TWI374932B - Integrated alkylation process using ionic liquid catalysts - Google Patents

Integrated alkylation process using ionic liquid catalysts Download PDF

Info

Publication number
TWI374932B
TWI374932B TW094145394A TW94145394A TWI374932B TW I374932 B TWI374932 B TW I374932B TW 094145394 A TW094145394 A TW 094145394A TW 94145394 A TW94145394 A TW 94145394A TW I374932 B TWI374932 B TW I374932B
Authority
TW
Taiwan
Prior art keywords
stream
refinery
ethylene
ionic liquid
refinery stream
Prior art date
Application number
TW094145394A
Other languages
English (en)
Other versions
TW200630477A (en
Inventor
Hye Kyung C Timken
Saleh Elomari
Steve Trumbull
Robert Cleverdon
Original Assignee
Chevron Usa Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Usa Inc filed Critical Chevron Usa Inc
Publication of TW200630477A publication Critical patent/TW200630477A/zh
Application granted granted Critical
Publication of TWI374932B publication Critical patent/TWI374932B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/06Metal salts, or metal salts deposited on a carrier
    • C10G29/12Halides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/56Addition to acyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1088Olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Catalysts (AREA)

Description

1374932 九、發明說明: 【發明所屬之技術領域】 • 本發明係關於一種自低價值組份生產高品質汽油摻合組 . 份之整合的煉油方法》 【先前技術】 現代化煉油廠使用諸如流體化催化裂化(Fee)、氫化尹 化(HCR)、烷化及烷烴異構化之許多升級單元。結果,該 等煉油廠生產巨大量之異戊烷。雖然異戊烷展示出高揮發 性(20.4雷德蒸氣壓(RVP)),但在歷史上,異戊烷係具有高 • 辛烷值(92 RON)之理想的汽油摻合組份。隨著環境法規開 r 始對汽油揮發性提出更加嚴格之限制,因為異戊烷之高揮 發性,所以其在汽油中之使用受到限制。結果,尤其在炎 熱的夏李,尋找副產物異戊烷之用途的問題變得嚴峻。此 外,因為更多汽油組合物含有乙醇而不是]^丁]5£作為其氧 化組份,所以必須將更多異戊烷阻止在汽油池之外以達滿 % 足汽油揮發性之規範的目的。因此’汽油揮發性問題變得 更加嚴峻,進一步限制異戊烷作為汽油摻合組份之有用 性。 本發明之方法藉由使用離子性液體催化劑使異戊烷與含 有乙烯之煉油廠物流烷化將不當異戊烷轉化成低Rvp汽油 摻合組份來解決此問題。諸如丙烯、丁烯及戊烯之其它烯 «可用於轉化異錢以生成低Rvp烴產物。藉由減少過 ®之異戊院’消除儲存異戊院之負擔及/或對異戊貌使用 之擔憂。一般而言,將輕烷烴及輕烯烴轉化成更有價值之 107503.doc 丄j/4932 餾份對煉油產業是非常有利的。此已藉由烷化烷烴與烯烴 及藉由聚合燦煙完《。此領域中一個最廣泛使用之方法係 使用硫酸及氬氟酸使異丁烷與C3_C5烯烴烷化以生成具有 高辛烷值之汽油餾份《自20世紀40年代,此方法就已為煉 油產業所使用。此方法受到對高品質及完全燃燒之高辛烷 值汽油日益增加的需求的推動。 知現代化煉油廠中之商業化烷烴烷化方法使用硫酸或氫氟 馱作為催化劑。兩種方法初始均需要極大量的酸充滿反應 器。硫酸廠亦需要每日分離巨大量之所消耗酸以用於康區 外再生。接著焚化所消耗之硫酸以回收s〇2/s〇3且製備新 酉文。吾人認為必須處理巨大體積之所使用酸的必要性係以 爪酉文為基礎之方法的缺點。另一方面,^?烷化廠具有廠區 内再生能力且每日補充之HF處於較小數量級。然而,HF 形成氣浴膠之趨勢提出一個重大的潛在環境風險且使HF烷 化方法之安全性小於Η4〇4烷化方法。現代tHF方法常需 要諸如水喷霧及催化劑添加劑之用於減少氣溶膠的額外安 全方法以將潛在危險降至最小。 雖然該等催化劑已成功用於經濟地生產最優良品質之烷 化物,但對於更安全且更環境友好之催化劑體系之需要已 成為相關產業之熱門問題。本發明之離子性液體催化劑滿 足該需要。 此外’貫施本發明使煉油廠擺脫埤過量燃料氣體生成相 關恥之問題及浪費。此藉由使用例如來自FCC單元之廢氣 _1_ 之乙稀作為異戊烷烷化之烯烴源來執行。FCC廢氣通常 )07503.doc 1374932 有向達2〇體積%之乙稀。含有乙烯或諸如焦化氣體之其 匕婦少工之其匕烤煙物流亦可用於此方法。藉由本發明之方 . 法提高總汽油體積。來自FCC去乙烷塔之燃料氣體之淨量 . 降低,因此減輕燃料氣體處理設備之負擔。本發明之另一 好處係提取乙烤將改良FCC廢氣中氫之純度。經改良之廢 氣中氫之濃度可允許使用諸如壓力轉換吸附(PSA)單元或 選擇性氫滲透膜單元之氫回收單元經濟地回收純氫。考慮 ^ 〃燃料氣體生產及現代化煉油廠中儲存氫相關聯之嚴格 的環境法規,》咸少燃料氣體及生成氯之好處係非常想要 ' 的。 : 最經濟(因此亦係最想要)的烯烴物流為含有氫、曱烷、 乙烷及乙烯之FCC去乙烷塔塔頂餾出物或含有烯烴之焦化 :體本方法以低辛焼損失將異戊貌物流轉化成低RVP二 甲基戊烷及三甲基丁烷汽油餾分。#由使用本發明之方 去煉/由廠生產之總Ά油體積增加。此外,來自F C c去乙 馨 &塔之燃料氣體之淨I降低,因此減輕燃料氣體處理設備 之負擔。 此外,本發明包括一種新穎烷烴烷化方法,其可以遠優 ⑨習知烷化方法之環境可靠的方式生產烷化汽油最想要 之汽油摻合組份。與習知方法相比較,根據本發明之方法 提供下列超過習知烷化之明顯優勢: -與硫酸及氫氟酸院化廢相比較,大體上降低成本支出 -與硫酸及氫氟酸烷化廠相比較,大體上降低運作支出 -大體上降低催化劑總體積(預期地降低9〇%) 107503.doc 大體上降低催化劑補充速 低 98%) 率(與硫酸廠相比較預期地降 -較高的汽油產率 _比得上或更佳的產品品質(辛院值,RVP,T5〇) -顯著的環境、健康及安全優勢 •擴展烷化原料以包括異戊烷及乙烯 使用根據本發明之方法之後,煉油者可升級異戊烷及乙 烯,且同時使習知统化原料組份(例如丁歸、丙稀 '戊稀 與異戊烯)反應以生產高品質汽油摻合組份"匕等額外之 能力使用於此等反應之離子性液體催化劑之高活性及選擇 性部分地成為可能。當所有此等院化反應使用離子性液體 催化劑進行且無一使用硫酸或氫氟酸催化劑進行時,本發 明提供其之最大好處。 【發明内容】 本發明提供一種生產低揮發性之高品質汽油摻合組份之 整合的煉油方法,其包含: (a) 提供第一含乙烯之煉油廠物流; (b) 自該第一物流分離出C2+餾份以生成比該第一物流更富 含乙烯之第二煉油廠物流; (c) 提供含異戊烷煉油廠物流; (d) 在烷化條件下在離子性液體催化劑存在下於烷化區中 使該含異戊烷之煉油廠物流與該第二煉油廠物流接 觸;及 (e)自該烧化區回收低揮發性之高品質汽油摻合組份。 107503.doc 卜I發明提供-種藉由減少燃料氣體生成且同時生
產低揮發性之高品暂屿、4你A 貝八油摻合組份來改良煉油廠運行 之方法。 手 本發明亦提供-括» 種藉由所述方法製備之低揮發性之高品 質汽油穆合組合物。 【實施方式】 原料 本發明之方法的原料之-為含有烯烴之煉油廠物流。,玄 等物流之實例包括咖廢氣、f、減體、敎複分解單^ 廢氣、輯煙汽油單元廢棄、曱醇至烯烴單元廢氣及甲基 第三丁基酸單元廢氣。較佳㈣烴為乙稀。用於進行根據 本發明之方法之較佳乙烯源為來自Fcc單元之廢氣,其可 έ有南達20體積%之乙稀。此物流亦可含有丙稀、丁稀 及戊烯。FCC廢氣較佳經過乙烯提取單元以生成富含乙烯 之Ch餾份(通常為約50體積%)及富含氫之較輕餾份。將 餾份饋入烷化反應器。 本發明之方法之另一原料為含有異烷烴(較佳為異戊烷) 之煉油廠物流。含有異戊烷且可用於本發明之方法之煉油 廠物流包括(但不限於):自FCC單元、氫化裂化單元提取 之異戊烧、來自原油單元蒸餾之C5及C6物流及自轉化爐提 取之Cs及C6物流。自一煉油廠提取之戊烷樣本之分析顯 示’該原料含有86.4%之異戊烷、8%之正戊烷、〇 9%正丁 烷、3.4。/〇之(:6-(:9烷烴及〇_2%之烯烴(C4烯烴及c5缔煙)。其 亦含有88 ppm之硫(硫醇)及0.4 ppm之氮。該原料物流展示 107503.doc 1374932 非常尚之RVP為20,而汽油之所要通用RVp目標為7至8之 範圍。 該含異戊烷之物流亦可含有諸如異丁烷之其它異烷烴。 • 舉例而纟,異丁炫可自氫化裂化單元得到或可購得。 催化劑 最近幾年中,使用離子性液體作為化學反應且尤其催化 方法之新型媒介及溶劑已得到廣泛流行。纟此研究領域 φ 巾,將離子性液體用作諸如稀烴二聚、烯煙寡聚及聚合、 異構化、烷化、氫化、狄爾斯_阿爾德(Die丨s_A丨環化及 • 彳多其它反應之—系列反應中之溶劑已是大勢所趨。簡言 • 之,離子性液11已在有機反應及方法之廣大II圍内用作溶 劑。 可藉由諸如丙烯、1_丁烯、2_丁烯及異丁烯之烯烴影響 諸如異丁院或異戊燒之異⑨烴之烧化的大量液體性或固體 性催化劑係已知的。最廣泛用於工業實踐之催化劑為單獨 • 或與諸如二反化硼之路易斯酸混合之濃硫酸及氫氟酸。 該等方法經受以下主要缺點:氫氟酸之毒性及其高度揮 發性’及根據大體體積計量消耗催化劑的硫酸需要繁 _ · · · · · · 再生。該等原因已推動固體或承載於諸如矽鋁酸鹽或諸如 户瓜®文處理之氧化錯之金屬氧化物的固體上之催化劑的發 展然而’發現固體催化劑通常表現出低選擇性及低活 性。已研究且提出使用氣化鋁。 .根據本發明之方法較佳使用包含至少一種函化鋁及至少 種齒化四級錄及/或至少一種鹵化水合胺(amine 107503.doc 1374932 ha丨ohydrate)之催化組合物。根據本發明可使用之齒化鋁最 佳為氯化紹。 根據本發明可使用之鹵化四級銨為美國專利第5,75〇,455 號中所述之彼等鹵化四級銨,該案以引用的方式倂入本文 中’其亦教示一種製備該催化劑之方法。
對本發明之方法而言最佳之離子性液體催化劑為Ν· 丁基 吡啶鏑氣鋁石(CsHsNC^HgALCl7)。金屬鹵化物可用作助催 化劑以改進催化劑活性及選擇性.如R〇ebuck及
Evenng(Ind. Eng. Chem_ Prod. Res. Devei〇p. ’ 第 9卷, 77 ’ 1970)所公開,通常用於該等用途之鹵化物包括 NaCl、LiCl、KC1、BeCl2、CaCl2、BaCl2、SiCl2、 MgCl2、PbCl2、CuC卜 ZrCl4、AgCl及 PbCl2。較佳的金屬 鹵化物為 CuCl、AgCM、PbCl2、LiCl 及 ZrCl4。 HC1或任何布朗斯特酸(Broensted acid)可用作有效之助 催化劑。美國公開專利申請案第2003/0060359號及第 2004/00779 14號中揭示在實踐本發明中有用之該等助催化 劑及離子性液體催化劑之用途。如Hirschauer等人於美國 專利第6,028,024號中所述,可用於增強離子性液體催化劑 之催化活性之其它助催化劑包括IV B金屬化合物,較佳為 IVB 金屬 _ 化物,諸如 TiCl3、TiCl4、TiBr3、TiBr4、 ZrCl4、ZrBr4、HfCl4、HfBr4。 注意到對於異烷烴與乙烯之烷化而言,H2S〇4及hf不係 有效的,此係特別重要的。所以,在過去不會考慮到本發 明之方法。 I07503.doc -12- 1374932 反應條件 由於烴於離子性液體中之低溶解性,所以如大多數離子 性液體中之反應’稀烴-異烧烴之炫化通常係兩相的,且 發生於液態界面處。在對於脂族烷化而言通常及使用一個 反應階段在分批系統、半分批系統或連續系統中通常於液 體煙相中進行催化烷化反應。異烷烴及烯烴可分別引入或 作為混合物引入。異烷烴與烯烴之間的莫耳比率在1至100 之範圍内’例如有利地在2至5〇之範圍内,較佳地在2至2〇 之範圍内。在半分批系統中,首先引入異烷烴,接著引入 稀煙’或異烷烴與烯烴之混合物。反應器中催化劑體積在 2體積%至70體積%之範圍内,較佳在5體積〇/〇至50體積%之 範圍内茜要強烈授拌以確保反應物與催化劑之間的良好 接觸。反應溫度可在_4(TC至+150°C之範圍内,較佳在_2〇 C至+l〇(TC之範圍内。壓力可在大氣壓力至8〇〇〇千帕之範 圍内,較佳為足以使反應物保持於液相中之壓力。反應物 於容器中之滞留時間在幾秒至幾小時之範圍内,較佳在 0·5分鐘至60分鐘之範圍内。可使用熟習此項技術者已知 之任何方法消除反應所產生之熱。於反應器出口,藉由傾 析自離子相分離出烴相,接著藉由蒸餾分離該等烴,且使 未轉化之起始異烷烴再循環至反應器中。 邮典型之反應條件可包括:於反應器中之催化劑體積為5 肢積%至5G體積%、溫度為·1G〇c ⑼。c、壓力為3〇〇千帕 2 5 00千帕、異烷烴與烯烴之莫耳比率2至8且滯留時間為 】分鐘至1小時。 107503.doc 1374932
以離子性液體形式(氣鋁石離子性液體)之用於催化異烷 烴與稀烴之包含氣化銘及氣化氫(鹽酸)的催化體系係較佳 的。HC1可用作助催化劑以提高反應速率。舉例而言,在 存在HC1下,於分批式高壓釜中異戊烷與乙烯之烷化在小 於10分鐘内完成。在不存在HC1下,該反應通常進行1/2小 時至1小時(50 °C及約965千帕之自生壓力及約為4之進料比 率)。產物選擇性可比得上不存在HC1時氣鋁石離子性液體 之產物選擇性。 過程組態 圖1中展示實施本發明之一實施例的一種整合的煉油廠 烷化方法流程。 將含乙烯煉油廠物流饋入乙烯提取單元以分離出富含乙 烯之C2 +餾份。該乙烯提取單元通常包含膜及/或蒸餾柱分 離設備。將含有異戊烷之第二煉油廠物流饋入蒸餾區。在 烷化條件下於反應器中在離子性液體催化劑存在下使富含 乙烯及異戊烷之物流接觸。接著於催化劑分離器中分離催 化劑相及烴相,且將催化劑再循環回至反應器。將一部分 再循環催化劑送至滑流催化劑再生單元。將烴相送至蒸餾 區以回收未反應之異戊烷從而用於再循環,且於底部收集 烷化產物》若需要,則可處理該烷化產物以移除任何痕量 雜質。 來自乙烯提取單元之排出物流現具有較高氫純度。若相 要,則可藉由使用仏回收單元回收純氫氣來完成排出物I 之進—步升級。收單元通常包含選擇性氫滲透膜單元 I07503.doc 1374932 及/或壓力轉換吸附(PSA)單元。根據本發明之方法為煉油 廠提供關於可藉由選擇用於烷化之烯烴源及含烷烴原料來 製備具有變化組合物之汽油摻合組份之相當大的靈活性。 可使用相同或不同之離子性液體催化劑於一或多個烷化區 中進行根據本發明之烷化反應。舉例而言,上述C2+餾份 可含有丙烯、丁烯及/或戊烯,且含有異戊烷之物流亦可 含有異丁烷。異丁烷可與乙烯烷化生成高辛烷值之c6汽油 摻合組份。可分離出含有C4烯烴之物流,且將其用於異丁 烷、異戊烷或其混合物之烷化。其它變化及組合對於煉油 廠通常係顯而易見的。 下列實例解釋本發明,但不希望以任何超出以下申請專 利範圍内所含有之方式限定本發明。 實例 實例1 :製備N- 丁基吡啶鑷氣鋁石離子性液體 N- 丁基吡啶鏽氯鋁石為一室溫離子性液體,其係藉由於 惰性氣氛中將純氣化N- 丁基〇比D定鑷(固體)與純固體三氣化 鋁混合製備而成《下文描述氣化丁基吡啶鑌及相應N 丁基 °比啶益氣鋁石之合成。於2公升特氟龍襯裏高壓爸中,將 4 00公克(5.05莫耳)無水吡啶(純度為99 9%,購自Aidrich) 與650公克(7莫耳)1-氣丁烷(純度為99.5。/。,購自Aldrichhft) 合。將該淨混合物密封,且於145 〇c自生壓力下攪拌隔 仪。接著’將該高壓釜冷卻至室溫、排氣且將所得混合物 轉移至3公升圓底燒瓶中。用氯仿漂洗襯裏,且溶解黏附 於該襯側面之難以處理的硬質產物。一旦全部轉移,則於 I07503.doc !5 1374932 減屡下在旋轉蒸發器(於熱水浴中)中濃縮該混合物以移除 過昼氯化物、未反應κ比咬及氯仿漂洗液。藉由溶於熱丙綱 中且經由冷卻及添加二乙醚沉澱出純產物來進一步純化所 得褐色固體產物。過濾且於真空中乾燥,且於旋轉蒸發器 上加熱生成750公克(產率為88%)之呈灰白色發光固體狀之 所要產物。對於所要氯化小丁基吡啶鏽而言, 13C_NMRS理想的,且NMR分析未發現有雜質存在。根據 下列程序藉由緩慢混合經乾燥之氯化冰丁基吡啶鏽與無水 氣化鋁(AlCb)來製備Ν·丁基D比啶鏽氯鋁石。於真空中在8〇 C下將氯化N-丁基吡啶鑌(如上述所製備)乾燥钟小時以去 除殘留水(氯化N- 丁基吡啶鑌係吸水性的且曝露空氣中易 吸收水)。將500公克(2.91莫耳)之經乾燥之氯化…丁基吡 啶鏽轉移至於手套工作箱氮氣氛中之2公升燒杯中。接 著,將777.4公克(5.83莫耳)之無水粉末狀Μα〆純度為 99.99%,購自Aldrich)以小部分之形式添加(同時攪拌)以 控制該高度放熱反應之溫度。一旦八叫全部添加,則於 手套工作箱中將所得琥轴樣液體保持輕微㈣隔夜。接著 過濾該液體以移除所有未溶解之A,。所得酸性N 丁基 °比°定鎮氣紹石用作異戊貌與乙㈣化之催化劑。
h3c 0 ih 於i生逛力下 實例2 :分批烧化運行程序 107503.doc 1374932 通吊於50°c下以約為4之院烴/烯烴莫耳比率運行異戊烧 與乙稀之分批院化。於手套工作箱中氮氣氛下,以離子性 液體催化劑及無水異戍炫充滿高壓爸容器。接著密封該高 • i釜,且轉移至罩中並固定至頂置式攪拌器。接著將乙烯 :體”,容器。視引入該高麗爸中之乙稀氣體的量而 谷器之自生壓力通常升至2000千帕至24000千帕。 —旦反應開始㈣(約謂轉每分鐘),壓力則迅速下降至 約900千帕至11〇〇千帕。允許該反應繼續且攪拌直至壓力 I降至0千心7()千帕。接著’停止授拌且迅速移除加熱 =。接著使用冷卻盤管將高壓釜冷卻至室溫。接著,取出 % t體樣本且將該反應器排氣且吹乾以使該系、統不留有任何 《錢體。所得溶液為兩相的,其中產物與過量異戍烧相 位於頂部,而稍離子性液體催化劑相位於底部。接著傾析 出頂部相且保存以用於分析。底部相再循環以進一步使用 或用水中和。通常藉由氣相層析分析完成過量異戍烧中之 φ 產物的化學分析。 實例3 :不施加任何額外壓力(僅系統之自生壓力)的情況下 於丁基°比。定鐳氯鋁石中分批炫化異戊燒 〇c及自纟歷力下’於冑西己有頂置式搜摔器及冷卻盤 K㈣式3〇0立方厘米高心中使乙稀(9 5公克)與異戍 烷(103公克)於20公克之丁基。比。定鑌氯紹石離子中烧化。該 反應允許以約12〇〇轉每分鐘攪拌,直至壓力無明顯之下 降。下文表I展示反應結果。 實例4:在作為助催化劑之Ηα存在下、自生壓力下於丁基 I07503.doc -ί7· 1374932
4502050764403.64.170.58.96.23.5 450208485 04.18.063.39.17.14.2 吡啶鑌氯鋁石中分批烷化異戊烷 於新離子性液體(19.6公克)令以102.7公克異戊烷及9.7公 克乙烯重複上述反應’但此次添加HCI(0.35公克)作為助催 化劑(促進劑)。於50°C及自生壓力及1200轉每分鐘攪拌下 運行該反應。當壓力無明顯之進一步下降時,終止反應》 由於HC1 ’反應係顯著放熱的。下文表1展示反應之結果。 表1 以丁基。比咬鑌氯紹石催化劑進行異戊烧與乙稀之分批院化 實例3 實例4 反應 Sici 有hci — iC5/C2= ^(°C) 起始壓力,千帕 結束壓力,千帕 反應時間(分鐘) 產率% c3. c4 c6 c7 C8 C9
Cio ____3.4 4.3 異戊烷/乙烯烷化之結果係極佳的且大多數產物係在所 要烷化物範圍内,其中在構成產物混合物之主要部分。 生成非常少的重產物。 實例4展不添加作為助催化劑之HC1提高離子性液體催化 劑之活性且改變產物之選擇性。當添加肥作為助催化劑 時’反應'於紐許多之時間内完成(於5分鐘内完成)且觀察到 107503.doc 1374932 產物選擇性略有變化。 實例5.以其它氣鋁石離子性液體催化劑進行異戊烧與乙 烯之分批烷化 具有四級銨或齒化胺鹽之其它氯鋁石離子性液體催化劑 可執行相同之烧化化學。下文表2比較於不同氣銘石離子 性液體催化劑中異戊烷與乙烯之烷化結果。所用之四級銨 或胺鹽為· 1-丁基》比咬鏽(Bpy)、4·甲基-丨·丁基。比咬鏽 (MBPy)、卜丁基-3-甲基咪唑銪及三丁基甲基銨 (TBMA)氣鋁石。該等反應均係於5〇〇c及自生壓力下、原 料烧烴/稀煙之莫耳比率為4、於2〇公克離子性液體中進行 1小時。 表2 以不同氣銘石催化劑進行異戊烷與乙烯之分批烷化 用於製成氯鋁石催化劑之鹽 MBPy BPy TBMA BMIM 起始壓力,千帕 2040 2230 2140 1920 結束壓力,千帕 290 76 540 69 乙烯轉化率 65% 95% 55% 95% 產物選擇性,重量% [cl 2.6 Γ o Γ 3.0 0 C4 3.3 3.6 2.4 3.6 c6 3.8 4.3 2.7 4.2 C7 65.8 65.6 69.1 68.8 Q 9.9 9.8 9.2 9.7 C9 7.3 6.5 7.3 6.4 C]〇 5.5 卜4.7 4.3 4.3 C]l + 1.6 3.4 1.9 3.0
上述結果指示乙烯轉化率及產物選擇性受到催化劑選擇 之影響。以三丁基曱基銨製成之氣鋁石催化劑之活性小於 I07503.doc -19- 1374932 其它三種催化劑之活性。以烴基取代之氯化吡啶鑌或烴基 取代之氣化咪唑鎬製成之氣鋁石催化劑展示出高活性及優 良選擇性。 實例6:異戊烷與乙烯之連續烷化
於100立方厘米連續攪拌槽式反應器中,執行乙烯與異 戊烷之烷化的評價。在1600轉每分鐘之強烈攪拌下,將 4:1莫耳比率之異戊烷與乙烯混合物饋入反應器。經由第 二入口端,將離子性液體催化劑饋入反應器以佔據反應器 之1 5體積%。向該製程中添加少量無水HC1氣體(催化劑與 HC1之莫耳比率為10:1)。原料與催化劑之組合體積的平均 滞留時間為約40分鐘。使用反壓力調節器使出口壓力維持 在2300千帕。將反應器溫度維持於50°C下。於3-相分離器 中,將反應器排出液分離成C4.氣體、烷化烴相及離子性液 體催化劑。於表3中概述操作條件及產率資訊。 表3
異戊烷與乙烯之連續烷化 溫度,°c 50 總壓力,千帕 2300 催化劑體積分數 0.15 外部I/O莫耳比率 4.0 烯烴空間速率/催化劑體積(LHSV) 1.1 催化劑與HC1之莫耳比率 10 反應物滞留時間,分鐘 40 乙烯轉化率,重量% 95 所轉化產物之選擇性,重量% c4. 正c5+新c5 C6 4.3 2.1 4.2 -20- 107503.doc (S) 1374932 C7 78.6 C8 1.4 C9 7.0 Cm 2.4 總計 100.0 C7產物異構體分佈,% 三曱基丁烷/總C7 0.2 2,3-二甲基戊烷/總C7 49.0 2,4-二曱基戊烷/總C7 48.6 其它二甲基戊烷/總<:7 0.1 甲基己烷/總c7 2.1 正庚烷/總<:7 0.0 合計 100.0
此烷化方法係高選擇性的,其在於所轉化產物之78.6% 為C7異烷烴。烷化汽油之詳細組合物分析指示C7餾份幾乎 全部源自2,3-二曱基戊烷及2,4-二甲基戊烷。2,3-二甲基戊 烷及三曱基丁烷係高辛烷值汽油之所要異構體(RON分別 為 91及 112)。
將烴產物蒸餾以分離正戊烷與較高沸點烷化汽油(30°C + )餾份,且量測或評價烷化汽油之性質。假定體積計量線 性摻合,基於GC組合物及研究純化合物之辛烷值來計算 研究辛烷值。摻合辛烷值係於7.5%及15%之摻合程度處量 測接著外推至1 〇〇%之摻合程度。假定線性莫耳摻合使用 GC資料評價RVP及平均密度。使用ASTM D2887模擬蒸餾 量測 T10、T50及 T90。 表4 來自異戊烷與乙烯烷化之烷化汽油的產物性質 107503.doc -21- (8) 1374932 平均密度,公克/立方厘米 0.69 平均分子量,公克/莫耳 104 平均RVP 2.5 平均RON 87 摻合RON 91 摻合MON 84 模擬蒸餾,D2887,°C T-10重量% 76 T-50重量% 88 T-90重量% 119
產物性質資料顯示,藉由使用本發明之方法,高RVP異 戊烷(20 RVP)轉化成具有2.5之低RVP之烷化汽油。高辛烷 值(9 1摻合RON)及極佳沸點分佈係根據本發明方法製備之 汽油摻合組份的其它所要特徵。為達成高辛烷值,較佳將 相對於總C7產率之2,3-二甲基戊烷之選擇性維持於40%之 上。 實例7 :異戊烷與丙烯之連續烷化
除使用不同處理條件外,經由與實例6所述之程序相似 之程序,執行丙烯與異戊烷之烷化。於l〇°C之反應器溫度 及7體積%之催化劑下,將8:1莫耳比率之異戊烷與丙烯混 合物饋入反應器中。表5中給出操作條件及產率資訊之匯 Λ»4η 士 微不 u 表5 異戊烧與丙稀之連續院化 溫度,。C 1〇 總壓力,千帕 290 催化劑體積分數 〇.〇7 外部I/O莫耳比率 8.0 烯烴空間速率/催化劑體積(LHSV) 4.4 107503.doc -22 - 1374932 反應物滯留時間,分鐘 24 丙婦轉化率,重量°/〇 100 所轉化產物之選擇性,重量% 〇4· 3.6 Q 2.3 C7 1.4 C8 74.2 C9 2.9 CiOf 15.6 總計 100.0 <:8產物異構體分佈,重量% 三甲基戊烧/總<:8 36.5 二甲基己烧/總c8 54.8 曱基庚:)^/總(:8 8.7 正辛烧/總c8 0.0 合計 100.0
將烴產物蒸餾以生成正戊烷及高沸點烷化汽油(30°C +) 餾分,且量測或評價烷化汽油之性質,並報導於表6中。 表6 來自異戊烧與丙稀燒化之烧化汽油的產物性質 平均密度,公克/立方厘米 0.71 平均分子量,公克/莫耳 119 平均RVP 1.0 平均RON 82 摻合RON 79 摻合MON 78 模擬蒸餾,D2887,°C T-10重量% 107 T-50 重量 °/〇 111 丁-卯重量% 169
產物性質資料顯示,使用本發明之方法,將高RVP異戊 烷(20 RVP)轉化成具有1.0之低RVP的烷化汽油。高辛烷值 (82 RON)及極佳沸點分佈係根據本發明製備之汽油摻合組 107503.doc -23· 1374932 份之其它所要特徵。 實例8:異丁烷與2_丁烯之烷化
於100立方厘米連續攪拌槽式反應器中,執行C4烯烴與 異丁烷之烷化的評價。在1 600轉每分鐘之強烈攪拌下,將 8 :1莫耳比率之異丁烷與2- 丁烯混合物饋入反應器中。經由 第二入口端,將離子性液體催化劑饋入反應器以佔據反應 器之1 0-1 5體積%。向該製程中添加少量無水HC1氣體。平 均滯留時間(原料與催化劑之組合體積)為約8分鐘。使用反 壓力調節器使出口壓力維持於100 psig下。使用外部冷 卻,將反應器溫度維持於〇°C下。於3-相分離器中,將反 應器排出液分離成C,氣體、烷化烴相及離子性液體催化 劑。使用氣體層析法分析烷化汽油之詳細組合物。假定體 積計量線性摻合,基於GC組合物及研究純化合物之辛烷 值來計算研究辛烷值。於表7中概述操作條件及效能。
表1 :烷烴與C4烯烴烷化 原料烯烴源 順-2-丁稀 反-2-丁烯 原料烧經源 異丁烷 異丁烷 催化劑 BupyA^Cl? CuCl/BupyA^Cl? AiCi3催化劑:HC1莫耳比率 60 40 酸體積分數 0.1 0.15 反應器攪拌之RPM 1600 1600 溫度 0 0 烯烴空間速率,LHSV 6.6 4.3 外部I/O比率,莫耳比率 8.0 8.0 反應物滯留時間,分鐘 8.0 8.1 烯煙轉化率,重量% 100 100 -24- 107503.doc ④ 1374932 C 5+汽油組合物 C5 1.1 1.5 C6 2.4 1.8 C7 2.7 2.3 C8 82.9 79.8 C9+ 10.9 14.6 合計 100.0 100.0 三甲基戊院/總C8,% 95.3 95.3 二曱基己烷/總C8,% 4.5 4.5 曱基庚烧/總C8,% 0.2 0.2 正辛烧/總C8,% 0.0 0.0 研究辛烷值 98.6 98.4
表7中之結果顯示以正丁基吡啶鑌氣鋁石離子性液體催 化劑可獲得高辛烷值烷化物。以2-丁烯,超過95%之C8餾 份包含具有約100之RON之三曱基戊烷。 實例9 :減少燃料氣體及選擇回收H2
本發明之方法可藉由轉化FCC廢氣中之乙烯降低煉油廠 中過量燃料氣體的生產量。如表8所概述,本發明之此態 樣使用來自煉油廠之典型FCC廢氣資料於此實例中展示。 表8 使用乙烯烷化之減少燃料氣體及選擇回收H2 典型FCC 廢氣As-ls 提取C2+後 提取c2++ 回收氏後 廢氣體積,MMSCFD* 26 21 12 燃料氣體減少,% 〇(基準情況) 19 55 所回收之H2,MMSCFD 廢氣組合物,體積% 0 0 9.2 h2s 10 ppm 0 0 n2 6.0 7.4 13.2 〇2 0.1 0 0 -25- 107503.doc 1374932 C〇2 0.4 0 0 CO 0.3 0 0 h2 35.8 44.0 0 甲烷 27.5 33.8 60.4 乙烧 10.6 13 23.2 乙烯 15 0 0 丙烧 1.2 1.5 2.7 丙稀 2.5 0 0 正丁烷 0.1 0.1 0.2 異丁烷 0.1 0 0 丁烯 0.1 0 0 c5+ 0.3 0.2 0.4 合計 100 100.0 100.0
此煉油廠每曰自FCC單元生成26百萬標準立方英尺 (MMSCFD)之燃料氣體,且該物流含有15體積%之乙烯。 使用根據本發明之方法藉由使乙烯物流與異戊烷或異丁烷 之物流烷化致使乙烯物流轉化成高辛烷值汽油摻合組份。 將來自乙烯提取單元之燃料汽油之量減少至21 MMSCFM ’因此降低燃料氣體處理設備之負擔。在此情況 下’減少大約19%之燃料氣體係可行的。
如表8所示’提取乙烯或Gy物流將改良]pec廢氣中之氫 的純度(自36%至44%)。可藉由使用諸如壓力轉換吸附 (PSA)早兀或膜單元之氫回收單元回收純氫氣來達成該排 出物流之進一步升級。藉由組合提取乙稀及回收氫,大體 上減少燃料氣體之量。在此情π 丁 , _ 規…“ m兄下’相對於基準情況可實 現间達55%之燃料氣體的減
之气名^ 夕此外,可回收9 MMSCFD 之虱氣。馨於與煉油廠中燃料氣.體生 常嚴格的環境法規,藉由使用本發明 子相關之非 減少及氣生產之好處係明顯的且非常期望:之燃料氣體 J07503.doc -26· 才艮據本文φ π 4述之教示性及輔助性實 發明之多種變舯 I例了此存在關於本 嘴内,可因此應瞭解’在下列申請專利範圍之範 發明。Μ與本文中特定描述或例示之内容π地實踐本 【圖式簡單說明】 圖1為一根據本發明之整合的煉油方法之圖表。
107503.doc 27.

Claims (1)

  1. h年π月了日修正第〇94丨45394號專利申請案 申請專利範圍: —----*中文申請專利範圍替換‘('ιοί年7月) 一種生產低揮發性之高品質汽油摻合組份之整合的煉油 方法,其包含: (a) 提供一第一含乙烯之煉油廠物流; (b) 自該第一物流分離出C2+餾份以生成比該第一物流更 富含乙烯之第二煉油廠物流; (c) 提供一含異戊烷之煉油廠物流; (d) 在烷化條件下於一烷化區中在離子性液體催化劑存在 下與IV B族金屬化合物不存在下,使該含異戊烷之煉 油廠物流與該第二煉油廠物流接觸〇 5至6〇分鐘藉 此得到至少65%的乙烯轉化率;及 (e) 自該烷化區回收低揮發性之高品質汽油摻合組份。 2. 如請求項1之方法,其中該含乙烯之煉油廠物流包含來 自一 FCC單元之廢氣》 3. 如請求項1之方法,其中該含乙烯之煉油廠物流包含fcc 去乙烷塔之塔頂餾出物。 4 ·如吻求項1之方法,其中該離子性液體催化劑包含烴基 取代之氣化°比。定鏽或烴基取代之氯化B米唾鑌。 5. 如π求項4之方法,其中該離子性液體催化劑包含烷基 取代之氯化η比啶鑌或烷基取代之氯化咪唑鎮。 6. 如凊求項5之方法,其中該離子性液體催化劑係選自由 下列各物組成之群:1 · 丁基-4-甲基η比咬鑌氣銘石 (ΒΜΡ)、丨_丁基吡啶鑌氣鋁石(ΒΡ)、1-丁基_3·甲基咪唑 鐵氣链石(ΒΜΙΜ)及1-Η-吡啶鏽氯鋁石(HP)。 107503-1010703.doc 7. 8. 9. 10. 11. 12. 13. 如請求項1 $ 士、丄 方法,其進一步包含將該等高品質汽油摻 合組份摻合至汽油中。 如請求項]夕+、L 。 方法,其申該含異戊烧之物流包含自一 FCC 車元提取g丄、 吳戊烷、自一氫化裂化單元提取之異戊统、 '、 '由蒸館之〇5及c6物流或自一轉化爐提取之(^5及c6 物流。 求項1之方法’其中該離子性液體催化劑進一步包 含HC1助催化劑。 如凊求項1之方法,其中該第一含乙烯之煉油廠物流包 含乙烯、丙烯、丁烯及戊烯。 青求項1之方法’其中該第一煉油廠物流含有氫且 進步包含自比該第一物流更富含氫之該第一煉油廠物 流分離出C2·館份;及自該c2•餾份回收氫。 如請求項1之方法,其進一步包含: (f) 提供一包含至少一種選自由乙烯、丙烯、丁烯、戊烯 及其混合物組成之群之烯烴的第三煉油廠物流; (g) 提供包含至少一種選自由異丁烷、異戊烷及其混合 物之異烷烴的第四煉油廠物流; ⑻在院化條件下於—第二院化區中使該第三煉油廠物流 及第四煉油廠物流與一離子性液體催化劑接觸;及 (1)自該第二烷化區回忮汽油摻合組份。 一種藉由降低燃料氣體生成且同時生產低揮發性之高品 質汽油摻合組份來改良煉油廠運行效率之方法,其包 含: 107503-1010703.doc -2- 1374932 (a) 提供一包含氫及C2-C5烯烴之第一煉油廠物流; (b) 自該第一物流分離出(:2+餾份以生成—比該第一物流 更富含烯烴之第二煉油廠物流及一比該第一物流更富 含氫之第三煉油廠物流; (c) 提供一含異戊烧之煉油廠物流; (d) 在烷化條件下於一烷化區中在離子性液體催化劑存在 下與IV B族金屬化合物不存在下,使該含異戊烷煉油 廠物流與該第二煉油廠物流接觸0.5至6〇分鐘,藉此 得到至少65°/〇的乙稀轉化率; (e) 自該烷化區回收低揮發性之高品質汽油摻合組份;及 (0自該第三煉油廠物流回收氫。 14. 如請求項13之方法,其中該含乙烯之煉油廄物流包含來 自一 FCC單元之廢氣。 15. 如請求項13之方法,其中該含乙烯之煉油廠物流包含 FCC去乙烷塔之塔頂餾出物。 16. 如請求項13之方法,其中該離子性液體催化劑包含烴基 取代之氣化吼啶鑌或烴基取代之氣化咪唑鑌。 17. 如請求項16之方法,其中該離子性液體催化劑包含烷基 取代之氣化吡啶鏽或烷基取代之氣化咪唑鑌。 18. 如請求項17之方法,其中該離子性液體催化劑係選自由 下列各物組成之群:丨·丁基·4_曱基β比啶钂氯鋁石 (ΒΜΡ)、丨_ 丁基吡啶鑌氣鋁石(BP)、1-丁基-3-曱基咪唑 鑌氣鋁石(ΒΜΙΜ)及1-Η-吡啶鑌氣鋁石(Ηρ)。 19·如凊求項13之方法,其進一步包含將該等高品質汽油摻 107503-1010703.doc 1374932 合組份摻合至汽油中β 20.如明求項13之方法,其中該含異戍院之物流包含自〜 似單元提取之異戊院、自—氫化心單域取之異: 烷 '源自原油蒸餾之。5及。6物流或自一轉化爐提取 及C6物流。 5 1.如月求項13之方法,其中該離子性液體催化劑進一步包 含HC1助催化劑。 22. 如明求項13之方法,其中該第—含乙烯之煉油廠物流包 含乙烯、丙烯、丁烯及戊烯。 23. 如凊求項13之方法,其進一步包含: (g) 提供一包含至少一種選自由乙烯、丙烯、丁烯、戊烯 及其混合物組成之群之烯烴的第三煉油廠物流; (h) 提供一包含至少一種選自由異丁烷、異戊烷及其混合 物組成之群之異烷烴的第四煉油廠物流; (1)在烧化條件下於一第二炫;化區中使該第三煉油廠物流 及第四煉油廠物流與離子性液體催化劑接觸;及 (j)自該第二烷化區回收汽油摻合組份。 107503-1010703.doc
TW094145394A 2004-12-21 2005-12-20 Integrated alkylation process using ionic liquid catalysts TWI374932B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/021,167 US7432408B2 (en) 2004-12-21 2004-12-21 Integrated alkylation process using ionic liquid catalysts

Publications (2)

Publication Number Publication Date
TW200630477A TW200630477A (en) 2006-09-01
TWI374932B true TWI374932B (en) 2012-10-21

Family

ID=36594345

Family Applications (2)

Application Number Title Priority Date Filing Date
TW101124508A TWI449683B (zh) 2004-12-21 2005-12-20 「使用離子性液體催化劑之整合的烷化方法所製備之汽油摻合組合物」
TW094145394A TWI374932B (en) 2004-12-21 2005-12-20 Integrated alkylation process using ionic liquid catalysts

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW101124508A TWI449683B (zh) 2004-12-21 2005-12-20 「使用離子性液體催化劑之整合的烷化方法所製備之汽油摻合組合物」

Country Status (8)

Country Link
US (1) US7432408B2 (zh)
EP (1) EP1836285B1 (zh)
KR (1) KR101264942B1 (zh)
AU (1) AU2005323188B2 (zh)
BR (1) BRPI0519159B8 (zh)
MY (1) MY142255A (zh)
TW (2) TWI449683B (zh)
WO (1) WO2006073749A2 (zh)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732363B2 (en) * 2005-12-20 2010-06-08 Chevron U.S.A. Inc. Regeneration of acidic catalysts
US7531707B2 (en) * 2006-12-13 2009-05-12 Chevron U.S.A., Inc Alkylation process using an alkyl halide promoted ionic liquid catalyst
DE102007035500A1 (de) * 2007-07-28 2009-01-29 Andreas Stihl Ag & Co. Kg Kraftstoffzusammensetzung
US7956230B2 (en) * 2007-12-21 2011-06-07 Chevron U.S.A. Inc. Reduction of organic halide contamination in hydrocarbon products
US7732364B2 (en) * 2007-12-28 2010-06-08 Chevron U.S.A. Inc. Process for ionic liquid catalyst regeneration
US8183425B2 (en) 2007-12-28 2012-05-22 Chevron U.S.A. Inc. Ionic liquid catalyst alkylation using split reactant streams
US20090171133A1 (en) * 2007-12-28 2009-07-02 Chevron U.S.A. Inc. Ionic liquid catalyst alkylation using a loop reactor
US8198499B2 (en) * 2007-12-28 2012-06-12 Chevron U.S.A. Inc. Ionic liquid catalyzed alkylation process employing nozzles and system implementing such process
US7923593B2 (en) * 2008-07-31 2011-04-12 Chevron U.S.A. Inc. Process for producing a middle distillate
US7919663B2 (en) * 2008-07-31 2011-04-05 Chevron U.S.A. Inc. Process for producing a low volatility gasoline blending component and a middle distillate
US7955495B2 (en) * 2008-07-31 2011-06-07 Chevron U.S.A. Inc. Composition of middle distillate
US7919664B2 (en) * 2008-07-31 2011-04-05 Chevron U.S.A. Inc. Process for producing a jet fuel
US7923594B2 (en) * 2008-07-31 2011-04-12 Chevron U.S.A. Inc. Process for producing middle distillate by alkylating C5+ isoparaffin and C5+ olefin
US8524623B2 (en) * 2008-11-26 2013-09-03 Chevron U.S.A. Inc. Electrochemical removal of conjunct polymers from chloroaluminate ionic liquids
US8067656B2 (en) 2008-11-26 2011-11-29 Chevron U.S.A. Inc. Liquid-liquid separation process via coalescers
US8541638B2 (en) * 2008-11-26 2013-09-24 Chevron U.S.A. Inc. Process to remove dissolved AlCl3 from ionic liquid
US8658426B2 (en) * 2008-11-26 2014-02-25 Chevron U.S.A. Inc. Monitoring of ionic liquid catalyst deactivation
US20100126948A1 (en) 2008-11-26 2010-05-27 Chevron U.S.A. Inc. Filtering process and system to remove aici3 particulates from ionic liquid
US20100152027A1 (en) * 2008-12-15 2010-06-17 Chevron U.S.A., Inc. Ionic liquid catalyst having a high molar ratio of aluminum to nitrogen
US20100152518A1 (en) * 2008-12-15 2010-06-17 Chevron U.S.A., Inc. Process to make a liquid catalyst having a high molar ratio of aluminum to nitrogen
US8889934B2 (en) 2008-12-15 2014-11-18 Chevron U.S.A. Inc. Process for hydrocarbon conversion using, a method to make, and compositions of, an acid catalyst
WO2011015654A2 (en) * 2009-08-06 2011-02-10 Shell Internationale Research Maatschappij B.V. Process for preparing an alkylate
US9212321B2 (en) * 2009-12-31 2015-12-15 Chevron U.S.A. Inc. Process for recycling hydrogen halide to a reactor comprising an ionic liquid
US8237004B2 (en) * 2009-12-31 2012-08-07 Chevron U.S.A. Inc. Process for making products with low hydrogen halide
US8455708B2 (en) * 2010-03-17 2013-06-04 Chevron U.S.A. Inc. Flexible production of alkylate gasoline and distillate
US8895794B2 (en) * 2010-03-17 2014-11-25 Chevron U.S.A. Inc. Process for producing high quality gasoline blending components in two modes
US8487154B2 (en) * 2010-03-17 2013-07-16 Chevron U.S.A. Inc. Market driven alkylation or oligomerization process
US20110282114A1 (en) 2010-05-14 2011-11-17 Chevron U.S.A. Inc. Method of feeding reactants in a process for the production of alkylate gasoline
US8388903B2 (en) * 2010-06-28 2013-03-05 Chevron U.S.A. Inc. Supported ionic liquid reactor
US8865960B2 (en) * 2010-06-28 2014-10-21 Chevron U.S.A. Inc. Startup procedures for ionic liquid catalyzed hydrocarbon conversion processes
US8729329B2 (en) * 2010-06-28 2014-05-20 Chevron U.S.A. Inc. Supported liquid phase ionic liquid catalyst process
DE112011102210T5 (de) 2010-06-29 2013-06-27 Chevron U.S.A. Inc. Mit ionischer Flüssigkeit katalysierte Alkylierung mit Ethylen in ethylenhaltigen Gasströmen
US8685880B2 (en) 2010-06-30 2014-04-01 Chevron U.S.A. Inc. On-site drying of aqueous salt for ionic liquid make-up
US8795515B2 (en) 2011-06-28 2014-08-05 Chevron U.S.A. Inc. Catalytic dechlorination processes to upgrade feedstock containing chloride as fuels
US8921636B2 (en) * 2011-09-12 2014-12-30 Chevron U.S.A. Inc. Conversion of HF alkylation units for ionic liquid catalyzed alkylation processes
US20130066130A1 (en) * 2011-09-12 2013-03-14 Chevron U.S.A. Inc. Ionic liquid catalyzed alkylation processes & systems
US8728301B2 (en) * 2011-09-12 2014-05-20 Chevron U.S.A. Inc. Integrated butane isomerization and ionic liquid catalyzed alkylation processes
US8920755B2 (en) 2011-09-12 2014-12-30 Chevron U.S.A. Inc. Conversion of HF alkylation units for ionic liquid catalyzed alkylation processes
US9233316B2 (en) * 2012-07-31 2016-01-12 Chevron U.S.A. Inc. Hydrogen recycle and hydrogen chloride recovery in an alkylation process
US8704018B2 (en) 2012-07-31 2014-04-22 Chevron U.S.A. Inc. Extracted conjunct polymer naphtha
US9302199B2 (en) * 2012-07-31 2016-04-05 Chevron U.S.A. Inc. Alkylation process with recycle of hydrogen and recovery of hydrogen chloride
US8884091B2 (en) 2013-03-14 2014-11-11 Chevron U.S.A. Inc. Integration of hydro-dechlorination and hydro-regeneration
US9839897B2 (en) 2013-05-30 2017-12-12 Chevron U.S.A. Inc. Method for reducing organic halide contamination in hydrocarbon products using a metal chloride
US9096480B2 (en) 2013-06-28 2015-08-04 Uop Llc Catalytic disproportionation of heptane using ionic liquids
US9102578B2 (en) 2013-06-28 2015-08-11 Uop Llc Catalytic isomerization of paraffins using ionic liquids
US9126881B2 (en) 2013-06-28 2015-09-08 Uop Llc Catalytic isomerization of pentane using ionic liquids
US20150005554A1 (en) 2013-06-28 2015-01-01 Uop Llc Catalytic isomerization of butane using ionic liquids
US9096485B2 (en) 2013-06-28 2015-08-04 Uop Llc Catalytic isomerization of heptane using ionic liquids
US9096482B2 (en) 2013-06-28 2015-08-04 Uop Llc Catalytic reverse disproportionation of paraffins using ionic liquids
US9096481B2 (en) 2013-06-28 2015-08-04 Uop Llc Catalytic disproportionation of pentane using ionic liquids
US9096483B2 (en) 2013-06-28 2015-08-04 Uop Llc Catalytic isomerization of hexanes using ionic liquids
US9102577B2 (en) 2013-06-28 2015-08-11 Uop Llc Catalytic disproportionation of paraffins using ionic liquids
US9302951B2 (en) 2014-01-30 2016-04-05 Uop Llc Ionic liquid alkylation of 1-butene to produce 2,5-dimethylhexane
CN111234862A (zh) 2014-02-07 2020-06-05 沙特基础工业公司 使用酸催化剂如酸性离子液体从烯烃流中去除芳香族杂质
WO2015118469A1 (en) 2014-02-07 2015-08-13 Saudi Basic Industries Corporation Removal of aromatic impurities from an alkene stream using an acid catalyst
CN104971674B (zh) * 2014-04-08 2017-03-08 中国石油大学(华东) 基于液相催化剂的液液非均相催化反应分离一体化装置
WO2015175238A1 (en) * 2014-05-14 2015-11-19 Exxonmobil Research And Engineering Company Reid vapor pressure control process
US20160067668A1 (en) 2014-09-09 2016-03-10 Chevron U.S.A. Inc. Cost-effective materials for process units using acidic ionic liquids
US9950970B2 (en) 2014-12-12 2018-04-24 Uop Llc Ionic liquid reactor with heat exchanger
US10023508B2 (en) 2014-12-12 2018-07-17 Uop Llc Viscosity modifiers for decreasing the viscosity of ionic liquids
US9669377B2 (en) 2014-12-12 2017-06-06 Uop Llc Ionic liquid reactor with heat exchanger
US9938473B2 (en) 2015-03-31 2018-04-10 Chevron U.S.A. Inc. Ethylene oligomerization process for making hydrocarbon liquids
US9914674B2 (en) 2015-03-31 2018-03-13 Uop Llc Process for alkylation using low ionic liquid volume fraction
US9914675B2 (en) 2015-03-31 2018-03-13 Uop Llc Process for alkylation using ionic liquid catalysts
US10364204B2 (en) 2015-06-22 2019-07-30 Lyondell Chemical Technology, L.P. Process for manufacturing methyl tertiary-butyl ether (MTBE) and other hydrocarbons
US20170007993A1 (en) 2015-07-08 2017-01-12 Chevron U.S.A. Inc. Sulfur-contaminated ionic liquid catalyzed alklyation
WO2017132016A1 (en) 2016-01-29 2017-08-03 Chevron U.S.A. Inc. Regeneration of acidic ionic liquid without addition of a hydrogenation catalyst
US9822046B1 (en) 2016-05-19 2017-11-21 Chevron U.S.A. Inc. Farnesane alkylation
US10093594B2 (en) 2016-05-19 2018-10-09 Chevron U.S.A. Inc. High viscosity index lubricants by isoalkane alkylation
US10307745B2 (en) * 2016-07-29 2019-06-04 The Procter & Gamble Company Catalysts for making acrylic acid from lactic acid or its derivatives in liquid phase
US10059639B2 (en) 2016-09-02 2018-08-28 Chevron U.S.A. Inc. Alkylation of refinery pentenes with isobutane
US10279339B2 (en) 2016-11-02 2019-05-07 Chevron U.S.A. Inc. Integrated system to continuously inject small amounts of immiscible liquid
US10094778B1 (en) 2017-06-02 2018-10-09 Chevron U.S.A. Inc. Integrated systems and processes for online monitoring of a chemical concentration in an ionic liquid
US10301233B2 (en) 2017-07-03 2019-05-28 Chevron U.S.A. Inc. Natural gas liquid upgrading by ionic liquid catalyzed alkylation
US10005057B1 (en) 2017-09-26 2018-06-26 Chevron U.S.A. Inc. Segmented reactor for homogeneous regeneration of spent ionic liquid
US10486131B2 (en) 2017-10-26 2019-11-26 Chevron U.S.A. Inc. Integrated reactor system for ionic liquid-catalyzed hydrocarbon conversion
CN112574004B (zh) * 2020-12-12 2022-12-16 江苏华星新材料科技股份有限公司 一种合成聚合受阻酚的新方法
GB202406635D0 (en) 2021-12-15 2024-06-26 Chevron Usa Inc Ionic liquid alkylation of isobutane with bio-ethylene to produce alkylate
US11724972B2 (en) * 2021-12-15 2023-08-15 Uop Llc Combined process for alkylation of light olefins using ionic liquid catalysts
WO2023111703A1 (en) 2021-12-15 2023-06-22 Chevron U.S.A. Inc. Ionic liquid alkylation of isobutane with ethylene to produce alkylate
WO2023111704A1 (en) * 2021-12-15 2023-06-22 Chevron U.S.A. Inc. Integrated reactor for ionic liquid alkylation using ethylene feedstock

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB558487A (en) * 1940-07-16 1944-01-07 Standard Oil Dev Co An improved process for the alkylation of isoparaffins
US4764440A (en) * 1987-05-05 1988-08-16 Eveready Battery Company Low temperature molten compositions
CA2092754C (en) * 1992-05-01 1999-03-16 Ronald Gordon Abbott Isoparaffin-olefin alkylation
FR2692888B1 (fr) * 1992-06-24 1994-09-30 Inst Francais Du Petrole Procédé amélioré d'alkylation d'hydrocarbures aliphatiques.
US5510561A (en) * 1992-12-21 1996-04-23 Kerr-Mcgee Chemical Corporation Homogenous catalyst and processes for fluid phase alkylation
FR2725919B1 (fr) * 1994-10-24 1996-12-13 Inst Francais Du Petrole Composition catalytique et procede pour l'alkylation d'hydrocarbures aliphatiques
US5593569A (en) * 1995-01-09 1997-01-14 Kerr-Mcgee Hydrocracking processes using a homogenous catalysis system comprising a metal halide Lewis acid, a Bronsted acid and an alkane
EP0822969B1 (en) * 1995-04-27 1999-06-02 Abb Lummus Global Inc. Process for converting olefinic hydrocarbons using spent fcc catalyst
EP0748654A1 (fr) * 1995-06-15 1996-12-18 Institut Francais Du Petrole Catalyseur d'alkylation aliphatique comprenant une phase active comportant un composé cuivreux, sur support
US5827602A (en) * 1995-06-30 1998-10-27 Covalent Associates Incorporated Hydrophobic ionic liquids
FR2736911A1 (fr) * 1995-07-20 1997-01-24 Inst Francais Du Petrole Catalyseur liquide d'alkylation aliphatique
US5705729A (en) * 1995-11-22 1998-01-06 Mobil Oil Corporation Isoparaffin-olefin alkylation process
US5731101A (en) * 1996-07-22 1998-03-24 Akzo Nobel Nv Low temperature ionic liquids
US5824832A (en) * 1996-07-22 1998-10-20 Akzo Nobel Nv Linear alxylbenzene formation using low temperature ionic liquid
FR2761618B1 (fr) * 1997-04-08 1999-05-14 Inst Francais Du Petrole Composition catalytique et procede pour l'alkylation d'hydrocarbures aliphatiques
US6288281B1 (en) * 2000-11-16 2001-09-11 Uop Llc Direct carbonylation of paraffins using an ionic liquid catalyst
NL1021362C2 (nl) * 2001-08-31 2003-08-05 Inst Francais Du Petrole Katalysator- en oplosmiddelsamenstelling en katalysewerkwijzen waarbij deze samenstelling wordt toegepast.
EP1402950A1 (en) * 2002-09-25 2004-03-31 Haldor Topsoe A/S Catalyst and process of paraffin hydrocarbon conversion
EP1403236A1 (en) * 2002-09-25 2004-03-31 Haldor Topsoe A/S Process of paraffin hydrocarbon isomerisation catalysed by an ionic liquid in the presence of a cyclic hydrocarbon additive
CN1203032C (zh) * 2002-11-12 2005-05-25 石油大学(北京) 以复合离子液体为催化剂制备烷基化油剂的方法

Also Published As

Publication number Publication date
EP1836285A2 (en) 2007-09-26
AU2005323188B2 (en) 2011-11-03
AU2005323188A1 (en) 2006-07-13
TW200630477A (en) 2006-09-01
BRPI0519159B1 (pt) 2015-11-10
US20060131209A1 (en) 2006-06-22
US7432408B2 (en) 2008-10-07
KR101264942B1 (ko) 2013-05-15
TWI449683B (zh) 2014-08-21
EP1836285A4 (en) 2011-09-21
EP1836285B1 (en) 2019-11-20
WO2006073749A3 (en) 2007-03-01
KR20070091346A (ko) 2007-09-10
BRPI0519159A2 (pt) 2008-12-30
MY142255A (en) 2010-11-15
TW201242928A (en) 2012-11-01
BRPI0519159B8 (pt) 2016-05-24
WO2006073749A2 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
TWI374932B (en) Integrated alkylation process using ionic liquid catalysts
TWI397441B (zh) 利用氯鋁石離子液態觸媒之烷化方法
CN101622214B (zh) 使用卤代烷促进的离子液体催化剂的烷基化方法
US8183425B2 (en) Ionic liquid catalyst alkylation using split reactant streams
US10683460B2 (en) Ethylene oligomerization process for making hydrocarbon liquids
US20090171133A1 (en) Ionic liquid catalyst alkylation using a loop reactor
AU2014380443B2 (en) Catalyst and method for aromatization of C3-C4 gases, light hydrocarbon fractions and aliphatic alcohols, as well as mixtures thereof
US20110319693A1 (en) Ionic liquid catalyzed alkylation with ethylene in ethylene containing gas streams
CN104487548B (zh) 在烷基化方法中氢气的循环和氯化氢的回收
SG181453A1 (en) Alkylation method using ionic liquid as catalyst
US8497404B1 (en) Processes for upgrading fischer-tropsch condensate by olefin enrichment and alkylation of hydrocrackate
US20120053378A1 (en) Process for conversion of methanol into gasoline
WO2015028514A1 (en) Composite ionic liquid catalyst
AU674959B2 (en) Homogeneous catalyst and process for liquid phase isomerization and alkylation
CN118317938A (zh) 进行异丁烷和乙烯的离子液体烷基化以产生烷基化物