.doc/d 1228: bottom surface

1230、2230 :第一彈性結構 1232、2232 :第一彈簧 1234、2234 :第二彈簧 1240、2240 :固定感測塊 1242 :第一固定感測塊 1244 :第二固定感測塊 1250、2250 ··第二質量塊 1260、2260 :第三質量塊 1270、2270 :第二彈性結構 1272、2272 :第三彈簧 1274、2274 :第四彈簧 1280、2280 :第三彈性結構 1282、2282 :第五彈簧 1284、2284 :第六彈簧 2228 :第三開口 A、 C:第一轉動轴 B、 D:第二轉動軸 3000:多軸電容式加速度計 3010 :基板 3020 :結構層 3100 :固定座 3210 :第一彈性結構 3220 :第二彈性結構 27 1376502 P27970096TWC1 29767-ltwf.doc/d 3230 :第三彈性結構 3300 :第一質量塊 3310 :第四開口 3400 :第二質量塊 3410 :第五開口 3420 :第六開口 3500 :第三質量塊 3600 :第四質量塊 • 3710:第一固定感測塊 3720 :第二固定感測塊 3810 :第一電容結構 3820 :第二電容結構 3812、3822 :梳狀電極 3814、3824 :固定梳狀電極 3910 :轉動軸 281230, 2230: first elastic structure 1232, 2232: first spring 1234, 2234: second spring 1240, 2240: fixed sensing block 1242: first fixed sensing block 1244: second fixed sensing block 1250, 2250 Second mass 1260, 2260: third mass 1270, 2270: second elastic structure 1272, 2272: third spring 1274, 2274: fourth spring 1280, 2280: third elastic structure 1282, 2282: fifth spring 1284, 2284: sixth spring 2228: third opening A, C: first rotating axis B, D: second rotating shaft 3000: multi-axis capacitive accelerometer 3010: substrate 3020: structural layer 3100: fixed seat 3210: An elastic structure 3220: a second elastic structure 27 1376502 P27970096TWC1 29767-ltwf.doc/d 3230: a third elastic structure 3300: a first mass 3310: a fourth opening 3400: a second mass 3410: a fifth opening 3420: Six opening 3500: third mass 3600: fourth mass • 3710: first fixed sensing block 3720: second fixed sensing block 3810: first capacitive structure 3820: second capacitive structure 3812, 3822: comb electrode 3814, 3824: fixed comb electrode 3910: rotating shaft 28

Claims (1)

1376502 P27970096TWC1 29767-ltwf.doc/d 七、申請專利範圍: 1. 一種多軸電容式加速度計,包括: 一基板’該基板的一表面上設置兩個以上的感測電 極; 一結構層,包括: 多個固定座,固定於該基板的該表面上; 一弟一質ϊ塊’浮置於該基板的該表面上方,該 第一質量塊具有一中心轴以及位於談第一質量塊.内 部的一第一開口及一第二開口’該第一開口及該第二 開口以該第一質量塊的中心軸為中心而對稱地配置 於該中心軸的相對兩側; 一第一彈性結構,連接該固定座與該第一質量 塊; 多個固定感測塊’鄰近該第一質量塊並固定於該 基板的該表面上,其中每一固定感測塊與該第一質量 塊之間形成一電容結構; 一第二質量塊及一第三質量塊,浮置於該基板的 該些感測電極上方,形成感測電容,並且分別位於該 第一質量塊的該第一開口及該第二開口内;以及 一第二彈性結構及一第三彈性結構,該第二彈性 結構及該第三彈性結構分別將該第二質量塊及該第 三質量塊不對稱地懸掛在該第一質量塊的該第一開 口及該第二開口内並與之銜接,當受Z軸方向的加速 度作用時,該第二質量塊及該第三質量塊將沿平行於 29 1376502 P27970096TWC1 29767-1 twf.doc/d X軸的轉動軸轉動,且第二質量塊及該第三質量塊的 轉動軸相互平行並以該第一質量塊的中心軸為中心 而對稱地配置於該中心軸的相對兩侧。 計 2·如申請專利範圍第i項所述之多軸電容式加速度 其中該些固定感測塊位於該第一質量塊的外側。 計 3·如/請專利範圍第2項所述之多軸電容式加速度 其中每一組由一該固定感測塊和該第—質量塊所形成 的該電容結構包括: 妝+ t第—f量塊延伸出來的—梳狀電極,具有多個梳 狀黾各板;以及 1 I,定感測塊其中之一延伸出來的-固定梳狀 i梳狀電===且該棱_板與該固 計,顿狀式加速度 夕個第電谷結構,每一第一電容結槌的#^^雷容 =與該固定錄電容板沿著與該基板表行^ 該第-編2 的電容結構,其中 與該第二方向正交;以及 且该第-方向 多個第二電容結構,每—第二電容 板與該固定梳狀電容板沿著該第二方向:的 該第—方向加逮度的電容結構。可成為感測 5.如申請糊第2項所述之多㈣容式加速度 30 1376502 P27970096TWC1 29767-1 twf. doc/d 計,其中該些固定座包括分別配置於該第一質量塊之相對 兩側的一第一固定塊及一第二固定塊。 6.如申請專利範圍第5項所述之多軸電容式加速度 計,其中該第一彈性結構包括分別對應於該第一固定塊及 該第二固定塊的一第一彈簧及一第二彈簧,其中該第一彈 簧及該第二彈簧提供沿一第一方向與一第二方向的回復 力,其中該第一方向與該第二方向位於同一平面上,且該 第一方向與該第二方向正交。 • 7.如申請專利範圍第6項所述之多軸電容式加速度 計,其中該第一質量塊對稱於該中心轴,且分別透過該第 一彈簧及該第二彈簧連接於該第一固定塊及該第二固定 塊。 8.如申請專利範圍第2項所述之多軸電容式加速度 計,其中該第二彈性結構包括一第三彈簧及一第四彈簧, 位於所對應的轉動軸上並銜接該第一質量塊與該第二質量 塊。 φ 9.如申請專利範圍第2項所述之多軸電容式加速度 計,其中該第三彈性結構包括一第五彈簧及一第六彈簀, 位於所對應的轉動軸上並銜接該第一質量塊與該第三質量 塊。 10. 如申請專利範圍第2項所述之多轴電容式加速度 計,其中該第一質量塊具有面對該基板的一底面,且該底 面上具有多個Λ起。 11. 如申請專利範圍第2項所述之多軸電容式加速度 31 1376502 P27970096TWC1 29767-ltwf.doc/d 計,其中該第二與第三質量塊上具有多個微孔洞,可減少 阻尼產生。 12. 如申請專利範圍第1項所述之多軸電容式加速度 計,其中該第一質量塊内部更具有多個第三開口,且至少 部分該些固定感測塊分別位於該些第三開口内。 13. 如申請專利範圍第12項所述之多軸電容式加速 度計,其中每一組由一該固定感測塊和該第一質量塊所形 成的該電容結構包括· 由該第一質量塊延伸出來的一梳狀電極,具有多個梳 狀電容板;以及 由該些固定感測塊其中之一延伸出來的一固定梳狀 電極,具有多個固定梳狀電容板,且該梳狀電容板與該固 定梳狀電容板相互平行且交替配置。 14. 如申請專利範圍第13項所述之多轴電容式加速 度計,其中該些電容結構包括: 多個第一電容結構,每一第一電容結構的該梳狀電容 板與該固定梳狀電容板沿著與該基板表面平行的一第一方 向延伸,可成為感測一第二方向加速度的電容結構,其中 該第一方向與該第二方向位於同一平面上,且該第一方向 與該第二方向正交;以及 多個第二電容結構,每一第二電容結構的該梳狀電容 板與該固定梳狀電容板沿著該第二方向延伸,可成為感測 該第一方向加速度的電容結構。 15. 如申請專利範圍第14項所述之多軸電容式加速 32 1376502 P27970096TWC1 29767-1 twf.doc/d 度計’其中該些固定座包括分別配置於該第—質量塊之相 對兩側的一第一固定塊及一第二固定塊。 且該 16.如申請專利範圍f 15項所述之多軸電容式 度計’其中該第—彈性結構包括分別對應於該第—固定塊 =第二^定塊^ I彈簧及—第二彈簧,其中該第-彈汽及該弟-彈簧提供沿―第—方向與—第二方向的回復 力,其中該第一方向與該第二方向位於同一平面上 第一方向與該第二方向正交。1376502 P27970096TWC1 29767-ltwf.doc/d VII. Patent Application Range: 1. A multi-axis capacitive accelerometer comprising: a substrate having two or more sensing electrodes disposed on a surface of the substrate; a structural layer comprising : a plurality of fixing seats fixed on the surface of the substrate; a first mass of the first mass to have a central axis and a first mass located inside the substrate a first opening and a second opening, the first opening and the second opening are symmetrically disposed on opposite sides of the central axis centering on a central axis of the first mass; a first elastic structure, Connecting the fixing seat and the first mass; a plurality of fixed sensing blocks are adjacent to the first mass and fixed on the surface of the substrate, wherein each fixed sensing block is formed between the first mass and the first mass a capacitor structure; a second mass and a third mass floating above the sensing electrodes of the substrate to form a sensing capacitor, and respectively located at the first opening of the first mass and the first two And a second elastic structure and the third elastic structure respectively suspending the second mass and the third mass asymmetrically on the first mass And engaging with the first opening and the second opening, when subjected to acceleration in the Z-axis direction, the second mass and the third mass will be parallel to 29 1376502 P27970096TWC1 29767-1 twf.doc/ d The rotation axis of the X-axis rotates, and the rotation axes of the second mass and the third mass are parallel to each other and are symmetrically disposed on opposite sides of the central axis centering on the central axis of the first mass. 2. The multi-axis capacitive acceleration as described in claim i, wherein the fixed sensing blocks are located outside the first mass. The multi-axis capacitive acceleration described in item 2 of the patent scope, wherein each of the sets of the fixed sensing block and the first mass formed by the capacitor structure comprises: makeup + t-f a comb-shaped electrode extending from the measuring block, having a plurality of comb-shaped slabs; and 1 I, one of the fixed sensing blocks extending - a fixed comb-like comb-like electric === and the rib-plate The solid meter, the acceleration of the first-order electric valley structure, the #^^Ray capacity of each first capacitor junction = the capacitance of the fixed recording capacitor board along with the substrate table ^ the first - 2 capacitor a structure in which the second direction is orthogonal; and the plurality of second capacitor structures in the first direction, each of the second capacitor plate and the fixed comb capacitor plate are along the first direction of the second direction: The capacitance structure of the catch. Can be a sensing 5. As described in the application of the second (4) capacitive acceleration 30 1376502 P27970096TWC1 29767-1 twf. doc / d meter, wherein the fixed seats include two oppositely disposed in the first mass a first fixed block and a second fixed block on the side. 6. The multi-axis capacitive accelerometer of claim 5, wherein the first elastic structure comprises a first spring and a second spring respectively corresponding to the first fixed block and the second fixed block. The first spring and the second spring provide a restoring force along a first direction and a second direction, wherein the first direction is in the same plane as the second direction, and the first direction and the second direction The directions are orthogonal. 7. The multi-axis capacitive accelerometer according to claim 6, wherein the first mass is symmetrical to the central axis, and the first spring and the second spring are respectively connected to the first fixed Block and the second fixed block. 8. The multi-axis capacitive accelerometer of claim 2, wherein the second elastic structure comprises a third spring and a fourth spring, located on the corresponding rotating shaft and engaging the first mass With the second mass. The multi-axis capacitive accelerometer of claim 2, wherein the third elastic structure comprises a fifth spring and a sixth magazine, located on the corresponding rotating shaft and engaging the first Mass block with the third mass. 10. The multi-axis capacitive accelerometer of claim 2, wherein the first mass has a bottom surface facing the substrate, and the bottom surface has a plurality of picks. 11. The multi-axis capacitive acceleration 31 1376502 P27970096TWC1 29767-ltwf.doc/d according to claim 2, wherein the second and third masses have a plurality of micro-holes to reduce damping generation . 12. The multi-axis capacitive accelerometer of claim 1, wherein the first mass has a plurality of third openings therein, and at least some of the fixed sensing blocks are respectively located in the third openings. Inside. 13. The multi-axis capacitive accelerometer of claim 12, wherein each of the set of capacitor structures formed by the fixed sensing block and the first mass comprises: the first mass Extending a comb electrode having a plurality of comb capacitor plates; and a fixed comb electrode extending from one of the fixed sensing blocks, having a plurality of fixed comb capacitor plates, and the comb capacitor The plates and the fixed comb capacitor plates are parallel and alternately arranged. 14. The multi-axis capacitive accelerometer of claim 13, wherein the capacitor structures comprise: a plurality of first capacitor structures, the comb capacitor plates of each first capacitor structure and the fixed comb The capacitor plate extends along a first direction parallel to the surface of the substrate to form a capacitor structure for sensing a second direction acceleration, wherein the first direction is on the same plane as the second direction, and the first direction is The second direction is orthogonal; and the plurality of second capacitor structures, the comb capacitor plate of each second capacitor structure and the fixed comb capacitor plate extend along the second direction to sense the first direction The capacitive structure of the acceleration. 15. Multi-axis capacitive acceleration as described in claim 14 of the patent application 32 1376502 P27970096TWC1 29767-1 twf.doc/d degree meter, wherein the fixed seats are respectively disposed on opposite sides of the first mass a first fixed block and a second fixed block. And the multi-axis capacitance meter according to claim 15 wherein the first elastic structure comprises a spring corresponding to the first fixed block = a second fixed block and a second spring The first and second springs provide a restoring force along the first direction and the second direction, wherein the first direction and the second direction are on the same plane, and the first direction and the second direction are positive cross. > 17.如申請專利範㈣16項所述之多轴電容式加速 ,計’其中該第一質量塊對稱於該中心,,且分別透過該 第-彈簧及該第二彈簧連接於該第一固定塊及該第^ 塊。 18_如申睛專利範圍第12項所述之多轴電容式加速 度計,其中該第二彈性結構包括一第三彈簧及一第四彈 ϊ,位於所對應的轉動軸上並銜接該第一質量塊與該第二 質量塊。> 17. The multi-axis capacitive acceleration described in claim 16 (4), wherein the first mass is symmetrical to the center, and the first spring and the second spring are respectively connected to the first Fixed block and the first block. The multi-axis capacitive accelerometer of claim 12, wherein the second elastic structure comprises a third spring and a fourth magazine, located on the corresponding rotating shaft and engaging the first Mass block with the second mass. 19. 如申請專利範圍第12項所述之多軸電容式加速 度計,其中該第三彈性結構包括一第五彈簧及一第六彈 κ ’位於所對應的轉動軸上並銜接該第一質量塊與該第三 質量塊^。 20. 如申請專利範圍第12項所述之多軸電容式加速 度計,其中該第一質量塊具有面對該基板的一底面,且該 底面上具有多個凸起。 21. 如申請專利範圍第12項所述之多軸電容式加速 33 1376502 P27970096TWC1 29767-1 twf.doc/d 度計,其中該第二與第三質量塊上具有多個微孔洞,可減 少阻尼產生。 22. 如申請專利範圍第1項所述之多轴電容式加速度 計,其中該第一彈性結構、該第二彈性結構或該第三彈性 結構為彈片或彈簧。 23. —種多軸電容式加速度計,包括: 一基板,其上具有多個感測電極; 一結構層,浮置於該基板上,該結構層包括: • 多個固定座,固定在該基板上; 多個彈性結構,至少包括一第一彈性結構、一第 二彈性結構和一第三彈性結構; 一第一質量塊,透過該第一彈性結構被懸掛設置 在該基板上,並與該些固定座連接,用以感測在一平 面上的一第一方向或一第二方向上的加速度,而對應 地沿該第一方向或該第二方向平移,其中該第一方向 與該第二方向正交; φ 一第二質量塊,透過該第二彈性結構被懸掛設置 在該第一質量塊内,而該第二質量塊可以沿著與該第 一質量塊平移方向的同平面的垂直方向作平移; 多個第一固定感測塊,配置在該第一質量塊内, 其中每一第一固定感測塊與該第一質量塊或該第二 質量塊之間形成一第一電容結構; 一第三質量塊與一第四質量塊,該第三質量塊及 該第四質量塊對應於該基板上的該些感測電極並且 34 1376502 P27970096TWC1 29767-ltwf.doc/d 以該第一質量塊的一中心軸為中心而對稱地配置於 該中心軸的相對兩側,該第三質量塊與該第四質量塊 分別透過該第三彈性結構以非對稱的方式懸掛設置 在該第二質量塊内,且沿該第一方向具有一轉動軸, 使該第一質量塊在該第二方向上呈現不對稱性,並在 該第一質量塊在一第三方向受力時’以該轉動轴為中 心轉動,其中該第三方向正交於該第一方向與該第二 方向所在的該平面;以及 • 多個第二固定感測塊,配置在該第二質量塊内, 其中每一第二固定感測塊與該第二質量塊之間形成 一第二電容結構。 24. 如申請專利範圍第23項所述之多軸電容式加速 度計,其中每一第一電容結構包括: 由該第一質量塊或該第二質量塊延伸出來的一梳狀 電極,具有多個梳狀電容板;以及 由該些第一固定感測塊其中之一延伸出來的一固定 φ 梳狀電極,具有多個固定梳狀電容板,且該梳狀電容板與 該固定梳狀電容板相互平行且交替配置。 25. 如申請專利範圍第24項所述之多轴電容式加速 度計,其中每一第一電容結構的該梳狀電容板與該固定梳 狀電容板沿著該第一方向延伸,以感測該第二方向的加速 度。 26. 如申請專利範圍第23項所述之多軸電容式加速 度計,其中每一第二電容結構包括: 35 1376502 P27970096TWCI 29767-ltwf.doc/d 由該弟二質量塊延伸出來的 具有多僴职L 狀電容板;以及 由該些第二固定感測塊其中之一延伸出來的一面定 梳狀電極,具有多個固定梳狀電容板,且讀 該固定梳狀電容板相互平行且交替配置。L狀电合取/ 27.如申請專利範圍第26項所述之多 度叶,其中每一第二電容結構的該梳狀電容 工 狀電容板沿著該第二方向延伸,以感測讀1、該固定: 度。 年〜方向的加在 計,^電容式加速I 二間在該第一質量境與 者其中之ί:質爾沿該第-方向和讀第二方向; 29.如申請專利範圍第23項所述之命 ^其中該第二彈性結構連接在^式加速度 =塊之間’使該第二質量塊能沿與該第4 ^第-質 的同平面的垂直方向作平移。 貝里鬼平移方向 3〇.如申請專利範圍第23項 ;十旦其中該第三彈性結構被配置在該第容式加速度 質ΐ塊之間以及該第二質量 :貝里塊與該第三 ,應連接該轉動轴的兩端,^量^間,並分 四質量塊㈣轉動㈣中心軸。貝量塊與該第 31.如申請專利範圍第幻 計,其中該絲板上感測電極配置以迷度 36 1376502 P27970096TWC1 29767-1 twf.doc/d 32. 如申請專利範圍第23項所述之多轴電容式加速 度計,其中該第一質量塊具有面對該基板的一底面,且該 底面上具有多個凸起。 33. 如申請專利範圍第23項所述之多轴電容式加速 度計,其中該第三與第四質量塊上具有多個微孔洞,可減 少阻尼產生。 34. 如申請專利範圍第23項所述之多轴電容式加速 度計,其中該第一質量塊具有一第四開口,該第四開口内 設有該第二質量塊,及該第二質量塊具有一第五開口與一 第六開口,而該第五開口内設有該第三質量塊,該第六開 口内設有該第四質量塊。 35. 如申請專利範圍第23項所述之多軸電容式加速 度計,其中該第一彈性結構分別連接該固定座與該第一質 量塊,而該第二彈性結構分別連接該第一質量塊與該第二 質量塊。’ 36. 如申請專利範圍第23項所述之多轴電容式加速 度計,其中該些彈性結構為彈片或彈簧。 3719. The multi-axis capacitive accelerometer of claim 12, wherein the third elastic structure comprises a fifth spring and a sixth spring κ 'located on the corresponding rotating shaft and engaging the first mass Block with the third mass ^. 20. The multi-axis capacitive accelerometer of claim 12, wherein the first mass has a bottom surface facing the substrate and the bottom surface has a plurality of protrusions. 21. The multi-axis capacitive acceleration 33 1376502 P27970096TWC1 29767-1 twf.doc/d meter according to claim 12, wherein the second and third masses have a plurality of micro-holes, which can be reduced Damping occurs. 22. The multi-axis capacitive accelerometer of claim 1, wherein the first elastic structure, the second elastic structure or the third elastic structure is a spring or a spring. 23. A multi-axis capacitive accelerometer comprising: a substrate having a plurality of sensing electrodes thereon; a structural layer floating on the substrate, the structural layer comprising: • a plurality of mounts secured thereto a plurality of elastic structures including at least a first elastic structure, a second elastic structure and a third elastic structure; a first mass block suspended from the substrate through the first elastic structure, and The fixing bases are connected to sense an acceleration in a first direction or a second direction on a plane, and correspondingly translate in the first direction or the second direction, wherein the first direction and the The second direction is orthogonal; φ a second mass that is suspended from the first mass through the second elastic structure, and the second mass can be in the same plane as the translation direction of the first mass a vertical direction of the translation; a plurality of first fixed sensing blocks disposed in the first mass, wherein each of the first fixed sensing blocks forms a first level with the first mass or the second mass a capacitor structure; a third mass and a fourth mass, the third mass and the fourth mass corresponding to the sensing electrodes on the substrate and 34 1376502 P27970096TWC1 29767-ltwf.doc/d with the first quality A central axis of the block is symmetrically disposed on opposite sides of the central axis, and the third mass and the fourth mass are respectively suspended in the asymmetric manner through the third elastic structure. And having a rotation axis in the first direction, the first mass is asymmetric in the second direction, and the rotation is performed when the first mass is stressed in a third direction The axis is centered, wherein the third direction is orthogonal to the plane in which the first direction and the second direction are located; and: a plurality of second fixed sensing blocks are disposed in the second mass, each of each A second capacitor structure is formed between the second fixed sensing block and the second mass. 24. The multi-axis capacitive accelerometer of claim 23, wherein each of the first capacitive structures comprises: a comb electrode extending from the first mass or the second mass, having a plurality of a comb capacitor plate; and a fixed φ comb electrode extending from one of the first fixed sensing blocks, having a plurality of fixed comb capacitor plates, and the comb capacitor plate and the fixed comb capacitor The plates are arranged parallel to each other and alternately. 25. The multi-axis capacitive accelerometer of claim 24, wherein the comb capacitor plate of each first capacitor structure and the fixed comb capacitor plate extend along the first direction to sense The acceleration in the second direction. 26. The multi-axis capacitive accelerometer of claim 23, wherein each of the second capacitor structures comprises: 35 1376502 P27970096TWCI 29767-ltwf.doc/d having multiple turns extending from the second mass And an L-shaped capacitor plate; and a fixed comb electrode extending from one of the second fixed sensing blocks, having a plurality of fixed comb capacitor plates, and reading the fixed comb capacitor plates parallel and alternately arranged . L-shaped electric extraction / 27. The multi-leaf leaf according to claim 26, wherein the comb-shaped capacitive capacitor plate of each second capacitor structure extends along the second direction to sense reading 1, the fixed: degrees. In the year ~ direction of the addition, ^ capacitive acceleration I in the first quality of the environment and the ί: the quality along the first direction and read the second direction; 29. as claimed in the 23rd The life of the second elastic structure is connected between the accelerations of the blocks to enable the second mass to translate in a direction perpendicular to the same plane of the 4th-th quality. Berry ghost translation direction 3〇. As claimed in the 23rd item; 10th, wherein the third elastic structure is disposed between the first capacitive acceleration mass and the second mass: the Berry block and the third , should be connected to the two ends of the rotating shaft, ^ quantity ^, and divided into four mass (four) rotation (four) central axis. A billimeter block and the 31st, as claimed in the patent application, wherein the sensing electrode configuration on the wire plate is in a degree of 36 1376502 P27970096TWC1 29767-1 twf.doc/d 32. As described in claim 23 The multi-axis capacitive accelerometer, wherein the first mass has a bottom surface facing the substrate, and the bottom surface has a plurality of protrusions. 33. The multi-axis capacitive accelerometer of claim 23, wherein the third and fourth masses have a plurality of micro-holes to reduce damping. 34. The multi-axis capacitive accelerometer of claim 23, wherein the first mass has a fourth opening, the second opening is provided with the second mass, and the second mass There is a fifth opening and a sixth opening, and the third mass is disposed in the fifth opening, and the fourth mass is disposed in the sixth opening. The multi-axis capacitive accelerometer of claim 23, wherein the first elastic structure is respectively connected to the fixing seat and the first mass, and the second elastic structure is respectively connected to the first mass With the second mass. The multi-axis capacitive accelerometer of claim 23, wherein the elastic structures are springs or springs. 37
TW97151113A 2008-11-18 2008-12-26 Multi-axis capacitive accelerometer TWI376502B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/618,791 US8205498B2 (en) 2008-11-18 2009-11-16 Multi-axis capacitive accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11554608P 2008-11-18 2008-11-18

Publications (2)

Publication Number Publication Date
TW201020549A TW201020549A (en) 2010-06-01
TWI376502B true TWI376502B (en) 2012-11-11

Family

ID=42462232

Family Applications (2)

Application Number Title Priority Date Filing Date
TW97148843A TW201020548A (en) 2008-11-18 2008-12-15 Multi-axis capacitive accelerometer
TW97151113A TWI376502B (en) 2008-11-18 2008-12-26 Multi-axis capacitive accelerometer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW97148843A TW201020548A (en) 2008-11-18 2008-12-15 Multi-axis capacitive accelerometer

Country Status (2)

Country Link
CN (1) CN101738496B (en)
TW (2) TW201020548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497079B (en) * 2013-09-10 2015-08-21 Globalmems Co Ltd Movable device having drop resistive protection
TWI614208B (en) * 2014-04-09 2018-02-11 立錡科技股份有限公司 Mirco-electro-mechanical system device
TWI816711B (en) * 2017-11-09 2023-10-01 德商羅伯特博斯奇股份有限公司 Micromechanical z-inertial sensor and production method thereof

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037539A1 (en) 2010-09-18 2012-03-22 Fairchild Semiconductor Corporation Micromachined 3-axis accelerometer with a single proof-mass
KR20130057485A (en) 2010-09-18 2013-05-31 페어차일드 세미컨덕터 코포레이션 Packaging to reduce stress on microelectromechanical systems
EP2619536B1 (en) 2010-09-20 2016-11-02 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US9276080B2 (en) 2012-03-09 2016-03-01 Mcube, Inc. Methods and structures of integrated MEMS-CMOS devices
TWI452297B (en) * 2011-09-26 2014-09-11 Richwave Technology Corp Capacitive accelerometer
US8650955B2 (en) * 2012-01-18 2014-02-18 The United States Of America As Represented By The Secretary Of The Navy Time domain switched gyroscope
US9062972B2 (en) * 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
CN104316726B (en) * 2012-03-20 2017-04-12 立积电子股份有限公司 capacitive accelerometer
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
KR102058489B1 (en) 2012-04-05 2019-12-23 페어차일드 세미컨덕터 코포레이션 Mems device front-end charge amplifier
EP2647952B1 (en) 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Mems device automatic-gain control loop for mechanical amplitude drive
EP2647955B8 (en) 2012-04-05 2018-12-19 Fairchild Semiconductor Corporation MEMS device quadrature phase shift cancellation
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
DE102013014881B4 (en) 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Enhanced silicon via with multi-material fill
US10132630B2 (en) 2013-01-25 2018-11-20 MCube Inc. Multi-axis integrated MEMS inertial sensing device on single packaged chip
US9249012B2 (en) 2013-01-25 2016-02-02 Mcube, Inc. Method and device of MEMS process control monitoring and packaged MEMS with different cavity pressures
US10036635B2 (en) 2013-01-25 2018-07-31 MCube Inc. Multi-axis MEMS rate sensor device
CN103149583B (en) * 2013-02-05 2017-07-28 中国地震局工程力学研究所 A kind of rotation acceleration meter for earthquake
TWI481820B (en) 2013-03-01 2015-04-21 Ind Tech Res Inst Micro electro mechanical apparatus with interdigiated spring
US10046964B2 (en) 2013-03-07 2018-08-14 MCube Inc. MEMS structure with improved shielding and method
CN104459199B (en) * 2013-09-18 2018-01-26 上海矽睿科技有限公司 capacitive accelerometer
JP6248576B2 (en) * 2013-11-25 2017-12-20 セイコーエプソン株式会社 Functional element, electronic device, and moving object
CN104597287B (en) * 2015-01-30 2017-09-05 歌尔股份有限公司 Inertia measuring module and three axis accelerometer
CN104459203B (en) * 2014-12-25 2017-08-25 歌尔股份有限公司 Z axis structure and three axis accelerometer in a kind of accelerometer
US10473686B2 (en) 2014-12-25 2019-11-12 Goertek Inc. Inertia measurement module and triaxial accelerometer
KR101673362B1 (en) * 2015-12-14 2016-11-07 현대자동차 주식회사 Acceleration sensor and manufacturing method thereof
TWI570054B (en) * 2015-12-28 2017-02-11 財團法人工業技術研究院 Micro-electromechanical apparatus having central anchor
ITUA20162173A1 (en) 2016-03-31 2017-10-01 St Microelectronics Srl ACCELEROMETRIC MEMS SENSOR HAVING HIGH ACCURACY AND REDUCED SENSITIVITY TOWARDS TEMPERATURE AND AGING
US10429407B2 (en) * 2017-03-27 2019-10-01 Nxp Usa, Inc. Three-axis inertial sensor for detecting linear acceleration forces
CN107082405B (en) * 2017-05-26 2023-08-18 深迪半导体(绍兴)有限公司 MEMS device structure
CN107271722B (en) * 2017-07-19 2022-06-24 深迪半导体(绍兴)有限公司 Triaxial capacitive accelerometer
CN108020687B (en) * 2018-02-06 2024-03-19 深迪半导体(绍兴)有限公司 MEMS accelerometer
US11733263B2 (en) * 2018-09-21 2023-08-22 Analog Devices, Inc. 3-axis accelerometer
US11099207B2 (en) 2018-10-25 2021-08-24 Analog Devices, Inc. Low-noise multi-axis accelerometers and related methods
CN110308308B (en) * 2019-06-27 2021-07-13 深迪半导体(绍兴)有限公司 In-plane translational accelerometer with compensation electrode
US11377346B2 (en) * 2019-09-11 2022-07-05 Murata Manufacturing Co., Ltd. Low-noise multi axis MEMS accelerometer
JP7383978B2 (en) * 2019-10-23 2023-11-21 セイコーエプソン株式会社 Physical quantity sensors, electronic devices and moving objects
CN114280331B (en) * 2021-12-16 2024-05-17 绍兴圆方半导体有限公司 Z-axis accelerometer
CN114594281A (en) * 2022-04-29 2022-06-07 苏州米洛微纳电子科技有限公司 MEMS accelerometer and forming method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547642A1 (en) * 1994-12-20 1996-06-27 Zexel Corp Multi-axis acceleration sensor for motor vehicle system
US6981416B2 (en) * 2003-11-21 2006-01-03 Chung-Shan Institute Of Science And Technology Multi-axis solid state accelerometer
US20070034007A1 (en) * 2005-08-12 2007-02-15 Cenk Acar Multi-axis micromachined accelerometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497079B (en) * 2013-09-10 2015-08-21 Globalmems Co Ltd Movable device having drop resistive protection
TWI614208B (en) * 2014-04-09 2018-02-11 立錡科技股份有限公司 Mirco-electro-mechanical system device
TWI816711B (en) * 2017-11-09 2023-10-01 德商羅伯特博斯奇股份有限公司 Micromechanical z-inertial sensor and production method thereof

Also Published As

Publication number Publication date
TW201020549A (en) 2010-06-01
TW201020548A (en) 2010-06-01
CN101738496B (en) 2011-08-31
CN101738496A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
TWI376502B (en) Multi-axis capacitive accelerometer
US8205498B2 (en) Multi-axis capacitive accelerometer
TWI374268B (en) Multi-axis capacitive accelerometer
CN101666813B (en) Multi-axis capacitive accelerometer
JP6723298B2 (en) Integrated MEMS linear and angular accelerometer
CN112739642B (en) 3-axis accelerometer
TWI716999B (en) Z axis accelerometer using variable vertical gaps
JP5215847B2 (en) Method for manufacturing capacitive acceleration sensor and capacitive acceleration sensor
CN211012984U (en) MEMS device
CN102046514B (en) Device with miniature electromechanical system sensor and preparation method thereof
CN101987718B (en) Microelectromechanical z-axis detection structure with low thermal drifts
TWI507347B (en) Micromechanical sensor element
KR20120043056A (en) Micromachined inertial sensor devices
JP5553846B2 (en) Acceleration sensor and method of operating acceleration sensor
US8701490B2 (en) Z-axis capacitive accelerometer
CN101069099A (en) Integrated monolithic tri-axial micromachined accelerometer
JP2010506182A (en) Acceleration detection sensor
CN110824196A (en) MEMS capacitive Z-axis accelerometer insensitive to stress
CN107064557B (en) Capacitive accelerometer
CN112578146B (en) Out-of-plane axial detection MEMS capacitive accelerometer with low cross-axis sensitivity
US12013414B2 (en) MEMS accelerometer
JP2010243479A (en) Apparatus having movable body
JP2008014633A5 (en)
CN109073673A (en) Micro mechanical sensor and method for manufacturing micro mechanical sensor
JP2010139263A (en) Angular acceleration sensor