TWI338573B - Sequential wavefront sensor,wavefront compensation system,and methods of detecting and compensation aberrations of an incident wavefont using the same - Google Patents
Sequential wavefront sensor,wavefront compensation system,and methods of detecting and compensation aberrations of an incident wavefont using the same Download PDFInfo
- Publication number
- TWI338573B TWI338573B TW096100968A TW96100968A TWI338573B TW I338573 B TWI338573 B TW I338573B TW 096100968 A TW096100968 A TW 096100968A TW 96100968 A TW96100968 A TW 96100968A TW I338573 B TWI338573 B TW I338573B
- Authority
- TW
- Taiwan
- Prior art keywords
- wavefront
- incident
- aperture
- deviation
- position sensing
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000004075 alteration Effects 0.000 title abstract description 6
- 201000009310 astigmatism Diseases 0.000 claims abstract description 42
- 238000012937 correction Methods 0.000 claims abstract description 15
- 230000003287 optical effect Effects 0.000 claims description 32
- 230000008859 change Effects 0.000 claims description 10
- 238000013519 translation Methods 0.000 claims description 6
- 230000002159 abnormal effect Effects 0.000 claims description 4
- 230000001953 sensory effect Effects 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims 10
- 239000000571 coke Substances 0.000 claims 1
- 210000003194 forelimb Anatomy 0.000 claims 1
- 238000011835 investigation Methods 0.000 claims 1
- 238000012360 testing method Methods 0.000 claims 1
- 238000004804 winding Methods 0.000 claims 1
- 238000012634 optical imaging Methods 0.000 abstract description 7
- 238000012545 processing Methods 0.000 abstract description 5
- 238000005259 measurement Methods 0.000 description 6
- 230000010287 polarization Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 210000004087 cornea Anatomy 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 210000002747 omentum Anatomy 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002547 anomalous effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 206010027646 Miosis Diseases 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/1015—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/12—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/04—Optical or mechanical part supplementary adjustable parts
- G01J1/0407—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
- G01J1/0414—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using plane or convex mirrors, parallel phase plates, or plane beam-splitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/04—Optical or mechanical part supplementary adjustable parts
- G01J1/0407—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
- G01J1/0437—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/06—Scanning arrangements arrangements for order-selection
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Ophthalmology & Optometry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Eye Examination Apparatus (AREA)
- Automatic Focus Adjustment (AREA)
- Microscoopes, Condenser (AREA)
Description
1338573 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種連續波前感測器。 【先前技術】
波前感測器是用於測量一光束之波前形狀的裝置(例 如參見U S 4 1 4 1 6 5 2 )。在多數情況下,一波前感測器可測量 一波前自一參考波前或一理想波前,像是一平面波前,的 離開情形。一波前感測器可用來測量各種光學成影系統,
像是人眼,的低階與高階偏差兩者(參見J. Liang等人(1 994) 的「Objective measurement of the wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor j 5 J . Opt. S o c. Am. A 11,1 9 4 9 年-1957 年;T. Dave (2004)的「Wavefront aberrometry Part 1: Current theories and concepts」,Optometry Today,2004 年 11 月 19 日,第 4 1 -4 5頁)。此外,一波前感測器亦可運用於調適性光學, 其中可測量出經扭曲之波前,並且利用例如一像是可變形 反射鏡之光學波前補償裝置而按即時方式予以補償。而此 補償作業的結果即為能夠獲得一銳利影像(例如參見 US5777719)。 目前,多數為測量因人眼之偏差所設計的波前感測器 為S h a c k - H a r t m a η η型式,其中會將所測得波前按一平行格 式同時地分割成多個子波前。此一感測器之基本元件包含 一光源或輸入光束、一微小透鏡陣列(稱為小透鏡陣列), Ί338573
以及一相機或是一些其他用以記錄該小透鏡陣 光點影像的樣式及位置(又稱為中心點)之裝置‘ 第1圖顯示一用於人眼偏差測量作業的示 藝Shack-Hartmann感測器。一般說來是會使用 亮度二極體)102作為光源,並且透過人眼光ί 角膜1 0 4及水晶透鏡1 0 6 ),將光線遞送至網膜 相當微小的區域處。而來自於該網膜1 0 8的散 經過該眼部的光學成影系統(包含該角膜 1 04 鏡1 0 6 ),並且自瞳孔浮現如一偏差波前1 1 0。 於該角膜104以及其他像是,除該網膜108以 透鏡106之光學介面的光線干擾,所輸入的相 通常是被一第一偏光器112按一第一方向所偏 該網膜所散射之光線為遠較去偏光,故通常是 正交分析器114按一第二正交偏光方向來測量 光線。 可利用一其中含有一組透鏡之中繼光學系 116者,以將該偏差波前放大或去放大或僅傳 鏡陣列 1 1 8 _卜。若該小透鏡陣列1 1 S係在一曈 (該瞳孔之一影像平面)内,則在該小透鏡平面 與在眼睛瞳孔處之波前形狀等同,或者將為其 去放大的版本。接著,該小透鏡陣列1 1 8在錢 1 2 0上構成出一點狀影像陣列。若該眼睛確為 系統,則在該小透鏡陣列平面處的波前會為完: 由該虛線122所示者),並且會由位在該小透鏡 列所構成之 範性先前技 一 SLD (超 声元件(包含 1 08上之一 射光線行旅 及該水晶透 為壓制來自 外,該水晶 當狹窄光束 光。給定經 會以一第二 該網膜散射 統,即如該 透在一小透 71.杜鲕单而 • ^ »» ^ 1 ·— w 處的波前將 一經放大或 :CCD相機 一完美光學 平坦(即如 陣列之焦點 1338573 平面處的C C D相機1 2 0記錄下一均勻分佈的影像點陣列。
然另一方面’若該眼睛並非完美,則在該小透鏡陣列 處的波前124將不再是完美地平坦,同時將具有不規則的 彎曲形狀。從而,該C C D相機丨2 0上的點狀影像將會偏離 於對應到無偏差情況下的位置。透過該CCD相機120上之 影像點位置的資料處理,可決定出該眼晴的低階及高階偏 差兩者(例如參見J· Liang寺人的「Objective measurement of the wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor」,J. Opt. Soc. Am. A 11, 1949-1957)°
波前感測器雖可測量出一光學成影系統的低階及高階 偏差兩者,然對於像是人眼的非靜態成影系統而言,既已 顯示只有對應到自該眼睛之中央部分處所測量出的球形-圓柱誤差之低階偏差才會相當地一致(例如參見 Ginis HS 等人之「Variability of wavefront aberration measurements in small pupil sizes using a clinical Shack-Hartmann aberrometer」.,BMC Ophthalmol,2004 年 2 月,11 ; 4: 1)。 眘4 ,制·於容軲66瞄瞎德葚目I丨暑盘切,不抑蜚,W » , | 一. 4 . ·、 ^ ”嘁 Ti ··'* .〆·碡 y \ --· I ·,, ,〆★ 對於多數的眼底成影光學系統而言,需要進行測量且校正 的光學偏差即為球形-圓柱誤差(又稱為失焦和散光)。熟諳 本項技藝之人士眾知可利用繞於該輸入波前之一輪狀環的 微少數量子波前以測量出該等偏差。在此一情況下,將會 廢棄掉大部分的CCD相機讀取值。而為要節省成本,可在 繞於一偏差波前之輪狀環處排置數個(通常是8或1 6個) 1338573 四分偵測器,藉以僅須對於該等子波前進行測量(例如參見 US4141652,茲將該案,連同於其他所引述的參考文件, 依其整體而按參考方式併入本專利申請案)。 不過,此種排置方式仍會需要使用多個四分偵測器, 這些雖共集地比起大區域的C C D相機而較不昂貴,然其成 本仍會較一單一四分偵測器為高。此外,數個四分偵測器 的校齊作業比起一單一四分偵測器亦將是遠較困難》
【發明内容】 【實施方式】
現將詳細地參照於本發明之各式具體實施例。該等具 體實施例之範例係於隨附圖式中所說明。本發明雖為經併 同於該等具體實施例所描述,然應瞭解此非為以將本發明 限制於任何具體實施例。相反地,目的是為以涵蓋可經納 入於如後載申請專利範圍中所定義之本發明精神與範圍内 的各種替代、修改及等同項目。在底下說明中列述出眾多 特定細節,藉此供以通徹瞭解各種具體實施例。然而,無 該等特定細節之部分或整體亦可實作本發明。在其他實例 裡,並未對眾知的處理程序操作加以描述,藉此避免非必 要地模糊本發明。 本發明之一具體實施例即為一循序波前感測器,其中 含有一光束掃描模組、一子波前聚焦透鏡、一具有一個以 S ) 8 1338573
上之光敏區域的偵測器,以及一處理器,其用以計算出 該等子波前而經循序獲得之聚焦光點的中心點,藉此決 該輸入波前的偏差。在此本發明具體實施例裡,該子波 聚焦透鏡及該偵測器在空間上係經固定,並且以該光束 描模組掃描一輸入光束,藉以將不同的波前部分從一輸 光束或該波前之複製項,循序地投射至該子波前聚焦透 及該偵測器。該處理器可為一電腦或一可程式化電子板 而能夠用以計算出在一 X - y平面上的中心點跡線或樣式 第2圖顯示一該循序波前感測器2 00之具體實施例 示範性略圖。一具有波前2 0 2之線性偏光輸入光束被該 一透鏡204所聚焦。該聚焦光束行旅經過一偏光光束分 器(PBS) 206,此者所經排置之方式係為使得其穿通偏光 向與該入方光束的偏光方向相對齊。因此,線性偏光斂 光束將會通過該PBS 206。一四分波平板208係經放置 該PBS206的後方而具快速軸向,因此在穿過該四分波 板2 0 8之後即出現一圓形偏光光束。一針孔2 1 0係經設 在該四分波平板 208的後方而正對面著該掃描反射 2 1 2,其目的是用以排除不是直接地來自於該光束之所欲 前的光線。 該輸入斂聚光束在通過該針孔2 1 0之後,即被聚焦 一傾斜掃描反射鏡2 1 2的反射表面上,此者係經架置於 馬達轴214上。該反射鏡所反射之光束為發散,而其光 中央主射線則被改變至一根據該掃描反射鏡2 1 2之傾斜 以及該馬達214之旋轉位置而定的方向。可預期的是該 距 定 前 掃 入 鏡 的 第 割 方 聚 在 平 置 鏡 波 於 束 角 反 1338573
射光束仍為圓形偏光,然該圓形偏光的旋轉方向則會 左旋改變成右旋,或者是從右旋改變成左旋。從而, 其回返路徑上第二次通過該四分波平面208時,該光 再度地成為線性偏光,然其偏光方法旋轉至一相對於 始入方光束為正交的方向上。因此,在該偏光光束分 206處,該回返光束多數將會是反射回到左方,即如 圖中的虛線光線射線所示者。 一第二透鏡216經放置在次於該PBS 206的左方 以平行校齊該反射發散光束,並以產生一該原始輸入 的複製項。由於該掃描反射鏡的傾斜性之故,因此該 波前會依行旅方式而平移。一孔徑2 1 8係經設置在該 透鏡216的後方,而正面對著該子波前聚焦透鏡220 此選擇該複製波前的一微小部分。該子波前聚焦透鏡 將所選定之子波前聚焦於一位置感測裝置222上,此 用來決定自該等經循序選定之子波前所產生的經聚焦 之中心點。藉由按照步進方式以旋轉該馬達2 1 4並且 該掃描反射鏡2 1 2的傾斜角,即可控制該複製波前之 及方位角平移的量值,使得能夠選擇該複製波前的任 分而按一循序方式穿過該孔徑 218。因此,可將該原 方光束的整體波前特徵描述如對於一木 Hartmann-Shack波前感湏,J器白^情況,而除了現在是以 序,而非平行,的方式來獲取各個子波前的中心點以; 在另一具體實施例裡,該掃描反射鏡的傾斜角 定,並且該馬達為連續地按多個步階而旋轉。因此, 被從 當在 束會 該原 割器 第2 ,藉 波前 複製 第二 ,藉 220 者是 光點 改變 放射 何部 始入 芒準 一循 為固 將僅 ς j 10 1338573
會選擇並特徵描述繞於該波前之輪形環的選定數量個子 前。這種掃描模式對於決定出該原始波前的球形-圓柱 差,或是失焦及散光,極為有用,即如在「發明背景」 節所討論者。第3圖顯示該等複製波前(302、304、306 3 0 8 )在各次旋轉的4個對稱性停止馬達位置處而相對於 孔徑3 1 0的放射及方位角平移,其中各者係對應於該孔 3 1 0繞於該原始波前之一輪形環3 2 0所選擇的4個子波 (312 、 314 、 316 、 318)。 可瞭解到,即針對於所使用之元件而言,確可存在 項變化項目而不致悖離本發明範圍。例如,四分波平板 為一非零階之四分波平板,並且可將該者替換為一法拉 旋轉器,而此裝置可將一回返光束的偏光方向旋轉至一 交方向。同時,該輸入光束並非必須為經線性偏光,並 無需將該光束分割器限制為一偏光光束分割器。可使用 常用的光學術分割器,同時在此一情況下,可將該四分 平面或法拉第旋轉器移除。雖對於該偵測器的光學功率 益會被降低,然此並不必然地會影響到該波前感測器的 能,只要是將足夠的光學功率遞送至該偵測器即可。 該位置感測裝置(PSD)係一感測器,此者係用以測量 按各種尺寸之光點的中心點。該位置感測裝置可為,然 限於此,一四分偵測器、P S D感測器,或是一具有多個 敏區域,像是一微小區域2D偵測器陣列,的偵測器。 等偵測器包含該C C D區域偵測器以及該C Μ 0 S區域偵 器。該等所用透鏡,包含204、216、220在内,各者並 波 誤 乙 及 該 徑 前 多 可 第 正 且 波 效 效 不 光 此 測 非
c J 11 1338573
必須受限於一單一透鏡,並且可為一透鏡組合,即 該項技藝之人士所廣知者。而若是該子波前聚焦透 一單一小透鏡般微小,則可將在該子波前聚焦透鏡 孔徑移除。否則,最好是需要一孔徑,並且該孔徑 係為以在當位於該孔徑後方所使用之子波前聚焦透 對龐大時,可選擇該波前之一微小部分以供聚焦在 器上。該孔徑並非必要地受限於此一具固定大小的 一可變大小孔徑可供在其操作過程中選擇敏感性 度。 此外,可將該子波前聚焦透鏡代換為任何可獲 焦功能的光學元件,例如亦可使用一光柵指數透鏡 焦反射鏡。同時,用於各種馬達解析度的停阻數量 要受限於4個,而是可為任意數量。並且,該馬達 地旋轉,該光源可為短脈衝化而在不同時刻處開啟 描反射鏡的傾斜角亦可按即時方式動態地改變,因 擇該波前的不同輪狀環部分。事實上,在此雖使用 「傾斜反射鏡」,然應瞭解該詞彙亦包含零反射鏡傾 情況,亦即該輸入光束係法向於該反射鏡,因此該 束係與該該輸入光束同軸,因為會將該原始波前之 分導引至該偵測器。 亦可將馬達旋轉及掃描反射鏡傾斜之序列順序 混合,因此可按照任何所欲序列來選擇子波前。此 將該掃描反射鏡及該馬達代換為,然非受限於此,一 (微機電系統)反射鏡,此者目前正被引入市場,或 如熟諳 鏡係如 前方的 之目的 徑為相 該偵測 組態。 及解析 致該聚 或一聚 並不需 可連續 。該掃 此可選 該詞彙 斜角的 反射光 中央部 顛倒或 外,可 MEMS 是任何 12 1338573
其他的可變形反射鏡,只要該者能夠改變該反射光束的 向即可。利用一 Μ E M S反射鏡的優點在於,由於該可移 反射鏡質量的低重量之故,因此該者具有一相當高頻率 響應,從而可達到高速循序波前感測處理。此外,可簡 地控制該Μ E M S反射鏡的傾斜角。 可瞭解到,針對於系統組態,確亦存在多項變化項 而不致悖離本發明之範圍。例如,並非絕對地需要先將 波前朝後反射,接著再將該光束偏折至側邊。 即如一替代項目,亦可將該掃描反射鏡取代為一非 統的多面鼓型反射鏡 412,而各個反射表面具有一所欲 間指向,使得當在位置上按一步進或連續方式旋轉各個 射表面時,會將該斂聚輸入光束反射,而該中央主射線 跡行繞於一角錐。第4圖顯示一此種組態4 0 0的截面外 略圖,其中該反射光束係以行旅方式朝上平移。應注意 該反射光束亦可為朝下、朝左或朝右平移,或是朝往任 方位角方向而按任意的放射平移量。這是因為該多面鼓 鏡4 1 2並非一對稱多角形,而當各個表面在位置上被移 以反射該輸入斂聚光束時,該者會將該光束反射至不同 空間方向,使得能夠藉由該為以聚焦於該偵測器上之 徑,選擇該複製波前的某一所欲部分。 此外,可在該多面反射鏡之前沿該輸入光線路徑上 度地設置一針孔,藉以排除並非來自於該輸入光束之所 方向或位置的光線。注意到可如前述般利用一 Μ E M S反 鏡以實作出相同的組態,藉此取代該多面反射鏡而提供 方 動 的 易 3 該 傳 空 反 則 觀 到 意 狀 動 的 孔 再 欲 射 所 13 1338573 有的優點。同時注意到該多面鼓型反射鏡可具有一種微面 指向排置,即當該鼓型物連續地按多重步階而旋轉時,可 選擇數個繞於該波前之一輪形環的子波前以聚焦於該偵測 器上。
即如另一替代方式,該系統亦可經組態設定為一種完 全透光模式,而非一反射模式。第5圖顯示此一組態,其 中該多面鼓型反射鏡是由透光性光束掃描器512a及512b 所取代。目前在市場上可購得多款不同的透光性光束掃描 器,這些範例包含音響-光學調變器、電子-光學或磁性-光 學光束掃描器以及液晶光束掃描器,該等是如5 1 2 a表示。 在此一情況下,一光束掃描器應能夠掃描該光束,而按二 維方式依照該透光性掃描之窗口側而定可為經聚焦或非經 聚焦,藉此循序地導引該波前的數個所欲部分以進行特徵 化。
或另者,亦可為此一目的使用一多楔區段碟片5 1 2b。 應瞭解,即如對於在反射情況下的多面鼓型反射鏡,用於 透光情況下的多楔區段碟片5 1 2 b亦應為一非對稱碟片,而 當一楔片區段在位置上旋轉以偏折經聚焦或非經聚焦之光 束時,該楔片角度將會決定此出現光束方向,並因而由該 孔徑5 1 8b所選定的波前部分。各個楔片區段應具有一不同 的楔片角度指向,藉以對一序列之所欲子波前加以特徵 化。注意到若該透光性掃描器之窗口為微小,則需要將該 輸入光束聚焦在該透光性掃描器的位置處,同時在此情況 下,應使用一第一透鏡以聚焦該輸入光束,並且應使用一
14 1338573 第二透鏡以將該所傳透光束平行校齊,藉此產生該輸入波 前在空間上按行旅方式而平移的複製項。
在本發明之另一具體實施例裡,可將此一按行旅方式 循序平移該輸入光束波前之概念進一步地擴展為包含該輸 入光束之導引行旅平移的情況,而其中並未對該輸入光束 進行聚焦然後重新平行校齊。相反地,是對該輸入光束進 行導引行旅方式平移,藉以將該波前之一所欲部分導引至 該礼徑(6 1 8 a,6 1 8 b)。此一法則之優點在於將會需要較少 的光學元件,並因此可更加簡化該光線掃描模組。第6圖 顯示此一範例,其中可將數個具有不同所欲空間指向的平 行光學區塊(612a,612b)循序地切換至該光束路徑内,藉 以按行旅方式平移該光束。
或另者,該透光性光束掃描器可為一多面透光性多邊 形,此者可經步進旋轉以中截該光束路徑,藉此按行旅方 式平移該光束。同時注意到並不必然地需要由機械性裝置 來進行光束的行旅平移。例如,可為此一光束行旅平移之 目的運用一液晶胞格、一電子-光學胞格及一磁性-光學胞 格,在此情況下,有效折射指數的變化就將會改變該行旅 光束的平移量。即如在反射光束掃描器的情泥下,可製作 該透光性光束掃描器,藉此能夠選擇繞於該波前之一輪狀 環的數個子波前,而供聚焦於該偵測器上以進行失焦及散 光偏差感測處理。 可將上述的波前感測器運用在大量的運用項目。第一 種主要應用項目是調適性光學裝置,其中可利用像是一可 15 1338573 變形反射鏡陣列之波前補償裝置,按即時方式來補償所測 得的經扭曲波前。在此情況下,掃描該光束的速度需要相 當地迅捷,並因此應該最好是使用高速度的光束掃描器或 平移器,像是MEMS反射鏡及電子-光學或磁性-光學胞格。
上述具體實施例的第二種主要應用項目是自動對焦及 /或散光校正作業。由於僅僅需要將少量(例如8個)繞於一 輪狀環之子波前加以特徵化,藉此導算出一像是人眼之成 影系統的失焦及散光之事實,因此該光束掃描模組並不需 要具有非常高的頻率響應,並從而低成本的光束掃描器, 像是如第4圖中所顯示一經架置於一步進馬達上的傾斜反 射鏡,將為足夠。例如,可將上述的波前感測器運用於一 眼底相機,藉以進行眼睛成影系統的即時失焦及/或散光校 正作業,即如在US636U67及US6685317中所描述者,因 而可獲得一高解析度眼底影像。
上述波前感測器之另一特性在於,當將此者施用於僅 失焦及/或散光的特徵化作業時,一四分偵測器將即可足 夠,並對其輸出進行處理以產生一循序樹或樣式,且將此 顯示在一監視器上,以利按即時方式來表示出位於該波前 感測器正對面之光學成影像系統是否確為成焦、距離該焦 點多遠、該失焦究係為收斂或發散、散光量以及散光軸線。 假設現有一如第7圖所示,具有四個光敏區域A、B、 C及D的四分偵測器702。若該子波前係按一相對於在該 四分偵測器面前之子波前聚焦透鏡為法向角度而入射,則 在該四分偵測器上的影像點7 04將會位於中央處,並且該
16 1338573 等四個光敏區域將會收到相同的光線量,而各區域/ 具有相同強度的信號。另一方面,若是該子波前以-角而偏離於該法向入射(即如朝著右上方而指向),I 四分偵測器上的影像點將會構形在偏離於該中央處 右上方象限而移動,即如由該影像點7 0 6所顯示者) 用下列等式來特徵描述該中心點距該中央處(X = 〇, y 離出(X, y): :生出 -傾斜 丨在該 (朝著 •可利 =0)的
χ (B + C)-(A + D) A + β + C + D 〇4 + 5)-(C + D) A+B+C+D (1)
其中 A、B、C及D代表該四分偵測器之各個, 光敏區域的信號強度,而利用分母(A + B + C + D )將該: 果正範化,從而抵銷掉光學來源強度波動的影響。 當數個繞於一光束之輪形環的對稱波前(例如4 1 6個)循序地(例如按一順時針方向)投射在該子波: 透鏡及該四分偵測器上時,依等式(1)之(X,y)所表! 四分偵測器的中心點離出將會在一 x-y平面上跡晝 式,可將該樣式顯示在一監視器上並按數位方式^ 理,藉以表示出該失焦及散光狀態。 第8圖顯示多項良好成焦、失焦及散光之代: 況,在該四分偵測器上於該子波前聚焦透鏡之後的」 像點樣式,以及當顯示於一監視器上時相對應之中< 置的循序移動。注意到不是繪出投射數個波前而數’ 子波前在相同的子波前聚焦透鏡及四分偵測器上,. 3對應 •J量結 、8或 Γ聚焦 b距該 i 一樣 7以處 L性情 3關影 :點位 3不同 6們是 17 1338573 採取如第3圖所顯示的等同表示方式,其中數個子波前經 繪示為繞於相同的輪狀環,並因此數個四分偵測器經繪示 為繞於相同的輪狀環,藉以表示出將一波前之不同部分掃 描至一子波前聚焦透鏡及一單一四分偵測器的情況。
假設我們是從頂部的子波前而繞於該波前輪狀環開始 掃描,並且按一順時針方向移動至右方的第二子波前等 等,即如箭頭809所表示。可自第8圖中看出,當該波前 係一平面波8 0 1時,這表示該光學系統為良好成焦而無任 何偏差,而所有的子波前(例如 8 0 2 )將會在該四分憤測器 804的中央處構成一影像點 803,並因此在一監視器 806 上的中心點跡線 805亦將會總是位在該 x-y平面的中央 處。從而,可利用所有在該x-y平面中央的中心點樣式或 跡線來表示該良好成焦狀態。
不過,對於較為廣義的情況來說,可能總是會有一些 輸入波前偏差,這會將部分的中心點移離於該x-y平面中 央處,像是即如後文中所隨即討論的散光情況。因此,當 出現偏差時,即可利用將中心點自該X - y平面之散射的最 小化處理作為自動對焦或輔助對焦的準則。在此一情況 下,可將該中心點散射定義為一從各中心點至一共同中央 之絕對距離的總和,並且可利用此信號作為一用於自動對 焦之封閉迴路控制中的回饋信號。 當該輸入波前如8 1 1所示般為發散時,各個子波前8 1 2 之影像點 8 1 3的中央會在自該波前之中央的放射朝外側 上,而具有距該四分偵測器8 1 4之中央等量的離出,並因 18 1338573
此該監視器8 1 6上的跡線8 1 5將為一順時針圓形,即 頭818所表示而自該頂部位置817開始。另一方面, 輸入波前如8 2 1所示般為收斂,則各個子波前8 2 2之 點8 2 3的中央會在相對於該波前之中央的放射朝内側 而具有距該四分偵測器824之中央等量的離出,並因 監視器8 2 6上的跡線8 2 5將仍為一圓形,但將自該底 置827開始,並且仍為順時針方向,即如箭頭828所 因此,當偵測到一對於該X軸中心點位置及該y軸中 位置兩者的符號變化時,此即表示該輸入波前正在從 散光束變化至一收斂光束或是相反方式。此外,亦可 該中心點跡線的開始來作為一表示該輸入波前究係為 或收斂的準則。 此符號變化或開始點變化準則可因此用來作為 饋,藉以表示該波前感測器所面對之光學系統是否確 好成焦。在實作上,可能會出現其他的波前偏差,並 所有中心點位置的符號變化可能不會同時地發生。一 佳實作可為定義一面對該波前感測器之光學系統中的 調整準則量,使得若確位在經預設的焦點調整範圍之 則所有或多數的中心點符號已改變,則可將該波前視 成焦。在本發明之一具體實施例裡,此符號變化可因 來作為一項為以進行自動對焦或輔助對焦的準則,其 將一高速焦點調整光學元件或模組,像是一由一高速 按一封閉迴路控制方式所軸向驅動的可移動透鏡,設 面對著該波前感測器的光學系統之内,而藉由將該系 如箭 若該 影像 上, 此該 部位 示。 心點 一發 利用 發散 —回 為良 因而 種較 焦點 内, 為是 此用 中可 馬達 置在 統鎖 (S ) 19 1338573 定在該符號變化點處,以維持該光學系統總是在成焦狀態 下。或另者,亦可為該相同目的而採用其他型態的焦點調 整透鏡,像是一液態表面張力透鏡、一液晶透鏡或一音響· 光學透鏡。
對於發散及收斂球形輸入波前兩者的情況’該循序中 心點跡線在該X - y平面上的旋轉方向是與該子波前繞於該 輸入波前之輪形環的掃描方向相同。在此一本發明具體實 施例裡,我們定義此相同旋轉方向為正常。即如後文中所 隨即討論者,對於一散光輸入波前的情況,會發生,當相 較於該子波前繞於該輸入波前之輪狀環的掃描方向時,該 循序中心點跡線在該x-y平面上的旋轉方向為相反,我們 將此相反射旋轉方向定義為異常。
對於在X - y平面上的正常中心點跡線旋轉之情況,若 該跡線為圓形,則很明顯地可利用圓形跡線(8 1 5,8 2 5)的 直徑來表示失焦的程度。實作上,由於總是會有一些其他 的偏差,並因此該中心點跡線可能不會是完美的圓形,所 以一良好實作可為將該中心點跡線配合於一圓形,然後再 導算出該跡線的平均直徑或半徑。在本發明之一具體實施 例裡,達到一中心點跡線之最小平均直徑或半徑的準則是 用來輔助對焦或自動對焦處理,其中可將一高速焦點調整 光學元件或模組,像是一由一高速馬達按一封閉迴路控制 方式所軸向驅動的可移動透鏡(9 3 0),設置在面對著該波前 感測器的光學系統之内,藉以維持該光學系統總是在成焦 狀態下,即如第9圖所示。或另者,亦可為該相同目的而
20 1338573 採用一焦點可調整透鏡,像是一液態表面張力透鏡、一液 晶透鏡或一音響-光學透鏡。
亦可自第8圖中看出,當該輸入波前為散光時,會發 生當該輸入波前係粗略地在成焦狀態下時,該波前可為在 垂直方向上發散,即如831a所示,並且在水平方向上為收 斂,即如8 3 1 b所示,因此該垂直子波前8 3 3 a的中心點位 置將為相對於該輸入波前的中央而放射朝外定位,同時該 水平子波前 8 3 3 b的中心點位置將為相對於該輸入波前的 中央而放射朝内定位。因此之故,在該監視器836上的中 心點跡線8 3 5將會從該頂部位置8 3 7開始然為按逆時針方 向移動,即如箭頭8 3 8所示,從而該中心點跡線旋轉現為 異常。注意到當我們說該散光波前係粗略地在成焦狀態下 時,意思是沿著該散光波前之一軸線,子波前為發散,而 沿著該散光波前之另一軸線,子波前則為收斂。在本發明 之一具體實施例裡,可利用這種中心點跡線的異常旋轉方 法來來首先表示該輸入波前為散光,其次是表示該散光波 前係粗略地在成焦狀態下。而該異常中心點跡線之圓形性 質亦可用來表示該散光輸入波前是否確為相當地良好成 焦。 另一方面,若該輸入波前為散光,然而所有的子波前 為完全地發散或完全地收斂,則依據對於發散及收斂失焦 波前所提出的類似論點,該中心點跡線的旋轉將為順時針 方向(亦即正常),不過,對於散光的情況,該中心點在監 視器上的跡線將為橢圓形而非圓形,這是由於沿一散光軸 5 ) 21 1338573
線上的子波前比起沿另一軸線者會較為發散或收斂。對於 更一般性的散光波前,該中心點跡線將按一異常方向旋 轉,且該跡線會是橢圓形或圓形;或者該中心點跡線將按 一正常方向旋轉,然該跡線將為橢圓形。該橢圓形之軸線 可為相對於該波形的中央而按任何放射方向,這會表示該 散光轴線。在此情況下,4個繞於該輪狀環之子波前或許 並不足夠,而是可將更多的子波前(像是8或1 6個,而非 4個)投射在該子波前聚焦透鏡及該四分偵測器上,並且可 予特徵描述。
在本發明之一具體實施例裡,是利用一正常中心點跡 線的橢圓形性,或是在兩條橢圓軸線之長度上的相對差 異,來表示該散光的程度。在本發明之另一具體實施例裡, 是利用一正常橢圓形中心點跡線的軸線來表示該散光轴 線。又在本發明之另一具體實施例裡,可利用該波前感測 器來提供一項回饋信號,藉以校正面對著該波前感測器模 組之光學系統的散光性。在此一情況下,該旋轉方向、橢 圓形軸線與該中心點跡線的橢圓形性皆可用來作為一封閉 迴線路控制系統甲的回饋,藉此啟動一散光校正元件,像 是以供按一合併元件之方式旋轉兩個圓柱形透鏡 1030、 1 03 1 (即如第1 0圖中所示)。在此一情況下,若該中心點 跡線旋轉為正常,則可將該中心點跡線的橢圓形性最小 化,並因而將該跡線的圓形性最大化,以達到自動散光校 正的功能。另一方面,若該中心點跡線旋轉為異常,則一 為以校正該散光性的良好準則即為,首先將兩條橢圓形跡
22 1338573
線軸線的其中一者縮短,以將該中心點跡線轉成正常 轉,而然後再延長該相同軸線以將該中心點跡線圓形化 因此,亦可達到自動散光校正的功能。 在本發明之另一具體實施例裡,該自動對焦的操作 式係經合併於該自動散光校正操作模式,因此可獲致對 一光學成影系統,像是人眼,之失焦與散光兩者的即時 校正作業。一較佳實作會為首先進行散光校正,然後再 正失焦問題。然而,這並不意味著無法逆反該序列,事 上,可利用一迭遞處理程序以於兩項校正作業之間切換 一直到觸抵某一準則為止。即如在本申請案文之背景說 乙節中所述,失焦及散光為兩個主要偏差,而這些會顯 地影響到一光學成影系統的品質。因此,藉由利用上述 波前感測器來校正這兩項主要偏差,即可獲得一高品質 像,像是一人眼的眼底影像。 在前文中對於特徵化及校正失焦與散光的討論雖係 用一四分偵測器以說明該運作原理,然亦可利用其他的 測器,只要該等確能提供中心點位置之資訊即可。先前 提及該偵測器可為一區域C C D或一區域C Μ 0 S偵測器 列。顯然地,亦可利用該等偵測器來取代該四分偵測器 藉以特徵描述並校正如前所討論的失焦及散光問題。 除用來作為一眼底相機内以供自動對焦及散光校正 先進感測器之外,前文所述之感測器亦可具有許多其他 應用項目。例如,此者可運用於一光學校齊工具,而該 心技術亦可用來作為一新式自動折射器的基礎。該感測 旋 0 模 於 性 校 實 ί 明 著 的 影 利 偵 已 陣 1 的 的 核 器 23 1338573 亦可在任何應用項目裡用以作為一般性聚焦感測器。 本發明可部分地按如程式碼所實作,並經儲存在一電 腦可讀取媒體上,而由一數位電腦加以執行。該電腦可讀 取媒體可包含,除其他項目之外,磁性媒體、光學媒體、 電子-磁場編瑪數位資訊等等。
可瞭解本發明較佳具體實施例的說明僅為示範之目 的。熟諳本項技藝之人士可認知到其他等同於本文所述者 的具體實施例;而該等等同項目應經涵蓋於後載之申請專 利範圍内。例如,前文說明係針對於其中使用一單一子波 前聚焦透鏡及一單一四分偵測器之情況,然此並非意味著 不可將對一波前進行掃描以投射出該波前之不同位置的相 同原理施用於兩個以上四分偵測器或其他偵測模組的情 況。該光線掃描模組亦可將該輸入波前的多個部分投射在 數個偵測模組上,藉以進一步縮短為以完成一系列子波前 特徵化作業的時間。例如,可將該等原理擴展至一種情況, 即其中將一線性小透鏡陣列按與一線性四分偵測器陣列相 平行之方式加以排置,並因而可藉由依一垂直於該線性小 透鏡及四分偵測器陣列之方向掃描該波前,俾進行該輸入 波前的循序掃描處理。 【圖式簡單說明】 第1圖顯示一用於眼睛偏差測量作業的示範性先前技 藝 Shack-Hartmann 感測器。 第2圖顯示一循序波前感測器之具體實施例的示範性
24 1338573 略圖。 第3圖顯示一經複製波前在4個非對稱位置處的相對 放射及方位角平移,此者對應於4個由一繞於該原始波前 之輪狀環的孔徑所選擇之子波前。 第4圖顯示該循序波前感測器之一替代性具體實施 例,其中該反射光束被該掃描反射鏡導引至側邊,而非初 始地經導引至朝後。
第5圖顯示該循序波前感測器之另一替代性具體實施 例,其t使用一透光性的光束掃描器。 第6圖顯示該循序波前感測器之又另一替代性具體實 施例,其中可循序地將數個具有不同所欲空間指向的平行 光學區塊切換至該光束路徑内,藉以按行旅方式平移該光 束。 第7圖顯示一具有四個光敏區域A、B、C及D的四 分偵測器,以及在該四分偵測器上對於一正常入射子波前 與一非正常入射波前的影像點。
第 8圖顯示多項良好成焦、失焦及散光之代表性情 況,在該四分偵測器上於一子波前聚焦透鏡之後的相關影 像點樣式,以及當顯示於一監視器上時相對應之中心點位 置的循序移動。 第9圖描繪一系統,其中一高速焦點調整光學元件或 模組是按一封閉迴路控制方式由一高速馬達所驅動,藉此 將該光學系統維持為成焦狀態。 第1 0圖描繪一系統,其中該中心點跡線的旋轉條件可 25 1338573 用來作為一封閉迴路控制系統中的回饋以旋轉兩個圓柱形 透鏡,藉此控制並校正散光問題。 【主要元件符號說明】 102 SLD (超亮度二極體)光源 104 角膜 106 水晶透鏡 108 網膜
110 偏差波前 112 第一偏光器 114 第二正交分析器 116 中繼光學系統 118 小透鏡陣列 120 CCD相機 122 虛線(完美平坦性) 124 波前
200 循序波前感測器 202 波前 204 第一透鏡 206 偏光光束分割器(PBS) 208 四分波平板 2 10 針孔 212 掃描反射鏡 2 14 馬達軸 26 2161338573
218 220 222 302 304 306 308 3 10 3 12 3 14 3 16 3 18 320 400 4 12 5 12a 5 12b 5 18b 6 12a 612b 6 18a 618b 第二透鏡 孔徑 子波前聚焦透鏡 位置感測裝置 複製波前 複製波前 複製波前 複製波前 孔徑 子波前 子波前 子波前 子波前 輪形環 組態 多面鼓狀反射鏡 透光性光束掃描器 透光性光束掃描器 孔徑 光學區塊 光學區塊 孔徑 孔徑 27 1338573 702 四分偵 704 影像點 706 影像點 801 平面波 802 子波前 803 影像點 8 04 四分偵 805 中心點 806 監視器 809 箭頭 811 發散輸 812 子波前 8 13 影像點 8 14 四分偵 8 15 中心點 8 16 監視器 8 17 頂部位 8 1 8 箭頭 821 收斂輸 822 子波前 823 影像點 824 四分偵 825 中心點 826 監視器 測器
測器 跡線 入波前 測器 跡線 置 入波前 測器 跡線 1338573 827 底 部 位 828 箭 頭 829 箭 頭 83 1a 垂 直 方 83 1b 水 平 方 833a 垂 直 子 8 33b 水 平 子 835 中 心 點 836 監 視 器 837 頂 部 位 838 箭 頭 1030 圓 柱 形 103 1 圓 柱 形
置 向發散波前 向收斂波前 波前 波前 跡線 置 透鏡 透鏡
Claims (1)
1338573 第哏I c罐屬翻案%部卡 十、申請專利範圍: 1 . 一種循序波前感測器,其中包含: 一波前掃描裝置,其適用以在一第一維度 中以第一位移以及在一第二維度中以第二位 移,循序地平移一入射波前;
一孔徑,其經放置以截取並經設置以選擇由 該循序掃描裝置所平移之該入射波前之一部 份; 一聚焦元件,其經設置以將由該孔徑所選擇 之該平移入射波前之該部分,聚焦到一位置感 測裝置上;以及 其中該位置感測裝置,係經設置成表示量 自該平移入射波前之該部分之一參考點的二 維平移,而該平移入射波前之該部分係由該聚 焦元件所聚焦到該位置感測裝置上。
2 . 如申請專利範圍第 1項所述之循序波前感 測器,其中該波前掃描裝置進一步包含: 一波前掃描器,其用以依一橫向方向上循 序地平移該入射波前。 3 . 如申請專利範圍第 2項所述之循序波前感 測器,其中該波前掃描器包含: 30 1338573 一電動馬達,其具有一轴(shaft);以及 一傾斜反射鏡,其位在該轴上。 4 . 如申請專利範圍第 3項所述之循序波前感 測器,其中:
該電動馬達係一步進馬達,並且該傾斜反 射鏡係按一固定角度所架置在該轴之末端 上,因此當旋轉該轴時,可選擇繞於該入射波 前之一輪狀環的一定數量子波前。 5 . 如申請專利範圍第 2項所述之循序波前感 測器,其中該波前掃描器包含: 一電動馬達,其具有一轴;以及 一非對稱多面鼓型反射鏡,其係架置於該 轴上 。 6 . 如申請專利範圍第 1項所述之循序波前感
測器,其中該位置感測裝置係一具有四個光敏 區域的四分(q u a d )偵測器。 7. 如申請專利範圍第 2項所述之循序波前感 測器,其中該波前掃描器包含: -MEMS式掃描器。 31 13-38573
8. 如申請專利範圍第 2項所述之循序波前 測器,其中該波前掃描器包含: 一透光性光學光束掃描器。 9 · 如申請專利範圍第 1項所述之循序波前 測器,其中: 該孔徑為一可變孔徑,其用於控制該所選入 波前之部分的尺寸。 10. —種用於偵測一入射波前之偏差的方法 該方法包含以下步驟: 在一第一維度中以第一位移以及在一第 維度中以第二位移,循序地平移一入射波前 用一孔徑來截取並選擇一平移入射波前 一部份: 將由該孔徑所選擇之該平移入射波前之 部分,聚焦到一位置感測裝置上;以及 決定距該位置感測裝置上之一參考點到 該位置感測裝置上所聚焦之該入射波前之 部分間的二維偏差。 11.如申請專利範圍第10項所述之方法,進 步包含以下步驟: 感 感 射 之 該 Λ r— 該 32 1338573
分析複數之二維偏差,以特徵化描述該 射波前的偏差。 12. 如申請專利範圍第 11項所述之方法,其 該位置感測裝置係一具有一參考點的四分 測器,並且該決定該偏離之步驟進一步包含 計算出在該四分偵測器上所聚焦之該入 波前之該部分的二維偏差座標。 13. 如申請專利範圍第12項所述之方法,其 該選擇步驟進一步包含: 循序地選擇繞著該入射波前之一輪狀環 佈置的一平移入射波前之一部份,且其中該 析步驟進一步包含: 決定該二維偏差的散射(scattering)情況‘ 14.如申請專利範圍第12項所述之方法,其 該選擇步驟進一步包含: 循序地選擇繞著該入射波前之一輪狀環 佈置的一平移入射波前之一部份,且其中該 析步驟進一步包含: 偵測在一聚焦部分之位置處的一符號 化,以表示一輸入波形在一收斂波形與一發 波形之間的變4匕。 入 中 偵 射 中 所 分 中 所 分 變 散 33 1338573
15. 如申請專利範圍第 10 項所述之方法 一步包含: 脈衝或激發一產生該波前之光源。 16. 如申請專利範圍第 11項所述之方法 一步包含: 顯示該等二維偏離,以在一顯示裝置上形 17. 如申請專利範圍第 12 項所述之方法 中該位置感側裝置為一具有一參考點之 偵測器,而其中顯示該等偏離之步驟進一 含: 基於其所計算座標,而顯示各個已聚 分。 18. 如申請專利範圍第 Μ 項所述之方法 一步包含: 即時地在一顯示裝置上顯示二維偏離》 19. 一種用於補償一入射波前之偏差的方 該方法包含: ’進 ,進 成一 ,其 四分 步包 焦部 , 進 法, 34 1338573
在一第一維度中以第一位移以及在一第 維度中以第二位移,循序地平移一入射波前 用一孔徑來載取並選擇一平移入射波前 一部份; 將由該孔徑所選擇之該平移入射波前之 部分,聚焦到一位置感測裝置上;以及 測量距該位置感測裝置上之一參考點到 該位置感測裝置上所聚焦之該入射波前之 聚焦部分間的二維偏差,以決定該入射波前 偏差;以及 依據該入射波前之該聚焦部分的二維偏 構成一回館準貝|J (feedback criteria)。 20.如申請專利範圍第 19項所述之方法,進 步包含: 藉該回饋準則來控制一光學波前補償 置,以補償該入射波前的偏差。 21. 如申請專利範圍第 19 項所述之方法, 中選擇步驟進一步包含: 繞著該入射波前之一輪型環而循序地選擇 經平移入射波前之一些部分。 22. 如申請專利範圍第 21項所述之方法, 之 該 在 該 的 差 裝 其 該 進 35 1338573
一步包含: 即時地在一顯示裝置上顯示該等二維偏離 23.如申請專利範圍第 21項所述之方法, 該構成一回饋準則之步驟進一步包含: 將偏離之散射最小化,而作為一更正 前之失焦的準則。 24.如申請專利範圍第 2 1項所述之方法, 該構成一回饋準則之步驟進一步包含: 偵測該一聚焦部分之偏離的符號變化 作為表示一當面對著該波前之光學系統 焦(i n f o c u s )狀態時的一準貝4 。 25.如申請專利範圍第 21項所述之方法, 該構成一回饋準則之步驟進一步包含: 伯測一偏離形成樣式(deflection-fo pattern)距一圓形的偏移,而作為更正該 之散光的一回饋準則。 26.如申請專利範圍第21項所述之方法, 該構成一回饋準則之步驟進一步包含: 偵測一偏離形成樣式之異常旋轉,而 更正一散光波前的一回饋準則。 其中 該波 其中 , 而 在成 其中 r m e d 波前 其中 作為 36 1338573
27.如申請專利範圍第 21項所述之方法, 該構成一回饋準則之步驟進一步包含: 偵測該偏離形成樣式的橢圓形性,而 進行散光校正作業的一回饋準則。 2 8 · —種波前補償系統,其中包含: 一波前掃描裝置,其適用以在一第一 中以第一位移以及在一第二維度中以第 移,循序地平移一入射波前; 一孔徑,其經放置以截取並經設置以 由該循序掃描裝置所平移之該入射波前 部份; 一聚焦元件,其經設置以將由該孔徑所 之該平移入射波前之該部分,聚焦到一位 測裝置上;以及 Φ 其中該位置感測裝置,係經設置成表 自該平移入射波前之該部分之一參考點 維平移,而該平移入射波前之該部分係由 焦元件所聚焦到該位置感測裝置上; 一波前偏差分析裝置,其可依據該等 移入射波前之循序所選部分的所偵得位置 產生一回饋信號;以及 其中 作為 維度 二位 選擇 之 一 選擇 置感 示量 的二 該聚 經平 , 而 37 1338573 一波前補償裝置,其用以在一封閉迴路控 制系統中,運用該回饋信號以啟動補償作業, 藉此補償該波前内的偏差。 2 9 .如申請專利範圍第 28 項所述波前補償系 統,其中該波前補償裝置進一步包含: 一軸向式(axially)驅動光學透鏡,此者係 用於將該波前聚焦。
30.如申請專利範圍第 28 項所述波前補償系 統,其中該波前補償裝置進一步包含·· 一旋轉式(rotationally)驅動之散光校正元 件。 3 1 . —種循序波前感測器,其至少包含: 一波前掃描裝置,其適用以循序地平移一 入射波前,以便取樣一輪型環;
一孔徑,其經放置以載取並經設置以選擇由 該波前掃描裝置所平移之該入射波前之一部 份; 一聚焦元件,其經設置以將由該孔徑所選擇 之該平移入射波前之該部分,聚焦到一位置感 測裝置上;以及 其中該位置感測裝置,係經設置成表示量 38 1338573 自該平移入射波前之該部分之一參考點 維平移,而該平移入射波前之該部分係由 焦元件所聚焦到該位置感測裝置上。 的二 該聚
3 2 · —種循序波前感測器,其至少包含: 一波前掃描裝置,其適用以在一第一 中以第一位移以及在一第二維度中以第 移,循序地平移一入射波前; 一可變孔徑,其經放置以截取並經設置 擇由該波前掃描裝置所平移之該入射波 一部份,其f該孔徑的尺寸為可變,使得 測度及解析度可被控制; 一聚焦元件,其經設置以將由該孔徑所 之該平移入射波前之該部分,聚焦到一位 測裝置上;以及 其中該位置感測裝置,係經設置成表 自該平移入射波前之該部分之一參考點 維平移,而該平移入射波前之該部分係由 焦元件所聚焦到該位置感測裝置上。 維度 二位 以選 前之 該感 選擇 置感 示量 的二 該聚 3 3 . —種循序波前系統,其至少包含: 一位置感測裝置,其設置以表示一入射 點之二維位移; 一孔徑,其設置成穿透過一波前之一部 影像 分’ 39
1338573 以投射一影像點到該位置感測裝置上;以及 一掃描裝置,其設置成循序地導引一入射 前肢任何部分來穿透過該孔徑。 34. 如申請專利範圍第 33 項所述之系統, 中該掃描裝置包含: 一反射元件,其設置成按隨機放射狀以及方 角(azimuthal)的方向而步進 。 3 5 . 如申請專利範圍第 3 3 項所述之系統, 中該掃描裝置包含: 一反射元件,其設置成按隨機放射狀以及方 角的方向持續地平移該入射波前。 36. —種循序波前設備,其至少包含: 一孔徑,其延著一孔徑平面所布置; Φ 一光學系統,其設置成複製一入射波前 該孔徑平面上; 一含括在該光學系統内之波前定位裝置 其設置成用一所選二維行旅位移將該入射 前投射到該孔徑平面上,使得該入射波前之 投影複製之任何部分可被選來穿透過該孔徑 一聚焦元件,其設置成將被選來穿透過 波 其 位 其 位 到 > 波 被 該 40 Γ338573 孔徑之該入射波前之被投影複製 到一位置感測裝置上; 其中該位置感測裝置,係經 自該入射波前之該部分之一參 移,而該平移入射波前之該部分 件所聚焦到該位置感測裝置上。 之部分,聚焦 設置成表示量 考點的二維平 係由該聚焦元
41
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/335,980 US7445335B2 (en) | 2006-01-20 | 2006-01-20 | Sequential wavefront sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200735840A TW200735840A (en) | 2007-10-01 |
TWI338573B true TWI338573B (en) | 2011-03-11 |
Family
ID=38069323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096100968A TWI338573B (en) | 2006-01-20 | 2007-01-10 | Sequential wavefront sensor,wavefront compensation system,and methods of detecting and compensation aberrations of an incident wavefont using the same |
Country Status (12)
Country | Link |
---|---|
US (4) | US7445335B2 (zh) |
EP (2) | EP1977206B8 (zh) |
JP (1) | JP4988767B2 (zh) |
KR (1) | KR101323279B1 (zh) |
CN (1) | CN101365932B (zh) |
AU (1) | AU2006336595B2 (zh) |
BR (1) | BRPI0621233A2 (zh) |
CA (1) | CA2636740C (zh) |
ES (1) | ES2525685T3 (zh) |
RU (1) | RU2431813C2 (zh) |
TW (1) | TWI338573B (zh) |
WO (1) | WO2007087058A1 (zh) |
Families Citing this family (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7556378B1 (en) | 2003-04-10 | 2009-07-07 | Tsontcho Ianchulev | Intraoperative estimation of intraocular lens power |
KR101159380B1 (ko) * | 2004-03-11 | 2012-06-27 | 이코스비젼 시스팀스 엔.브이. | 파면 조정 및 향상된 3?d 측정을 위한 방법 및 장치 |
EP2444021B8 (en) | 2004-04-20 | 2018-04-18 | Alcon Research, Ltd. | Integrated surgical microscope and wavefront sensor |
WO2013096775A1 (en) * | 2011-12-21 | 2013-06-27 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Holographic binocular adaptive see-through phoropter |
US9681800B2 (en) | 2005-10-27 | 2017-06-20 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Holographic adaptive see-through phoropter |
US7445335B2 (en) | 2006-01-20 | 2008-11-04 | Clarity Medical Systems, Inc. | Sequential wavefront sensor |
US8919957B2 (en) | 2006-01-20 | 2014-12-30 | Clarity Medical Systems, Inc. | Apparatus and method for operating a real time large diopter range sequential wavefront sensor |
US8100530B2 (en) | 2006-01-20 | 2012-01-24 | Clarity Medical Systems, Inc. | Optimizing vision correction procedures |
US8777413B2 (en) | 2006-01-20 | 2014-07-15 | Clarity Medical Systems, Inc. | Ophthalmic wavefront sensor operating in parallel sampling and lock-in detection mode |
US9101292B2 (en) | 2006-01-20 | 2015-08-11 | Clarity Medical Systems, Inc. | Apparatus and method for operating a real time large dipoter range sequential wavefront sensor |
US8820929B2 (en) | 2006-01-20 | 2014-09-02 | Clarity Medical Systems, Inc. | Real-time measurement/display/record/playback of wavefront data for use in vision correction procedures |
US8356900B2 (en) * | 2006-01-20 | 2013-01-22 | Clarity Medical Systems, Inc. | Large diopter range real time sequential wavefront sensor |
US8506083B2 (en) | 2011-06-06 | 2013-08-13 | Clarity Medical Systems, Inc. | Compact wavefront sensor module and its attachment to or integration with an ophthalmic instrument |
HUE031948T2 (en) * | 2006-04-11 | 2017-08-28 | Cognoptix Inc | Eye image analysis |
US7639369B2 (en) * | 2006-04-13 | 2009-12-29 | Mette Owner-Petersen | Multi-object wavefront sensor with spatial filtering |
ATE447879T1 (de) * | 2006-07-07 | 2009-11-15 | Od Os Gmbh | Ophthalmoskop |
US20090135372A1 (en) * | 2007-08-09 | 2009-05-28 | Sarver Edwin J | Modular ocular measurement system |
CN101772696A (zh) * | 2007-08-27 | 2010-07-07 | 株式会社尼康 | 波面像差测量装置及方法、以及波面像差调整方法 |
US8198604B2 (en) * | 2007-09-28 | 2012-06-12 | Trustees Of Boston University | System and method for providing enhanced background rejection in thick tissue with differential-aberration two-photon microscopy |
US7594729B2 (en) | 2007-10-31 | 2009-09-29 | Wf Systems, Llc | Wavefront sensor |
US11839430B2 (en) | 2008-03-27 | 2023-12-12 | Doheny Eye Institute | Optical coherence tomography-based ophthalmic testing methods, devices and systems |
RU2503399C2 (ru) * | 2008-03-27 | 2014-01-10 | Когноптикс, Инк. | Система для осуществления квазиупругого рассеяния света и/или сканирования флуоресцентного лиганда в глазу субъекта |
US8348429B2 (en) | 2008-03-27 | 2013-01-08 | Doheny Eye Institute | Optical coherence tomography device, method, and system |
US8820931B2 (en) | 2008-07-18 | 2014-09-02 | Doheny Eye Institute | Optical coherence tomography-based ophthalmic testing methods, devices and systems |
WO2010054268A2 (en) | 2008-11-06 | 2010-05-14 | Wavetec Vision Systems, Inc. | Optical angular measurement system for ophthalmic applications and method for positioning of a toric intraocular lens with increased accuracy |
US7980698B2 (en) * | 2008-11-19 | 2011-07-19 | Bausch & Lomb Incorporated | Power-adjusted aberrometer |
GB0822247D0 (en) * | 2008-12-05 | 2009-01-14 | Qinetiq Ltd | Wavefront sensing method and apparatus |
US20100195089A1 (en) * | 2009-01-30 | 2010-08-05 | General Electric Company | Wind velocity measurement system and method |
JP5464891B2 (ja) * | 2009-04-13 | 2014-04-09 | キヤノン株式会社 | 補償光学系を備えた光画像取得装置、及び、その制御方法 |
JP5743411B2 (ja) * | 2009-05-08 | 2015-07-01 | キヤノン株式会社 | 光画像撮像装置及びその方法 |
US8876290B2 (en) | 2009-07-06 | 2014-11-04 | Wavetec Vision Systems, Inc. | Objective quality metric for ocular wavefront measurements |
WO2011008606A1 (en) | 2009-07-14 | 2011-01-20 | Wavetec Vision Systems, Inc. | Determination of the effective lens position of an intraocular lens using aphakic refractive power |
CN104367299B (zh) | 2009-07-14 | 2017-09-15 | 波技术视觉系统公司 | 眼科手术测量系统 |
EP2301425B1 (de) | 2009-09-29 | 2019-11-20 | OD-OS GmbH | Ophthalmoskop zum Beobachten eines Auges |
EP2301424B1 (de) | 2009-09-29 | 2015-07-08 | OD-OS GmbH | Ophthalmoskop mit einer Laservorrichtung |
US9220590B2 (en) | 2010-06-10 | 2015-12-29 | Z Lens, Llc | Accommodative intraocular lens and method of improving accommodation |
TWI418331B (zh) * | 2010-07-28 | 2013-12-11 | 眼底光學影像裝置 | |
BR112013003754B1 (pt) | 2010-08-16 | 2021-11-09 | Cognoptix, Inc. | Dispositivo para detectar uma proteína amiloide em um olho de um mamífero |
US8690332B2 (en) | 2010-10-15 | 2014-04-08 | Epico, Llc | Binocular glare testing devices |
JP5753278B2 (ja) * | 2011-02-15 | 2015-07-22 | バーフェリヒト ゲゼルシャフト ミット ベシュレンクテル ハフツング | 物体の光学的特性を測定するための装置及び方法 |
EP2680741A4 (en) * | 2011-03-02 | 2014-08-27 | Brien Holden Vision Diagnostics Inc | RETINOGRAPH SYSTEM AND METHODOLOGY |
FI123423B (fi) * | 2011-03-30 | 2013-04-30 | Valon Lasers Oy | Laitteisto silmän hoitamiseksi lasersäteen avulla |
US9091614B2 (en) * | 2011-05-20 | 2015-07-28 | Canon Kabushiki Kaisha | Wavefront optical measuring apparatus |
US9182289B2 (en) * | 2011-10-14 | 2015-11-10 | Canon Kabushiki Kaisha | Apparatus and method for estimating wavefront parameters |
US9385816B2 (en) | 2011-11-14 | 2016-07-05 | Intel Corporation | Methods and arrangements for frequency shift communications by undersampling |
CN102507019A (zh) * | 2011-11-21 | 2012-06-20 | 长春理工大学 | 基于微扫描的像质检测用哈特曼波前传感器 |
TWI453523B (zh) * | 2011-12-29 | 2014-09-21 | Ind Tech Res Inst | 具有自動對焦功能之診斷設備 |
US20130169928A1 (en) | 2011-12-29 | 2013-07-04 | Elwha LLC, a limited liability company of the State of Delaware | Fabrication technique for replaceable optical corrective elements |
US9046683B2 (en) | 2011-12-29 | 2015-06-02 | Elwha Llc | Adjustable optics for ongoing viewing correction |
US9033497B2 (en) | 2011-12-29 | 2015-05-19 | Elwha Llc | Optical device with interchangeable corrective elements |
KR101684566B1 (ko) * | 2011-12-30 | 2016-12-08 | 웨이브라이트 게엠베하 | 일체형 안과용 장치 |
WO2013106567A1 (en) | 2012-01-10 | 2013-07-18 | Digital Vision, Llc | A refractometer with a remote wavefront generator |
US8789951B2 (en) | 2012-01-10 | 2014-07-29 | Digitalvision, Llc | Intra-ocular lens optimizer |
US9655517B2 (en) | 2012-02-02 | 2017-05-23 | Visunex Medical Systems Co. Ltd. | Portable eye imaging apparatus |
US20150021228A1 (en) | 2012-02-02 | 2015-01-22 | Visunex Medical Systems Co., Ltd. | Eye imaging apparatus and systems |
US9179840B2 (en) | 2012-03-17 | 2015-11-10 | Visunex Medical Systems Co. Ltd. | Imaging and lighting optics of a contact eye camera |
US9351639B2 (en) | 2012-03-17 | 2016-05-31 | Visunex Medical Systems Co. Ltd. | Eye imaging apparatus with a wide field of view and related methods |
WO2013165689A1 (en) | 2012-04-30 | 2013-11-07 | Clarity Medical Systems, Inc. | Ophthalmic wavefront sensor operating in parallel sampling and lock-in detection mode |
WO2013169812A1 (en) | 2012-05-07 | 2013-11-14 | Johns Lynette | Customized wavefront-guided methods, systems, and devices to correct higher-order aberrations |
US9364318B2 (en) | 2012-05-10 | 2016-06-14 | Z Lens, Llc | Accommodative-disaccommodative intraocular lens |
US9148250B2 (en) * | 2012-06-30 | 2015-09-29 | Intel Corporation | Methods and arrangements for error correction in decoding data from an electromagnetic radiator |
CN102829882B (zh) * | 2012-07-27 | 2014-05-28 | 中国科学院长春光学精密机械与物理研究所 | 哈特曼波前探测器与入射光束的孔径对准方法 |
CN102778299B (zh) * | 2012-07-27 | 2014-03-12 | 中国科学院长春光学精密机械与物理研究所 | 具有孔径对准功能的哈特曼波前探测器 |
PH12013000227A1 (en) * | 2012-07-30 | 2015-03-09 | Canon Kk | Ophthalmologic apparatus and ophthalmologic method |
US9014564B2 (en) | 2012-09-24 | 2015-04-21 | Intel Corporation | Light receiver position determination |
US9072462B2 (en) | 2012-09-27 | 2015-07-07 | Wavetec Vision Systems, Inc. | Geometric optical power measurement device |
US9178615B2 (en) | 2012-09-28 | 2015-11-03 | Intel Corporation | Multiphase sampling of modulated light with phase synchronization field |
US9203541B2 (en) | 2012-09-28 | 2015-12-01 | Intel Corporation | Methods and apparatus for multiphase sampling of modulated light |
US9218532B2 (en) | 2012-09-28 | 2015-12-22 | Intel Corporation | Light ID error detection and correction for light receiver position determination |
US9590728B2 (en) | 2012-09-29 | 2017-03-07 | Intel Corporation | Integrated photogrammetric light communications positioning and inertial navigation system positioning |
CN102860817A (zh) * | 2012-10-12 | 2013-01-09 | 中国科学院光电技术研究所 | 一种基于双波前校正器的激光扫描共焦检眼镜装置 |
US9332899B2 (en) * | 2012-11-06 | 2016-05-10 | Clarity Medical Systems, Inc. | Electronic eye marking/registration |
RU2015121708A (ru) * | 2012-11-07 | 2016-12-27 | Клэрити Медикал Системз, Инк. | Устройство и способ для работы последовательного датчика волнового фронта большого диоптрийного диапазона реального времени |
CN103024307B (zh) * | 2012-11-30 | 2015-07-29 | 中国科学院上海技术物理研究所 | 一种星载激光通信atp系统光斑探测相机及探测方法 |
US10772497B2 (en) | 2014-09-12 | 2020-09-15 | Envision Diagnostics, Inc. | Medical interfaces and other medical devices, systems, and methods for performing eye exams |
US9226856B2 (en) | 2013-03-14 | 2016-01-05 | Envision Diagnostics, Inc. | Inflatable medical interfaces and other medical devices, systems, and methods |
TW201439511A (zh) * | 2013-04-02 | 2014-10-16 | Hon Hai Prec Ind Co Ltd | 大動態測量範圍的波前測量系統及其測量方法 |
JP6174908B2 (ja) * | 2013-05-27 | 2017-08-02 | キヤノン株式会社 | 情報処理装置、情報処理方法、及び、コンピュータプログラム |
CN106537224B (zh) * | 2014-04-15 | 2019-11-26 | 荷兰应用科学研究会(Tno) | 曝光头、曝光装置及用于操作曝光头的方法 |
US9584724B2 (en) * | 2014-05-22 | 2017-02-28 | Raytheon Company | Ultra-wide field of view seeker |
US9986908B2 (en) | 2014-06-23 | 2018-06-05 | Visunex Medical Systems Co. Ltd. | Mechanical features of an eye imaging apparatus |
US9585561B2 (en) * | 2014-07-25 | 2017-03-07 | Novartis Ag | Ophthalmic surgical microscope with adaptive optics for optical wavefront compensation |
CN104181691B (zh) * | 2014-09-11 | 2016-05-11 | 哈尔滨工业大学 | 基于mems微镜折叠式的扫描光学系统 |
EP3214993B1 (en) | 2014-11-07 | 2022-03-30 | Ohio State Innovation Foundation | Methods and apparatus for making a determination about an eye in ambient lighting conditions |
JP6553210B2 (ja) * | 2015-01-15 | 2019-07-31 | ハーリング、ロドニー | 拡散音響共焦点撮像装置 |
WO2016123138A1 (en) | 2015-01-26 | 2016-08-04 | Visunex Medical Systems Co. Ltd. | A disposable cap for an eye imaging apparatus and related methods |
AU2015383088B2 (en) * | 2015-02-20 | 2017-09-14 | REBIScan, Inc. | Method and apparatus for fixation measurement and refraction error measurement using wave-front error |
US9667928B2 (en) * | 2015-03-06 | 2017-05-30 | Prysm, Inc. | Lambertian servo sensor position and timing |
US9832338B2 (en) | 2015-03-06 | 2017-11-28 | Intel Corporation | Conveyance of hidden image data between output panel and digital camera |
RU2585749C1 (ru) * | 2015-04-27 | 2016-06-10 | Вячеслав Михайлович Смелков | Устройство компьютерной системы панорамного телевизионного наблюдения с реализацией обмена параметров изображения |
AU2016279073A1 (en) * | 2015-06-19 | 2018-01-04 | Visunex Medical Systems Co. Ltd. | A wide field of view optical coherence tomography imaging system |
EP3349642B1 (en) | 2015-09-17 | 2020-10-21 | Envision Diagnostics, Inc. | Medical interfaces and other medical devices, systems, and methods for performing eye exams |
US10162086B2 (en) | 2016-03-07 | 2018-12-25 | Microsoft Technology Licensing, Llc | Imaging through highly diffusive media with wavefront shaping |
US10820840B2 (en) * | 2016-04-28 | 2020-11-03 | Joshua Noel Hogan | Optical coherence tomography for identity verification |
EP3448234A4 (en) | 2016-04-30 | 2019-05-01 | Envision Diagnostics, Inc. | MEDICAL DEVICES, SYSTEMS AND METHODS FOR OPERATING OCULAR EXAMINATIONS AND OCULOMETRY |
CN109890325B (zh) | 2016-08-24 | 2021-10-26 | Z晶状体有限责任公司 | 双模式调节-去调节型人工晶状体 |
WO2018049414A1 (en) * | 2016-09-12 | 2018-03-15 | Lensar, Inc. | Laser methods and systems for the aligned insertion of devices into a structure of the eye |
US11026581B2 (en) * | 2016-09-30 | 2021-06-08 | Industrial Technology Research Institute | Optical probe for detecting biological tissue |
CN106840615B (zh) * | 2017-03-24 | 2023-04-28 | 中国工程物理研究院应用电子学研究所 | 一种基于成像共轭的光瞳在线测量装置及校准方法 |
WO2018176115A1 (en) * | 2017-03-31 | 2018-10-04 | Huawei Technologies Co., Ltd. | Apparatus and method for scanning and ranging with eye-safe pattern |
IL251636B (en) * | 2017-04-06 | 2018-02-28 | Yoav Berlatzky | A system and method for a coherent camera |
CN107307848B (zh) * | 2017-05-27 | 2021-04-06 | 天津海仁医疗技术有限公司 | 一种基于高速大范围扫描光学微造影成像的人脸识别及皮肤检测系统 |
AU2018389080B2 (en) * | 2017-12-19 | 2024-06-06 | Alcon Inc. | Imaging multiple parts of the eye |
US10864075B2 (en) * | 2017-12-31 | 2020-12-15 | Rxsight, Inc. | Intraocular lens visualization and tracking system |
CN108784646B (zh) * | 2018-03-14 | 2024-09-06 | 南京泰立瑞信息科技有限公司 | 一种辅助对焦筒及对焦距辅助选择系统、方法 |
CN108828622B (zh) * | 2018-06-25 | 2022-03-04 | 北京理工大学 | 一种液晶光学相控阵变分辨率分束方法 |
RU2713128C1 (ru) * | 2018-10-09 | 2020-02-03 | Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") | Способ формирования размеров светового пятна на динамическом объекте и устройство для его осуществления |
CN109645956B (zh) * | 2018-12-25 | 2021-08-06 | 重庆远视科技有限公司 | 眼睛屈光度测量装置 |
RU2712464C1 (ru) * | 2019-04-08 | 2020-01-29 | Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт солнечно-земной физики Сибирского отделения Российской академии наук (ИСЗФ СО РАН) | Способ измерения вертикальных профилей показателя преломления воздуха для коррекции солнечных изображений |
RU2712780C1 (ru) * | 2019-07-09 | 2020-01-31 | Акционерное общество "Научный центр прикладной электродинамики" (АО "НЦ ПЭ") | Способ юстировки сегментированного зеркала и устройство для его осуществления |
US20220260453A1 (en) * | 2019-07-19 | 2022-08-18 | University Of Notre Dame Du Lac | Wave front sensor for wave aberration compensation in an optical system |
CN110596059B (zh) * | 2019-09-05 | 2024-05-28 | 北京世纪桑尼科技有限公司 | 光学超分辨显微成像系统 |
EP3839417B1 (en) * | 2019-12-18 | 2023-08-09 | Paris Sciences et Lettres | A full-field optical coherence tomography imaging method |
US20210196119A1 (en) | 2019-12-27 | 2021-07-01 | Ohio State Innovation Foundation | Methods and apparatus for detecting a presence and severity of a cataract in ambient lighting |
US11622682B2 (en) | 2019-12-27 | 2023-04-11 | Ohio State Innovation Foundation | Methods and apparatus for making a determination about an eye using color temperature adjusted ambient lighting |
WO2021137032A1 (en) | 2019-12-30 | 2021-07-08 | Amo Development, Llc | Optical measurement systems and processes with fixation target having bokeh compensation |
WO2021155159A1 (en) * | 2020-01-31 | 2021-08-05 | University Of Miami | System for combined intraoperative aberrometry and optical coherence tomography |
US11933668B2 (en) * | 2020-02-03 | 2024-03-19 | Rohde & Schwarz Gmbh & Co. Kg | Sampling assembly and testing instrument |
EP3973849A1 (en) * | 2020-09-24 | 2022-03-30 | Carl Zeiss Vision International GmbH | Apparatus and method for determining the refractive error of an eye |
CN113251920B (zh) * | 2021-05-10 | 2022-03-25 | 吉林大学 | 一种消除象限探测器光斑定位误差的方法 |
CN113729619B (zh) * | 2021-09-24 | 2024-01-16 | 北京鹰瞳科技发展股份有限公司 | 便携式眼底相机及锁定/解锁其的方法 |
EP4260795A1 (en) * | 2022-04-11 | 2023-10-18 | Ligi Tecnologie Medicali S.r.l. | Apparatus, method and computer program for determining a refraction of an eye |
CN115833901B (zh) * | 2022-10-21 | 2024-08-06 | 西安空间无线电技术研究所 | 一种高精度捷变波束控制方法及系统 |
CN116369840B (zh) * | 2023-06-05 | 2023-08-01 | 广东麦特维逊医学研究发展有限公司 | 一种无亮斑投影照明系统及其工作方法 |
CN116429245B (zh) * | 2023-06-13 | 2023-09-01 | 江铃汽车股份有限公司 | 一种雨刮电机噪声测试方法及系统 |
CN117495864B (zh) * | 2024-01-03 | 2024-04-09 | 山东大学 | 基于图像处理的影动方向计算系统及屈光度估计系统 |
CN117537937B (zh) * | 2024-01-05 | 2024-04-16 | 国科大杭州高等研究院 | 一种抑制差分波前传感技术非线性的指向控制系统 |
CN117848679B (zh) * | 2024-01-09 | 2024-10-01 | 北京控制工程研究所 | 一种显微成像系统的离焦检测装置及方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4141652A (en) | 1977-11-25 | 1979-02-27 | Adaptive Optics Associates, Inc. | Sensor system for detecting wavefront distortion in a return beam of light |
US5164578A (en) * | 1990-12-14 | 1992-11-17 | United Technologies Corporation | Two-dimensional OCP wavefront sensor employing one-dimensional optical detection |
JPH0723908A (ja) * | 1993-07-12 | 1995-01-27 | Canon Inc | 走査映像装置 |
US5568208A (en) * | 1994-03-08 | 1996-10-22 | Van De Velde; Frans J. | Modified scanning laser opthalmoscope for psychophysical applications |
US5777719A (en) | 1996-12-23 | 1998-07-07 | University Of Rochester | Method and apparatus for improving vision and the resolution of retinal images |
JPH11197109A (ja) * | 1998-01-19 | 1999-07-27 | Kowa Co | 走査型レーザー検眼鏡 |
US6791696B1 (en) | 1998-06-18 | 2004-09-14 | Optikos Corporation | Automated optical measurement apparatus and method |
US6376819B1 (en) | 1999-07-09 | 2002-04-23 | Wavefront Sciences, Inc. | Sub-lens spatial resolution Shack-Hartmann wavefront sensing |
US6199986B1 (en) * | 1999-10-21 | 2001-03-13 | University Of Rochester | Rapid, automatic measurement of the eye's wave aberration |
US6419671B1 (en) * | 1999-12-23 | 2002-07-16 | Visx, Incorporated | Optical feedback system for vision correction |
JP4549468B2 (ja) * | 1999-12-28 | 2010-09-22 | 株式会社トプコン | レンズメータ |
US6460997B1 (en) * | 2000-05-08 | 2002-10-08 | Alcon Universal Ltd. | Apparatus and method for objective measurements of optical systems using wavefront analysis |
US6361167B1 (en) | 2000-06-13 | 2002-03-26 | Massie Research Laboratories, Inc. | Digital eye camera |
US6685317B2 (en) | 2000-06-13 | 2004-02-03 | Massie Research Laboratories, Inc. | Digital eye camera |
US6616279B1 (en) * | 2000-10-02 | 2003-09-09 | Johnson & Johnson Vision Care, Inc. | Method and apparatus for measuring wavefront aberrations |
WO2002053020A2 (de) * | 2001-01-03 | 2002-07-11 | Walthard Vilser | Vorrichtung und verfahren zur bildgebung, stimulierung, messung und therapie insbesondere am auge |
UA59488C2 (uk) * | 2001-10-03 | 2003-09-15 | Василь Васильович Молебний | Спосіб вимірювання хвильових аберацій ока та пристрій для його здійснення (варіанти) |
US6964480B2 (en) | 2001-08-31 | 2005-11-15 | Metrologic Instruments, Inc. | Ophthalmic instrument having adaptive optic subsystem with multiple stage phase compensator |
JP2004041371A (ja) * | 2002-07-10 | 2004-02-12 | Canon Inc | 眼科装置 |
US6910770B2 (en) * | 2003-02-10 | 2005-06-28 | Visx, Incorporated | Eye refractor with active mirror wavefront sensor |
CA2529813C (en) * | 2003-06-20 | 2015-11-17 | Visx, Incorporated | Systems and methods for prediction of objective visual acuity based on wavefront measurements |
US7173691B2 (en) * | 2003-12-22 | 2007-02-06 | Qed Technologies International, Inc. | Method for calibrating the geometry of a multi-axis metrology system |
DE102005013949A1 (de) * | 2005-03-26 | 2006-09-28 | Carl Zeiss Meditec Ag | Scanvorrichtung |
US7445335B2 (en) * | 2006-01-20 | 2008-11-04 | Clarity Medical Systems, Inc. | Sequential wavefront sensor |
US8356900B2 (en) * | 2006-01-20 | 2013-01-22 | Clarity Medical Systems, Inc. | Large diopter range real time sequential wavefront sensor |
US8777413B2 (en) * | 2006-01-20 | 2014-07-15 | Clarity Medical Systems, Inc. | Ophthalmic wavefront sensor operating in parallel sampling and lock-in detection mode |
-
2006
- 2006-01-20 US US11/335,980 patent/US7445335B2/en not_active Expired - Fee Related
- 2006-12-21 AU AU2006336595A patent/AU2006336595B2/en not_active Ceased
- 2006-12-21 RU RU2008134018/28A patent/RU2431813C2/ru not_active IP Right Cessation
- 2006-12-21 EP EP06846018.7A patent/EP1977206B8/en not_active Not-in-force
- 2006-12-21 WO PCT/US2006/049112 patent/WO2007087058A1/en active Application Filing
- 2006-12-21 EP EP14192744.2A patent/EP2853870A1/en not_active Withdrawn
- 2006-12-21 ES ES06846018.7T patent/ES2525685T3/es active Active
- 2006-12-21 JP JP2008551270A patent/JP4988767B2/ja not_active Expired - Fee Related
- 2006-12-21 CA CA2636740A patent/CA2636740C/en not_active Expired - Fee Related
- 2006-12-21 KR KR1020087020303A patent/KR101323279B1/ko not_active IP Right Cessation
- 2006-12-21 BR BRPI0621233-6A patent/BRPI0621233A2/pt not_active Application Discontinuation
- 2006-12-21 CN CN200680051333.0A patent/CN101365932B/zh not_active Expired - Fee Related
-
2007
- 2007-01-10 TW TW096100968A patent/TWI338573B/zh not_active IP Right Cessation
- 2007-06-12 US US11/761,890 patent/US7815310B2/en not_active Expired - Fee Related
-
2010
- 2010-05-28 US US12/790,301 patent/US8579437B2/en not_active Expired - Fee Related
-
2011
- 2011-03-15 US US13/048,806 patent/US8591027B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CA2636740C (en) | 2012-06-12 |
RU2008134018A (ru) | 2010-02-27 |
US7815310B2 (en) | 2010-10-19 |
US20080278683A1 (en) | 2008-11-13 |
ES2525685T3 (es) | 2014-12-29 |
US8579437B2 (en) | 2013-11-12 |
EP1977206B8 (en) | 2015-05-27 |
CN101365932B (zh) | 2016-09-21 |
CN101365932A (zh) | 2009-02-11 |
US8591027B2 (en) | 2013-11-26 |
US20070171366A1 (en) | 2007-07-26 |
EP1977206A1 (en) | 2008-10-08 |
WO2007087058A8 (en) | 2015-05-28 |
WO2007087058A1 (en) | 2007-08-02 |
US20100231858A1 (en) | 2010-09-16 |
KR20080100433A (ko) | 2008-11-18 |
JP2009523539A (ja) | 2009-06-25 |
AU2006336595A2 (en) | 2008-09-11 |
BRPI0621233A2 (pt) | 2011-12-06 |
US20110164220A1 (en) | 2011-07-07 |
JP4988767B2 (ja) | 2012-08-01 |
US7445335B2 (en) | 2008-11-04 |
EP1977206B1 (en) | 2014-11-12 |
RU2431813C2 (ru) | 2011-10-20 |
TW200735840A (en) | 2007-10-01 |
KR101323279B1 (ko) | 2013-10-29 |
AU2006336595B2 (en) | 2013-01-17 |
CA2636740A1 (en) | 2007-08-02 |
EP2853870A1 (en) | 2015-04-01 |
AU2006336595A1 (en) | 2007-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI338573B (en) | Sequential wavefront sensor,wavefront compensation system,and methods of detecting and compensation aberrations of an incident wavefont using the same | |
US6616279B1 (en) | Method and apparatus for measuring wavefront aberrations | |
US6827442B2 (en) | Ophthalmic wavefront measuring devices | |
AU2002313824A1 (en) | Ophthalmic wavefront measuring devices | |
KR100901277B1 (ko) | 파면 수차 측정방법 및 장치 | |
AU2002314771A1 (en) | Method and apparatus for measuring wavefront aberrations | |
JP7059517B2 (ja) | 自覚式検眼装置 | |
JP6102369B2 (ja) | 眼底撮影装置 | |
JP2018171229A (ja) | 自覚式検眼装置 | |
JP6350698B2 (ja) | 眼底撮影装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |