TW201020549A - Multi-axis capacitive accelerometer - Google Patents

Multi-axis capacitive accelerometer Download PDF

Info

Publication number
TW201020549A
TW201020549A TW97151113A TW97151113A TW201020549A TW 201020549 A TW201020549 A TW 201020549A TW 97151113 A TW97151113 A TW 97151113A TW 97151113 A TW97151113 A TW 97151113A TW 201020549 A TW201020549 A TW 201020549A
Authority
TW
Taiwan
Prior art keywords
mass
fixed
axis
block
capacitor
Prior art date
Application number
TW97151113A
Other languages
Chinese (zh)
Other versions
TWI376502B (en
Inventor
Yu-Wen Hsu
Shih Chen
Hsin-Tang Chien
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to US12/618,791 priority Critical patent/US8205498B2/en
Publication of TW201020549A publication Critical patent/TW201020549A/en
Application granted granted Critical
Publication of TWI376502B publication Critical patent/TWI376502B/en

Links

Abstract

A multi-axis accelerometer is consisted of a substrate with sensing electrodes and a structure layer. The structure layer includes multiple bases fixed on the substrate, a first proof mass, a first set of elastic linkages, multiple fixed sensing structures, a second mass, a third mass, a second set of elastic linkages and a third set of elastic linkages. The first mass is disposed on the substrate with a gap and has a first opening and a second opening symmetric to each other. The first mass is suspended by the first set of elastic linkages and the other ends of the first set of elastic linkages are connected to the fixed bases. Multiple fixed sensing structures are disposed on the substrate, and multiple capacitors are formed between each fixed sensing structure and the first mass for sensing acceleration along two in-plane direction. The second mass and the third mass are disposed in the first opening and the second opening and are imbalanced suspended to the first mass by the second set of elastic linkages and the third set of elastic linkages respectively. Separate electrodes disposed on the substrate, the second mass and the third mass, which form two differential capacitors for sensing the out-of-plane acceleration.

Description

201020549 P27970096TWCI 29767-Itwf.doc/d 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種電容式加速度計,且特別是有關 於一種多軸電容式加速度計之設計。 【先前技術】 加速度计目則在市場上已逐漸被普遍地使用於許多 裝置中以做為運動感測器,如遊戲機、健康監控、手機界 • 面控制與自動靜音、慣性游標指向器等領域。 傳統微機電三軸加速度計大都採用單軸組合的三軸 設計,意即其用以感測X軸、γ軸及z軸加速度的質量塊 及感測元件係分別獨立設置。這種設置方式雖然在加速度 感測上可達到降低它軸靈敏度的目的,但是其缺點是為達 到低機械雜訊的目標,往往造成元件尺寸太大,或為達到 尺寸小的目標,使得機械雜訊不易降低,而元件尺寸與成 本是有直接密切的關聯。因此,為了降低生產成本及縮小 加速度計尺寸,採用三軸一體的加速度計設計是一可行的 ^ 方法。然而,三軸一體的加速度計現今仍存在著各轴向之 相互干擾與線性度有待提升的問題。 美國第7258011號專利案之圖1及圖2分別為習知一 種加速度計的俯視圖及剖視侧示圖’其所揭露的加速度計 5〇主要是利用連接體(linkage)的結構來連接三轴的彈簧結 構、XY軸質量塊52與外侧的Z軸旋轉結構(paddle)54。Z 轴的靈敏度因Z軸旋轉結構54的質量較小而表現較差。 此外,其Z軸之感测質量在受力時會有線性位移舆旋轉, 201020549 P27970096TWC1 29767-itwf.doc/d 這種運動行為將使得元件產生非線性度之效應。 美國第7258012號專利案之圖3為習去π的另一種加速 度計的俯視圖,其所揭露的加速度計6〇,因其設計使用 CMOS MEMS的製作方式且採用單一的ζ軸結構在質量塊 中心,而其Ζ轴的感測電容結構則是採用梳狀結構,當結 構受到延其Ζ轴之轉動軸方向的振動力時,其ζ轴結構容 易產生旋轉而造成Ζ方向加速度計的它軸靈敏度受影響, _ 雖然可以透過梳狀結構的排列設計來克服,但如此也將造 成真正貝獻於感測電容可用的梳狀結構數目降低,進而造 成電容量的不足,增加電路設計的負擔;如果採用用兩組 Torsion結構,則將可以提供足夠梳狀結構的數目,使得電 容量得以增加,如此也可以降低讀取電路設計上的複雜 度。事實上,目前大部分三轴一體加速度計的結構設計, 都面臨到它轴靈敏度與線性度性能提升的問題。一般而 言,對於三軸一體加速度計的設計,當z軸T〇rsi〇n結構 設計在XY軸結構之内時,因為必須考慮χγ軸結構^量 參 的對稱,都會將其旋轉轴對稱放置於ΧΥ軸結構的中心, 使得質量塊較輕的一邊其有效面積使用率降低;另外,當 ζ軸Torsion結構設計在χγ軸結構之内,如果製作方式1 使用另一基材上的兩電極與結構形成差動電容時,雖然此 設計其Z軸電容受它軸力的影響很低,但為達到質量的對 稱,也會造成其必須使用一部份區域僅做為質量平衡之用 而無法貢獻於感測之用途,而使用兩組T〇rsi〇n結構的設 計則將可以自然形成對稱而無須強迫將轉動軸放於χγ ^ 201020549 P27970096TWC1 29767-ltwf.doc/d 結構質量塊財心,就可以達到提升_制效率和降低 Z軸之它軸靈敏度的目的。 【發明内容】 文善傳統三軸—體加速度計結構所產生的它轴 疲敏度…雜度醜’辆時達到縮小尺寸的目卜 =提出-種料電容式加速度計,可降低各軸向:加歧 感測U干擾的現象,同時達到高線性度與靈敏度的優點。 -社ίΓ月ί出—種多㈣容式加速度計,包括—基板及 括了=:板^表,設置多個感測電極。結構層包 —1塊、—第—彈性結構、多個固 2魏、—第二質量塊、—第三質量塊、-第二彈性結 三彈性結構。固定朗定於基板的表面上。第一 貝里塊吁置於基板的表面上方,第—f量塊具有—中心轴 :及位於第-質量塊内部的―第—開卩及—第二開口。第 一開口及第二開σ對應於感測電極並且以第-質量塊的中 心轴為中心而對稱地配置於中心軸的祖對兩側。第一彈性 :構連接固疋座與弟—質量塊。固定感測塊鄰近第一質量 旦並口疋於基板的表面上,其巾每—固定感測塊與第一質 置塊之間形成—電容結構。第二質量塊及第三質量塊浮置 於基,的感測電極上方並且分別位於第—f量塊的第一開 口第二開口内’第二質量塊及第三質量塊與基板上的感 =電極形成感測電容。第二f量塊及第三質量塊分別藉由 弟一彈=結構及第三彈性結構非對稱地懸掛在第一質量塊 上以为別沿一轉動轴在受力時作轉動,且第二質量塊及 201020549 P27970096TWC1 29767-ltwf.doc/d 第二質罝塊的轉動轴相互平行並以第一質量塊的中心轴為 中心而對稱地配置於中心軸的相對兩側。 在本發明之一實施例中,上述之固定感測塊位於第一 質量塊的外側。 在,發明之一實施例t,上述之第—質量塊内部更具 有多個第二開口,且至少部分固定感測塊分別位於第三開 口内。 在本發明之—實施例中,上述之每—組由—固定感測 塊和第一質量塊所形成的電容結構包括由第一質量塊延伸 出來的一梳狀電極及由固定感測塊其中之一延伸出來的一 固定梳狀電極。梳狀電極具有多個梳狀電容板。固定梳狀 電極具有多_定錄電容板,且紐電容板無定梳狀 電容板相互平行且交替配置。 在本發明之-實施例中,上述之電容結構包括多個第 二電,結構及多個第二電容結構。每一第一電容結構的梳 狀電谷板與固定梳狀電容板沿著與基板表面平行的一第一 方向(例如x軸方向)延伸’可成為感測-第二方向(例如Y 抽方向)加速㈣電容結構,其中第—方向與第二方向正交 且位於同-平面上。每—第二電容結構的梳狀電容板盘固 電著第二方向(例如γ轴方向)延伸,可成為 感㈣-方向(例如X軸方向)加速度的電容結構。 於第之貝,知例中’上述之固定座包括分別配置 於第胃里塊之相對兩側的—第—固定塊及—第二固定 塊0 201020549 ^vy/〇〇y&TWci 29767-ltwf.d〇c/d 別本發明之—實施例中,上述之第—彈性結構包括八 =應於第-固定塊及第二固定塊的-第-彈 ^ ’其中第-彈簧及第二彈簧提供沿第—方 方向)與第二方向(例如Y轴方向)的回復力。 在t發明之—實施例中,上述之第—質量棟對稱於中 及第i固=透過第一彈菁及第二彈箸連接於第—固定塊 第-發明之—實_中,上述之第二彈性結構包括— ς彈黃及一第四彈簧,位於所對應的轉 1量塊與第二質量塊。 上麵接弟 第五實施例中’上述之第三彈性結構包括- 弟六彈簧,位於所對應的轉動軸上並銜接第 貝置塊與第三質量塊。 依乐 基^本=之—實施例中,上述之第1量塊具有面對 坂的一底面,且底面上具有多個凸起。 在本發明之一實施例中,上述之第二與第二所旦 具有多個微孔洞,可減少阻尼產生。 貝里 本發明另提出一種多軸電容式加速度計,其包括一美 構f。基板上具有多個感測電极/而結構層i ς個彈性結構,至少包括―第—彈性結構、—第二 :和―第三彈性結構;-第-質量塊,透過第—彈性叫; 破懸掛設置在基板上,並與固定座連接,用Μ測在 面上的第-方向(例如X軸方向)或第二方向(例;^轴方 201020549 P27970096TWC1 29767-ltwf.d〇c/d 上的加速度,而對應地沿第一方向(例如χ轴方向)或第二 方向(例如Υ軸方向)平移;一第二質量塊,透過第二彈性 結,被懸掛設置在第—質量塊内’而第二質量塊可以沿著 與第一質量塊平移方向的同平面的垂直方向作平移;多個 第一固定感測塊,配置在第一質量塊内,其中每一第一固 定感測塊與第一質量塊或第二質量塊之間形成一第一電容 結構,-第二質量塊與„第四質量塊,對應於基板上的感 Φ 測電極並且以第一質量塊的一中心軸為中心而對稱地配置 =中=軸的相對兩側,第三質量塊與第四質量塊分別透過 第三彈性結構以非對稱的方式懸掛設置在第二質量塊内, 且Μ第一方向(例如X軸方向)具有一轉動軸,使第一質量 塊在第二方向(例如γ軸方向)上呈現不對稱性,並在第一 質量塊在一第三方向(例如ζ軸方向)受力時,以轉動轴為 中心轉動,其中第-方向(例如χ軸方向)、第二方向(例如 υ軸方向)和第三方向(例如ζ軸方向)彼此正交;以及,多 個第二固定感測塊,配置在第二質量塊内,其中每一第二 籲 ®定細塊與第二質量塊之_成—第二電容結構。 ,本發明之一實施例中,上述之每一第一電容結構包 括由第一質量塊或第二質量塊延伸出來的一梳狀電極,其 具有多個梳狀電容板;以及,由第一固定感測塊其中之三 延伸出來的一固定梳狀電極,其具有多個固定梳狀電容 板。梳狀電容板與固定梳狀電容板相互平行且交替配置。 在本發明之一實施例中,上述之每一第一電容結構的 梳狀電容板與固定梳狀電容板沿著第一方向(例如χ軸方 10 201020549 ^^wuyoTWCl 29767-lhvf.doc/d 向)延伸’以感測第二方向(例如Y轴方向)的加逮度。 ,本發明之—實施例_,上述之每—第二 =二=塊延伸出來的一梳狀電接,其具有多娜 二板,Μ及’由第二岐感測塊其令之—延伸 固疋梳狀電極,其具有多侧㈣ * 與固定梳狀電容板相互平行且交替配置^ &狀電合板 ❿ 在本發明之一實施例中,上述之每一 與固_電容板沿著第二方 w W感麟-方向(例如χ軸方向)的加速度。 在本發明之一實施例中,上述之第一 第一質量塊與固定座之間,使第 第° 如X輪方向)或第二方向(例如方向(例 第二’找之第二雜結構連接在 質夏塊平移方向的同平_垂直方向作平一 在第二二’上述之第三彈性結構被配置 量塊之= 質置塊之間以及第二質量塊與第四質 旦坆並分賴應連轉軸的㈣,以使得第:質 里塊與第四質量塊能以轉動轴為中心轉動。便仔第-質 軸的兩^月之Λ施例中’上述之感測電極配置在轉動 在本發明之一實施例中,上 的1面,且底面上具有多個凸起。貝里塊具有面對基板 在本發明之-實施例中,上述之第三與第四質量塊上 11 201020549 P27970096TWC1 29767-ltwf.doc/d 具有多個微孔洞,可減少阻尼產生。 在本發明之一實施例中,上述之第一質量塊具有—… 四開口,第四開口内設有第二質量塊,及第二質^塊具^ 一第五開口與一第六開口,而第五開口内設有第三A質旦 塊,第六開口内設有第四質量塊。 貝里 在本發明之一貫施例中,上述之第一彈性結構分別 接固定座與第一質量塊,而第二彈性結構分別連 量塊與第二質量塊。 ❿ 基於上述,本發明的多軸電容式加速度在結構層内部 設置可沿其中心軸對稱轉動的多個質量塊。該些質量塊I 非對稱結構,因此受力時將會轉動,轉動時並無線性位移7 所以具有較佳的線性度。另外,第二質量塊及第三質^塊 丈力而分別轉動時,在第一與第二方向的它軸受力會互相 抵消’因此避免了它轴的影響。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例’並配合所附圖式作詳細說明如下。 寸 參 【貫施方式】 圖4為本發明一實施例之多軸電容式加速度計的俯視 圖。圖5為圖4沿I-Ι線的剖視圖。請參考圖4及圖5,本 實施例的多轴電容式加速度計1〇〇〇包括—基板11〇〇及一 結構層1200。基板11〇0的一表面111〇上設置多個感測電 極1120。結構層1200包括多個固定座121〇、一第一質量 塊^22〇\一第一彈性結構1230、多個固定感測塊1240、 一第二質量塊1250、一第三質量塊1260、一第二彈性結構 12 201020549 P27970096TWC1 29767-ltwf.doc/d 1270及一第三彈性結構1280。 第一質量塊1220設置於基板1100的表面111〇上方, 第一質量塊1220具有一中心轴1222以及位於第一質量塊 1220内部的一第一開口 1224及一第二開口 1226。第一開 口 1224及第二開口 12%以第一質量塊1220的中心軸1222 為中心而對稱地配置於中心軸1222的相對兩侧。第一彈性201020549 P27970096TWCI 29767-Itwf.doc/d VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a capacitive accelerometer, and more particularly to the design of a multi-axis capacitive accelerometer. [Prior Art] Accelerometers are gradually being widely used in many devices in the market as motion sensors, such as game consoles, health monitoring, mobile phone control, surface control and automatic mute, inertial cursors, etc. field. Traditional micro-electromechanical three-axis accelerometers mostly use a single-axis three-axis design, which means that the mass and sensing components used to sense the X-axis, γ-axis and z-axis acceleration are independently set. Although this arrangement can achieve the purpose of reducing the sensitivity of the axis in the acceleration sensing, the disadvantage is that in order to achieve the goal of low mechanical noise, the component size is often too large, or the target is small, so that the mechanical miscellaneous The message is not easy to reduce, and the component size and cost are directly related. Therefore, in order to reduce production costs and reduce the size of accelerometers, it is a feasible method to use a three-axis integrated accelerometer design. However, the three-axis integrated accelerometer still has the problems of mutual mutual interference and linearity to be improved. FIG. 1 and FIG. 2 of the US Pat. No. 7258011 are respectively a top view and a cross-sectional side view of a conventional accelerometer. The accelerometer 5 disclosed therein mainly uses a structure of a link to connect three axes. The spring structure, the XY axis mass 52 and the outer Z axis rotation paddle 54. The sensitivity of the Z-axis is poor due to the small mass of the Z-axis rotating structure 54. In addition, the sensing quality of its Z-axis will have a linear displacement 舆 rotation when subjected to force, 201020549 P27970096TWC1 29767-itwf.doc/d This motion behavior will cause the component to have a nonlinear effect. Figure 3 of U.S. Patent No. 7,528,012 is a top view of another accelerometer of the conventional π, which discloses an accelerometer 6 〇 because its design uses a CMOS MEMS fabrication method and uses a single ζ axis structure at the center of the mass The sensing capacitance structure of the x-axis is a comb-like structure. When the structure is subjected to a vibration force in the direction of the rotation axis of the x-axis, the x-axis structure is liable to rotate and cause the axis sensitivity of the x-direction accelerometer. Affected, _ can be overcome by the arrangement of the comb structure, but this will also cause the number of comb structures available for the sensing capacitor to be reduced, resulting in insufficient capacitance and increasing the burden of circuit design; The use of two sets of Torsion structures will provide a sufficient number of comb structures to increase the capacitance, which also reduces the complexity of the read circuit design. In fact, most of the current three-axis integrated accelerometers are designed to have improved shaft sensitivity and linearity performance. In general, for the design of a three-axis integrated accelerometer, when the z-axis T〇rsi〇n structure is designed within the XY-axis structure, since the symmetry of the χγ-axis structure must be considered, the rotation axis is symmetrically placed. At the center of the ΧΥ-axis structure, the effective area usage of the lighter side of the mass is reduced; in addition, when the T-axis Torsion structure is designed within the χγ-axis structure, if the manufacturing method 1 uses two electrodes on the other substrate When the structure forms a differential capacitor, although the Z-axis capacitance of this design is very low due to its axial force, in order to achieve the symmetry of mass, it is also necessary to use a part of the area only for mass balance and cannot contribute. For the purpose of sensing, the design using two sets of T〇rsi〇n structures will naturally form a symmetry without forcing the rotation axis to be placed on the χγ ^ 201020549 P27970096TWC1 29767-ltwf.doc/d structural quality block, It is possible to achieve the purpose of improving the efficiency and reducing the sensitivity of the axis of the Z axis. [Summary of the Invention] Wenshan traditional triaxial-body accelerometer structure produces its shaft fatigue degree...the ugly of the vehicle is reduced to the size of the vehicle = proposed - seed capacitor accelerometer, can reduce the axial direction : Adding the phenomenon of sensing U interference, while achieving the advantages of high linearity and sensitivity. - The society Γ ί ί - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The structural layer package - 1 block, - the first elastic structure, the plurality of solid 2 Wei, the second mass, the third mass, the second elastic three elastic structure. Fixedly fixed on the surface of the substrate. The first Berry block is placed above the surface of the substrate, and the first f-block has a central axis: and a first opening and a second opening inside the first mass. The first opening and the second opening σ correspond to the sensing electrodes and are symmetrically arranged on both sides of the center axis of the center axis centering on the central axis of the first mass. The first elasticity: the connection between the solid seat and the younger-quality block. The fixed sensing block is adjacent to the first mass and is mounted on the surface of the substrate, and the towel forms a capacitor structure between the fixed sensing block and the first mass. The second mass and the third mass float above the sensing electrode of the base and are respectively located in the first opening and the second opening of the first-f-block, and the sense of the second mass and the third mass and the substrate = The electrode forms a sensing capacitor. The second f-quantity block and the third mass block are respectively suspended asymmetrically on the first mass by the first elastic structure and the third elastic structure, so as to rotate along a rotating axis when the force is applied, and the second mass Block and 201020549 P27970096TWC1 29767-ltwf.doc/d The rotation axes of the second mass are parallel to each other and are symmetrically arranged on opposite sides of the central axis centering on the central axis of the first mass. In an embodiment of the invention, the fixed sensing block is located outside of the first mass. In an embodiment t of the invention, the first mass of the first mass has a plurality of second openings, and at least a portion of the fixed sensing blocks are respectively located in the third opening. In the embodiment of the present invention, each of the above-mentioned capacitor structures formed by the fixed sensing block and the first mass includes a comb electrode extending from the first mass and a fixed sensing block. A fixed comb electrode extending from one of them. The comb electrode has a plurality of comb capacitor plates. The fixed comb electrode has a plurality of _ recording capacitor plates, and the non-fixed capacitor plates of the capacitor plates are parallel and alternately arranged. In an embodiment of the invention, the capacitor structure includes a plurality of second electrical structures, a plurality of second capacitive structures. The comb-shaped grid plate and the fixed comb-shaped capacitor plate of each first capacitor structure extend along a first direction (for example, an x-axis direction) parallel to the surface of the substrate to become a sensing-second direction (for example, a Y-direction An accelerating (four) capacitor structure in which the first direction is orthogonal to the second direction and lies in the same plane. The comb capacitor plate of each of the second capacitor structures is fixed in the second direction (for example, the γ-axis direction), and can be a capacitance structure in which the (four)-direction (for example, the X-axis direction) is accelerated. In the first Bay, in the example, the above-mentioned fixing seat includes the first fixed block and the second fixed block respectively disposed on opposite sides of the first stomach block. 201020549 ^vy/〇〇y&TWci 29767-ltwf .d〇c/d In the embodiment of the invention, the above-mentioned first elastic structure comprises eight = the first-fixed block and the second fixed block - the first - spring and the second spring The restoring force is provided along the first direction and the second direction (for example, the Y-axis direction). In the embodiment of the invention, the above-mentioned first-mass symmetry is symmetric with respect to the middle and the ith solid = through the first elastic phthalocyanine and the second elastic raft is connected to the first-fixed block-invention--the _, the above The second elastic structure includes a ball spring and a fourth spring, and is located at the corresponding one-turn block and the second mass. In the fifth embodiment, the third elastic structure described above includes a six-spring, which is located on the corresponding rotating shaft and engages the first and third masses. In the embodiment, the first gauge block has a bottom surface facing the crucible and a plurality of projections on the bottom surface. In an embodiment of the invention, the second and second deniers have a plurality of micro-holes to reduce damping. Berry The present invention further provides a multi-axis capacitive accelerometer that includes a f. The substrate has a plurality of sensing electrodes / and the structural layer i has an elastic structure, and at least includes a "first elastic structure," a second: and a "third elastic structure"; - a first mass, which passes through the first elastic state; The breaking suspension is disposed on the substrate and connected to the fixing base for detecting the first direction (for example, the X-axis direction) or the second direction on the surface (for example; ^ axis side 201020549 P27970096TWC1 29767-ltwf.d〇c/d The upper acceleration is correspondingly translated in the first direction (for example, the x-axis direction) or the second direction (for example, the x-axis direction); a second mass is suspended in the first mass through the second elastic knot And the second mass can be translated in a vertical direction of the same plane as the translation direction of the first mass; the plurality of first fixed sensing blocks are disposed in the first mass, wherein each first fixed sensing Forming a first capacitive structure between the block and the first mass or the second mass, the second mass and the fourth mass corresponding to the sense Φ electrode on the substrate and being a center of the first mass The axis is centered and symmetrically arranged = medium = opposite sides of the axis, The third mass and the fourth mass are respectively suspended in the second mass through the third elastic structure in an asymmetric manner, and the first direction (for example, the X-axis direction) has a rotation axis, so that the first mass is The second direction (for example, the γ-axis direction) exhibits asymmetry, and when the first mass is subjected to a force in a third direction (for example, the x-axis direction), the rotation is centered on the rotation axis, wherein the first direction (for example, χ An axial direction), a second direction (eg, a x-axis direction), and a third direction (eg, a x-axis direction) are orthogonal to each other; and a plurality of second fixed sensing blocks are disposed in the second mass, wherein each In the embodiment of the present invention, each of the first capacitor structures includes a first mass or a second mass extending from the first and second masses. a comb electrode having a plurality of comb capacitor plates; and a fixed comb electrode extending from three of the first fixed sensing blocks, the plurality of fixed comb capacitor plates having a plurality of fixed comb capacitor plates. Parallel and intersect with fixed comb capacitor plates In one embodiment of the present invention, the comb capacitor plate and the fixed comb capacitor plate of each of the first capacitor structures are along a first direction (eg, a χ axis 10 201020549 ^^wuyoTWCl 29767-lhvf.doc /d to "extend" to sense the degree of acceleration in the second direction (for example, the Y-axis direction). In the present invention, the above-mentioned each-second=two=block is extended by a comb-like electrical connection , which has a Dona two plate, and a 'fixed block by the second 岐 sensing block, which has a multi-sided (four) * parallel and alternately arranged with the fixed comb-shaped capacitive plate ^ & Plywood ❿ In one embodiment of the invention, each of the above-described solid-accumulator plates is accelerated along the second side of the symmetry-direction (e.g., the x-axis direction). In an embodiment of the present invention, between the first first mass and the fixing seat, the first phase such as the X wheel direction or the second direction (for example, the direction (for example, the second 'find the second hybrid structure> The flatness of the connection in the translation direction of the mass summer block is made flat in the second direction, and the second elastic structure is disposed between the mass blocks and the second mass and the fourth mass Lai should even rotate the shaft (4) so that the first mass and the fourth mass can be rotated around the axis of rotation. In the case of the two-months of the first-mass axis, the sensing electrodes are arranged to rotate. In one embodiment of the present invention, the upper one surface has a plurality of protrusions on the bottom surface. The bei block has a facing substrate in the embodiment of the present invention, the third and fourth mass blocks described above 11 201020549 P27970096TWC1 29767-ltwf.doc/d has a plurality of micro-holes to reduce damping generation. In one embodiment of the invention, the first mass has four openings, and the second opening has a second mass a block, and a second mass having a fifth opening and a sixth opening, and A third A-mass block is disposed in the opening, and a fourth mass is disposed in the sixth opening. In the consistent embodiment of the present invention, the first elastic structure is respectively connected to the fixed seat and the first mass, and The second elastic structure respectively connects the second block and the second mass. ❿ Based on the above, the multi-axis capacitive acceleration of the present invention has a plurality of masses that are symmetrically rotatable along the central axis thereof inside the structural layer. Symmetrical structure, so it will rotate when subjected to force, and there is no linear displacement when rotating. Therefore, it has better linearity. In addition, when the second mass and the third mass are rotated separately, the first and the first The axial forces of the two directions will cancel each other out, and thus the influence of the shaft is avoided. In order to make the above features and advantages of the present invention more apparent, the following detailed description will be made in conjunction with the accompanying drawings. Figure 4 is a plan view of a multi-axis capacitive accelerometer according to an embodiment of the present invention. Figure 5 is a cross-sectional view taken along line I-Ι of Figure 4. Referring to Figures 4 and 5, the embodiment of the present invention Multi-axis capacitive accelerometer 1〇 The substrate includes a substrate 11 and a structural layer 1200. A plurality of sensing electrodes 1120 are disposed on a surface 111 of the substrate 11. The structural layer 1200 includes a plurality of fixing blocks 121 and a first mass 2222. a first elastic structure 1230, a plurality of fixed sensing blocks 1240, a second mass 1250, a third mass 1260, a second elastic structure 12 201020549 P27970096TWC1 29767-ltwf.doc/d 1270 and a third The first mass 1222 has a central axis 1222 and a first opening 1224 and a second opening 1226 located inside the first mass 1220. The first mass 1220 is disposed above the surface 111 of the substrate 1100. The first opening 1224 and the second opening 12% are symmetrically disposed on opposite sides of the central axis 1222 centering on the central axis 1222 of the first mass 1220. First elasticity

結構1230連接固定座1210與第一質量塊1220。因此,第 一質量塊1220可浮置於基板11〇〇上方。同時,固定座1210 包括一第一固定塊1212及一第二固定塊1214。第一固定 塊1212及第二固定塊1214分別固定於基板110〇的表面 1110上’且分別位於第一質量塊1220的相對之兩外側。 固定感測塊1240包括多個第一固定感測塊1242及多 個第二固定感測塊1244。第一固定感測塊1242及第二固 定感測塊1244鄰近且位於第一質量塊1220之外側並固定 於基板1100的表面1110上’其中每一第一固定感測塊 1242及每一第二固定感測塊1244分別與第一質量塊122〇 之間形成-第-電容結構1GG及-第二電容結構2〇〇,分 別用以藉其電容變化量制Y財向及χ軸方向的加速 度。第二質量塊1250及第三質量塊i浮置於感測電極 1120上方並且分別位於第—質量塊122〇的第—開口㈣ 及第二開π 1226 β ’而第二質量塊⑽ 二分別與基板測上之感測電極lm形成 谷’藉其與感測電極112G之間的電容變化量感測&轴方 向的加速度。 13 201020549 P27970096TWC1 29767-ltwf.doc/d 詳細而言,第二質量塊1250及第三質量塊126〇分別 藉由第二彈性結構1270及第三彈性結構128〇非對稱地懸 掛在第一質量塊1220上,且分別沿—第一轉動軸a及一 第二轉動軸B在受力時而轉動,以使其與感測電極⑽ 之間產生電容變化量。第二f量塊125Q的第—轉動轴a 及第三質量塊1260的第二轉動軸B相互平行並 置塊1220的中心軸1222為中心而對稱地配置於中心轴 罄1222的相對兩側。換言之,第二質量塊1250及第三質量 可對稱轉動(如圖5鱗示之虛線部分)。第二 質f塊1250及第三質量塊126〇因為非對稱结構 外轉動時並無z轴方向位移,所以具有 度的影響。 胃里塊1220’因此避免了它轴靈敏 請參考圖4,每—第一電容結構100包括由第—所旦 癱塊1220水平地延伸出的一梳狀電极110 貝= ❹124G水平地延伸出的1定梳狀雜 j測塊 具有多個梳狀電容板112。固定 110 ,2, m相互平行且交替配置。每一容容板 如上叙等效結構特徵,在此不予_述°構亦具備 每第—電容結構100的梳狀電 電容板122沿著與基板·表面 j U2與固疋梳狀 伸。每-第二電容結_,梳狀電【=的:向延 I夺板212與固定梳狀 14 201020549 P27970096TWC1 29767-ltwf.d〇c/d =容板222沿著與基板u⑽表面⑴ 伸,且x财向與γ軸方向正交向延 :電容結構2。°藉由上述配置方式,可 以對Y轴方向及X轴方向的力動而產生電容變化, -電容社槿1〇『田,速度進行感測。詳言之,第 100疋用以感測Y軸方向的加速度,而第二雷 合、4 2GG是用以感測χ轴方向的加速度。 一固Sf2f2li,第—彈性結構1230包括分別對應於第 第: = 及- =立之沿X軸方向以軸方向二复^ 感測不會相互干擾。第一彈㈣; 弟一彈育1234可為-L型結構。The structure 1230 connects the mount 1210 with the first mass 1220. Therefore, the first mass 1220 can float above the substrate 11A. At the same time, the fixing base 1210 includes a first fixing block 1212 and a second fixing block 1214. The first fixing block 1212 and the second fixing block 1214 are respectively fixed on the surface 1110 of the substrate 110〇 and are respectively located on opposite outer sides of the first mass 1220. The fixed sensing block 1240 includes a plurality of first fixed sensing blocks 1242 and a plurality of second fixed sensing blocks 1244. The first fixed sensing block 1242 and the second fixed sensing block 1244 are adjacent to each other and are located on the outer side of the first mass 1220 and are fixed on the surface 1110 of the substrate 1100. Each of the first fixed sensing blocks 1242 and each second The fixed sensing block 1244 and the first mass 122 〇 are respectively formed with a first-capacitor structure 1GG and a second capacitor structure 2〇〇 for respectively performing acceleration in the Y-axis and the x-axis direction by the capacitance change amount thereof. . The second mass 1250 and the third mass i are floated above the sensing electrode 1120 and are respectively located at the first opening (4) and the second opening π 1226 β ' of the first mass 122〇 and the second mass (10) 2 respectively The sensing electrode lm on the substrate is formed to sense the acceleration in the axial direction by the amount of capacitance change between the sensing electrode and the sensing electrode 112G. 13 201020549 P27970096TWC1 29767-ltwf.doc/d In detail, the second mass 1250 and the third mass 126〇 are suspended asymmetrically in the first mass by the second elastic structure 1270 and the third elastic structure 128, respectively. 1220, and respectively rotating along the first rotation axis a and the second rotation axis B under force to cause a capacitance change between the sensing electrode (10) and the sensing electrode (10). The first rotational axis a of the second f-quantity block 125Q and the second rotational axis B of the third mass 1260 are symmetrically disposed on opposite sides of the central axis 罄1222 centering on the central axis 1222 of the parallel block 1220. In other words, the second mass 1250 and the third mass can be rotated symmetrically (as indicated by the dashed line in the scale of Figure 5). Since the second mass f block 1250 and the third mass block 126 are not displaced in the z-axis direction when rotated outside the asymmetric structure, they have a degree of influence. The stomach block 1220' thus avoids its axis sensitivity. Please refer to FIG. 4. Each of the first capacitor structures 100 includes a comb electrode 110 horizontally extending from the first block 1220. The 1 fixed comb j block has a plurality of comb capacitor plates 112. The fixed 110, 2, m are parallel and alternately arranged. Each of the capacitor boards has the same structural features as described above, and the comb-shaped capacitor plates 122 of each of the first capacitor structures 100 are disposed along the substrate and surface j U2 and the solid combs. Each-second capacitor junction _, comb-shaped electric [=: continuation of the board 212 and the fixed comb 14 201020549 P27970096TWC1 29767-ltwf.d〇c / d = the 222 plate extends along the surface (1) of the substrate u (10), And the x-growth and the γ-axis direction are orthogonally extended: the capacitor structure 2. ° With the above arrangement, it is possible to change the capacitance in the Y-axis direction and the X-axis direction, and the capacitance is sensed. In detail, the 100th is used to sense the acceleration in the Y-axis direction, and the second, 4 2GG is used to sense the acceleration in the direction of the x-axis. A solid Sf2f2li, the first elastic structure 1230 includes corresponding to the first: = and - = respectively, along the X-axis direction in the axial direction, the second sensing does not interfere with each other. The first bomb (four); the brother one bombing 1234 can be -L type structure.

if -彈簧1232及第二彈簧1234而^里於鬼第= 定塊1212及第二固定塊1214。 片U 在本實施例中,第二彈性結構127〇包括一 Γ第2及:^彈簧1274 ’位於第—轉動轴a上並細= 於弟一貝1塊1250的相對兩側,使得第二質量塊125〇以 第=轉動轴A因非對稱而轉動。第三彈性結構128〇包括 -第五彈簧1282及—第六彈簧1284,位於第二轉動轴B 上亚分別位於第三質量塊126〇的相對兩侧,使得第三質量 塊1260以第二轉動軸B因非對稱而轉動。 此外,請參考圖5,第一質量塊122〇具有面對基板 1100的一底面1228,且底面1228上具有多個凸起3〇〇, 15 201020549 P27970096TWC1 29767-ltwf.doc/d 以避免第一質量塊1220與基板1100在接觸時產生吸附效 應(sticktion)而影響其加速度感測之效能。詳細而言,由於 第一質量塊1220和基板11〇〇間具有極小的間距,第一質 量塊1220在製程或使用中因水氣而可能與基板n〇〇黏 住,而凸起300有助於降低此種現象之發生。此外,第二 質量塊1250與第三質量塊1260上也可具有多個微孔洞, 以減少阻尼產生。 . 圖6為圖4之多軸電容式加速度計的局部側視圖。請 參考圖6,在本實施例中,基板1100例如是一玻璃晶片。 玻璃晶片包括一玻璃基材1130及配置於其上的導電層 1140(例如為導線及焊墊)。結構層1200例如是一砍晶片, 其中繪示於圖4及圖5的第一質量塊1220、凸起3〇〇、第 —質置塊丨25〇、第三質量塊1260、第一彈性結構1230、 第二彈性結構1270、第三彈性結構1280、固定座121〇、 固定感測塊1240、梳狀電極11〇 (210)及固定梳狀電極 120 (220)可透過乾钱刻製程而為一體成形的結構。石夕晶 _ 片(結構層1200)可藉由陽極晶片製程與玻璃晶片(基板 1100)結合。此外’結構層1200之固定座1210的底部具有 接觸金屬1216,用以將產生的感測訊號傳遞至基板11〇〇 上之焊墊及導線。 圖7為本發明另一實施例之多軸電容式加速度計的俯 視圖。請參考圖7 ’相較於圖4及圖5之多轴電容式加速 度計,本實施例的第一質量塊2220内部更具有多個第三開 口 2228,且部分固定感測塊2240、部分梳狀電容板512 16 201020549 / y /uw^uTWCI 29767-ltwf.doc/d 及部分固定梳狀電容板522位於第三開口 2228内而具有與 前述實施例相同之感測功能。詳言之,透過此種配置方式, 使得第二電容結構500位於第—質量塊222〇的内部。位於 第二開口 2228内的部分梳狀電極與部分固定梳狀電極 520構成電容結構,以感測X軸方向的加速度。另一方面, 第一電容結構400還是配置在第—質量塊222〇的外部,用 以感測Y轴方向的加速度。以下詳細介紹本實施例之多轴 電容式加速度計2000。 請參考圖7,本實施例的多轴電容式加速度計2〇〇〇包 括一基板2100及一結構層2200。結構層2200包括多個固 定座2210、一第一質量塊2220、一第一彈性結構2230、 多個固定感測塊2240、一第二質量塊225〇、一第三質量塊 2260、一第二彈性結構2270及一第三彈性結構2280。 第一質量塊2220設置於基板2100上方,第一質量塊 2220具有一中心軸2222以及位於第一質量塊2220内部的 一第一開口 2224、一第二開口 2226及多個第三開口 2228 Φ (繪示為兩個)。第一開口 2224及第二開口 2226以第一 質量塊2220的中心軸2222為中心而對稱地配置於中心轴 2222的相對兩侧。第一彈性結構2230連接固定座2210與 第一質量塊2220。因此,第一質量塊2220可浮置於基板 2100上方。同時,固定座2210包括一第一固定塊2212及 一第二固定塊2214。第一固定塊2212及第二固定塊2214 分別固定於基板2100的表面2110上,且分別位於第一質 量塊2220的相對之兩外側。 17 201020549 P27970〇y6TWCI 29767-ltwf.doc/d 固定感測塊2240包括多個第一固定感測塊2242及多 個第二固定感測塊2244。第一固定感測塊2242鄰近且位 於第一質量塊2220之外側並固定於基板2100上,第二固 定感測塊2244位於第三開口 2228内ϋ固定於基板2100 上(此特徵為本實施例之多轴電容式加速度計2000與圖4 之多轴電容式加速度計1000的主要不同處),其中每一第 一固定感測塊2242及每一第二固定感測塊2244分別與第 一質量塊2220之間形成一第一電容結構4〇〇及一第二電容 結構500,分別用以藉其電容變化量感測γ轴方向及又軸 方向的加速度。第二質量塊225〇及第三質量塊226〇浮置 於位於基板誦表面上之感測電極(未緣示,其配置方式 與圖5之制電極112Q類似)上方並且分別位於第量 塊2220的第一開口 2224及第二開口 2226内,而第二質量 鬼225〇及第二質1塊126()分別與電 形成-感測電容,料如、目⑷ 極 Z轴方向的加速度。…、感極之間的電容變化量感測 ❹ 詳細而言,第二質量塊225〇及第三 藉由第二彈性結構227。及第 構2 4 2:6。弋 掛在第一質量塊2220上,且分^ j測非對稱地懸 第二轉動軸D在受力時而轉動,二轉動轴。及-之⑽的感測電極)之 ;”(如圖5If - spring 1232 and second spring 1234 are in the ghost block = 1212 and the second fixed block 1214. Sheet U In the present embodiment, the second elastic structure 127 includes a second and a second spring 1274' on the first rotation axis a and is thinner on the opposite sides of the first block 1250, so that the second The mass 125 转动 is rotated by the abbreviation axis A due to asymmetry. The third elastic structure 128 includes a fifth spring 1282 and a sixth spring 1284, and the second rotating shaft B is located on opposite sides of the third mass 126, respectively, so that the third mass 1260 is rotated by the second. The axis B rotates due to asymmetry. In addition, referring to FIG. 5, the first mass 122 has a bottom surface 1228 facing the substrate 1100, and the bottom surface 1228 has a plurality of protrusions 3, 15 201020549 P27970096TWC1 29767-ltwf.doc/d to avoid the first The mass 1220 creates a sticking effect when it is in contact with the substrate 1100, affecting the performance of its acceleration sensing. In detail, since the first mass 1220 and the substrate 11 have a very small spacing, the first mass 1220 may adhere to the substrate n due to moisture during the process or use, and the protrusion 300 is helpful. To reduce the occurrence of this phenomenon. In addition, the second mass 1250 and the third mass 1260 may also have a plurality of micro-holes to reduce damping. Figure 6 is a partial side elevational view of the multi-axis capacitive accelerometer of Figure 4. Referring to FIG. 6, in the embodiment, the substrate 1100 is, for example, a glass wafer. The glass wafer includes a glass substrate 1130 and a conductive layer 1140 (e.g., wires and pads) disposed thereon. The structural layer 1200 is, for example, a chopped wafer, wherein the first mass 1220, the protrusion 3〇〇, the first mass block 25丨, the third mass 1260, and the first elastic structure are illustrated in FIGS. 4 and 5. 1230, the second elastic structure 1270, the third elastic structure 1280, the fixing seat 121〇, the fixed sensing block 1240, the comb electrode 11〇(210), and the fixed comb electrode 120 (220) can be processed by the dry etching process An integrally formed structure. The Shihuajing _ sheet (structural layer 1200) can be bonded to the glass wafer (substrate 1100) by an anode wafer process. In addition, the bottom of the fixing base 1210 of the structural layer 1200 has a contact metal 1216 for transmitting the generated sensing signals to the pads and wires on the substrate 11A. Figure 7 is a top plan view of a multi-axis capacitive accelerometer in accordance with another embodiment of the present invention. Referring to FIG. 7 ' compared with the multi-axis capacitive accelerometer of FIG. 4 and FIG. 5 , the first mass 2220 of the embodiment further has a plurality of third openings 2228 , and partially fixes the sensing block 2240 and partially combs. The capacitive capacitor plate 512 16 201020549 / y / uw ^ u TWCI 29767 - ltwf. doc / d and a portion of the fixed comb capacitor plate 522 are located in the third opening 2228 to have the same sensing function as the foregoing embodiment. In detail, through this configuration, the second capacitor structure 500 is located inside the first mass 222. A portion of the comb electrode located in the second opening 2228 and the partially fixed comb electrode 520 constitute a capacitor structure to sense the acceleration in the X-axis direction. On the other hand, the first capacitor structure 400 is also disposed outside the first mass block 222, for sensing the acceleration in the Y-axis direction. The multi-axis capacitive accelerometer 2000 of this embodiment will be described in detail below. Referring to FIG. 7, the multi-axis capacitive accelerometer 2 of the present embodiment includes a substrate 2100 and a structural layer 2200. The structural layer 2200 includes a plurality of fixing bases 2210, a first mass 2220, a first elastic structure 2230, a plurality of fixed sensing blocks 2240, a second mass 225〇, a third mass 2260, and a second The elastic structure 2270 and a third elastic structure 2280. The first mass 2220 is disposed above the substrate 2100. The first mass 2220 has a central axis 2222 and a first opening 2224, a second opening 2226 and a plurality of third openings 2228 Φ (in the first mass 2220). Painted as two). The first opening 2224 and the second opening 2226 are symmetrically disposed on opposite sides of the central axis 2222 centering on the central axis 2222 of the first mass 2220. The first elastic structure 2230 connects the fixing base 2210 and the first mass 2220. Therefore, the first mass 2220 can float above the substrate 2100. At the same time, the fixing base 2210 includes a first fixing block 2212 and a second fixing block 2214. The first fixing block 2212 and the second fixing block 2214 are respectively fixed on the surface 2110 of the substrate 2100 and respectively located on opposite outer sides of the first mass block 2220. 17 201020549 P27970〇y6TWCI 29767-ltwf.doc/d The fixed sensing block 2240 includes a plurality of first fixed sensing blocks 2242 and a plurality of second fixed sensing blocks 2244. The first fixed sensing block 2242 is adjacent to the first quality block 2220 and is fixed on the substrate 2100. The second fixed sensing block 2244 is located in the third opening 2228 and is fixed on the substrate 2100. This feature is the embodiment. The multi-axis capacitive accelerometer 2000 is different from the multi-axis capacitive accelerometer 1000 of FIG. 4, wherein each of the first fixed sensing block 2242 and each of the second fixed sensing blocks 2244 and the first quality respectively A first capacitor structure 4 〇〇 and a second capacitor structure 500 are formed between the blocks 2220 for sensing the acceleration in the γ-axis direction and the parallel axis direction by the capacitance change amount thereof. The second mass 225 and the third mass 226 are floating above the sensing electrodes (not shown, similarly to the electrode 112Q of FIG. 5) on the surface of the substrate and are respectively located at the first block 2220. The first opening 2224 and the second opening 2226 are respectively, and the second mass 225 〇 and the second mass 126 ) are respectively electrically formed to sense the capacitance, such as the acceleration of the (Z) pole Z-axis direction. ..., capacitance change sensing between the sensing poles ❹ In detail, the second mass 225 and the third by the second elastic structure 227. And the structure 2 4 2:6.挂 Hanging on the first mass 2220, and the asymmetry of the second rotation axis D is rotated when the force is applied, and the two rotation axes. And - (10) the sensing electrode) ;" (Figure 5

2250的第—轉動細c及第化1。第二質量塊 相互平行並以第〜質量换? π里鬼2260的第二轉動軸D 稱地配置於中心細2222的 助為中心而對 相對兩側。換言之,第二質量塊 18 ❿ ❹ 201020549 F27yv〇Uy6TWCl 29767-ltwf.doc/d 及第^量塊226G可對稱地轉動。第二質量塊2250 及弟二質置塊2260因為非對稱結構,因此z抽受力時將 t轉動,轉動時絲Z轴方向轉,邮具鎌佳的線性 度。另外第二質量塊2250及第三質量塊薦轉動時並不 會影響第:質量塊2220,因此避免了它轴靈敏度的影響。 母一第-電容結構包括由第„ f量塊測水平 t延伸出的—梳狀電極㈣及由固定感魏2240水平地延 電極420。梳狀電極具有多個梳狀 4=二二梳狀電極420具有多個固定梳狀電容板 六替酉4叫固定梳狀電容板422相互平行且 又_ 母—第—電容結構5〇〇亦具備如上述之等 構特徵,在此不予贅述。 ,、㈣上収 電容狀電容板412與固定梳狀 各一笛-〜、基板 表面平行的X軸方向延伸。 母弟―毛各結構500的梳狀電容板 =2=著與基板誦表面平行的丫軸==狀= 構500 ^轴方向正交。第—電容結構400及第二電容結 在Υ軸^^述配置方式’可分別透過第—質量塊222°0 軸方向及移動而產生電容變化,以對Υ /向連度進行感測。詳言之,第—電容 獅是用力 =速度而弟二電容結構 及第ί 結構㈣包括糾對應於第—目定塊2犯 疋塊2214的一第—彈簧2232及一第二彈簧 19 201020549 rz/y/uuyoTWCl 29767-ltwf.doc/d 2234 ’其中第-彈黃2232及第二彈簧2234提供各別獨立 之沿X軸方向與Y軸方向的回復力,以使又軸方向與γ 軸方向的感測不會相互干擾。第一彈簧2232或第二彈簧 2234可為-L型結構。此外,第一質量塊222〇分別透過 第彈育2232及第二彈簧2234而連接於第一固定塊2212 及第二固定塊2214。 在本實施例中,第二彈性結構227〇包括一第三彈簧 22=及-第四彈簧2274 ’>(立於第一轉動袖c上並分別位 於第二質量塊2250的相對兩側,使得第二質量塊225〇以 第一轉動軸c因非對稱而轉動。第三彈性結構228〇包括 一第五彈簧2282及一第六彈簧2284,位於第二轉動軸D 上並分別位於第三質量塊2260的相對兩侧,使得第三質量 塊2260以第二轉動轴d因非對稱而轉動。 此外,第一質量塊2220之面對基板21〇〇的一底面可 以具有多個凸起(未繪示,其配置方式與圖5之凸起3〇〇 類似),以避免第一質量塊2220與基板2100在接觸時產 Φ 生吸附政應(sticktion)而影響其加速度感測之效能。詳細而 言,由於第一質量塊2220和基板2100間具有極小的間距, 第一質量塊2220在製程或使用中因水氣而可能與基板 2100黏住’而凸起有助於降低此種現象之發生。此外,第 二質量塊2250與第三質量塊2260上也可具有多個微孔 洞,以減少阻尼產生。 在本實施例中,基板2100例如是一玻璃晶片。玻璃 晶片包括一玻璃基材及配置於其上的導電層(未繪示,例 20 201020549 F/vy/uuyoTWCl 29767-Itwf.doc/d 如為導線及焊墊’類似於圖6中之配置方式)。結構層22〇〇 例如是一矽晶片,其中第一質量塊2220、上述之凸起、第 一質夏塊2250、第三質量塊2260、第一彈性結構2230、 苐一彈性結構2270、第三彈性結構2280、固定座2210、 固疋感測塊2240、梳狀電極410 (510)及固定梳狀電極 420 (520)可透過乾蝕刻製程而為一體成形的結構。矽晶 片(結構層2200)可藉由陽極晶片製程與玻璃晶片(基板 2100)結合。此外,結構層2200之固定座2210的底部具有 • 接觸金屬,用以將產生的感測訊號傳遞至基板2100上之捏 墊及導線。 值得注意的是,本發明不限制固定感測塊及電容結構 位於第一質量塊之内部或外部。在另一未繪示的實施例 中,更可將所有的固定感測塊及電容結構配置於第一質量 塊的内部而具有與前述實施例相同之感測功能。 承接上述所有實施例的變化,以下更提出另一實施 例,其中對於已經在前述實施例中描述且可被合理應用於 ❹ 以下實施例的内容,將不再詳細贅述。 圖8為本發明又一實施例之多轴電容式加速度計的俯 視圖。如圖8所示,多軸電容式加速度計3〇〇〇包括一基板 3010以及一結構層3〇2〇。基板3〇1〇上具有如前述實施例 所繪示的多個感測電極,而結構層3〇2〇浮置於基板3〇1〇 上。此結構層3020例如是—半導体結構層,包括下述元 件。多個固定座3100,固定在基板3〇1()上。在本實施例 t,固定座3100例如是設置在下述的第一質量塊33〇〇内 201020549 rz/y /uuy (jTWC I 29767-1 twf.doc/d 部。第一質量塊3300具有—第四開口 331〇,第四開口 33i〇 内設有-第二質量塊3400。第二質量塊3·具有〆第五 開口 3410與一第六開口 342〇,第五開口 341〇内設有〆第 二質罝塊3500,而第六開口 342〇内設有一第四質量塊 3600。由至少一第一彈性結構321〇、一第二彈性結構322〇 和-第二彈性結構3230所組成的多個彈性結構,其中第, 彈性結構3210分別連接固定座⑻與第一質量塊幻〇〇, 而第二彈性結構3220分別連接第一質量塊33〇〇與第二質 量塊3400。此外’第一質量塊33〇〇透過第一彈性結構3210 被懸掛設置在基板3010上,並與固定座3100連接,用以 感測在一平面上的第一方向(本實施例以X轴方向為例)或 第二方向(本實施例以Y軸方向為例)上的加速度,而對應 地沿X軸方向或Y軸方向平移。第二質量塊3400透過第 二彈性結構3220被懸掛設置在第/質量塊3300内,而第 二質量塊3400可以沿著與第一質量塊3300平移方向的同 平面的垂直方向作平移。例如,當第一質量塊3300沿X • 轴方向平移時,第二質量塊3400沿Y軸方向平移。 請繼續參照圖8,多個第—固定感測塊3710,配置在 第一質量塊3300内,其中每一第/·固定感測塊3710與第 一質量塊3300或第二質量塊34〇0之間形成一第一電容結 構3810。此外,第三質量塊35〇〇與第四質量塊3600對應 於基板3010上的感測電極(未繪杀),並以第一質量塊 3300的一中心轴為中心而對稱地配置於中心轴的相對兩 側。第三質量塊3500與第四質量塊3600分別透過第三彈 22 201020549 P27970096TWC1 29767-ltwf.d〇c/d 性結構3230以非對稱的方式懸掛設置在第二質量塊34〇〇 内,且沿X軸方向具有—轉動軸391〇,使第一質量塊33〇〇 在Y轴方向上呈現不對稱性。當第一質量塊33〇〇在一第 二方向(本實施例以z軸方向為例)受力時,第三質量塊 3500與第四質量塊36〇〇會以轉動軸391〇為中心轉動,其 中X轴方向、Y軸方向和2:軸方向彼此正交。前述的感測 電極例如是配置在轉動軸3910的兩側。另外,多個第二固 φ 疋感測塊3720配置在第二質量塊3400内,其中每一第二 固定感測塊3720與第二質量塊3400之間形成一第二電容 結構3820。 在本實施例中,每一第一電容結構381〇包括由第一 質量塊3300或第二質量塊34〇〇延伸出來的具有多個梳狀 電容板的一梳狀電極3812以及由第一固定感測塊371〇延 伸出來具有多個固定梳狀電容板的一固定梳狀電極 3814。梳狀電極3812的梳狀電容板與固定梳狀電極3814 的固定梳狀電容板相互平行且交替配置,並且例如是沿著 Φ X軸方向延伸,以感測γ軸方向的力σ速度。此外,每一第 一電容結構3820包括由第二質量塊34〇0延伸出來的具有 多個梳狀電容板的一梳狀電極3822以及由第二固定感測 塊3720延伸出來的具有多個固定梳狀電容板的一固定梳 狀電極3824。梳狀電極3822的梳狀電容板與固定梳狀電 極3824的固定梳狀電容板相互平行且交替配置,並且例如 疋沿著Υ軸方向延伸,以感測X軸方向的加速度。 此外,第一彈性結構3210連接在第一質量塊3300與 23 201020549 F2/y7U〇y6TWCl 29767-ltwf.doc/d 固定座3100之間,使第一質量塊33〇〇能沿乂軸方向或γ 轴方向平移。第二彈性結構3220連接在第二質量塊34〇〇 與第一質量塊3300之間,使第二質量塊34〇〇能沿與第一 質置塊3300平移方向的同平面的垂直方向作平移。換言 之,藉由第一彈性結構321〇與第二彈性結構322〇可以使 得第一質量塊3300與第二質量塊34〇〇在一平面上平移。 另外,第二彈性結構3230被配置在第二質量塊34〇〇與第The second to the second rotation of the 2250 and the first. The second mass is parallel to each other and replaced by the first quality. The second axis of rotation D of the π ghost 2260 is disposed at the center of the center thin 2222 and opposite sides. In other words, the second mass 18 ❿ ❹ 201020549 F27yv 〇 Uy6TWCl 29767-ltwf.doc/d and the second gauge block 226G can be rotated symmetrically. Since the second mass 2250 and the second mass 2260 are asymmetric, the z is rotated when the z is subjected to the force, and the Z-axis is rotated when the wire is rotated, and the mail has a good linearity. In addition, the second mass 2250 and the third mass are not affected by the first mass: 2220, thus avoiding the influence of its axis sensitivity. The female-first capacitance structure includes a comb electrode (four) extending from the first ft-measurement level t and a horizontally extending electrode 420 from the fixed sense Wei 2240. The comb-shaped electrode has a plurality of comb-like 4=two-two combs The electrode 420 has a plurality of fixed comb capacitor plates, and the fixed capacitor capacitor plates 422 are parallel to each other, and the _ mother-first capacitor structure 5 〇〇 also has the isomorphic features as described above, and details are not described herein. , (4) The capacitive capacitor plate 412 is extended in the X-axis direction parallel to the fixed comb-like flute-~, and the surface of the substrate is parallel. The comb-shaped capacitive plate of the mother-female structure 500=2=parallel to the surface of the substrate The 丫 axis == shape = structure 500 ^ axis direction orthogonal. The first capacitor structure 400 and the second capacitor junction in the Υ axis ^ configuration mode can be respectively transmitted through the first mass 222 ° 0 axis direction and movement Capacitance changes to sense Υ / continuation. In particular, the first - capacitor lion is force = speed and the second capacitor structure and the ί structure (four) including the correction corresponds to the first block 2 block 2214 a first spring - a spring 2232 and a second spring 19 201020549 rz / y / uuyoTWCl 29767-ltwf.doc / d 2234 The first spring 2232 and the second spring 2234 provide respective independent restoring forces in the X-axis direction and the Y-axis direction so that the sensing of the parallel axis direction and the γ-axis direction does not interfere with each other. The first spring 2232 or The second spring 2234 can be of the -L type structure. In addition, the first mass 222 is connected to the first fixing block 2212 and the second fixing block 2214 through the first spring 2232 and the second spring 2234, respectively. The second elastic structure 227A includes a third spring 22=and a fourth spring 2274'> (standing on the first rotating sleeve c and respectively located on opposite sides of the second mass 2250, such that the second mass 225〇 is rotated by the first rotation axis c due to the asymmetry. The third elastic structure 228A includes a fifth spring 2282 and a sixth spring 2284, which are located on the second rotation axis D and are respectively located at the third mass 2260. On both sides, the third mass 2260 is rotated by the second rotation axis d. Further, a bottom surface of the first mass 2220 facing the substrate 21A may have a plurality of protrusions (not shown, The configuration is similar to the bump 3 of Figure 5) to avoid the first quality The block 2220 and the substrate 2100 are in contact with each other to produce a sticking effect, which affects the performance of the acceleration sensing. In detail, since the first mass 2220 and the substrate 2100 have a very small spacing, the first mass 2220 In the process or in use, it may adhere to the substrate 2100 due to moisture. The protrusions help to reduce the occurrence of such a phenomenon. In addition, the second mass 2250 and the third mass 2260 may also have a plurality of micropores. Holes to reduce damping. In the present embodiment, the substrate 2100 is, for example, a glass wafer. The glass wafer includes a glass substrate and a conductive layer disposed thereon (not shown, Example 20 201020549 F/vy/uuyoTWCl 29767-Itwf.doc/d such as wires and pads) is similar to the configuration in FIG. ). The structural layer 22 is, for example, a germanium wafer, wherein the first mass 2220, the protrusions, the first mass 2250, the third mass 2260, the first elastic structure 2230, the first elastic structure 2270, and the third The elastic structure 2280, the fixing base 2210, the solid sensing block 2240, the comb electrode 410 (510), and the fixed comb electrode 420 (520) are integrally formed by a dry etching process. The germanium wafer (structural layer 2200) can be bonded to the glass wafer (substrate 2100) by an anode wafer process. In addition, the bottom of the fixing base 2210 of the structural layer 2200 has a contact metal for transmitting the generated sensing signals to the pads and wires on the substrate 2100. It should be noted that the present invention does not limit the fixed sensing block and the capacitor structure to be internal or external to the first mass. In another embodiment, not shown, all of the fixed sensing blocks and capacitor structures can be disposed inside the first mass and have the same sensing function as the previous embodiment. In view of the changes in all of the above embodiments, another embodiment will be further described below, in which the details of the embodiments that have been described in the foregoing embodiments and which can be reasonably applied to the following embodiments are not described in detail. Figure 8 is a top plan view of a multi-axis capacitive accelerometer in accordance with yet another embodiment of the present invention. As shown in FIG. 8, the multi-axis capacitive accelerometer 3A includes a substrate 3010 and a structural layer 3〇2〇. The substrate 3〇1〇 has a plurality of sensing electrodes as illustrated in the foregoing embodiments, and the structural layer 3〇2〇 is floated on the substrate 3〇1〇. This structural layer 3020 is, for example, a semiconductor structural layer including the following elements. A plurality of mounts 3100 are fixed to the substrate 3〇1(). In the present embodiment t, the fixing base 3100 is, for example, disposed in the first mass 33 下述 201020549 rz/y /uuy (jTWC I 29767-1 twf.doc/d portion). The first mass 3300 has - a fourth opening 331A, a fourth mass 33400 is disposed in the fourth opening 33i. The second mass 3 has a fifth opening 3410 and a sixth opening 342, and the fifth opening 341 is provided with a 〆 A second mass 3500, and a fourth mass 3600 is disposed in the sixth opening 342. A plurality of the first elastic structure 321A, the second elastic structure 322A, and the second elastic structure 3230 are formed. The elastic structure, wherein the first elastic structure 3210 connects the fixing base (8) and the first mass illusion, respectively, and the second elastic structure 3220 connects the first mass 33 〇〇 and the second mass 3400, respectively. The block 33 is suspended from the substrate 3010 through the first elastic structure 3210 and connected to the fixing base 3100 for sensing the first direction on a plane (in the embodiment, the X-axis direction is taken as an example) or The acceleration in the two directions (in this embodiment, taking the Y-axis direction as an example), and The ground is translated in the X-axis direction or the Y-axis direction. The second mass 3400 is suspended from the second elastic structure 3220 and disposed in the first/mass 3300, and the second mass 3400 can be translated along the first mass 3300. The vertical direction of the same plane is translated. For example, when the first mass 3300 is translated in the X•axis direction, the second mass 3400 is translated in the Y-axis direction. Referring to FIG. 8, a plurality of first-fixed sensing blocks are continued. 3710, disposed in the first mass 3300, wherein each of the first fixed sensing blocks 3710 forms a first capacitive structure 3810 with the first mass 3300 or the second mass 34〇0. In addition, the third The mass 35 〇〇 and the fourth mass 3600 correspond to the sensing electrodes (not drawn) on the substrate 3010, and are symmetrically disposed on opposite sides of the central axis centering on a central axis of the first mass 3300. The third mass 3500 and the fourth mass 3600 are respectively disposed in the second mass 34〇〇 in an asymmetric manner through the third bomb 22 201020549 P27970096TWC1 29767-ltwf.d〇c/d structure 3230, and Having a rotation axis 391〇 along the X-axis direction, so that A mass 33 呈现 exhibits an asymmetry in the Y-axis direction. When the first mass 33 is biased in a second direction (in this embodiment, the z-axis direction is taken as an example), the third mass 3500 is The fourth mass 36〇〇 is rotated about the rotation axis 391〇, wherein the X-axis direction, the Y-axis direction, and the 2: axis direction are orthogonal to each other. The aforementioned sensing electrodes are disposed, for example, on both sides of the rotation shaft 3910. In addition, a plurality of second solid φ 疋 sensing blocks 3720 are disposed in the second mass 3400, wherein a second capacitor structure 3820 is formed between each of the second fixed sensing blocks 3720 and the second mass 3400. In this embodiment, each of the first capacitor structures 381A includes a comb electrode 3812 having a plurality of comb capacitor plates extending from the first mass 3300 or the second mass 34〇〇 and is fixed by the first The sensing block 371A extends out of a fixed comb electrode 3814 having a plurality of fixed comb capacitor plates. The comb capacitor plates of the comb electrodes 3812 and the fixed comb capacitor plates of the fixed comb electrodes 3814 are arranged in parallel and alternately with each other, and extend, for example, along the Φ X-axis direction to sense the force σ velocity in the γ-axis direction. In addition, each of the first capacitor structures 3820 includes a comb electrode 3822 having a plurality of comb capacitor plates extending from the second mass 34 〇 0 and a plurality of fixings extending from the second fixed sensing block 3720. A fixed comb electrode 3824 of the comb capacitor plate. The comb-shaped capacitor plates of the comb-shaped electrode 3822 and the fixed comb-shaped capacitor plates of the fixed comb-shaped electrode 3824 are arranged in parallel and alternately with each other, and are, for example, extended in the z-axis direction to sense the acceleration in the X-axis direction. In addition, the first elastic structure 3210 is connected between the first mass 3300 and 23 201020549 F2 / y7U 〇 y6TWCl 29767-ltwf.doc / d fixed seat 3100, so that the first mass 33 〇〇 can be along the 乂 axis direction or γ The direction of the axis is translated. The second elastic structure 3220 is coupled between the second mass 34 〇〇 and the first mass 3300 such that the second mass 34 平移 can translate in a direction perpendicular to the same plane as the translation direction of the first mass 3300 . In other words, the first quality block 3300 and the second mass block 314 can be translated in a plane by the first elastic structure 321 〇 and the second elastic structure 322 。. In addition, the second elastic structure 3230 is disposed on the second mass 34〇〇

二質置塊3500之間以及第二質量塊34〇〇與第四質量塊 Ο之間。第三彈性結構323Q分別對應連接轉動轴別〇 的兩端’以使得第二質量塊35〇〇與第四質量塊3議能以 轉動轴3910為中心轉動。 當然,本實施例之第一質量塊33〇〇的底面也可以形 成有如同前述實施例所述的多個凸起,以避免第—質量塊 Z與基板麵在接觸時產生吸附效應而影響其加速度 t :之效%。此外’第三質量塊35GG與第四質量塊3600 也可具有多個微孔洞,以減少阻尼產生。 彈性結構可為彈片或彈簧或及其等 效之=件專均為本發明之創作精神所包括之範圍内。 部配置立多加速度計在結構層内 、軸對稱地轉動。該4b質量# & 、 時將會轉動,轉動時;非對稱結構,因此受力 度。另外,該些質量塊轉動時^丄所以具有較佳的線性 轉動令亚不會影響用以感測平面加 24 201020549 P27970096TWC1 29767-ltwf.doc/d 速度的質量塊,並且具有較大的質量,因此有助於提高感 測的準確度與錄度。此外,本發料對平减測提供了 兩個軸向的獨立運動機制:例如設置相互獨立且可提供不 ^方向(如兩個正交方向)回復力的彈性結構來帶動質量塊 、’移’或是朗兩侧立的fl:塊來進行时社的不同 ^向的平移。因此’本發明之多轴電容式加速度計在平面 ^不同方向(如X軸方向與γ轴方向)的感測不會相互干Between the two masses 3500 and between the second mass 34 〇〇 and the fourth mass Ο. The third elastic structure 323Q is respectively connected to the both ends of the rotating shaft 〇 so that the second mass 35 〇〇 and the fourth mass 3 can be rotated about the rotating shaft 3910. Of course, the bottom surface of the first mass 33 本 of the embodiment may also be formed with a plurality of protrusions as described in the foregoing embodiments to prevent the first mass Z from being in contact with the substrate surface to cause an adsorption effect. Acceleration t: % effect. Further, the third mass 35GG and the fourth mass 3600 may have a plurality of micro-holes to reduce damping generation. The elastic structure may be a shrapnel or a spring or an equivalent thereof, which is within the scope of the inventive spirit of the present invention. The vertical multi-accelerometer is arranged to rotate in an axisymmetric manner within the structural layer. The 4b mass # & will rotate when rotated; the asymmetric structure is therefore stressed. In addition, when the masses are rotated, the preferred linear rotation does not affect the mass used to sense the plane plus 24 201020549 P27970096TWC1 29767-ltwf.doc/d speed, and has a large mass. Therefore, it helps to improve the accuracy and recording of the sensing. In addition, the present invention provides two axial independent motion mechanisms for the flat reduction measurement: for example, an elastic structure that is independent of each other and provides a recovery force in a non-directional direction (such as two orthogonal directions) to drive the mass, 'shift 'Or the fl: block on both sides of the lang to perform the different translation of the time. Therefore, the sensing of the multi-axis capacitive accelerometer of the present invention does not interfere with each other in different directions of the plane ^ such as the X-axis direction and the γ-axis direction.

雖然本發明已以實施例揭露如上,然其並非用以限定 ί = ’任何所屬技術領域中具有通常知識者,在不脫離 發a;之:::!和5圍内’當可作些許之更動與潤飾,故本 ^蒦靶圍當視後附之申請專利範圍所界定者為準。 L圖式簡單說明】 ,1為習知—種多軸電容式加速度計的俯視圖。 圖2為圖1之多轴電容式加速度計的剖視側視圖。 圖3為習知另-種多轴電容式加速度計的俯視圖。 圖。圖4為本發明—實施例之多軸電容式加速度計的俯視 圖5為圖1沿Ϊ-Ι線的剖視圖。 圖6為圖4之多轴電容式加速度計的局部側視圖。 圖7為本發明另—實施例之多軸電容式加速度計的俯 圖8為本發明又—實施例之多軸電容式加速度計的俯 25 201020549 P27970096TWC1 29767-ltwf.doc/d 【主要元件符號說明】 50、60 :加速度計 52 :質量塊 54 :旋轉結構 100、400 :第一電容結構 110、210、410、510 :梳狀電極 112、212、412、512 :梳狀電容板 122、222、422、522 :固定梳狀電容板 ® 120、220、420、520 :固定梳狀電極 200、500 :第二電容結構 300 :凸起 1000、2000 :多軸電容式加速度計 1100、2100 :基板 mo :表面 1120 :感測電極 1200、2200 :結構層 ❿ 1210、2210 :固定座 1212、2212 :第一固定塊 1214、2214 :第二固定塊 1216 :接觸金屬 1220、2220 :第一質量塊 1222、2222 :中心軸 1224、2224 :第一開口 1226、2226 :第二開口 26 201020549 JL·厶 / 7 / rwci 29767-ltwf.doc/d 1228 : 1230、 1232、 1234 > 1240、 1242 : 1244 : 1250、 ❹ 1260 、 1270、 1272 ' 1274、 1280、 1282、 1284、 2228 : 囑^ A、C B、D : 3000 : 3010 : 3020 : 3100 : 3210 : 3220 : 底面 2230 :第一彈性結構 2232 :第一彈簧 2234 :第二彈簧 2240 :固定感測塊 第一固定感測塊 第二固定感測塊 2250 ··第二質量塊 2260 :第三質量塊 2270 :第二彈性結構 2272 :第三彈簧 2274 :第四彈簧 2280 :第三彈性結構 2282 :第五彈簧 2284 :第六彈簧 第三開口 第一轉動轴 第二轉動軸 多軸電容式加速度計 基板 結構層 固定座 第一彈性結構 第二彈性結構 27 201020549 ^/y/uuybTWCl 29767-ltwf.doc/d 3230 : 3300 : 3310 : 3400 : 3410 : 3420 : 3500 : 3600 : ® 3710 : 3720 : 3810 · 3820 : 3812、 3814、 3910 : 第三彈性結構 第一質量塊 第四開口 第二質量塊 第五開口 第六開口 第三質量塊 第四質量塊 第一固定感測塊 :第二固定感測塊 :第一電容結構 :第二電容結構 、3822 :梳狀電極 、3824 :固定梳狀電極 :轉動軸Although the present invention has been disclosed in the above embodiments, it is not intended to limit ί = 'anyone having ordinary knowledge in the art, without departing from the following:::! and 5' The movements and retouchings are subject to the definition of the patent application scope attached to the target. A simple description of the L pattern], 1 is a conventional view of a multi-axis capacitive accelerometer. 2 is a cross-sectional side view of the multi-axis capacitive accelerometer of FIG. 1. 3 is a top plan view of a conventional multi-axis capacitive accelerometer. Figure. 4 is a plan view of a multi-axis capacitive accelerometer according to an embodiment of the present invention. FIG. 5 is a cross-sectional view of FIG. 1 taken along line Ϊ-Ι. Figure 6 is a partial side elevational view of the multi-axis capacitive accelerometer of Figure 4. 7 is a top view of a multi-axis capacitive accelerometer according to another embodiment of the present invention. FIG. 8 is a multi-axis capacitive accelerometer according to another embodiment of the present invention. 25 201020549 P27970096TWC1 29767-ltwf.doc/d [Main component symbols Description 50, 60: accelerometer 52: mass 54: rotating structure 100, 400: first capacitor structure 110, 210, 410, 510: comb electrodes 112, 212, 412, 512: comb capacitor plates 122, 222 422, 522: Fixed comb capacitor plates® 120, 220, 420, 520: fixed comb electrodes 200, 500: second capacitor structure 300: bumps 1000, 2000: multi-axis capacitive accelerometers 1100, 2100: substrate Mo: surface 1120: sensing electrode 1200, 2200: structural layer ❿ 1210, 2210: fixing seat 1212, 2212: first fixing block 1214, 2214: second fixing block 1216: contact metal 1220, 2220: first mass 1222 2222: central axis 1224, 2224: first opening 1226, 2226: second opening 26 201020549 JL·厶/ 7 / rwci 29767-ltwf.doc/d 1228 : 1230, 1232, 1234 > 1240, 1242 : 1244 : 1250, ❹ 1260, 1270, 1272 '1274, 1280, 1282, 1284, 2228 : 嘱 ^ A, CB, D : 3000 : 3010 : 3020 : 3100 : 3210 : 3220 : bottom surface 2230 : first elastic structure 2232 : first spring 2234 : second spring 2240 : fixed sensing block first fixed sensing Block second fixed sensing block 2250 · second mass 2260: third mass 2270: second elastic structure 2272: third spring 2274: fourth spring 2280: third elastic structure 2282: fifth spring 2284: Six springs third opening first rotating shaft second rotating shaft multi-axis capacitive accelerometer substrate structure layer fixing seat first elastic structure second elastic structure 27 201020549 ^/y/uuybTWCl 29767-ltwf.doc/d 3230 : 3300 : 3310 : 3400 : 3410 : 3420 : 3500 : 3600 : ® 3710 : 3720 : 3810 · 3820 : 3812 , 3814 , 3910 : third elastic structure first mass fourth opening second mass fifth opening sixth opening third Mass block fourth mass first fixed sensing block: second fixed sensing block: first capacitor structure: second capacitor structure, 3822: comb electrode, 3824: fixed comb electrode: rotating axis

2828

Claims (1)

201020549 F2/y/uuy&TWCI 29767-Itwf.d〇c/d 七、申請專利範圍: 1. 一種多軸電容式加速度計,包括: 一基板,該基板的一表面上設置兩個以上的感測電 極; 一結構層,包括: 多個固定座’固定於該基板的該表面上; 一第一質量塊,浮置於該基板的該表面上方’該 第一質量塊具有一中心軸以及位於該第—質量塊内 部的一第一開口及一第二開口,該第一開口及該第二 開口以該第一質量塊的中心軸為中心而對稱地配置 於該中心軸的相對兩侧; 第一彈性結構,連接該固定座與該第一質量 塊; ' 多個固定感測塊,鄰近該第一質量塊並固定於該 基板的該表面上’其中每一固定感測塊與該第一質量 塊之間形成一電容結構; 第-質量塊及-第三質量塊,浮置於該基板的 該些感測電極上方,形成感測電容,並且分別位於該 第一質,塊的該第-開口及該第二開口内;以及 一第二彈性結構及—第三彈性結構,該第二彈性 結構及該第三彈性結構分職該第二質量塊及該第 三質量塊不對稱地歸在該第量塊的該第一開 口及遠弟二開π内並與之銜接,當受冗軸方向的加速 度作用時,該第二質量塊及該第三質量塊將沿平行於 29 29767-ltwf.doc/d 201020549 j. z. / ^ / \j\jy uTWCl X軸的轉動轴轉動,且第二質量塊及該第三質量塊的 轉動軸相互平行並以該第一質量塊的中心轴為中心 而對稱地配置於該中心軸的相對兩側。 2. 如申請專利範圍第1項所述之多軸電容式加速度 計,其中該些固定感測塊位於該第一質量塊的外側。 3. 如申請專利範圍第2項所述之多軸電容式加速度 計,其中每一組由一該固定感測塊和該第一質量塊所形成 的該電容結構包括:201020549 F2/y/uuy&TWCI 29767-Itwf.d〇c/d VII. Patent Application Range: 1. A multi-axis capacitive accelerometer comprising: a substrate having more than two sensations on one surface of the substrate a measuring layer; a structural layer comprising: a plurality of fixing blocks fixed on the surface of the substrate; a first mass floating above the surface of the substrate, the first mass having a central axis and located a first opening and a second opening in the first mass of the first mass, the first opening and the second opening are symmetrically disposed on opposite sides of the central axis centering on a central axis of the first mass; a first elastic structure connecting the fixing seat and the first mass; a plurality of fixed sensing blocks adjacent to the first mass and fixed on the surface of the substrate, wherein each of the fixed sensing blocks and the first Forming a capacitor structure between the masses; the first mass and the third mass are floating above the sensing electrodes of the substrate to form sensing capacitances, and respectively located in the first mass, the block First opening and second opening And a second elastic structure and the third elastic structure, the second elastic structure and the third elastic structure are divided into the second mass and the third mass are asymmetrically attributed to the first block The first opening and the far-opening are opened and engaged with π, and when subjected to acceleration in the direction of the redundant axis, the second mass and the third mass will be parallel to 29 29767-ltwf.doc/d 201020549 jz / ^ / \j\jy uTWCl The rotation axis of the X axis rotates, and the rotation axes of the second mass and the third mass are parallel to each other and are symmetrically arranged at the center centering on the central axis of the first mass The opposite sides of the shaft. 2. The multi-axis capacitive accelerometer of claim 1, wherein the fixed sensing blocks are located outside of the first mass. 3. The multi-axis capacitive accelerometer of claim 2, wherein each of the sets of capacitor structures formed by the fixed sensing block and the first mass comprises: 由該第一質量塊延伸出來的一梳狀電極,具有多個梳 狀電容板;以及 由该些固疋感測塊其中之一延伸出來的一固定桅狀 電極’具有多個目定梳狀電容板,且該梳狀電容板與該固 定梳狀電谷板相互平行且交替配置。 二申:青專利範圍第3項所述之多轴電容式加速度 計,其中該些電容結構包括: 多個第-電容結構,每—第一電容結構的 板與該固定錄電容板沿著触基板表面平行的二方 向延伸’可成為感測—第二方向加速度 士 該第-方向與該第二方向位於^平面上,= 與該第二方向正交;以及 且該昂一方向 多個第一電容結構,每一第二電容結構的 板與該固定梳狀電容板沿著該第二方向延伸,^狀電合 該第一方向加速度的電容結構。 叮成為感測 5.如申5月專利範圍第2 is #、十、夕ί>· ± τ 昂2項所述之多軸電容式加速度 30 201020549 rz/y/wy〇TWCl 29767-Itwf.doc/d 計’其中該些固定座包括分別配置於該第一質量塊之 兩側的一第一因定塊及一第二固定塊。 ▲ 6.如申料·㈣5項所述之錄餘式加速度 计’其中該第-彈性結構包括分別對應於該第一固定塊及 „的一第一彈簧及—第二彈簧,其中該第一彈 貫及該第二彈簧提供沿—第—方向與 力’其中該第-方向與該第二方向位於同一平面上的= 第一方向與該第二方向正交。 ㈣6項所狀料餘式加速度 计,其中該第-質量塊對稱於該中心轴,且分別透過該第 :彈簧及該第二彈簧連接於該第—固定塊及該第二固定 塊0 计〃中該弟—彈性結構包括—第三彈簧及—第四彈菩, :於所對應的轉動軸上並銜接該第-質量塊與該第二質量 塊。 只王 4 2酬狀錄岐式加速度 片〃中以第二彈性結構包括一第五彈簧及—第六彈 位於所對應的轉動軸上並銜接該第―質量塊與該第三質量 塊0 計,=二圍第2項所述之多軸電容式加速度 ° ’八“-質I塊具有面對該基板的 面上具有彡個凸S。 —且及底 11·如申請專職_ 2項所述之錄電容式加速度 31 201020549 rz./^/u^〇TWCl 29767-ltwf.doc/d 計,其中該第二與第三質量塊上具有多個微孔洞,可減少 阻尼產生。 12. 如申請專利範圍第1項所述之多轴電容式加速度 計,其中該第一質量塊内部更具有多個第三開口,且至少 部分該些固定感測塊分別位於該些第三開口内。 13. 如申請專利範圍第12項所述之多軸電容式加速 度計,其中每一組由一該固定感測塊和該第一質量塊所形 成的該電容結構包括. ❿ 由該第一質量塊延伸出來的一梳狀電極,具有多個梳 狀電容板;以及 由該些固定感測塊其中之一延伸出來的一固定梳狀 電極,具有多個固定梳狀電容板,且該梳狀電容板與該固 定梳狀電容板相互平行且交替配置。 14. 如申請專利範圍第13項所述之多軸電容式加速 度計’其中該些電容結構包括. 多個第一電容結構,每一第一電容結構的該梳狀電容 φ 板與該固定梳狀電容板沿著與該基板表面平行的一第一方 向延伸,可成為感測一第二方向加速度的電容結構,其中 該第一方向與該第二方向位於同一平面上,且該第一方向 與該第二方向正交;以及 多個第二電容結構,每一第二電容結構的該梳狀電容 板與該固定梳狀電容板沿著該第二方向延伸,可成為感測 該第一方向加速度的電容結構。 15. 如申請專利範圍第14項所述之多軸電容式加速 32 201020549· 29767-Itwf.doc/d 度計,其中該些固定座包括分別配置於該第一質量塊之相 對兩侧的一第一固定塊及一第二固定塊。 16. 如申請專利範圍第15項所述之多軸電容式加速 度計,其中該第一彈性結構包括分別對應於該第一固定塊 及該第二固定塊的一第一彈簧及一第二彈簧,其中該第一 彈簧及該第二彈簧提供沿一第一方向與一第二方向的回復 力,其中該第一方向與該第二方向位於同一平面上,且該 第一方向與該第二方向正交。 17. 如申請專利範圍第16項所述之多軸電容式加速 度計,其中該第一質量塊對稱於該中心軸,且分別透過該 第一彈簧及該第二彈簧連接於該第一固定塊及該第二固定 塊。 18. 如申請專利範圍第12項所述之多軸電容式加速 度計,其中該第二彈性結構包括一第三彈簧及一第四彈 簧,位於所對應的轉動軸上並銜接該第一質量塊與該第二 質量塊。 19. 如申請專利範圍第12項所述之多軸電容式加速 度計,其中該第三彈性結構包括一第五彈簧及一第六彈 簧,位於所對應的轉動軸上並銜接該第一質量塊與該第三 質量塊。 20. 如申請專利範圍第12項所述之多軸電容式加速 度計,其中該第一質量塊具有面對該基板的一底面,且該 底面上具有多個凸起。 21. 如申請專利範圍第12項所述之多軸電容式加速 33 201020549 以/y 訓 yoTWCl 29767-ltwf.doc/d 度計,其中該第二與第三質量塊上具有多個微孔洞,可減 少阻尼產生。 22. 如申請專利範圍第1項所述之多軸電容式加速度 叶,其中該第一彈性結構、該第二彈性結構或該第三彈性 結構為彈片或彈簧。 23. —種多軸電容式加速度計,包括: 基板,其上具有多個感測電極; 一結構層,浮置於該基板上,該結構層包括: 多個固定座,固定在該基板上; 多個彈性結構,至少包括一第一彈性結構、一第 二彈性結構和一第三彈性結構; 一第一質量塊,透過該第一彈性結構被懸掛設置 該基板十,並與該些固定座連接,用以感測在一平 镇第—方向或一第二方向上的加速度,而對應 與第—方向 在令第^曾塊’透過該第二彈性結構被懸掛設置 =塊t内’而該第二質量塊可以沿著與該第 Ϊ?固的同平面的垂直方向作平移; 其中每一第測塊’配置在該第-質量塊内, 質量塊之間形成^第該第一質量塊或該第二 一第三質旦 電各結構; 該第四質量塊量塊’該第三質量塊及 斜應於該基板上的該些❹i電極並且 34 29767-Itwf.doc/d 201020549 JT 厶 / 7 / uw^uTWCl 以該第一質量塊的一中心軸為中心而對稱地配置於 該中心轴的相對兩側,該第三質量塊與該第四質量塊 分別透過該第三彈性結構以非對稱的方式懸掛設置 在該第二質量塊内,且沿該第一方向具有—轉動轴, 使該第一質量塊在該第二方向上呈現不對稱性,並在 該第一質量塊在一第三方向受力時,以該轉動軸為中 心轉動’其中該第三方向正交於該第一方向與該第二 方向所在的該平面;以及a comb electrode extending from the first mass has a plurality of comb capacitor plates; and a fixed beak electrode 'extending from one of the solid sensing blocks has a plurality of shaped combs a capacitor plate, and the comb capacitor plate and the fixed comb-shaped grid plate are parallel and alternately arranged. The invention relates to a multi-axis capacitive accelerometer according to the third aspect of the invention, wherein the capacitor structures comprise: a plurality of cascode structures, each of the plates of the first capacitor structure and the fixed recording capacitor plate are in contact with each other The two-direction extension of the parallel surface of the substrate may be sensed—the second direction acceleration is located on the plane of the second direction and the second direction is orthogonal to the second direction; and the plurality of directions are a capacitor structure, the board of each second capacitor structure and the fixed comb capacitor board extend along the second direction to electrically couple the capacitor structure of the first direction acceleration.叮 becomes a sensing 5. The multi-axis capacitive acceleration described in the 2nd is #, 十, 夕ί>·± τ ang 2 of the patent scope of May 5 201020549 rz/y/wy〇TWCl 29767-Itwf.doc And the plurality of fixing blocks include a first blocking block and a second fixing block respectively disposed on two sides of the first mass. ▲ 6. The remnant accelerometer of claim 4, wherein the first elastic structure comprises a first spring and a second spring respectively corresponding to the first fixed block and „, the first The second spring and the second spring provide a direction along which the first direction and the second direction are in the same plane = the first direction is orthogonal to the second direction. An accelerometer, wherein the first mass is symmetrical to the central axis, and the first spring and the second spring are respectively connected to the first fixed block and the second fixed block. - a third spring and - a fourth elastic, on the corresponding axis of rotation and engaging the first mass and the second mass. Only the king 4 2 rewards the accelerometer with a second elasticity The structure includes a fifth spring and a sixth bullet located on the corresponding rotating shaft and engaging the first mass and the third mass 0, and the multi-axis capacitive acceleration described in item 2 of the second circumference The eight "- mass I block has a convex surface S facing the surface of the substrate. - and bottom 11 · as claimed in the full-time _ 2 recorded capacitive acceleration 31 201020549 rz. / ^ / u ^ 〇 TWCl 29767-ltwf.doc / d, where the second and third masses have Multiple micro-holes reduce damping. 12. The multi-axis capacitive accelerometer of claim 1, wherein the first mass has a plurality of third openings therein, and at least some of the fixed sensing blocks are respectively located in the third openings. Inside. 13. The multi-axis capacitive accelerometer of claim 12, wherein each of the set of capacitive structures formed by the fixed sensing block and the first mass comprises: ❿ by the first mass a comb electrode extending from the block, having a plurality of comb capacitor plates; and a fixed comb electrode extending from one of the fixed sensing blocks, having a plurality of fixed comb capacitor plates, and the comb The capacitor plate and the fixed comb capacitor plate are parallel and alternately arranged. 14. The multi-axis capacitive accelerometer of claim 13, wherein the capacitor structures comprise: a plurality of first capacitor structures, the comb capacitor φ plate of each first capacitor structure and the fixed comb The capacitor plate extends along a first direction parallel to the surface of the substrate, and can be a capacitor structure for sensing a second direction acceleration, wherein the first direction is on the same plane as the second direction, and the first direction Orthogonal to the second direction; and a plurality of second capacitor structures, the comb capacitor plate of each second capacitor structure and the fixed comb capacitor plate extend along the second direction, which can be the first The capacitance structure of the directional acceleration. 15. The multi-axis capacitive acceleration 32 201020549·29767-Itwf.doc/d meter according to claim 14, wherein the fixing seats comprise one respectively disposed on opposite sides of the first mass a first fixed block and a second fixed block. 16. The multi-axis capacitive accelerometer of claim 15, wherein the first elastic structure comprises a first spring and a second spring respectively corresponding to the first fixed block and the second fixed block. The first spring and the second spring provide a restoring force along a first direction and a second direction, wherein the first direction is in the same plane as the second direction, and the first direction and the second direction The directions are orthogonal. 17. The multi-axis capacitive accelerometer according to claim 16, wherein the first mass is symmetrical to the central axis, and the first spring and the second spring are respectively connected to the first fixed block And the second fixed block. 18. The multi-axis capacitive accelerometer of claim 12, wherein the second elastic structure comprises a third spring and a fourth spring located on the corresponding rotating shaft and engaging the first mass With the second mass. 19. The multi-axis capacitive accelerometer of claim 12, wherein the third elastic structure comprises a fifth spring and a sixth spring, located on the corresponding rotating shaft and engaging the first mass With the third mass. 20. The multi-axis capacitive accelerometer of claim 12, wherein the first mass has a bottom surface facing the substrate and the bottom surface has a plurality of protrusions. 21. The multi-axis capacitive acceleration 33 201020549 as described in claim 12, with /y training yoTWCl 29767-ltwf.doc/d, wherein the second and third masses have a plurality of micro-holes Can reduce damping generation. 22. The multi-axis capacitive acceleration blade of claim 1, wherein the first elastic structure, the second elastic structure or the third elastic structure is a spring or a spring. 23. A multi-axis capacitive accelerometer comprising: a substrate having a plurality of sensing electrodes thereon; a structural layer floating on the substrate, the structural layer comprising: a plurality of mounts secured to the substrate The plurality of elastic structures include at least a first elastic structure, a second elastic structure and a third elastic structure; a first mass through which the substrate ten is suspended and fixed with the first elastic block a seat connection for sensing an acceleration in a first direction or a second direction of a flat town, and the corresponding and the first direction are such that the second block is suspended by the second elastic structure = block t The second mass may be translated in a direction perpendicular to the same plane of the second solid; wherein each of the second blocks is disposed in the first mass, and the first mass is formed between the masses a block or the second third mass circuit; the fourth mass block 'the third mass and the ❹i electrodes on the substrate and 34 29767-Itwf.doc/d 201020549 JT厶 / 7 / uw^uTWCl with the first quality a central axis is symmetrically disposed on opposite sides of the central axis, and the third mass and the fourth mass are respectively suspended in the second mass through the third elastic structure in an asymmetric manner. And having a rotation axis along the first direction to make the first mass exhibit asymmetry in the second direction, and when the first mass is stressed in a third direction, the rotation axis Rotating for the center of the plane in which the third direction is orthogonal to the first direction and the second direction; 夕個弟二固定感測塊 其中每一第二固定感測塊與該第二質量塊之間形成 一第二電容結構。 24.如申請專利範圍第23項所述之多軸電容式加速 度計,其中每一第一電容結構包括: 由該第-質量塊或該第二質量塊延伸出來的 電極,具有多個梳狀電容板;以及 " 由該些第i域測塊其中之—延伸出來 梳狀電極,具有多_定梳狀電容板,且雜 該固定梳狀f容_互平行且料配置。 I夺板興 产二=利=24項所述之多轴電容式加速 f欠電容板構的該梳狀電容板與翻定梳 =電令板料-方向延伸,以制該第二方向的加速 26.如申請專利範圍第23 度計,其中每-第二電容^純Γ 容式加速 35 201020549 jr^/7/wu^L»TWCl 29767-ltwf.doc/d ’具有多個梳 由5亥弟二質i塊延伸出來的一梳狀電核 狀電容板;以及 由該些第二固定感測塊其中之—延伸出來的一固定 梳狀電極’具有多_定梳狀電容板,且該梳狀電容板與 s亥固定梳狀電容板相互平行且交替配置。The second fixed sensing block has a second capacitor structure formed between each of the second fixed sensing blocks and the second mass. 24. The multi-axis capacitive accelerometer of claim 23, wherein each of the first capacitive structures comprises: an electrode extending from the first mass or the second mass, having a plurality of combs a capacitor plate; and " from the ith domain block, extending the comb electrode, having a plurality of fixed-comb-shaped capacitor plates, and the fixed comb-like capacitors are parallel and arranged. I win the production of the second direction of the multi-axis capacitive acceleration f under-capacitor plate structure of the comb capacitor plate and the retort comb = electric plate-direction extension to make the second direction Acceleration 26. If the patent application scope is 23rd degree, where each - second capacitor ^ pure volumetric acceleration 35 201020549 jr^/7/wu^L»TWCl 29767-ltwf.doc/d 'has multiple combs by 5 a comb-shaped electronuclear capacitor plate extending from the block of the second core of the hexagram; and a fixed comb-shaped electrode extending from the second fixed sensing block having a plurality of fixed-comb-shaped capacitor plates, and The comb capacitor plate and the shai fixed comb capacitor plate are parallel and alternately arranged. 27.如t請專利範圍第26項所述之多轴電容式加速 又叶’其巾每H容結構的雜狀電容板與該固定梳 狀電容板沿著該第二方向延伸,以感職f—方 度。 ^ 28.如申請專利範圍第23項所述之多轴電容式加速度 冲,其中該第-彈性結構連接在該第—質量塊與該些固定 ,之間,使該第-質量塊能沿該第—方向和該第二方向二 者其中之一平移。 29.如申明專利圍帛23項所述之多轴電容式加速度 ^ ’其中該第二彈性結構連接在該第二塊與該第〆質 =塊之間’使該第二質量塊能沿與該第―質量塊平移方向 的同平面的垂直方向作平移。 30. 如申請專利範圍帛23項所述之多轴電容式加速度 暂1其中該第三彈性結構被配置在該第二質量塊與該第三 ^塊之間Γ及鄉二質量塊_第四質量塊U分 =應連接雜動_兩端,錢得該第三f 4塊第 四質量塊以該轉動軸為中心轉動。 31. 如申請專利範圍第23項所述之多車由電容式加速度 其中該些基板上感測電極配置在該轉動軸的兩側。 36 201020549 rz/y/uuvoiWCl 29767-ltwf.doc/d 32. 如申請專利範圍第23項所述之多轴電容式加速 度計,其中該第一質量塊具有面對該基板的一底面,且該 底面上具有多個凸起。 33. 如申請專利範圍第23項所述之多轴電容式加速 度計,其中該第三與第四質量塊上具有多個微孔洞,可減 少阻尼產生。 34. 如申請專利範圍第23項所述之多軸電容式加速 度計,其中該第一質量塊具有一第四開口,該第四開口内 ❿ 設有該第二質量塊,及該第二質量塊具有一第五開口與一 第六開口,而該第五開口内設有該第三質量塊,該第六開 口内設有該第四質量塊。 35. 如申請專利範圍第23項所述之多軸電容式加速 度計,其中該第一彈性結構分別連接該固定座與該第一質 量塊,而該第二彈性結構分別連接該第一質量塊與該第二 質量塊。 36. 如申請專利範圍第23項所述之多轴電容式加速 龜 度計,其中該些彈性結構為彈片或彈簧。 3727. If the multi-axis capacitive acceleration described in the scope of claim 26 is applied, the heterogeneous capacitor plate of the H-capacitor structure and the fixed comb-shaped capacitor plate extend along the second direction. F—square. The multi-axis capacitive acceleration according to claim 23, wherein the first elastic structure is connected between the first mass and the fixed, so that the first mass can One of the first direction and the second direction translates. 29. The multi-axis capacitive acceleration according to claim 23, wherein the second elastic structure is connected between the second block and the second mass = block enables the second mass to The vertical direction of the same plane in the translation direction of the first mass is translated. 30. The multi-axis capacitive acceleration temporary 1 according to claim 23, wherein the third elastic structure is disposed between the second mass and the third block, and the second mass is _fourth The mass U score = should be connected to the turbulence _ both ends, the money is the third f 4 block fourth mass rotates around the rotation axis. 31. The multi-vehicle according to claim 23, wherein the plurality of vehicles are capacitively accelerated, wherein the sensing electrodes on the substrates are disposed on both sides of the rotating shaft. 36. The multi-axis capacitive accelerometer of claim 23, wherein the first mass has a bottom surface facing the substrate, and the There are a plurality of protrusions on the bottom surface. 33. The multi-axis capacitive accelerometer of claim 23, wherein the third and fourth masses have a plurality of micro-holes to reduce damping. 34. The multi-axis capacitive accelerometer of claim 23, wherein the first mass has a fourth opening, the second opening is provided with the second mass, and the second mass The block has a fifth opening and a sixth opening, and the third opening is provided with the third mass, and the fourth mass is disposed in the sixth opening. The multi-axis capacitive accelerometer of claim 23, wherein the first elastic structure is respectively connected to the fixing seat and the first mass, and the second elastic structure is respectively connected to the first mass With the second mass. 36. The multi-axis capacitive acceleration gyroscope of claim 23, wherein the elastic structures are springs or springs. 37
TW97151113A 2008-11-18 2008-12-26 Multi-axis capacitive accelerometer TWI376502B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/618,791 US8205498B2 (en) 2008-11-18 2009-11-16 Multi-axis capacitive accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11554608P 2008-11-18 2008-11-18

Publications (2)

Publication Number Publication Date
TW201020549A true TW201020549A (en) 2010-06-01
TWI376502B TWI376502B (en) 2012-11-11

Family

ID=42462232

Family Applications (2)

Application Number Title Priority Date Filing Date
TW97148843A TW201020548A (en) 2008-11-18 2008-12-15 Multi-axis capacitive accelerometer
TW97151113A TWI376502B (en) 2008-11-18 2008-12-26 Multi-axis capacitive accelerometer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW97148843A TW201020548A (en) 2008-11-18 2008-12-15 Multi-axis capacitive accelerometer

Country Status (2)

Country Link
CN (1) CN101738496B (en)
TW (2) TW201020548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495848B (en) * 2012-01-18 2015-08-11 Lumedyne Technologies Inc Time domain switched gyroscope
TWI570054B (en) * 2015-12-28 2017-02-11 財團法人工業技術研究院 Micro-electromechanical apparatus having central anchor
TWI765180B (en) * 2018-09-21 2022-05-21 美商美國亞德諾半導體公司 Three-axis accelerometer

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2616772B1 (en) 2010-09-18 2016-06-22 Fairchild Semiconductor Corporation Micromachined monolithic 3-axis gyroscope with single drive
CN103221331B (en) 2010-09-18 2016-02-03 快捷半导体公司 Hermetically sealed for MEMS
EP2619536B1 (en) 2010-09-20 2016-11-02 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US9276080B2 (en) 2012-03-09 2016-03-01 Mcube, Inc. Methods and structures of integrated MEMS-CMOS devices
TWI452297B (en) * 2011-09-26 2014-09-11 Richwave Technology Corp Capacitive accelerometer
US9062972B2 (en) * 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
CN104316726B (en) * 2012-03-20 2017-04-12 立积电子股份有限公司 capacitive accelerometer
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
EP2647955B8 (en) 2012-04-05 2018-12-19 Fairchild Semiconductor Corporation MEMS device quadrature phase shift cancellation
EP2647952B1 (en) 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Mems device automatic-gain control loop for mechanical amplitude drive
KR102058489B1 (en) 2012-04-05 2019-12-23 페어차일드 세미컨덕터 코포레이션 Mems device front-end charge amplifier
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
DE102013014881B4 (en) 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Enhanced silicon via with multi-material fill
US10132630B2 (en) 2013-01-25 2018-11-20 MCube Inc. Multi-axis integrated MEMS inertial sensing device on single packaged chip
US9249012B2 (en) 2013-01-25 2016-02-02 Mcube, Inc. Method and device of MEMS process control monitoring and packaged MEMS with different cavity pressures
US10036635B2 (en) 2013-01-25 2018-07-31 MCube Inc. Multi-axis MEMS rate sensor device
CN103149583B (en) * 2013-02-05 2017-07-28 中国地震局工程力学研究所 A kind of rotation acceleration meter for earthquake
TWI481820B (en) * 2013-03-01 2015-04-21 Ind Tech Res Inst Micro electro mechanical apparatus with interdigiated spring
US10046964B2 (en) 2013-03-07 2018-08-14 MCube Inc. MEMS structure with improved shielding and method
TWI497079B (en) * 2013-09-10 2015-08-21 Globalmems Co Ltd Movable device having drop resistive protection
CN104459199B (en) * 2013-09-18 2018-01-26 上海矽睿科技有限公司 capacitive accelerometer
JP6248576B2 (en) * 2013-11-25 2017-12-20 セイコーエプソン株式会社 Functional element, electronic device, and moving object
TWI614208B (en) * 2014-04-09 2018-02-11 立錡科技股份有限公司 Mirco-electro-mechanical system device
JP6303074B2 (en) 2014-12-25 2018-03-28 ゴルテック.インク Inertial measurement module and 3-axis accelerometer
CN104597287B (en) * 2015-01-30 2017-09-05 歌尔股份有限公司 Inertia measuring module and three axis accelerometer
CN104459203B (en) * 2014-12-25 2017-08-25 歌尔股份有限公司 Z axis structure and three axis accelerometer in a kind of accelerometer
KR101673362B1 (en) * 2015-12-14 2016-11-07 현대자동차 주식회사 Acceleration sensor and manufacturing method thereof
ITUA20162173A1 (en) 2016-03-31 2017-10-01 St Microelectronics Srl ACCELEROMETRIC MEMS SENSOR HAVING HIGH ACCURACY AND REDUCED SENSITIVITY TOWARDS TEMPERATURE AND AGING
US10429407B2 (en) * 2017-03-27 2019-10-01 Nxp Usa, Inc. Three-axis inertial sensor for detecting linear acceleration forces
CN107082405B (en) * 2017-05-26 2023-08-18 深迪半导体(绍兴)有限公司 MEMS device structure
CN107271722B (en) * 2017-07-19 2022-06-24 深迪半导体(绍兴)有限公司 Triaxial capacitive accelerometer
DE102017219901B3 (en) * 2017-11-09 2019-01-10 Robert Bosch Gmbh Micromechanical z-inertial sensor
CN108020687B (en) * 2018-02-06 2024-03-19 深迪半导体(绍兴)有限公司 MEMS accelerometer
US11099207B2 (en) 2018-10-25 2021-08-24 Analog Devices, Inc. Low-noise multi-axis accelerometers and related methods
CN110308308B (en) * 2019-06-27 2021-07-13 深迪半导体(绍兴)有限公司 In-plane translational accelerometer with compensation electrode
US11377346B2 (en) * 2019-09-11 2022-07-05 Murata Manufacturing Co., Ltd. Low-noise multi axis MEMS accelerometer
JP7383978B2 (en) * 2019-10-23 2023-11-21 セイコーエプソン株式会社 Physical quantity sensors, electronic devices and moving objects
CN114280331A (en) * 2021-12-16 2022-04-05 宁波奥拉半导体有限公司 Z-axis accelerometer
CN114594281A (en) * 2022-04-29 2022-06-07 苏州米洛微纳电子科技有限公司 MEMS accelerometer and forming method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547642A1 (en) * 1994-12-20 1996-06-27 Zexel Corp Multi-axis acceleration sensor for motor vehicle system
US6981416B2 (en) * 2003-11-21 2006-01-03 Chung-Shan Institute Of Science And Technology Multi-axis solid state accelerometer
US20070034007A1 (en) * 2005-08-12 2007-02-15 Cenk Acar Multi-axis micromachined accelerometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495848B (en) * 2012-01-18 2015-08-11 Lumedyne Technologies Inc Time domain switched gyroscope
TWI570054B (en) * 2015-12-28 2017-02-11 財團法人工業技術研究院 Micro-electromechanical apparatus having central anchor
TWI765180B (en) * 2018-09-21 2022-05-21 美商美國亞德諾半導體公司 Three-axis accelerometer

Also Published As

Publication number Publication date
CN101738496A (en) 2010-06-16
TW201020548A (en) 2010-06-01
CN101738496B (en) 2011-08-31
TWI376502B (en) 2012-11-11

Similar Documents

Publication Publication Date Title
TW201020549A (en) Multi-axis capacitive accelerometer
CN101666813B (en) Multi-axis capacitive accelerometer
US8205498B2 (en) Multi-axis capacitive accelerometer
TWI374268B (en) Multi-axis capacitive accelerometer
JP6328823B2 (en) Accelerometer structure and use thereof
JP5175308B2 (en) Physical quantity sensor
JP4719272B2 (en) 3-axis accelerometer
JP3429780B2 (en) Suspension structure of semiconductor accelerometer
CN102046514B (en) Device with miniature electromechanical system sensor and preparation method thereof
US20040231420A1 (en) Integrated monolithic tri-axial micromachined accelerometer
TWI762816B (en) Increased sensitivity z-axis accelerometer
CN1816747A (en) Single proof mass, 3 axis MEMS transducer
JP5799929B2 (en) Acceleration sensor
US20120125103A1 (en) Z-axis capacitive accelerometer
CN107064557B (en) Capacitive accelerometer
JP2011033617A (en) Uniaxial acceleration sensor
CN107356785B (en) MEMS torsion type accelerometer with flexible hinge structure
JP2007309654A (en) Acceleration sensor and manufacturing method therefor
JP6070113B2 (en) Acceleration sensor
CN109073673B (en) Micromechanical sensor and method for producing a micromechanical sensor
JP2008164365A (en) Inertial sensor, method of producing the same, and electric and electronic device provided with the inertial sensor
TW594016B (en) Z-axis solid state gyroscope and three-axis inertial measurement apparatus
JP2004340858A (en) Physical quantity sensor and manufacturing method thereof
RU2251702C1 (en) Micromechanical accelerometer
CN112034205B (en) Three-axis accelerometer of micro-electro-mechanical system