TWI336730B - Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact - Google Patents

Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact Download PDF

Info

Publication number
TWI336730B
TWI336730B TW095135182A TW95135182A TWI336730B TW I336730 B TWI336730 B TW I336730B TW 095135182 A TW095135182 A TW 095135182A TW 95135182 A TW95135182 A TW 95135182A TW I336730 B TWI336730 B TW I336730B
Authority
TW
Taiwan
Prior art keywords
ultrasonic
shock
corrosion
ultrasonic shock
strength
Prior art date
Application number
TW095135182A
Other languages
Chinese (zh)
Inventor
S Statnikov Efim
Original Assignee
U I T L L C
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U I T L L C filed Critical U I T L L C
Application granted granted Critical
Publication of TWI336730B publication Critical patent/TWI336730B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons
    • C22F3/02Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons by solidifying a melt controlled by supersonic waves or electric or magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)

Description

336730 、 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種用超音波衝擊對抗金屬退化與抑制 而改良金屬性能並保護金屬的方法與演算法。本發明可對 付受外力、熱力波動與不利的環境因素等影響下之延長工 作期間,使金屬特性產生退化的問題。本發明可保護(亦即, 防止)並抑制由於性能隨時間的不當變化而導致材質破壞的 .危險。會發生這類的問題,一般是因為在金屬的環境退化 過程中所舰的已知條件之影響下,而引起材質/金屬的起 初結構之損壞》 【先前技術】 在本技術領域中,已知有美國專利第6,171,415、 6, 289, 736、6, 458, 225、6, 338, 765、6, 722,175 與 6, 843, 957 號,以及美國專利申請案第1〇/834,180號等技術,其中揭 不有許多種方法與裝置,係關於超音波衝擊處理對材質條 I 件與特性的直接影響,此意味著材質表面及其亞表面層 (subsurface layer)是此影響與結果的主要内容。 已知退化有許多的形式(分類)、起因、物理學與機制。 例如,在Berman A. F.所提出「機械系統的退化」 (Novosibirsk : Nauka,1998 年第 32〇 頁),該文件揭示結 構内的材免退化過程之結構組織化的研究與形式化結果, 結構成分的破裂’以及許多因素的組合作用所影響的獨特 機械系統之破壞。其中,亦提到由於腐姓破裂、氣脆化、 腐蝕以及機械疲勞與侵蝕等所引起的材質損壞與結構成分 5 破壞之過程。 機械系統(MS)的實驗研究、測試與工作經驗等結果是 一些資訊基礎,用以處理與支撐、保持及恢復Ms以及含有 機械系統的技術系統(TS)之可靠性與安全性有關的問題 之。此文件亦可處理因退化而導致Ms可靠性中的變化。μ 的退化意味著技術條件中的不可逆改變、機能失常以及危 險操作。MS的退化是損壞與事故累積過程的—部分,其使 知·結構上的負載承受能力有所改變。 為了在製造階段提供可靠性,必須根據對可能退化過 程的了解,而努力研究並改進設計圖表與模型,建立起診 斷特點、損壞標準與限制狀態,並且確認測試方法,決定 出用以診斷並預測技術條件的技術,以及防止緊急事故與 意外擴大的保護方法。 為了確保可靠且安全的操作,了解退化過程能確保有 效控制與評估MS的技術條件及其變化的起因,藉此,更新 零件的壽命與診斷頻率,因而增進診斷與預測技術且更新 MS。 機械系統可構成幾乎所有技術系統的之結構基礎。因 此,承受負載的結構與機構之強度與壽命,在可靠性的研 究與維修等一般方法中是最重要的。 MS的損壞與零件的壽命耗盡,是以損壞與限制狀释標 準作為其特徵《操作安全性與所需的壽命,可藉由保留工 作能力與負載承受能力,以及彌補外部作用的分散及其隨 機特性的診斷與預測技術而獲得。 '1336730 纟過去的幾十年裡’早已詳細地研究在動力工程、化 學、石油化學工業以及運輸業中的破壞起因。已經證明出 此現象的複雜性與多樣性,而且,其因果關係是與奶的 壽命耗盡(退化)及破壞的主因。例如,在化學反應爐中的 破壞研%’顯示出由於賊、物理與化學作用的不當組合, 導致在熱交換管中產生穿透管壁的裂縫。此情形很有可能 發生,這是因為設計基準與規定、製造與檢查技術與操作 # 條件等的不完全’以及違反上述規定的緣故。因此,MS及 其零件的強度與壽命等問題完全無法解決,特別是獨特的 外部因素與小型MS與TS,其破壞會導致顯著的經濟與社合 後果。 曰 - 冑一種解決此問題的方法,乃是將材質與結構機械力 學的方法與隨機過程理論結合在-起。此方法是MS可靠性 理論所用的基礎。退化破壞的可能性應該相當小,而位於 預測壽命的限度内,且可藉由適當的維修系統以及考量退 • &破壞的物理特性之壽命設計而獲得。在此,僅根據破壞 的機械、物理與化學特性㈣究(也就是,適用於破壞特性 的設計模型之可利用性)、退化過程的機制與動力學模型, 以及整個MS與其個別零件的品質空間(具有可操作條件), 而能產生出壽命的有效計算。 然而,獨特的化學處理系統之操作經驗,顯示出由於 機械、物理與化學等因素的同時作用,的確會產生出超過· 的破壞,這些因素並不會產生可靠的壽命預測,但是卻導 致出無法評估MS的技術條件與可修理性之設計方案。 7 在此情形中,會引起很大程度的破壞,這是因為在實 驗條件下(高壓與溫度的組合作用、活性與侵略性環境,包 括.快速移動物體,許多無法被加速的退化過程之低速率), 由於外部因素的不可重複性,導致無法產生適當的實驗研 究結果。無疑地,不充分的實驗研究與測試,以及缺乏破 壞的正確標準與極限狀態,均會產生出不適當的維修。 參數可靠性理論是基於許多計算可靠性參數,包括許 多物理與機械破壞模式。此理論暗示出由於個別零件的磨 耗與知壞,導致產品的輸出參數發生變化。然而,在許多 情形中,當功能終止或達背安全操作條件等一些臨界情形 時,輸出參數才會受到一個損壞值的影響。例如,破裂會 發生在容器、管子及其他零件内,由於產生穿透内壁的破 裂或碎裂而導致功能停止。 在此情形中,明確地指出一些參數,可作為穿透裂縫 形成或氫脆化(裂缝深度或長度等)的危險之特徵。藉由許 多MS的現有可控制性與診斷設備,這些參數通常無法控制, 或疋控制得不夠充分。因此,應該藉由分析並評估可能與 假設性的損壞’而維持這類MS的可靠性。所獲得的結果能 g理這些方法,以防止破壞的擴大且提供安全性。 MS的損壞疋在一個或幾個零件破壞之後的最終階段, 這站是由到達臨界值的受損材質而5丨起的。根據材質特 =與外部因素’可採用不同的參數,以作為受損的尺度。 損壞參數其特徵在於材質的物理、化學與機械特性之變化, 以及表面與結構條件。 ^1336730 基本上,現有的測量技術並未察覺起初受損階段,這 是因為其局部應用的緣故,或者該項產業缺乏必須的技術 方式,因此,這一點在MS研發期間必須考量進去。如此, 引起一項問題,就是確認出直接與間接診斷特點,以及研 發出用以評估並預測在測試與工作期間的狀態所需的診斷 方式。 描述在不同因素的組合作用下,材質的特性與狀態之 改過心的關係,大致上是非線性的。這些過程主要是根 據經驗而加以研究與形式化。而且,在外部因素的不同組 合下,运有一項與評估及預測材質損壞動力學有關的問題。 在MS與TS上的許多作用,特別是在化學、石油化學、 核子工程、生物工程與管線公共建設等會引起許多不同 的退化過程’而成為材質的複雜損壞、壽命耗盡與MS的損 壞义王因。在設計前的研究以及設計過程中,確認出可能 的退化過程是最重要的目標。 實施了許多金相物理、冶金學、物理化學、強度、持 久f生及其他研究與測試,以研究上述這些過程。這類研究 .要目的在於,根據起初參數而確認出在結構與特性 中的變化之機構、力學與動力學。G p_ —而所編輯的專 題’又’是關於結合不同方法來研究材質與結構中所發生 的破壞過程之其中—項最新與最综合的成就。 在《午多h形中’例如結構多餘(structurai Rdundancy) ^ 一種經廣泛運用且料祕的可靠方法,是無法被應用 ;S上其中播法根據強度與壽命準則而提供可靠性或正 9 打336730 確的砰估。例如,用於管線、管狀裝置與壓力容器等的主 要破壞準則,是由於會引起洩漏或大氣注入等之穿透管壁 的損壞或零件破壞所引起的密封破壞。336730, IX. Description of the Invention: [Technical Field] The present invention relates to a method and algorithm for improving metal properties and protecting metals by ultrasonic shock against metal degradation and suppression. The present invention can solve the problem of deteriorating metal characteristics during extended work under the influence of external forces, thermal fluctuations, and unfavorable environmental factors. The present invention protects (i.e., prevents) and inhibits the risk of material damage due to undue changes in performance over time. This type of problem can occur, generally due to the influence of the known conditions of the ship during the environmental degradation of the metal, causing damage to the original structure of the material/metal. [Prior Art] It is known in the art. U.S. Patent Nos. 6,171,415, 6, 289, 736, 6, 458, 225, 6, 338, 765, 6, 722, 175 and 6, 843, 957, and U.S. Patent Application Serial No. 1/834,180 And other technologies, there are many methods and devices, which are related to the direct influence of ultrasonic shock treatment on the material and characteristics of the material strip. This means that the surface of the material and its subsurface layer are the influence and result. main content. Deformation is known to have many forms (classifications), causes, physics, and mechanisms. For example, in Berman AF's "Degradation of Mechanical Systems" (Novosibirsk: Nauka, 1998, p. 32), this document reveals the structural and structural studies and structural results of the material-free degradation process within the structure. The breakdown of the unique mechanical system affected by the rupture' and the combination of many factors. Among them, the process of material damage and structural component 5 damage caused by cracking of rot, gas embrittlement, corrosion, and mechanical fatigue and erosion are also mentioned. The results of experimental research, testing and work experience of mechanical systems (MS) are the basis of information to deal with issues related to the reliability and safety of supporting, maintaining and restoring Ms and technical systems (TS) containing mechanical systems. . This file also handles changes in Ms reliability due to degradation. Degradation of μ means irreversible changes, malfunctions, and dangerous operations in technical conditions. The degradation of the MS is part of the process of damage and accident accumulation, which changes the load carrying capacity of the structure and structure. In order to provide reliability during the manufacturing phase, efforts must be made to study and improve design charts and models based on an understanding of possible degradation processes, establish diagnostic features, damage criteria and limiting states, and validate test methods to determine diagnostics and predictions. Technical conditions, as well as protection against accidents and accidents. To ensure reliable and safe operation, understanding the degradation process ensures effective control and evaluation of the technical conditions of the MS and the causes of its changes, thereby updating the life and diagnostic frequency of the part, thereby enhancing diagnostic and predictive techniques and updating the MS. Mechanical systems form the structural basis of almost all technical systems. Therefore, the strength and life of the structure and mechanism under load are the most important in general methods such as research and maintenance of reliability. The damage of the MS and the exhaustion of the life of the part are characterized by damage and limited release standards. "Operational safety and required life, by retaining the working capacity and load bearing capacity, and compensating for the dispersion of external effects and Obtained by diagnostic and predictive techniques for stochastic properties. '1336730 纟In the past few decades, the causes of damage in the power engineering, chemical, petrochemical, and transportation industries have been studied in detail. The complexity and diversity of this phenomenon has been demonstrated, and its causal relationship is the main cause of depletion (degradation) and destruction of milk life. For example, the damage in the chemical reactor showed a crack in the heat exchange tube that penetrated the tube wall due to an improper combination of thieves, physical and chemical effects. This situation is very likely to occur because of design incompleteness and designation, manufacturing and inspection techniques and operations, incomplete conditions, etc., and violations of the above regulations. As a result, issues such as the strength and longevity of MS and its components are completely unresolved, especially with unique external factors and small MS and TS, which can lead to significant economic and social consequences.曰 - 胄 One way to solve this problem is to combine material and structural mechanical mechanics with stochastic process theory. This method is the basis used by the MS reliability theory. The likelihood of degraded damage should be quite small and within the limits of life expectancy and can be obtained by proper maintenance systems and life design considerations that detract from the physical characteristics of the damage. Here, only based on the mechanical, physical and chemical properties of the damage (4) (that is, the availability of the design model for the damage characteristics), the mechanism and dynamics model of the degradation process, and the quality space of the entire MS and its individual parts. (with operable conditions), can produce an effective calculation of the life. However, the unique operating experience of chemical treatment systems has shown that due to the simultaneous effects of mechanical, physical and chemical factors, it does produce damages that do not produce reliable life predictions, but they do not A design that evaluates the technical conditions and repairability of the MS. 7 In this case, a large degree of damage is caused, because under experimental conditions (the combination of high pressure and temperature, active and aggressive environments, including fast moving objects, many degradation processes that cannot be accelerated) Rate), due to the non-reproducibility of external factors, can not produce appropriate experimental research results. Undoubtedly, inadequate experimental research and testing, as well as the lack of proper standards and limits for damage, can result in improper maintenance. The parametric reliability theory is based on many computational reliability parameters, including many physical and mechanical failure modes. This theory implies that the output parameters of the product change due to the wear and tear of individual parts. However, in many cases, the output parameters are affected by a corrupted value when the function terminates or some critical conditions such as safe operating conditions are met. For example, rupture can occur in containers, tubes, and other parts, and function stops due to cracking or chipping through the inner wall. In this case, some parameters are explicitly pointed out as a characteristic of the danger of penetrating crack formation or hydrogen embrittlement (crack depth or length, etc.). With the existing controllability and diagnostic equipment of many MSs, these parameters are often uncontrollable or inadequately controlled. Therefore, the reliability of such MS should be maintained by analyzing and evaluating possible and hypothetical damage. The results obtained can be used to prevent the expansion of damage and provide safety. The damage of the MS is in the final stage after the destruction of one or several parts, which is picked up by the damaged material that reaches the critical value. Different parameters can be used depending on the material = external factor and as a measure of damage. Damage parameters are characterized by changes in the physical, chemical, and mechanical properties of the material, as well as surface and structural conditions. ^1336730 Basically, existing measurement techniques are not aware of the initial damage phase, either because of their local application or because the industry lacks the necessary technical means, so this must be considered during MS development. As such, a problem arises by identifying the characteristics of direct and indirect diagnostics and developing the diagnostic methods needed to assess and predict the state during testing and work. Describe the relationship between the characteristics of a material and the state of the state under the combination of different factors, which is roughly non-linear. These processes are primarily based on empirical research and formalization. Moreover, under different combinations of external factors, there is a problem associated with assessing and predicting the dynamics of material damage. Many of the roles in MS and TS, especially in chemistry, petrochemistry, nuclear engineering, bioengineering, and pipeline public construction, can cause many different degradation processes, which become complex damage to materials, exhaustion of life, and damage to MS. Wang Yin. Identifying possible degradation processes is the most important goal in pre-design research and design. A number of metallographic physics, metallurgy, physical chemistry, strength, longevity and other research and testing have been carried out to study these processes. The purpose of this type of research is to identify the mechanisms, mechanics, and kinetics of changes in structure and properties based on initial parameters. G p_ — The edited topic 'and' is the latest and most comprehensive achievement of combining the different methods to study the damage process occurring in materials and structures. In "no more than h shape" such as structurai Rdundancy ^ A widely used and reliable method that cannot be applied; S on which the broadcast method provides reliability or positive 9 beats according to the strength and life criteria 336730 The actual assessment. For example, the main failure criteria for pipelines, tubular devices, pressure vessels, etc., are seal damage caused by damage to the pipe wall or damage to parts that would cause leakage or atmospheric injection.

任何損壞過程均可以藉由其機制、力學與動力學而加 以描述。損壞過程的機制意味著決定此過程的一些因素之 ’’且〇與夂互作用;力學意味著例如微觀及/或巨觀事件等損 袠這二事件疋因為總合或累積許多基礎運動而發生的; 而動力學意味著此過程的速度隨時間改變。因此,損壞機 制(退化機制)是藉由許多影響組成材質的因素而確認出來 的,力學與動力學則是藉由微觀體積與亞微體積 (SUbmicrovolurae)内的材質對一特定作用的及時反應而確 認出來的;而且,損壞參數是藉由零件體積内的一連串外 部作用而確認出來的。每個損壞過程是—種集體的過程, 其伴隨著具有特定因果關係的許多作狀综合結果。任何 扣壞過程具有最小數量的主要支配因素,這些主要因素一 般是被採用作為分類此過程的基礎。 確認MS組成材質破壞的本性與起因是相當基礎的,且 敘述如下:用以評估強度與壽命的設計模型基礎;測試方 法與條件的正確選擇之準則;證實用於Ms的診斷預· 改良之起初資訊。 就MS的持久性與可靠性而言,μ機制,"甲與参數 不僅應該被研究作為考量製造技術且理性選擇組成或結構 材質d而且還主要作為設定破壞與極限狀態、週期性 以及控制與診斷方式、技術條件所用的預測方法、可靠性 10 蚵336730 與安全性等之準則。金相物理學家與冶金學家使用「材質 破壞」一詞,而強度與可靠性專家則使用「組成材質損壞」 或僅「成分損壞」一詞。 在應力的影響下,材質的化學活性會有所增加,而且, 在週期性應力的影響下,此增加的程度會更大。因此,強 度與壽命的研究不應該被侷限於機械標準而已。引起Ms零 件破壞的腐蝕機械損壞,是化學、石油化學、石油處理、 電力設施,以及氣體與油路管線等設備損壞的主要原因。 此裝備被設計成用於熱量質量轉換過程,以及主要用於化 學 '石油化學與電力技術等媒介的運輸。 材質損壞被描述成一種多階段' 統計與大型的過程, 這是因為其具有不同的損壞微機制、時間内的熱波動之統 计關係,以及在核子、差排(disi〇cati〇n)、亞結構與結構 程度的同時現象。僅使用機械準則來評估在負載與媒介的 組合作用下之強度與壽命,並不能保證準確性,無法允許 改進這些準則,也無法影響損壞過程。 根據實驗研究、測試與控制工作的結果,可對付一些 最常見的組成材質損壞過程之物理機械本質,這些至今仍 理解甚少,例如腐蝕破裂(cc)、氫脆化(HE)、腐蝕疲勞(CF)、 機械疲勞(MF)等。偵測出作為一個或另一個退化過程主因 的取重要因素,而且確認出描述每個過程的損壞參數。表1 顯示一些主要因素的分類,這些因素包含不同的損壞機制 且可界定出損壞過程與參數。可以在因素、每個因素的個 別成份,以及引發並加速此過程的額外因素之間的不同量 11 ΓΙ336730 化關係下,實施由這些主要因素所引起的損壞過程。 表1 一材免損壞的主要參數、機制與過程之分類 損壞參數 才貝壞機制(因素的組合) 損壞過程 具方向及單一裂 縫的領域 與外部環境的接觸交互作用;張力餐 態應力或間歇性靜態應力;容易受到 某一外部環境影響的材質 腐蝕破裂 與含氫環境的接觸父互作用;張力灰 力;週期性突然溫度波動;焊接埶 響區 ‘' 氫脆化 單一裂縫 與活性外部環境的X互作用;週期性 應力;敏感性材質 腐姑疲勞 - 低週期與咼週期應力 機械疲勞 表面的局部腐姓 損壞(孔穴、凹陷) 0解質以及靜滞狹縫區的接觸交互 作用;電解電位;合金的電化學異質 性;不規律應力變形狀態 八 電化學腐蝕 材質的一般均勻 或不均勻分解 與電解質的接觸交互作用;環境b pH 值;表面鈍化特性:熱動力不穩定材 質 te"學腐f 刮落:材質的昇 華或分解 與尚溫氣體或非電解質的接觸交互作 用;環境壓力 化學腐蝕 表面起伏改變 i多動氣體、液體、研磨料的單獨或組 合作用;環境的速度與溫度;研磨料 的量值與硬度;材質的磨耗與耐熱性 侵钱 微裂縫、在晶粒 與亞結構邊界上 的多孔性 長時間暴露於高溫及張力應力 潛變 在機械與物理性 質上的改變 表面層 加;殘留應力4 形成 含氫裱境的高溫與高壓;敏感性材質 氫腐蝕— 含氮%境的高溫與高壓;鐵素體低合 金鋼中氮化物形成元素的存在 氮腐餘 熱波動過程的強 化以及雜質元素 的擴散 ' 中子光譜與中子輻射強度;高溫;鐵 素體鋼;雜質(特別是銅與磷) 輻射脆化 12 「1336730 表2顯示最常見且危險的幾種損壞參數之分類結果, 這些損壞參數對MS壽命有很大的影響且均以裂縫作為其特 徵。 表2—裂縫參數強化 分類 斷裂中的裂 縫前卿狀 斷裂中的裂 縫表面雜 裂縫生長路 徑 分支種類 在微裂縫尖 端的破壞種 類 在巨觀裂縫 尖端的破壞 種類 半圓形;半 橢圓形;直 線 單一焦點; 多重焦點 晶粒内部; 晶粒之間, 組合結果 強力分支; 脆弱分支; 不分支 差排種類; 孔洞的長成 與聯合;差 排種類與局 部腐蝕 碎片;斷裂; 切口 已知「材質與結構的加速老化:長期高溫暴露的影響」 (美國國家材料顧問委員會(NMAB),其中點出發展飛機工業 所用的不同材質之測試程序的議題,能允許可靠地預測新 穎飛機零件的壽命及其工作時的退化。為了預測材質系統 對長時間暴露於飛機結構工作環境下的反應,所以,必須 對與損壞及破壞有關的物理現象進行基本的了解。這一點 僅建立在實驗材質特徵化,以及研發描述此物理現象的相 關數學及計算模型。在許多情形中,可獲得測試標準與規 範,以提供對特殊種類的零件設計與測試方法之指導。然 而,對於一些先進的材質來說(例如,複合材質),可能會 需要不同的方案來進行材質測試,而可能會缺乏標準化的 方法。雖然對於相同的基礎材質特性之要求可能是類似的, 13 ΓΙ336730 但是,使用者通常會發展其自己的測試方法。不同測試方 法可能會導致測試資料的含糊不清,導致在材質選擇、設 計與製造上的不確定性。 使用加速測試與分析方法,對材質與結構的長期老化 反應·^評估是很困難的,特別是對於飛機服務業所遭遇的 複雜條件來說更加困難。即使此最佳技術可能仍無法對材 質性能產生%全令人滿意的預測結果,然而,因為將設計 出新型飛機,且在整個壽命週期内評估材質與結構,因此, 發展出能夠提供材質與結構性能的最佳了解之測試與分析 方法,以支持材質選擇與結構設計決定,是很重要的。最 好能夠及時具有不完整的資料以影響關鍵的程式決定而 非等待完整精確的資料逐漸產生出來。 對於上述問題的關注,已經使得美國太空總署(nasa) 要求國家研究委員會的國家材料顧問委員t,確認與高級 材質的老化有關之問題’且提出加速評估方案與分析方法, 以便在整個工作壽命期間,使未來飛機材質與結構的持久 性產生特徵。因此,NMAB研究委員會制定出:(1)對未來高 性能飛機結構與材質上的長期暴露影響,提出一項概述;(2) 建議改良分析方法與方案,以加速實驗測試與分析技術, 以便使材質對可能的飛機操作環境之反應產生特徵與預 測;以及(3)確認發展並證實要求的測試、制分析能力與 評估準則所需之研究。 必須考慮的-般退化機制(也就是說,構成觀察得到的 退化作用之基礎的物理事件或一連串事件),包括: 14 粦336730 —微結構與組成改變; —與時間有關的變形以及合成的損壞累積; 一環境侵襲與升高溫度的加速影響;以及 —上述情形的協同作用。 從歷史的角度來看,在飛機應用情形中的鋁合金之主 要損衷機制,疋與老化艦隊有關的腐餘與疲勞機制。潛在 的損壤機制包括微結構變化、疲勞、潛變與環境的影響。 視特殊應用中何種特性是重要的而定,以決定最關鍵 的退化機制。例如,假如強度是最關鍵的話,在溫度升高 的工作期間,基質沉澱物的變粗將會很重要;假如堅韌性 是最關鍵的話,則晶粒邊界沉澱物或產生無沉澱物的區域 將會很重要的;以及假如潛變或疲勞是很重要的話,則微 裂缝的集結、生長與接合將會很重要的,與鋁合金的高溫 應用有關之潛在損壞機制包括:微結構變化、疲勞、潛變 與環境影響。 在施加應力的影響下,高溫暴露會引起許多微結構變 化,包括:基質沉澱物的變粗(在強度是最關鍵的情形中很 重要),以及晶粒邊界沉澱物,或產生無沉澱物的區域(在 堅韌性是最關鍵的情形中很重要)^疲勞抵抗性會藉由空隙 或微裂縫的集結、生長與接合而導致降級。高週期疲勞抵 抗性對於微結構異質性的微裂縫集結很敏感,而疲勞裂縫 生長臨界值會受到殘留應力的程度,以及微結構中的變化 所產生的裂縫尖端遮蔽效應而影響。潛變抵抗性似乎會隨 著增加的晶粒尺寸而增加。而且,冷加工會減少在沉殿物 15 丨1336730 強化與分散強化鋁合金中的潛變抵抗性。由於鋁合金需考 量的工作環境交互作用所引起的退化機制包括:腐蝕、應 力腐蝕破裂、氫脆化、固態金屬脆化,以及液態金屬脆化。 與鈦合金中的破裂過程複雜性有關的三個相關問題, 以及與時間/溫度/氩有關的損壞模式之可能性,可能會阻 擋研發出鬲強度與咼堅章刃性鈇合金,以便用於高速民用運 輸(HSCT)應用情形。這些問題包括在變形與局部破裂中的 微結構變化之影響’在間歇性溫度變形特性中的不確定性, 以及氫脆化。 在用於HSCT的高強度與高堅韌性鈦合金之長期高溫應 用情形中,所需要考慮的三個主要因素包括: —應該會產生的微結構變化之影響(例如,召晶粒尺寸 中的變化、α體積部份、晶粒邊界α形成、正在老化的 態’以及亞穩定相位),類似已經產生於鋁合金的影響; —適當的工作溫度與負載率對合金性能上的影響,包 括:動態應變老化的可能性、熱啟動滑動局部化、時間/溫 度對氫脆化的影響,以及在致冷溫度的變形與破裂反應; 以及 —由於從侵略性環境(例如飛機液壓流體)所分解的 氫,而引起的張力延展性以及破裂堅韌性之退化。 已知有 Heloisa Cunha Furtado 與 Iain Le May 等人 所提出「電廠與精煉廠内的高溫退化」(Mat. Res. Vol. 7, n0. 1 Sao Carlos. Jan./Mar.,2004),該文件揭示高溫 下的退化機制’以及評估這類損壞與操作的剩餘壽命之方 16 『1336730 法。高溫電廠内的主要衰敗機制是潛變損壞、微結構退化、 高溫疲勞、潛變疲勞、脆化、滲碳作用、氫損壞、石墨化、 熱衝擊、侵蝕、液態金屬脆化,以及不同種類的高溫腐蝕。 此外,應力腐蝕破裂與水溶液腐蝕也可能會產生問題,儘 管這些損壞機制在高溫零件中不一定預期會發生。然而, 當零件受到冷卻,且液體仍存在於其中或與其接觸時,這 些損壞機制就可能發生。以下,將考量每一種形態。 潛變是其中一種最嚴重的高溫損壞機制,潛變涉及與 時間有關的變开;?。咼溫潛變破裂一般是在具有工程重要性 的零件中以微粒間的方式產生,這些零件在一段延長時間 後產生故障,而且包括:鍋爐過熱器與其他在高溫操作的 零件、石油化學爐與反應器容器零件,以及氣體渦輪葉片。 在高溫下,如同可能會與局部過熱一起發生,可能會局部 產生變形,伴隨著很大的塑性應變與局部壁薄化。在稍微 較低的溫度以及對應的較高應力程度下,破裂很自然地會 跨越晶粒。 微結構退化是一種損壞機制,其可以藉由如潛變'疲 勞或更快速的破裂等其他過程而導致損壞。微結構退化是 一種損壞機制,其可能在材質強度中導致顯著的損耗。 涉及重複施加應力的疲勞,可引起高溫下的損壞,就 如在低溫時所產生的一樣。在高溫操作的零件中,通常透 過會引起週期性熱應力的溫度變化,而產生疲勞,如此會 引起熱疲勞破裂。此破裂傾向在具有高約束力的區域内產 生’且此詳細的機制可以是局部潛變變形的其中一種。 17 1336730 潛變疲勞交互作用是一種損壞的複雜過程,其涉及潛 變變形與週期性應力,而且,主要的損壞模式可以從較高 頻率與較低溫度下的主要疲勞裂缝生長,延伸到主要潛變 損壞的範圍内,其中,主要潛變損壞的保持時間很長,且 溫度是此等級的高點。 來自沉澱物的脆化可以許多不同的方式產生。例如, 維持於高溫下或在臨界溫度範圍(大約565到980。〇内循環 的沃斯田鐵系不鏽鋼之σ相形成,會引起延展性的損耗及 脆化。當保持在550到400°C的溫度範圍或在此範圍上冷卻 時’肥粒鐵不鏽鋼可能會產生脆化現象,假如溫度條件被 控制成可能會引起這類效果的話,則在延長暴露之後,尚 未產生非預期破裂之前,最好建議實施金相檢查。除了在 工作期間暴露於高溫下的肥粒鐵鋼之脆化,以及透過形成 σ相使得沃斯田鐵系不鏽鋼產生脆化以外,當零件在高溫 下暴露於含碳大氣持續一段延長時間時,含碳作用會產生 較脆的材質。 特別是在石油化學工廠内產生的氫損壞,可透過氫原 子擴散至金屬内而發生於碳鋼内,其中,氫原子與Fe3c中 的碳結合而形成甲烷並消除波來鐵(pearlite)成分。這是 一種微結構退化的特殊情形,而且,比起過去,目前較不 常見,這是因為使用含有能穩定碳化物的元素之低合金鋼 的緣故。 在暴露於高溫一段延長時間之後,石墨化發生於肥粒 鐵鋼中,這是因為在肥來鐵内的滲碳體(cementite)逆轉成 18 ί广的石,f、相。它是-種特殊形式的微結構退化,從 油化學成分中出現得相當頻繁。隨著發展出更加穩 鋼’上述情形現在就較不常見,但是有時候仍會 發生於石油化學工麻與蒸氣發電機内,因為在這些場合内, 溫度很高且材質並非完全穩定。 熱衝擊涉及快速的溫度變化,其能產生急遽的溫度梯 度’且因此產生很高的應力。這樣的負載可產生裂縫,特 別是假如此震動負載是錢性縣1此方式產生的裂縫 會受到熱疲㈣過程而進-步錄。在正常的操作條件下, 上述h形不會發生於火力發電廢與精煉爐中,但是,在緊 急情形或脫離此操作條件期間,就有可能產生上述情形。 脆裂材質更容易受到熱衝擊的影響,而且,在高級的氣體 渦輪中更為常見的陶瓷零件,也很容易受到這類損壞的影 當在流動氣體中存在有顆粒時,侵蝕可以發生在高溫 零件下。這一點在燃煤發電廠中並非罕見的情形,其中飛 灰所引起的侵姓會導致省油氣與再熱器中的管壁薄化,而 且,吹灰器侵姑會導致吹灰器路線内的管子中之過熱器與 再熱器之薄化《對於飛灰侵蝕的解決方式,一部分可依靠 改良鍋爐煙道氣體分佈,且縮減局部過高的氣體速度。吹 灰器侵蝕的控制端視許多因素而定,這些因素包括:過多 的吹送壓力 '粗劣的維修,以及對所須之處提供有效的管 子保護。 液態金屬脆化(LME)可以藉由多數液態固態金屬組合而 Λ336730 產生’而其中一項對於精煉工業具有嚴重後果的組合,是 沃斯田鐵系不鏽鋼受到鋅的LME。快速脆化可能會發生在 750°C以上的溫度,且經發現,當有鋅源存在(例如,鍍鋅 鋼結構部位)時’或者當有來自含鋅的塗料之污染時,經過 爐火之後’可以在不鏽鋼零件中產生散佈的裂縫。後者的 來源在 Flixborough 災難時(Flixborough, North Lincolnshire, England,1974),會引起相當大的裂縫。 產生裂缝的速度(m/s)可能相當快,且對於這類的裂縫,可 以產生如20MPa般小的應力程度。 縮小高溫應用情形中的合金腐蝕,可端視保護性氧化 物殼的形成而定。另一方面,對於在高溫下具有相當高強 度的合金來說,可能需要塗上一保護塗層。一般用以提供 保護層的氧化物是Cr2〇3與Α12〇3。腐蝕保護在保護層的整 個機械損壞期間產生故障,此保護層包括由於熱循環或來 自侵蝕或衝擊等影響而產生氧化物的碎裂。 上述並非與高溫下正常操作的零件有關之損壞機制。 然而,當工廠發生停工時,流體可能會冷凝,而且在工廢 内的管子或容器中,會具有含水的污染物。在低溫發生的 腐蝕或應力腐蝕裂缝,會在工廠的稍後操作期間,在高溫 產生優先損壞。 已知G· A. Fi lippov與〇. V. Livanova(全俄國人會議, 結構缺陷與結晶強度,Chernogolovka 2002)所提出之「結 構缺陷的交互作用以及結構材料特性的退化」,該文件揭示 在延長工作之後’管金屬特性的退化是藉由對脆裂(包括脆 20 1336730 延遲斷裂)抵抗性的減少而顯示出來的,而且,係導因於鋼 的應變老化。該文件亦點出管線延長工作對於機械特性與 裂缝抵抗性上的影響,並建議管鋼的老化機制。對於在不 同氣候條件下搡作的19個主要管線之管樣本進行研究。在 超過所有管子的80%中出現之17MnSi型鋼上,實施基礎的 統计分析。為了評估機械特性,所以,從操作管路、緊急 捲軸與緊急庫存中採集樣本,有效壽命在4年與44年之間。 在Orsko-Khalilovsk冶金工作的現有製品中所使用的金 屬,以及來自緊急庫存的管子,兩者被採用作為起初條件。 例如張力強度σΤ5、降伏強度σγ$、延長δ,以及面積 縮減Ψ等標準機械特性,並未隨著工作而產生實際的改變 (參考表3)。在分散的極限内,實驗數據很接近標準(口 η 至少520MPa,δ至少24%)。為了顯示出容易受結構變化影 響的特性,所以,需要其他的測試,包括:急遽應力升高 的樣本,以及預先產生裂缝的樣本;也應該評估裂縫集結 與繁殖》 在使用尖銳缺口樣本進行管子的測試時(參考表3),經 發現會減少衝擊強度。在20至25年的工作之後,在2〇γ 時的KCV(衝擊強度)會從55-70下降至30-50J/cm2。在_4〇 與20°C的溫度範圍内之衝擊測試顯示出:當壽命增加時, &金屬轉變成脆狀·%(T5〇)的臨界溫度會移動到較高的溫度 (參見圖1)。在25至35年的工作之後,溫度低溫脆性臨界 值會逐漸進入一個零上溫度區。當管子到達25年的工作時, 作為管子金屬破壞強度的特徵之所有值會減少,這—點可 21 「1336730 二由κ銳缺口靜止.考曲測試而證明出來。塑性減少大約1.5 =在工作25年之後’管子金屬的總破裂能量心,會減少 幾乎半,這一點主要是由於裂缝集結作用Αη(參見表3) 的減少之緣故。裂縫繁殖作用、會減少至—較小的程度。 因此,在延長工作期間,管子金屬的結構改變中之變化, 對於裂縫集結作用上,具有最大的影響。 圖1顯示壽命對於17MnSi鋼的管子金屬之脆狀態(I。)Any damage process can be described by its mechanism, mechanics and dynamics. The mechanism of the damage process means that the factors that determine this process are ''and the interaction between 〇 and ;; mechanics means that the two events, such as microscopic and/or macroscopic events, occur because of the total or accumulation of many basic movements. And dynamics means that the speed of this process changes over time. Therefore, the damage mechanism (degradation mechanism) is confirmed by many factors that affect the composition of the material. The mechanics and kinetics are the timely response to a specific action by the material in the microscopic volume and the submicro volume (SUbmicrovolurae). Confirmed; and, the damage parameters are confirmed by a series of external actions within the part volume. Each damage process is a collective process that is accompanied by a combination of many actions with specific causal relationships. Any deduction process has a minimum number of major dominating factors that are generally adopted as the basis for classifying this process. It is confirmed that the nature and cause of MS material destruction are quite basic, and are described as follows: design model basis for evaluating strength and life; criteria for correct selection of test methods and conditions; verification of initial diagnosis for Ms News. In terms of the persistence and reliability of MS, the μ mechanism, "A and parameters should not only be studied as a consideration of manufacturing technology and rational choice of composition or structural material d but also mainly for setting damage and limit states, periodicity and control Diagnostic methods, prediction methods used in technical conditions, and criteria for reliability 10 蚵 336730 and safety. Metallographic physicists and metallurgists use the term “material destruction”, while strength and reliability experts use the term “composition material damage” or “component damage”. Under the influence of stress, the chemical activity of the material will increase, and the degree of increase will be greater under the influence of periodic stress. Therefore, the study of strength and longevity should not be limited to mechanical standards. Corrosive mechanical damage that causes damage to Ms parts is the main cause of damage to equipment such as chemical, petrochemical, petroleum processing, power facilities, and gas and oil pipelines. This equipment is designed for use in thermal mass conversion processes and primarily for the transportation of chemicals such as petrochemicals and power technology. Material damage is described as a multi-stage 'statistical and large-scale process because it has different damage micro-mechanisms, statistical relationships of thermal fluctuations over time, and in nucleus, dislocation (disi〇cati〇n), Simultaneous phenomena of substructure and structure. Using only mechanical criteria to assess the strength and longevity of a combination of load and medium does not guarantee accuracy and does not allow for the improvement of these criteria or the damage process. According to the results of experimental research, testing and control work, it can deal with some of the most common physical and mechanical properties of the material damage process, which are still poorly understood, such as corrosion cracking (cc), hydrogen embrittlement (HE), corrosion fatigue ( CF), mechanical fatigue (MF), etc. An important factor is detected as the primary cause of one or the other degradation process, and the damage parameters describing each process are identified. Table 1 shows the classification of some of the main factors that contain different damage mechanisms and can define the damage process and parameters. The damage caused by these major factors can be implemented under different factors, factors, individual components of each factor, and additional factors that trigger and accelerate the process. Table 1 The main parameters, mechanism and process classification of a material-free damage The damage parameter (combination of factors) The contact process of the damage process with the direction of the single crack and the external environment; the tension of the meal or intermittent Static stress; material corrosion rupture susceptible to an external environment and contact with the hydrogen-containing environment; tension gray force; periodic sudden temperature fluctuations; welding squeaking zone '' hydrogen embrittlement single crack and active external environment X interaction; periodic stress; sensitive material corrosion fatigue - low cycle and 咼 periodic stress mechanical fatigue surface local corrosion damage (holes, depressions) 0 solution and interaction of static slit zone contact; electrolytic potential Electrochemical heterogeneity of alloys; Irregular stress deformation state 8. Electrochemical corrosion of materials with general uniform or uneven decomposition and electrolyte contact interaction; Environment b pH value; Surface passivation characteristics: Thermodynamically unstable material te" f scraping: the sublimation or decomposition of the material is connected with the temperature or non-electrolyte Interaction; environmental pressure chemical corrosion surface fluctuation changes i multi-moving gas, liquid, abrasive material alone or in combination; environmental speed and temperature; abrasive material amount and hardness; material wear and heat resistance invading micro-cracks, Porosity at grain and substructure boundaries is exposed to high temperature and tensile stress latent changes in mechanical and physical properties. Surface layer is added; residual stress 4 forms high temperature and high pressure in hydrogen-containing environment; sensitive material hydrogen Corrosion - high temperature and high pressure in nitrogen-containing environment; presence of nitride-forming elements in ferritic low-alloy steel: strengthening of residual heat fluctuation process of nitrogen rot and diffusion of impurity elements 'neutron spectrum and neutron radiation intensity; high temperature; ferrite Body steel; impurities (especially copper and phosphorus) Radiation embrittlement 12 "1336730 Table 2 shows the classification results of the most common and dangerous several damage parameters, which have a great influence on the life of the MS and both use cracks as their Characteristics. Table 2—Crack parameters intensified classification Fractures in cracks in front of cracks The type of damage at the tip of the microcrack is semi-circular at the tip of the giant crack; semi-elliptical; straight single focus; multifocal grain inside; intergranular, combined result strong branch; fragile branch; Types of gaps; length formation and joint of holes; types of gaps and localized corrosion fragments; fractures; incisions are known to "accelerated aging of materials and structures: effects of long-term high temperature exposure" (NMAB) The issue of developing test procedures for different materials used in the aircraft industry allows for reliable prediction of the life of new aircraft parts and their degradation during operation. In order to predict the response of material systems to long-term exposure to aircraft structural work environments, A basic understanding of the physical phenomena associated with damage and damage must be made. This is only based on the characterization of experimental materials and the development of relevant mathematical and computational models that describe this physical phenomenon. In many cases, test standards and specifications are available to provide guidance on specific types of part design and test methods. However, for some advanced materials (for example, composite materials), different solutions may be required for material testing, and there may be a lack of standardized methods. Although the requirements for the same basic material properties may be similar, 13 ΓΙ 336730 However, users often develop their own test methods. Different testing methods may result in ambiguity in the test data, leading to uncertainty in material selection, design and manufacturing. Using accelerated testing and analysis methods, it is difficult to evaluate the long-term aging response of materials and structures, especially for the complex conditions encountered in the aircraft service industry. Even though this best technique may not produce a full satisfactory prediction of material performance, however, as new aircraft are designed and materials and structures are evaluated throughout their life cycle, they are developed to provide materials and structures. It is important to have a best understanding of the performance of the test and analysis methods to support material selection and structural design decisions. It is best to have incomplete data in a timely manner to influence critical program decisions rather than waiting for complete and accurate data to be produced. Concerns about the above issues have led NASA to request National Research Council members of the National Research Council to identify problems related to aging of advanced materials' and to propose accelerated assessment programs and analytical methods for the entire working life. During this period, the durability of the future aircraft materials and structures is characterized. Therefore, the NMAB Research Committee developed: (1) an overview of the long-term exposure effects on future high-performance aircraft structures and materials; and (2) recommendations for improved analytical methods and protocols to accelerate experimental testing and analysis techniques to The characteristics and predictions of the material's response to possible aircraft operating environments; and (3) the research required to validate and validate the required testing, analytical capabilities, and evaluation criteria. A general degradation mechanism that must be considered (that is, a physical event or a series of events that form the basis of the observed degradation), including: 14 粦 336730 - microstructure and compositional changes; - time-dependent deformation and synthetic damage Accumulation; an accelerated impact of environmental attack and elevated temperature; and - synergy of the above. From a historical point of view, the main loss mechanism of aluminum alloys in aircraft applications, and the mechanism of decay and fatigue associated with aging fleets. Potential damage mechanisms include microstructural changes, fatigue, creep and environmental impacts. Depending on which characteristics are important in a particular application, the most critical degradation mechanisms are determined. For example, if strength is the most critical, thickening of matrix deposits will be important during periods of elevated temperature; if toughness is the most critical, then grain boundary deposits or areas that produce no deposits will It will be important; and if creep or fatigue is important, the assembly, growth and bonding of microcracks will be important, and the potential damage mechanisms associated with high temperature applications of aluminum alloys include: microstructure changes, fatigue, Potential changes and environmental impacts. Under the influence of applied stress, high temperature exposure can cause many microstructural changes, including: coarsening of matrix precipitates (important in the case where strength is the most critical), as well as grain boundary deposits, or precipitation-free Area (Important in the case where toughness is the most critical) ^Fatigue resistance can be degraded by the accumulation, growth and bonding of voids or micro-cracks. High cycle fatigue resistance is sensitive to micro-crack build-up of microstructure heterogeneity, and the critical value of fatigue crack growth is affected by the degree of residual stress and the crack tip shadowing effect caused by changes in the microstructure. The creep resistance seems to increase with increasing grain size. Moreover, cold working reduces the latent resistance in the reinforced and dispersive reinforced aluminum alloys of the 15 丨 1336730. Degradation mechanisms due to the interaction of the working environment with aluminum alloys include: corrosion, stress corrosion cracking, hydrogen embrittlement, solid metal embrittlement, and liquid metal embrittlement. Three related problems related to the complexity of the fracture process in titanium alloys, as well as the possibility of time/temperature/argon-related damage modes, may hinder the development of niobium strength and 咼 章 刃 , , alloy for use in High-speed civil transport (HSCT) applications. These problems include the effects of microstructure changes in deformation and local rupture' uncertainty in intermittent temperature deformation characteristics, and hydrogen embrittlement. In the long-term high-temperature applications of high-strength and high-toughness titanium alloys for HSCT, the three main factors to consider are: - the effects of microstructure changes that should occur (for example, changes in the size of the caller) , α volume fraction, grain boundary α formation, aging state 'and metastable phase), similar to the effects already produced in aluminum alloys; - the effect of proper operating temperature and loading rate on the properties of the alloy, including: dynamic The possibility of strain aging, the localization of hot start sliding, the effect of time/temperature on hydrogen embrittlement, and the deformation and rupture reaction at the cooling temperature; and—the hydrogen decomposed from an aggressive environment (such as aircraft hydraulic fluid) , resulting in tensile ductility and degradation of fracture toughness. Known by Heloisa Cunha Furtado and Iain Le May et al., "High Temperature Degradation in Power Plants and Refineries" (Mat. Res. Vol. 7, n0. 1 Sao Carlos. Jan./Mar., 2004), this document Reveal the degradation mechanism at high temperatures' and assess the residual life of such damages and operations 16 "1336730 method. The main decay mechanisms in high-temperature power plants are latent damage, microstructure degradation, high temperature fatigue, latent fatigue, embrittlement, carburization, hydrogen damage, graphitization, thermal shock, erosion, liquid metal embrittlement, and different types of High temperature corrosion. In addition, stress corrosion cracking and aqueous solution corrosion can also cause problems, although these damage mechanisms are not necessarily expected to occur in high temperature parts. However, these damage mechanisms can occur when the part is cooled and the liquid is still present in or in contact with it. In the following, each form will be considered. Latent change is one of the most serious high temperature damage mechanisms. The latent changes involve time-dependent changes; .潜 Temperature creep rupture is generally produced in the form of inter-particles in engineering-critical parts that fail after an extended period of time and include: boiler superheaters and other parts operating at high temperatures, petrochemical furnaces Reactor vessel parts, as well as gas turbine blades. At high temperatures, as may occur with local overheating, local deformation may occur, accompanied by large plastic strain and localized wall thinning. At slightly lower temperatures and correspondingly higher levels of stress, the fracture naturally crosses the grains. Microstructural degradation is a mechanism of damage that can be caused by other processes such as latent 'weakness or faster breakage. Microstructural degradation is a mechanism of damage that can cause significant losses in material strength. Fatigue involving repeated stress application can cause damage at high temperatures, as occurs at low temperatures. In high-temperature-operated parts, fatigue is usually generated by a temperature change that causes periodic thermal stress, which causes thermal fatigue cracking. This tendency to rupture occurs in areas with high binding forces' and this detailed mechanism can be one of local latent deformations. 17 1336730 The latent fatigue interaction is a complex process of damage involving creep deformation and periodic stress. Moreover, the main damage mode can be extended from the main fatigue crack growth at higher frequencies and lower temperatures to the main potential. Within the range of damage, where the main latent damage is maintained for a long time and the temperature is the high point of this level. Embrittlement from precipitates can be produced in many different ways. For example, the formation of a sigma phase of a Worthian iron-based stainless steel that is maintained at a high temperature or in a critical temperature range (approximately 565 to 980 Torr) causes ductile loss and embrittlement. When maintained at 550 to 400 ° C The temperature range or the cooling in this range 'fat iron stainless steel may cause embrittlement, if the temperature conditions are controlled to cause such effects, then after prolonged exposure, before the unexpected rupture has occurred, the most It is advisable to carry out a metallographic examination. Except for the embrittlement of the ferrite iron steel exposed to high temperatures during work, and the embrittlement of the Worthfield iron stainless steel by the formation of the σ phase, when the parts are exposed to carbon at high temperatures When the atmosphere continues for a prolonged period of time, the carbonaceous effect will produce a brittle material. Especially the hydrogen damage generated in petrochemical plants can occur in carbon steel by diffusion of hydrogen atoms into the metal, where hydrogen atoms and Fe3c The carbon in the bond combines to form methane and eliminates the pearlite component. This is a special case of microstructural degradation and, compared to the past, is currently less Commonly, this is due to the use of low-alloy steels containing elements that stabilize carbides. After exposure to high temperatures for a prolonged period of time, graphitization occurs in ferrite iron steel because of carburization in the ferrite. The cementite is reversed into 18 ί wide stones, f, phase. It is a special form of microstructural degradation that occurs quite frequently from the chemical composition of the oil. With the development of more stable steel, the above situation is now more Not common, but sometimes it still occurs in petrochemicals and steam generators, because in these cases, the temperature is high and the material is not completely stable. Thermal shock involves rapid temperature changes, which can produce an imminent temperature gradient. And therefore, it generates high stress. Such a load can generate cracks, especially if the shock load is such that the crack generated in this way will be subjected to the thermal fatigue (four) process. Under normal operating conditions, The above h-shape does not occur in thermal power generation waste and refining furnaces, but it may occur during an emergency or during this operating condition. The quality is more susceptible to thermal shock, and ceramic parts, which are more common in advanced gas turbines, are also susceptible to such damage. When particles are present in the flowing gas, erosion can occur under high temperature parts. This is not uncommon in coal-fired power plants. The infested name caused by fly ash will lead to thinning of the wall in the oil and gas reheater. Moreover, the soot blower will lead to the soot blower route. The thinning of the superheater and reheater in the inner tube "For the solution of fly ash erosion, part of it can rely on improving the boiler flue gas distribution and reducing the local excessively high gas velocity. The control side of the soot blower erosion Depending on many factors, these factors include: excessive blowing pressure 'cheek maintenance, and effective pipe protection where needed. Liquid metal embrittlement (LME) can be produced by a combination of most liquid solid metals Λ336730' One of the most serious consequences for the refining industry is the LME of the Worthfield iron-based stainless steel that is zinc. Rapid embrittlement may occur at temperatures above 750 ° C and has been found to exist when there is a source of zinc (eg, galvanized steel structural parts) or when there is contamination from a coating containing zinc, after a fire 'Can produce cracks in the stainless steel parts. The latter source was at the Flixborough disaster (Flixborough, North Lincolnshire, England, 1974), causing considerable cracks. The rate at which cracks are generated (m/s) can be quite fast, and for such cracks, a degree of stress as small as 20 MPa can be produced. Reducing alloy corrosion in high temperature applications can depend on the formation of a protective oxide shell. On the other hand, for alloys having a relatively high strength at high temperatures, it may be necessary to apply a protective coating. The oxides generally used to provide the protective layer are Cr2〇3 and Α12〇3. Corrosion protection creates a failure during the entire mechanical damage of the protective layer, which includes cracking of the oxide due to thermal cycling or from erosion or impact. The above is not a damage mechanism associated with parts that operate normally at high temperatures. However, when the plant is shut down, the fluid may condense and there will be waterborne contaminants in the pipes or containers within the work waste. Corrosion or stress corrosion cracking at low temperatures can cause preferential damage at high temperatures during later operation of the plant. It is known that G. A. Filippov and 〇. V. Livanova (all-Russian conference, structural defects and crystal strength, Chernogolovka 2002) proposed "the interaction of structural defects and the degradation of structural material properties", the document Degradation of tube metal properties after prolonged work is shown by a reduction in resistance to brittle fractures (including brittle 20 1336730 delayed fracture) and is due to strain aging of steel. The document also points out the impact of pipeline extension work on mechanical properties and crack resistance, and suggests the aging mechanism of the pipe. A study was conducted on tube samples from 19 major pipelines that were produced under different climatic conditions. Basic statistical analysis was performed on 17MnSi steels that appeared in more than 80% of all tubes. In order to evaluate the mechanical properties, samples were taken from operating lines, emergency reels and emergency stocks with an effective life of between 4 and 44 years. The metals used in the existing products of the metallurgical work of Orsko-Khalilovsk, as well as the pipes from the emergency stock, were used as initial conditions. Standard mechanical properties such as tensile strength σ Τ 5, undulation strength σ γ $ , elongation δ, and area reduction Ψ do not actually change with the work (refer to Table 3). Within the limits of dispersion, the experimental data is very close to the standard (mouth η at least 520 MPa, δ at least 24%). In order to show characteristics that are susceptible to structural changes, other tests are required, including: samples with increased eviction stress, and samples with pre-cracks; crack aggregation and propagation should also be evaluated. Pipes using sharp notch samples. When tested (refer to Table 3), it was found to reduce the impact strength. After 20 to 25 years of operation, the KCV (impact strength) at 2 〇 γ will drop from 55-70 to 30-50 J/cm 2 . The impact test in the temperature range of _4 〇 and 20 ° C shows that when the life is increased, the critical temperature at which the & metal transforms to brittleness %(T5〇) will move to a higher temperature (see Figure 1). ). After 25 to 35 years of operation, the temperature low temperature brittleness threshold gradually enters a zero upper temperature zone. When the pipe reaches 25 years of work, all the values of the metal breaking strength of the pipe will be reduced, which can be proved by the κ acute gap static test. The plasticity is reduced by about 1.5 = at work. After 25 years, the total fracture energy of the pipe metal will be reduced by almost half, which is mainly due to the reduction of the fracture assembly Αη (see Table 3). The crack propagation will be reduced to a small extent. During the extension of the work, the change in the structural change of the pipe metal has the greatest influence on the crack buildup. Figure 1 shows the brittle state of the pipe metal for the 17MnSi steel (I.)

轉變溫度上之影響(符號丨意味著在2〇。(:以上的脆狀態轉換 之情形)。 臨界裂縫開口(C0D),反映出裂縫引發的限制變形,其 在工作2G至25年之後,戲劇性地減少大約丨· 5倍。如此 表示會增加鋼對應力集中的敏感度,也就是說,起初並不 是非常危險,在管子表面上的應力集中(刮痕、擦損、凹痕 等)’在延長工作之後會變成是最重要的,這是因為在管子 金屬中的結構狀態改變的緣故。The effect of the transition temperature (symbol 丨 means at 2 〇. (: the case of the above brittle state transition). Critical crack opening (C0D), reflecting the crack-induced limiting deformation, which is 2G to 25 years after work, dramatic The ground reduction is about 丨·5 times. This means increasing the sensitivity of the steel to stress concentration, that is, it is not very dangerous at first, and the stress concentration on the surface of the pipe (scratches, scratches, dents, etc.) It will become the most important after the work is extended because of the structural change in the metal of the pipe.

因此,在長時間工作的過程中,管子金屬受到結構狀 態的變化,如此會導致減少脆破裂抵抗性。意味著此—現 象的發生,乃是由於微塑性變形抵抗性的增加,以及由於 負載而導致較高的局部微應力之緣故。 表3—在延長工作期間17MnSi型管鋼的機械特性退化 哥命 年數 (7TS MPa ° YS MPa δ % Φ % Αη J/cm2 ΑΡ J/cm2 KCV'40 J/cm2 KCV^ J/cm2 0 594 411 27 59 14.7 28 53 57 20-25 584 419 27 58 Ί 14.4 29 51 55 30-44 572 407 26 56 11.5 23 47 46 22 Ί336730 管子金屬的結構狀態中之變 齒 化,可起因於應力作用、 引起的缺陷累積過程。腐㈣程會改變管 =屬的表面條件’使金屬充滿氣,如此能形成微裂縫狀 =邵缺陷。在小於鋼的最終破裂應力與㈣應力之靜態 或準靜態應力了,微裂縫狀的缺陷與破㈣累積過程,- 般稱<為延遲破裂。延遲破裂是暴露於腐㈣境的臨界高 強度鋼細部之過早脆裂’例如,鎖緊的螺栓、受到應變的 強化金屬線等。Therefore, during long working hours, the tube metal is subjected to structural changes, which results in reduced brittle fracture resistance. This means that the occurrence of the phenomenon is due to the increased resistance of the microplastic deformation and the high local micro stress due to the load. Table 3—Degradation of mechanical properties of 17MnSi-type pipe steel during extended work (7TS MPa ° YS MPa δ % Φ % Αη J/cm2 ΑΡ J/cm2 KCV'40 J/cm2 KCV^ J/cm2 0 594 411 27 59 14.7 28 53 57 20-25 584 419 27 58 Ί 14.4 29 51 55 30-44 572 407 26 56 11.5 23 47 46 22 Ί336730 The toothing of the structural state of the pipe metal can be caused by stress The accumulation process of defects. The rot (four) process will change the surface condition of the tube = genus 'filling the metal with gas, so that micro-cracks = Shao defects can be formed. In the static or quasi-static stress less than the final fracture stress of the steel and (iv) stress, Micro-cracked defects and broken (four) accumulation processes, - generally referred to as "delayed fractures. Delayed fractures are premature brittle fractures of critical high-strength steel details exposed to rot (4), eg, locked bolts, strained Strengthen metal wires, etc.

根據同時暴露於應力、腐_境及氫等特別生長過程, 而實施延遲破裂測試^延遲破裂具有三個相位:潛伏期(裂 縫集結階段)、穩定裂縫的緩慢成長,以及外速破裂。在可 能與腐姓環境接觸的情形下,為了評估管子的可靠操作, 最重要的評估是要找出裂縫集結與繁殖(並未如衝擊測試一 般快速,反而較慢)的阻力,彡一點就是為何衝擊強度的程 度並未反映出用於管子的裂縫形成阻力。Delayed fracture testing is performed based on simultaneous exposure to stress, rot, and hydrogen. The delayed fracture has three phases: the incubation period (crack assembly phase), the slow growth of stable cracks, and the external velocity rupture. In the case of possible contact with the environment of the rot, in order to assess the reliable operation of the pipe, the most important assessment is to find the resistance of the crack accumulation and reproduction (not as fast as the impact test, but slower). The degree of impact strength does not reflect the crack formation resistance for the pipe.

圖2顯TF破裂時間tf與起初應力強度係數I之間的關 係,係針對以下的17MnS i鋼的幾種管子:(丨)剛製造好;(2) 工作管;(3)緊急管。延長工作會影響管子金屬對延遲破裂 的傾斜度,使L對tf曲線移動到較低破裂時間的區域。因 此’假如L相同的話,則對於剛製造好的管子之破裂時間, 如圖2所示,會比工作管與緊急管大得更多。 穩定裂縫繁殖速率亦與壽命有關。剛製造好的管子之 金屬具有最不穩定的裂縫繁殖速率,約G-3)xl0-4mm/min。 管子的工作壽命越長,則穩定裂縫繁殖速率就越高,大約 23 1336730 為 80xl〇_4mm/min 〇 為了找出在延長工作條件下,管子金屬脆破裂抵抗性 為何會減少的原因,所以,實施應變老化測試。在延長工 作期間,管子金屬的結構狀態之變化會影響在最嚴峻條件 (激烈應力提升器或低溫)下的破裂抵抗性,而且,顯然這 一點與應變老化過程有關。因此’很重要的是,必須研究 此過程,以了解破裂抵抗性改變的機制。Figure 2 shows the relationship between the TF rupture time tf and the initial stress intensity coefficient I. It is for several pipes of the following 17MnS i steel: (丨) just manufactured; (2) working tube; (3) emergency tube. Extending the work will affect the inclination of the tube metal to the delayed fracture, moving the L versus tf curve to the region of lower rupture time. Therefore, if L is the same, the rupture time of the newly manufactured tube will be much larger than that of the working tube and the emergency tube as shown in Fig. 2. The rate of stable crack propagation is also related to life. The metal of the newly manufactured tube has the most unstable rate of crack propagation, about G-3) xl0-4 mm/min. The longer the working life of the pipe, the higher the rate of stable crack propagation, about 32 1336730 is 80xl 〇 _4mm / min 〇 In order to find out why the resistance of the tube metal brittle fracture is reduced under extended working conditions, therefore, Perform a strain aging test. During the extended work, changes in the structural state of the pipe metal can affect the fracture resistance under the most severe conditions (rigid stress riser or low temperature) and, obviously, this is related to the strain aging process. Therefore, it is important to study this process to understand the mechanism of rupture resistance changes.

只有當固溶體含有特定濃度的碳與氮原子時,才可以 觀察到鐵與低碳鋼的應變老化。應變老化會引起增進的張 力強度、降伏強度、硬度、SN曲線上的降伏高原;衝擊測 4中增加的臨界H度;以及較低的塑性^應變老化的傾 向是金屬的一項重要特性。Strain aging of iron and low carbon steel can only be observed when the solid solution contains a specific concentration of carbon and nitrogen atoms. Strain aging causes increased tensile strength, relief strength, hardness, and plateau on the SN curve; the critical H-degree of increase in impact measurement 4; and the tendency of lower plasticity and strain aging is an important property of metals.

為了評估上述金屬特性,樣本在降伏部受到張力(2%), 在20㈣維持-小時,且進行張力測試。應變老化的傾向^ ^可藉由在主動變形終止時的降伏強度生長而獲得(△〜= Ισ2,)。越高’則應變老化的傾向就越大。此外, 藉由老化條件中的管子㈣之面積減少(,可估算出塑性。 根據圖3 ’可推斷出延長工作期間,會降低鋼的應變老 傾向也Ϊ尤疋說’降伏強度的成長△ σ S以及老化條件中 的縮小面積會越小4前15到3G年的工作期間,這一點 是最密集的。工作對變形老化頻向心5的影響係顯示於圖 3 ’而老化管的縮小面積ws則顯示於圖4。 未 鐵與鋼對應變老化的傾向,係與自由條件(也就是个 與差排結合)中的固溶體内的雜質(碳與氮)之含量有關,這 24 1336730 一點早為常識。為了研死長時間工作條件下管子金屬的老 化機制,使用内摩擦測量法,由於其對於鋼材的結構條件 中之局部變化最為靈敏。 固溶體中的碳與氮含量,可以從測量内摩擦溫度依賴 性(IFTD)的結果判斷出來。已知含有自由碳與氮的鋼材之 IFTD曲線,在40°C附近具有Snoek最大值,這一點是藉由 自由裂縫原子在應力場中的移動而造成的。在固溶體中的 自由碳與氮原子越多,則Snoek最大值越大。 在30年工作之後,從管子所切出的樣本之丨FTD曲線, 如圖5與6所示,在60與200-220°C處具有兩個最大值。 在30年的延長工作之後,17MnSi鋼的管子金屬之内摩擦的 溫度依賴性Q—1 ’係顯示於圖5中,而在緊急庫存中的依賴 性則顯示於圖6。在從緊急庫存管所切出的樣本之ΙΓΠ)曲 線的情形中’ S 6GT W最大值較冑。當有裂縫的雜質含量 大於2x10—1時,已知可以觀察到IFTD曲線中的Sn〇ek最大 值。因此,可獲得以下的結論,在3〇年的工作之後,管子 的固溶體中之碳與氮含量大約是2χ1〇—4%,也就是說,在管 線條件下,自由固溶體中的碳與氮含量會傾向減少。在管 線條件下,管子工作期間,由於塑性㈣之故,會減少碳 與氮的含量’如此導賴發生的差排會受到碳與氮原子的 固疋’在差排上形歧謂的雜f原子之「大氣」,且減少其 移動性。在管線條件下,產生變形老化之糾,可藉由在_ 至250%的IFTD曲線最大值的増加而證實只有當金屬受 到塑性變形與_的老化,讀_察得到上述情形。 25 1336730 因此,在工作期間,管子受到壓力與溫度差異,以及 動態與靜態負載。管子工作條件能夠在金屬中產生可能的 變形老化’導致增加的差排移動阻力,以及在金屬中產生 局部應力高峰的增加危害。因此,會減少缺口或裂縫頂點 中的局部應力鬆弛,增加鋼材產生脆裂的傾向。為了減少 工作超過20年的管線之脆破裂危害,特別是在冬天低溫下 管線停工之後,在加壓站啟動期間,必須考量變形老化所 引起的管子金屬之增強冷脆性。 因此,可以決定以下的幾項結論: (1) 為了評估主要管線的條件,對於習知機械特性的 了解是不夠的。可靠性評估準則應該要包括容易受到局部 結構改變影響的特性,例如,延遲破裂測試以及在低溫下 龜裂或尖銳缺口樣本上進行的測試所獲得的特性。 (2) 在對工作25年的樣本上,實施尖銳缺口彎曲測試 之後,會減少金屬的所有破裂抵抗力特性。鋼材對延遲破 裂的傾向,在應力、腐蝕環境以及氫的同時作用下,經發 現會格外受到結構改變的影響。 (3) 在延長工作期間,因為變形老化的緣故管子金 屬特性會退化,其機制在於自由碳與氮原子濃度的減少, 以及差排移動性的減少。 已知 U.K. Chatterjes、S.K. Bose、S.K. Roy 等人所 提出之「金屬的環境退化(腐蝕技術)」(Marcel “^打, 2001 ),該文件揭示出在金屬零件的加工、儲存與工作期間,’ 可能遭受的所有種類之環境退化。涵蓋範圍包括:基本原 26 d 形式以及防止這些種猶66、P yu /, 去 一員9退化,例如水溶液腐蝕、失 去先澤與刮洛過程、合金氧 液‘士金屬侵襲、氫損壞, 以及輻射損壞。 、农In order to evaluate the above metal characteristics, the sample was subjected to tension (2%) at the relief portion, maintained at 20 (d) for -hour, and subjected to a tensile test. The tendency of strain aging can be obtained by the growth of the fall strength at the end of the active deformation (Δ~= Ισ2,). The higher the degree, the greater the tendency to strain aging. In addition, the area of the pipe (4) in the aging condition is reduced (the plasticity can be estimated. According to Fig. 3', it can be inferred that during the extended working period, the strain of the steel will be lowered, and the old tendency of the steel is also reduced. S and the reduction area in the aging conditions will be smaller. This is the most intensive during the first 15 to 3G years of work. The effect of the work on the deformation aging frequency centripet 5 is shown in Figure 3 and the reduced area of the aging tube Ws is shown in Figure 4. The tendency of no iron to correspond to aging is related to the content of impurities (carbon and nitrogen) in the solid solution in free conditions (ie, combined with the poor row), 24 1336730 It is common knowledge. In order to study the aging mechanism of pipe metal under long working conditions, the internal friction measurement method is used because it is most sensitive to local changes in the structural conditions of steel. The carbon and nitrogen content in solid solution can be It is judged from the result of measuring the internal friction temperature dependence (IFTD). The IFTD curve of a steel containing free carbon and nitrogen is known to have a Snoek maximum near 40 ° C, which is by free crack origin. The movement of the child in the stress field. The more free carbon and nitrogen atoms in the solid solution, the larger the Snoek maximum. After 30 years of operation, the FTD curve of the sample cut from the tube, As shown in Figures 5 and 6, there are two maximums at 60 and 200-220 ° C. After 30 years of extended work, the temperature dependence of the internal friction of the tube metal of 17MnSi steel is shown in In Fig. 5, the dependence in the emergency stock is shown in Fig. 6. In the case of the curve of the sample cut out from the emergency stock tube, the 'S 6GT W maximum value is lower than 胄. When the impurity content of cracks is greater than 2x10-1, it is known that the maximum value of Sn〇ek in the IFTD curve can be observed. Therefore, the following conclusion can be drawn that after 3 years of work, the carbon and nitrogen content in the solid solution of the tube is about 2χ1〇-4%, that is, in the pipeline condition, in the free solid solution Carbon and nitrogen levels tend to decrease. Under pipeline conditions, during the operation of the pipe, due to plasticity (4), the carbon and nitrogen content will be reduced. The difference between the carbon and nitrogen atoms will be affected by the difference between the carbon and nitrogen atoms. The "atmosphere" of atoms and reduces their mobility. Under the pipeline conditions, the correction of deformation aging can be confirmed by the addition of the maximum value of the IFTD curve from _ to 250%, only when the metal is plastically deformed and the aging of _, the above situation is obtained. 25 1336730 Therefore, during operation, the tube is subjected to pressure and temperature differences, as well as dynamic and static loads. Pipe operating conditions can produce possible deformation aging in the metal' resulting in increased differential displacement resistance and increased hazard in the local stress peaks in the metal. Therefore, local stress relaxation in the notch or crack apex is reduced, and the tendency of the steel to be brittle is increased. In order to reduce the brittle fracture hazard of pipelines that have been in operation for more than 20 years, especially after the pipeline is shut down at low temperatures in winter, the enhanced cold and brittleness of the pipe metal caused by deformation aging must be considered during the startup of the pressurization station. Therefore, the following conclusions can be determined: (1) In order to evaluate the conditions of the main pipeline, it is not sufficient to understand the conventional mechanical characteristics. Reliability assessment criteria should include characteristics that are susceptible to local structural changes, such as delayed fracture testing and characteristics obtained from tests performed on cracked or sharply notched samples at low temperatures. (2) After performing a sharp notch bending test on a sample that has been in operation for 25 years, all fracture resistance characteristics of the metal are reduced. The tendency of steel to delay rupture, under the action of stress, corrosive environment and hydrogen, has been found to be particularly affected by structural changes. (3) During the extended work period, the metal properties of the pipe deteriorate due to deformation aging, and the mechanism is the decrease in the concentration of free carbon and nitrogen atoms, and the decrease in the mobility of the difference. Known by UK Chatterjes, SK Bose, SK Roy et al., "Environmental Degradation of Metals (Corrosion Technology)" (Marcel "Hot, 2001"), which reveals that during the processing, storage and operation of metal parts, ' All types of environmental degradation that may be suffered. The coverage includes: basic 26-day forms and prevention of these species 66, P yu /, degradation of one member 9, such as aqueous solution corrosion, loss of precursor and scraping process, alloy oxygen solution Metal intrusion, hydrogen damage, and radiation damage.

亦澄清-般與局部腐姓效果,大氣暴露,高溫氣體、 水、濃淡的化學藥品、液態金屬與核子輻射等之影 響:此文件亦顯示出零件設計的改是如何降低腐姓的;例 氧硫與水洛策、由素與c〇2《氧化劑的高溫與低溫效果; 研死與液態金屬接觸時,固態金屬的瞬間與延遲損壞;突 顯出氫對金屬的影響,包括延展性的損失與内部剝落、起 泡、以及裂縫等;顯示出輻射對金屬的影響,例如輕射生 長、空隙增大以及脆化等。It also clarifies the effects of general and local rot, atmospheric exposure, high temperature gases, water, shading chemicals, liquid metal and nuclear radiation: this document also shows how the design of parts changes to reduce the surname; Sulfur and water laurel, element and c〇2 "high temperature and low temperature effect of oxidant; instantaneous and delayed damage of solid metal when contacted with liquid metal; highlights the effect of hydrogen on metal, including loss of ductility Internal flaking, blistering, cracking, etc.; showing the effect of radiation on metals, such as light shot growth, void growth, and embrittlement.

此外,上述文件涵蓋以下的主題:水溶液腐蝕、失去 f;、睪與剝落過程的種類與預防(金屬氧化劑系統的熱動力型 怨’力學型⑮與速率方程式;氧化物與其他無機化合物的 缺陷化學作用;失去光澤與剝落過程的機制;晶格與晶粒 邊界擴散所引起的鱗片生長;在氧化物鱗片與基材中形成 空隙、孔洞與其他巨觀缺陷;在生長的鱗片中產生應力與 應變;氧化劑在金屬中的分解與擴散;金屬表面製備與預 處理的影響);合金氧化;液態金屬侵襲,以及氫損壞。 已知Brigitte Hattat所提出之「加速退化」(amptiacIn addition, the above documents cover the following topics: aqueous solution corrosion, loss of f; types and prevention of bismuth and spalling processes (thermal kinetics of metal oxidant systems] mechanical type 15 and rate equations; defect chemistry of oxides and other inorganic compounds Role; mechanism of tarnishing and flaking; scale growth caused by lattice and grain boundary diffusion; formation of voids, pores and other macroscopic defects in oxide scales and substrates; stress and strain in growing scales ; decomposition and diffusion of oxidants in metals; effects of metal surface preparation and pretreatment; alloy oxidation; liquid metal attack, and hydrogen damage. Known by Brigitte Hattat for "accelerated degradation" (amptiac

Rome,NY 2001 ),該文件對材料退化以及加速退化的方法 淪提出簡早的說明。透過加速退化或老化的測試,在過度 應力的條件下,測量產品性能而作為時間的函數。 很難將材料老化或退化予以特徵化,這是因為無法在 27 1336730 實驗室中模擬出實際工作環境。週期性或變化負載、溫度、 輻射、溼度以及其他影響環境的作用,均會產生相互作用 而無法複製,特別是在飛航的情形中。不過,新的零件設 計係根據已經對整個壽命週期評估過的材料與結構為基 礎,致使,能夠產生出用於新型設計的測試方法學以及分 析。 根據Nelson所提出的書上關於加速測試的資料編輯(參 閱Nelson, W., 1990年出版之「加速測試:統計模型、測 試計畫與資料分析、在機率與數學統計中的W i 1 ey級數」 一書,第11至49頁),表4提出退化機制、其影響的材料、 所使用的加速應力因素,以及用於測量此反應的測量特性 等之分析。例如,疲勞可以發生在金屬、塑膠等材料中, 而且,加速應力因素可以是溫度、負載或化學反應。所測 量出來的特性為剩餘壽命以及累計損壞效果。此資訊有助 於產生出供推斷的模式,以決定剩餘壽命。就其本身而言, 這一點是與延伸跨越材料或零件壽命的整個程度之加速壽 命測試不同。 表4 :退化機制、材料與破壞的定義 退化機制 材料 加速應力 測量到的特性 疲勞 金屬、塑膠、 玻璃、陶瓷、 複合物 負載、溫度、化學藥品(wage、 氫、氧) 剩餘壽命、殘 餘強度、累計 損壞 腐蝕/氧 化 金屬、食物 與藥品 化學藥品的濃度、活化劑、溫 度、電壓、機械負載(應力腐蚀) 根據物理機制 為基礎的可能 性退化模型 潛變 金屬、塑膠 溫度與機械負載、負載循環、 化學污染物(例如,水、氫、氟) 在固定負載下 的塑性變形 28 破裂 金屬、塑膠、 玻璃、陶瓷、 複合物 機械應力、溫度、化學藥品(溼 度、氫、龄、酸) 對用於穩定性 以及貨架壽命 的退化測試 磨耗 橡膠、聚合 物、金屬 速度、負載(量值、種類)、溫 度、潤滑、化學藥品(溼度) 機械特性的退 化測試 風化 金屬、保護 塗層(例如: 油漆、電鍍、 陽極處理)、 塑膠、橡膠 太陽能輻射(波長與強度)、化 學藥品(溼度、鹽、硫、臭氧) 腐触、氧化、 失去光澤、化 學反應 1336730 加速老化意味著加速暴露,而產生壽命結束的微結構 或損壞狀態,以便後續的特徵化測試。例如,金屬合金微 結構的變粗,可藉由降低材料的強度與堅韌性而加速暴露。 當涉及多種損化機制時(例如:熱化學疲勞),加速老化以 及加速壽命測試兩者均可能需要經過確認。加速老化可以 藉由以下方式達成:(1)增加溫度與負載;(2)在執行測試 之前,破壞此製品;(3)在暴露之間增加保持的次數;以及 (4)增加引發退化的化學藥劑之濃度。 相較於加速壽命測試來說,加速退化測試具有在材料 或零件故障之前,分析出性能的優點。退化測試能決定出 在材料或零件中尚有多少壽命,而這樣的知識能夠延長壽 命。推斷性能退化,以估算何時達到破壞程度,能夠分析 出退化資料。然而,只有當性能退化推斷模式以及適當的 性能損壞均已經建立起來的時候,這樣的分析才是正確的。 對於涉及多種退化機制的情形之加速老化時,必須一 連串執行以下的步驟:樣本必須遞增地暴露至一次引起一 種退化機制的條件下,直到壽命結束的條件為止。 29 1336730 商用以及軍用飛機的老化,對於美國國防部'太空總 署,以及聯邦飛航管理局來說是很重要的事情。這些行政 機構均處理監控例如腐蝕與疲勞等老化的問題。由於其暴 露在嚴峻的環境下,所以,對於先進亞音速飛機與超音速 應用情形中所使用的候選材質,就具有特殊的興趣,包括 例如鋁合金、以鋁為基礎的複合物、鈦合金,以及聚合物 為基礎的複合物等機身材質。在用於超音速引擎的材質中, φ 王要疋鎳基超合金以及陶瓷為基礎的複合物。由於密集使 用的緣故,所以,鋁合金具有很大的資訊資料庫。 鋁合金的退化機制包括:微結構與組成改變;與時間 有關的變形以及合成的損壞累積;環境侵襲以及溫度升高 #加速作用,以及上迷機制的協同作用。與銘合金的高溫 應用有關的損壞機制(例如··微結構變化 境作用等),均顯示於圖7中。 旁曰文衣 需要從開始(時間t=G)處’了解零件壽命的期望值。視 • #殊·㈣而定,壽命可以是幾百萬次週期的等級,或者好 幾年。可命與退化過程有關,例如,腐#、疲勞、潛變等。 例,飛機部位等特定零件,是被製作成能夠適用於此系統 的可命,而遭文疲勞的其他部位則具有比較緊凑的壽命安 卜加速測試的目的是要,利用從應力操作條件下所獲得 的資訊與測試,而決定出在正常操作條件下,用於主要破 壞模式的壽命。為達此目的,需要了解此破壞模式的機械 作用。在加速退化的情形中,溫度、負載與工作週期可決 足出預測破壞模式的壽命模型。可以藉由增加溫度、或增 30 1336730 加負載與工作週期’或者藉由使用所有作用的組合,而加 速此可命測4。在應力條件下,此模型預測出在幾個小時(或 幾分鐘)之内便會產生破壞。-旦確認之後,使用相同的模 型來預測正常操作條件下的壽命。 在零件或裝置的早期設計階段,當並未選擇硬體細節 且並未完成材質選擇時,所關注的事情乃是使此系統產生 作用。下-個關㈣重點是性能的最佳化,意味著如何使 此系先產生較佳的結果。下一個步驟是確認用於產品改良 的指引,以符合規格。 另一方面,壽命係與破壞模式有關,且與在物品壽命 上性能維持與強健性有關,如同說明書所規定的一樣。由 於性能不足,或者由於需要更換等嚴重或災難性的故障, 而發生損壞。在此關係中,可使用加速測試以決定並延長 壽命,但是,它也可以被運用於確認性能改良的指引。 於疋,加速測試是一種用於根據目前執行的測試程序 而預測將來材質與零件性能之方法。可藉由使用比正常環 境所遭遇到的更嚴格測試環境,而獲得此一結果。 已知Dean· Lee於1988年根據1986年5月在 Philadelphia,PA.所舉行的研討會之文件而編輯的「金屬 在大氣中的退化」(ASTM特殊技術刊物//Stp),其中揭示出 可從最近的測試、長期測試方案,以及專業領域經驗而取 得技術資料,包括關於結構的新型材質等資料。 已知 Gangloff,R.p.、Stoner, G.E,及 Swanson, R.e. 等人(維吉尼亞大學’ Charlottesville工程與應用科學研 31 丨1336730 死所)於1988年所提出之「鋁鋰合金中的環境輔助退化機 制」,該文件對於鋁鋰為主的先進飛機合金的環境機械退化 機制,提供對研究要求的概述。針對特徵化水溶液以及氣 體環境腐蝕疲勞裂縫繁殖動力學、微結構路徑,以及用於 2090合金的損壞機制等方面為標的之三項任務上報導其進 展。由於隔離並測量局部化處理的目標,而摘要概述出一 頁研究’上述局部化處理被假設成能夠控制鋁錢合金的腐 蝕與脆化。 已知 McGeary,F/L.、Summerson T. J.以及 Ai lor, W. H. 等人(1967年ATSM-STP-435,70週年會議中,「大氣中的金 屬腐蝕」,第141至174頁)所提出之「非鐵金屬與合金-鋁 疋大氣暴露,七年資料」,其中揭示出34個加工鋁合金在 美國四個ASTM地點暴露七年之風化測試結果。而且,為了 進行比較,還包括在英國五個地點暴露六年之三個額外鋁 合金的資料。在Sheffield與London的英國工業大氣暴露, 經發現可以產生出最大程度的腐蝕,特別是出現在與水平 方向成30度角暴露的這些面板之遮蔽兩側上。在兩個國家 中的所有測試地點上,均可以在風化表面上觀察出自行限 制的腐蝕特性。在20年之後,將繼續此測試並再度報導出 來’以作為老舊鋁合金上的先前ASTM B-3測試(ASTM-STP-175)中之情形。 已知 Gangloff,R.p.、Stoner, G.E.及 Swanson, R.E. 等人(維吉尼亞大學,Charlottesville工程與應用科學研 究所)於1989年所提出之「高級輕金屬中的環境辅助退化 32 1336730 機制」,其中揭示出-項研究方案,其目的在於使合金特性 產生數量上的特徵化’以及研發出用於環境破壞模式的預 則機制’見有的计畫包括:在鋁鋰合金的水溶液氯化物腐 触疲勞中之㈣局部化機制;㈣合金的局部化水溶液腐 姓中<測!及機制;合金2_的局部化腐姓與應力腐触 破裂行為之研究;⑽合金的變形與破裂—溶解氫與低溫 的作用;以及在高級粉末冶金銘合金中的高溫裂縫生長。 已知 D.K. Das、Manish R0y、Vakil Singh 以及 s νRome, NY 2001), this document provides a brief description of the methods of material degradation and accelerated degradation. Product performance is measured as a function of time under conditions of excessive stress by accelerating degradation or aging. It is difficult to characterize the aging or degradation of materials because the actual working environment cannot be simulated in the laboratory at 27 1336730. Periodic or varying loads, temperatures, radiation, humidity, and other effects that affect the environment create interactions that cannot be replicated, especially in the case of flying. However, the new part design is based on materials and structures that have been evaluated throughout the life cycle, resulting in test methodologies and analysis for new designs. According to Nelson's book on accelerated testing (see Nelson, W., 1990, Accelerated Testing: Statistical Models, Test Plans and Data Analysis, W i 1 ey in Probability and Mathematical Statistics) In the book, pages 11 to 49, Table 4 presents the degradation mechanism, the materials it affects, the accelerated stress factors used, and the analysis used to measure the measured characteristics of this reaction. For example, fatigue can occur in materials such as metals and plastics, and the accelerated stress factor can be temperature, load, or chemical reaction. The measured characteristics are the remaining life and the cumulative damage effect. This information helps generate patterns for inference to determine the remaining life. For its part, this is in contrast to an accelerated life test that extends across the entire life of a material or part. Table 4: Definition of Degradation Mechanism, Material and Destruction Degradation Mechanism Material Accelerated Stress Measurement Characteristics Fatigue Metal, Plastic, Glass, Ceramic, Composite Load, Temperature, Chemicals (wage, Hydrogen, Oxygen) Remaining Life, Residual Strength, Cumulative damage to corrosive/oxidized metals, food and pharmaceutical chemicals concentration, activator, temperature, voltage, mechanical load (stress corrosion) based on physical mechanism based on the possibility of degradation model latent metal, plastic temperature and mechanical load, duty cycle Chemical deformation of chemical contaminants (eg water, hydrogen, fluorine) under fixed load 28 Cracking of metal, plastic, glass, ceramics, composite mechanical stress, temperature, chemicals (humidity, hydrogen, age, acid) Deterioration of stability and shelf life Test wear rubber, polymer, metal speed, load (magnitude, type), temperature, lubrication, chemicals (humidity) Degradation of mechanical properties Weathered metal, protective coating (eg: paint , electroplating, anodizing), plastic, rubber Solar radiation (wavelength and intensity), chemicals (humidity, salt, sulfur, ozone) Corrosion, oxidation, tarnish, chemical reaction 1336730 Accelerated aging means accelerated exposure, resulting in end-of-life microstructure or damage for subsequent Characterization test. For example, the coarsening of the microstructure of the metal alloy can accelerate the exposure by reducing the strength and toughness of the material. Both accelerated degradation and accelerated life testing may need to be confirmed when multiple damage mechanisms are involved (eg, thermochemical fatigue). Accelerated aging can be achieved by (1) increasing temperature and load; (2) destroying the article prior to performing the test; (3) increasing the number of holds between exposures; and (4) increasing the chemical that causes degradation The concentration of the agent. Compared to accelerated life testing, accelerated degradation testing has the advantage of analyzing performance before a material or part failure. Degradation testing can determine how much life is still in a material or part, and such knowledge can extend life. Infer performance degradation to estimate when damage is reached and to analyze degraded data. However, such an analysis is correct only when the performance degradation inference mode and appropriate performance impairments have been established. For accelerated aging in situations involving multiple degradation mechanisms, the following steps must be performed in series: the sample must be incrementally exposed to conditions that cause a degradation mechanism until the end of life. 29 1336730 The aging of commercial and military aircraft is important for the US Department of Defense' Space Agency and the Federal Flight Administration. These agencies deal with the monitoring of aging problems such as corrosion and fatigue. Due to its exposure to severe environments, there are special interests in candidate materials used in advanced subsonic aircraft and supersonic applications, including, for example, aluminum alloys, aluminum-based composites, titanium alloys, Body materials such as polymer-based composites. Among the materials used in supersonic engines, φ Wang wants nickel-based superalloys and ceramic-based composites. Due to the intensive use, aluminum alloys have a large information base. The degradation mechanisms of aluminum alloys include: microstructure and compositional changes; time-dependent deformation and synthetic damage accumulation; environmental invasion and temperature rise #acceleration, and the synergy of the above mechanisms. The damage mechanisms associated with the high temperature application of the alloy (e.g., microstructural effects, etc.) are shown in Figure 7. It is necessary to know the expected value of the life of the part from the beginning (time t=G). Depending on the #重·(4), the life can be a few million cycles, or several years. It can be related to the degradation process, such as rot #, fatigue, creep, etc. For example, specific parts such as aircraft parts are made to be applicable to this system, and other parts of the fatigued body have a relatively compact life. The purpose of the accelerated test is to use the stress-operating conditions. The information obtained and tested determine the lifetime of the main failure mode under normal operating conditions. To achieve this, it is necessary to understand the mechanical effects of this failure mode. In the case of accelerated degradation, temperature, load, and duty cycle can be used to determine the life model of the predicted failure mode. This measurable test 4 can be accelerated by increasing the temperature, or by adding 30 1336730 plus load to duty cycle' or by using a combination of all effects. Under stress conditions, this model predicts that damage will occur within a few hours (or minutes). Once confirmed, the same model is used to predict life under normal operating conditions. In the early design phase of a part or device, when hardware details were not selected and material selection was not completed, the concern was to make the system work. The next-to-off (four) focus is on performance optimization, which means how to make the system produce better results first. The next step is to confirm the guidelines for product improvement to meet specifications. On the other hand, the life system is related to the failure mode and is related to the performance maintenance and robustness over the life of the article, as specified in the specification. Damage occurs due to insufficient performance or due to serious or catastrophic failures such as replacement. In this relationship, accelerated testing can be used to determine and extend life, but it can also be used to identify guidelines for performance improvement. Yu Wei, Accelerated Testing is a method for predicting future material and part performance based on currently executed test procedures. This result can be obtained by using a more rigorous test environment than is encountered in a normal environment. Known by Dean·Lee in 1988, “Degradation of Metals in the Atmosphere” (ASTM Special Technical Publication // Stp), edited in accordance with the document of the workshop held in Philadelphia, PA. in May 1986, which reveals Get technical information from recent tests, long-term testing programs, and expertise in the field, including information on new materials in the structure. Known by Gangloff, Rp, Stoner, GE, and Swanson, Re et al. (University of Virginia' Charlottesville Engineering and Applied Science, 31 丨 1336730, died in 1988, “Environmentally Aided Degradation in Aluminum-Lithium Alloys” Mechanism, this document provides an overview of the research requirements for the environmental mechanical degradation mechanism of aluminum-lithium-based advanced aircraft alloys. The progress of the characterization of aqueous solutions and gas environmental corrosion fatigue crack propagation kinetics, microstructure paths, and damage mechanisms for the 2090 alloy was reported for the three tasks. As a result of isolating and measuring the localization process, the summary outlines a one-page study. The above localization process was assumed to be able to control the corrosion and embrittlement of the aluminum alloy. Known as McGeary, F/L., Summerson TJ, and Ai lor, WH et al. (ATSM-STP-435, 1967, 70th Anniversary Conference, "Corrosion of Metals in the Atmosphere", pp. 141-174) Non-ferrous metals and alloys - aluminum bismuth exposure, seven-year data, which revealed the weathering test results of 34 processed aluminum alloys exposed to four ASTM locations in the United States for seven years. Moreover, for comparison purposes, data on three additional aluminum alloys exposed for six years in five locations in the UK were included. Exposure to the industrial atmosphere of Sheffield and London in the UK has been found to produce the greatest degree of corrosion, especially on the sides of the panels exposed at a 30 degree angle to the horizontal. Self-limiting corrosion characteristics can be observed on weathered surfaces at all test sites in both countries. After 20 years, this test will be continued and re-exported as 'as in the previous ASTM B-3 test (ASTM-STP-175) on older aluminum alloys. Known in 1989 by Gangloff, Rp, Stoner, GE and Swanson, RE et al. (University of Virginia, Charlottesville Institute of Engineering and Applied Sciences), "Environmentally Aided Degradation 32 1336730 Mechanism in Advanced Light Metals", Revealing the research program, which aims to produce a quantitative characterization of the alloy properties and to develop a pre-warning mechanism for environmental damage modes. Some projects include: chloride slakes in aqueous solutions of aluminum-lithium alloys (4) Localization mechanism in fatigue; (4) Localized aqueous solution of alloy in the surname <Measure! And mechanism; study of localized rot and stress corrosion cracking behavior of alloy 2_; (10) deformation and cracking of alloy—dissolved hydrogen and low temperature; and high temperature crack growth in high-grade powder metallurgy alloy. Known D.K. Das, Manish R0y, Vakil Singh, and s ν

Joshi等人,在1999年1〇月出版的「材料科學與技術」第 10期第15冊第1199至1208頁中所提出之「隔熱氧化期間 在超合金CM247上的純白金鋁化物塗層之微結構退化」,其 中揭不一項實驗,包括高活性純鋁化物塗層以及白金鋁化 物塗層的11 οοχ隔熱氧化,藉由封裝結合(pack cementat丨〇n) 技術產生於鑄造鎳基超合金CM247上,其主要目的為有系 統地了解氧化期間的塗層退化過程。雖然在純白金與白金 鋁化物塗層的氧化期間的重量增加,係根據氧化暴露開始 時的拋物線動力學,但是,裸露的合金似乎展現出相當長 的起初過渡氧化週期(大约20小時),超過此週期才遵守拋 物線法則《用於白金鋁化物塗層的挺物線比例常數,經發 現其量值幾乎小於純白金塗層所用的常數量值之十的二次 方。雖然在超過200個小時的純鋁化物塗層之情形中也發 現ΝιΑ12〇4 ’但是,氧化鋁被認為是在大部分氧化暴露期間, 在純鋁化物與白金鋁化物塗層上形成的唯一氧化物相。然 而,在裸露合金上的氧化層,經發現含有Al2〇3、Cr2〇3與 33 '1336730Joshi et al., "Material Science and Technology", Vol. 10, No. 10, vol. 15th, 1199, 1208, published in the first month of 1999, "Pure white gold aluminide coating on superalloy CM247 during thermal insulation oxidation" Degradation of microstructures, which revealed no experiments, including high-activity pure aluminide coatings and 11 οοχ thermal oxidation of platinum aluminide coatings, resulting from the casting of nickel by package cementat丨〇n technology On the base superalloy CM247, its main purpose is to systematically understand the degradation process of the coating during oxidation. Although the weight gain during oxidation of pure platinum and platinum aluminide coatings is based on parabolic dynamics at the onset of oxidative exposure, the bare alloy appears to exhibit a rather long initial transitional oxidation cycle (approximately 20 hours), exceeding This cycle follows the parabolic rule "the linear constant of the normal line for platinum aluminide coatings, which has been found to be almost less than the square of ten of the usual numerical values used for pure platinum coatings. Although ΝιΑ12〇4' was also found in the case of more than 200 hours of pure aluminide coating, alumina was considered to be the only oxidation formed on pure aluminide and platinum aluminide coatings during most oxidative exposures. Phase. However, the oxide layer on the bare alloy was found to contain Al2〇3, Cr2〇3 and 33 '1336730

NiAl204。純鋁化物以及白金鋁化物塗層的微結構退化,在 氧化期間被發現發生在三個不同的階段内,然而,對於每 個塗層來說’這些階段均有所不同。在此文件中詳細揭示 此種階段式退化’其涉及在每種情形中内部擴散層的最終 消除。NiAl204. The microstructure degradation of pure aluminide and platinum aluminide coatings was found to occur in three different stages during oxidation, however, these stages were different for each coating. This staged degradation is disclosed in detail in this document, which relates to the final elimination of the internal diffusion layer in each case.

已知Jedlinskia,Jerzy所提出之「在高溫材質上塗 層的氧化引發性退化」(Proceedings Symp·升溫塗層,SCI & TECH, 1994年版第1冊第75至83頁),其中揭示出侵略 性環境與被塗敷材質之間的交互作用,會導致後者的加速 退化。對於退化機制的了解,在設計具有改良工作特性的 材質中,扮泌著相當重要的角色。該文件中亦揭示對於在 氧化氣體中的咼溫應用情形下發展塗層之領域的現有技術 水平。另外,亦揭示主要種類的塗層之沉澱過程與退化機 制用以改進塗層氧化抵抗性的途徑,以及與保護Ti基合 金與C/C複合物有關的現有問題。Jedlinskia, Jerzy, "Oxidation Initiation Degradation of Coatings on High Temperature Materials" (Proceedings Symp, Temperature Coating, SCI & TECH, 1994, Vol. 1, pp. 75-83), which reveals aggression The interaction between the sexual environment and the material being coated can lead to accelerated degradation of the latter. The understanding of the degradation mechanism plays a very important role in the design of materials with improved working characteristics. Also known in the document is the state of the art in the field of developing coatings in the case of enthalpy applications in oxidizing gases. In addition, the precipitation process of the main types of coatings and the degradation mechanism to improve the oxidation resistance of the coating, as well as the existing problems associated with the protection of Ti-based alloys and C/C composites, are also disclosed.

已知Schtze,Michae卜編輯者肋“纣^Know Schtze, Michae Bu editor rib "纣^

HaaSen等人所提出之「腐_環境退化」,其中揭示對於整 個王題的項疋整又廣泛的調查,從基礎到最新的研究結 果。由於是-群國際頂尖專家學者所寫的,所以,此文件 對於腐料學所涉㈣任何材料科㈣、物理學家或化學 ΓΓ,均為一份不可或缺的參考文件。腐編餘保護 :應用材料科學中最重要的主題之…從經濟的觀點來說, 腐料學不,重要,而且,由於組合冶金學、材料物理學 乂及电化學寺各學科〈間的特性,它還具有很高的科學興 34 1336730 趣。現今,腐蝕科學甚至能夠從表面科學以及聚合物化學, 取得新的推動力。 已知M. Elboujdaini與E. Ghali於1999年所提出之 「材料的環境退化與金屬中的腐蝕控制」,其包括全世界的 專家所授權的文件’且摘要出鋁合金、鎂合金與鋼的腐蝕 與性能領域中的最近發展。深入探討金屬與應力腐蝕破裂 的禁止,以及在腐触監控 '塗敷應用與測試中的最近技術。 詳細的主題包括:鋁合金的腐蝕特性;鋁與鎂合金的禁止 及保護;在處理工業中的金屬之禁止與保護;鋼的輔助破 裂;應力腐蝕破裂;腐蝕疲勞;氫損壞;電化學與監控技 術;材料的耐久性;塗層及其性能。 已知R.K. Singh Rama於1998年2月出版第2期第29A 冊之「冶金與材料會刊」中的「Role of Microstructural Degradation in the Heat-Affected zone of 2.25Cr-lMoThe “corruption_environmental degradation” proposed by HaaSen et al. reveals a comprehensive and extensive survey of the whole topic, from basic to the latest research results. As written by the top experts and scholars of the International Group, this document is an indispensable reference for any material science (4), physicist or chemical 所 involved in rot science. Corrosion protection: the most important topic in applied materials science... From an economic point of view, rot is not important, and, due to the characteristics of combined metallurgy, material physics, and electrochemical temples It also has a high degree of interest in science 34 3436730. Today, corrosion science can even gain new impetus from surface science and polymer chemistry. Known by M. Elboujdaini and E. Ghali in 1999, “Environmental degradation of materials and corrosion control in metals”, including documents authorized by experts worldwide, and summarizing aluminum alloys, magnesium alloys and steels Recent developments in the field of corrosion and performance. An in-depth discussion of metal and stress corrosion cracking bans, as well as recent techniques in the application and testing of corrosion monitoring. Detailed topics include: corrosion characteristics of aluminum alloys; prohibition and protection of aluminum and magnesium alloys; prohibition and protection of metals in the treatment industry; auxiliary fracture of steel; stress corrosion cracking; corrosion fatigue; hydrogen damage; Technology; durability of materials; coatings and their properties. R.K. Singh Rama, published in February 1998, Issue 2, Volume 29A, "Role of Microstructural Degradation in the Heat-Affected zone of 2.25Cr-lMo"

Steel Weldments on Subscale Features during Steam Oxidation and Their Role in Weld Failures」,其提供 在以電子焊接2.25Cr-lMo鋼的期間所引起之焊接池附近的 基礎金屬(也就是,熱影響區域(HAZ))中之微結構退化的特 徵’以及不同的焊接區域之光學顯微檢查《為了研究微結 構退化在蒸氣與產生的次鱗片(subsea le)部位中的剝落動 力學上的影響,所以,從焊接處取得基礎材質、HAZ以及焊 接金屬樣本的一些樣品,且使其在35pct氮蒸氣以及873K 的環境下氧化1〇小時。在此三個區域以及底下的次鱗片中 形成的氧化物鱗片,可藉由使用掃描式電子顯微鏡(SEM)以 35 【1336730 及電子探測微分析儀(ΕΡΜΑ)產生特徵。已經研究出此三個 焊接區域中的自由鉻含量,對於保護鱗片的形成以及次鱗 片部位上的影響。作為主要的成就,此項研究已經清楚地 顯示在ΗΑΖ的蒸氣氧化期間,次鱗片區中的氧化引發性空 隙形成’以及在周圍區域中的晶粒邊界成穴現象。此文件 亦揭示氧化引發性空隙形成以及晶粒邊界成穴作用,在焊 接2.25Cr-lMo鋼零件的内部工作壽命中之可能角色。 已知Desi. J. ' Kiss, M. S.以及P. E.等人所提出之「設 計者必須能夠完全應付的材料腐蝕之基本種類」(DJK Engineering, LLC,公告於網址 http://d ikeng.汁彳 coniZld3.html) ’其中揭示出可以形成為有用工具、結構與 運輸工具的所有材料均會受到腐蝕。各種形式的腐蝕能夠 影響任何材料。用以支撐或抵擋沉重負載的大多數材料不 是金屬就是含有鋼強化混凝土的金屬❶腐蝕的八種形式包 括.應力腐蝕破裂、侵蝕腐蝕、裂縫腐蝕、電位腐蝕、晶 粒間侵襲腐蝕、均勾侵襲、凹陷,以及選擇性溶濾。該文 件亦揭示不鏽鋼的腐蝕;塑膠、複合物與陶瓷的腐蝕;腐 蝕控制與防止等。 已知Y· Minami、H. Kimura以及Y. Ihara等人所提 出之在長期老化期間沃斯田鐵不鏽鋼中的微結構變化」 (Mater· Sci. Techn.,2:795-806,1986),其揭示出在長 時]老化之後,關於微結構變化、沉殿物特性,以及典型 沃斯田鐵不鏽鋼的機械特性(3〇4h,316h,321h,34讣以及 tempaloy a-i)。這些鋼材會在6〇〇至的溫度範圍内 36 1336730 靜態地老化持續高達50_個小時。可藉由光學以及穿透 式電子顯微鏡,而觀察出微結構變化,而且’可藉由X光 刀析t〜出所獲得的殘餘物。對於每個鋼才才,製作時間/ ,度的沉殿圖形。對於· x時老化的樣品,測量細相的 量。硬度以及衝擊值均會改變,且測量老化樣品的張力特 性。 已知 γ· Kojima、T. Takahashi 以及 M. Kubo 等人於 1981 φ 年所提出之在長時間自然老化期間A卜1 〇 PCT錢合金的 ^展性減)」,其中提供了在高達大約L3年的自然老化期 門A1 1 〇pct鎂鋒造合金的機械特性之變化的研究。超過 20pct的延長,在自然老化小於三個月的樣本中,便降低至 僅有1到2pct而已,這是由於自然老化超過十年的緣故。 藉由顛倒實驗以及電子顯微鏡,可以顯示出延展性的大幅 下降,疋由於在自然老化的過程期間,形成球狀相干Gp區 所引起的。穿透式電子顯微鏡(TEM)研究亦指出區的結 • 構似乎是U(sub 2)結構,其中鋁與鎂原子會沿著{1〇〇丨方 向而以立體週期性交錯對齊。 已知 K.Kimura、T. Kisanuki 以及 S. Komatsu 等人所 提出之「導因於lCr-lMo-l/4V鋼在550〇C的潛變變形的退 化」(日本鋼鐵學院期刊第15期第71冊第1803至1810頁), 其中描述由於在lCr-lMo-l/4V鋼在550。(:潛變持續9500個 小時的潛變損壞,導致微結構變化以及潛變抵抗性的退化 之研究。特別地’已經在潛變受損樣本上(接受或未接受重 新加熱處理),檢查過晶粒邊界空隙對於潛變抵抗性的影 37 1336730 響。金相觀察已經顯示出三種具有潛變變形的微結構變化, 包括:在回火期間通常發生的碳化物之變粗、形成空隙與 裂縫’以及在先前沃斯田鐵晶粒邊界附近的顯著恢復。即 使在加速潛變階段,碳化物變粗的程度很輕微,而且,空 隙對於潛變抵抗性的影響小到可以忽略。潛變抵抗性的累 進損耗’顯7F出與先前沃斯田鐵晶粒邊界附近局部恢復有 很接近的關聯。 已知J.W. Jones以及S.F. Claeys等人所提出之「在 長時間潛變壽命預測中微結構不穩定性的角色」(Pentag〇n Report D026031,1984),其中使用鋁合金6061作為模型 材質,而描述微結構不穩定性對於長時間潛變壽命預測的 影響。在長時間潛變期間,微結構變對於壽命的影響,透 過使用加速老化以及短時間潛變測試,可藉由測量微結構 退化對穩定狀態潛變速率的影響而決定。在26〇c>c以及288〇c 的中間應力,潛變寿命會被微結構退化的速率嚴重影響, 而且,其他工作人員所提出的方法,在預測潛變壽命也是 很有效的。在低應力下,可以藉由在完全過度老化樣本上 執行短時間潛變測試,以及使用樣本推斷技術,而適當地 預測接近100000個小時的潛變壽命。此結果指出可以使用 合金的老化反應之相關知識,以預測出長時間潛變壽命, 而具有合理的正確性。 已知 Al. Th. Kermanidis'P.V.卩以⑺丫“⑽“與呂口 〇·Steel Weldments on Subscale Features during Steam Oxidation and Their Role in Weld Failures", which provides the base metal (ie, heat affected zone (HAZ)) near the weld pool caused by the electronic welding of 2.25Cr-lMo steel The characteristics of microstructure degradation and the optical microscopy of different weld areas. In order to study the effect of microstructure degradation on the spalling dynamics of vapor and subsea le, so from the weld Some samples of the base material, HAZ, and weld metal samples were oxidized for 1 hr in 35 pct nitrogen vapor and 873 K. The oxide scales formed in the three regions and the underlying scales can be characterized by using a scanning electron microscope (SEM) with 35 [1336730 and an electron detection microanalyzer (ΕΡΜΑ). The free chromium content in these three weld zones has been studied to protect the formation of scales and the effects on the secondary scales. As a major achievement, this study has clearly shown the formation of oxidative inducing voids in the sub-scale regions during the vapor oxidation of ruthenium and the cavitation of grain boundaries in the surrounding regions. This document also reveals the possible role of oxidatively initiated void formation and grain boundary cavitation in the internal working life of welded 2.25Cr-lMo steel parts. Known by Desi. J. 'Kiss, MS and PE, "The basic types of material corrosion that designers must be able to fully cope with" (DJK Engineering, LLC, published on http://d ikeng.汁彳coniZld3 .html) 'It reveals that all materials that can be formed into useful tools, structures and transportation tools are subject to corrosion. Various forms of corrosion can affect any material. Most of the materials used to support or withstand heavy loads are either metal or steel reinforced concrete. Eight forms of corrosion include: stress corrosion cracking, erosion corrosion, crack corrosion, potential corrosion, intergranular attack corrosion, and joint attack. , dents, and selective leaching. The document also reveals corrosion of stainless steel; corrosion of plastics, composites and ceramics; corrosion control and prevention. It is known that Y. Minami, H. Kimura, and Y. Ihara et al. proposed microstructural changes in Worthite iron stainless steel during long-term aging (Mater Sci. Techn., 2: 795-806, 1986), It reveals the changes in microstructure, the properties of the sink, and the mechanical properties of typical Worthite iron stainless steel (3〇4h, 316h, 321h, 34讣 and tempaloy ai) after prolonged aging. These steels will age statically for up to 50_hours within a temperature range of 6 to 36 1336730. The microstructure change can be observed by optical and transmission electron microscopy, and the residue obtained can be analyzed by X-ray knife. For each steel, make the time / degree of the temple pattern. For samples aged at x, the amount of fine phase was measured. Both hardness and impact values are varied and the tensile properties of the aged samples are measured. It is known that γ·Kojima, T. Takahashi, and M. Kubo et al., in 1981 φ, during the long-term natural aging period, A 1 〇 PCT money alloys are reduced, which are provided at up to about L3 A study of the changes in the mechanical properties of the alloy A1 1 〇pct magnesium alloy during the year of natural aging. The extension of more than 20pct is reduced to only 1 to 2pct in samples with less than three months of natural aging, due to natural aging for more than ten years. By reversing the experiment and the electron microscope, it is possible to show a large drop in ductility due to the formation of a spherical coherent Gp region during the course of natural aging. Transmission electron microscopy (TEM) studies have also shown that the structure of the region appears to be a U(sub 2) structure in which aluminum and magnesium atoms are staggered in a three-dimensional periodicity along the {1〇〇丨 direction. It is known that K. Kimura, T. Kisanuki, and S. Komatsu et al. "cause the degradation of the latent deformation of lCr-lMo-l/4V steel at 550 〇C" (Journal of the Japan Iron and Steel Institute, No. 15) Book 71, pages 1803 to 1810), which is described in 550 due to lCr-lMo-l/4V steel. (: The latent change lasts for 9,500 hours of latent damage, leading to microstructural changes and degradation of latent resistance. Especially 'has been on the latent damage sample (accepted or not reheated), checked The grain boundary voids have a shadow of latent resistance 37 1336730. Metallographic observations have shown three microstructure changes with latent deformation, including: coarsening of carbides that usually occur during tempering, formation of voids and cracks 'and significant recovery near the iron grain boundary of the previous Worthfield. Even in the accelerated creep phase, the degree of carbide thickening is very small, and the effect of the void on the resistance to creep is negligible. The progressive loss 'showing 7F' is closely related to the local recovery near the Worthfield iron grain boundary. It is known from JW Jones and SF Claeys et al. "The role of microstructure instability in long-term creep life prediction. (Pentag〇n Report D026031, 1984), in which aluminum alloy 6061 is used as a model material, while microstructural instability is described for long time The effect of variable life prediction. During the long-term creep, the effect of microstructure change on life, through the use of accelerated aging and short-term creep test, can be determined by measuring the effect of microstructure degradation on the steady state creep rate. At intermediate stresses of 26〇c>c and 288〇c, the creep life is severely affected by the rate of microstructure degradation, and the methods proposed by other workers are also very effective in predicting the creep life. Next, it is possible to properly predict the creep life of nearly 100,000 hours by performing a short-term creep test on a completely over-aged sample, and using sample inference techniques. This result indicates that knowledge of the aging reaction of the alloy can be used. In order to predict the long-term creep life, it has reasonable correctness. It is known that Al. Th. Kermanidis' PV卩 (7) 丫 "(10) "and Lukou 〇

Pantelakis等人所提出之「受腐蝕的2〇24 T351飛機鋁合 金<疲勞與損壞容忍特性」(理論與應用破裂機械力學,2〇〇5 38 年日出版P期第43冊第121至132頁),其中揭 Μ腐朗2024 T351銘合金樣本之疲勞與損壞容忍特性, :及與衫腐敍材質的特性之間的對比。對於在剥落腐触 %境下又到預先腐蝕’且包肖S_N與疲勞破裂成長曲線的 衍生之實驗研究,以及測量破裂堅勃性。對於不同的應力 比例R執行疲勞破裂成長測試。在相同的條件下,對未受 腐触的樣本重複所有的機械測試,以獲得參考的材料特性。 對於受腐蝕材質來說,可以在疲勞抵抗性以及損壞容限上 獲知明顯的減少。就2’链合金的腐姓以及腐姓所引起的 氫脆化等觀點,討論此實驗研究的結果。顯示出需要考量 事先存在的腐蝕,對於含有腐蝕區域的零件之疲勞與損壞 容限分析中的材質特性上的影響。 铭飛機結構很容易受到腐蝕與疲勞損壞的影響,其主 要在結構接點處產生交互作用。腐蝕與疲勞之間的交互作 用可能代表著對飛機的結構完整性具有嚴重的威脅,特別 是當飛機變得更老舊的時候。目前,對於腐蝕所引起的結 構退化之考量,係將腐蝕的存在與受腐蝕結構構件的負載 承受能力’以及疲勞裂縫的開始形成相互關連聯。在腐蚀 凹陷中,損壞被量化且與在交替浸泡腐蝕過程中受腐姓的 2024-T3樣本的疲勞壽命減少有關。在腐蝕對於多處地點損 壞情形以及飛機結構完整性上的影響,被認為須對腐触孔 穴處開始產生的多地點損壞(MSD)負責。另一方面,發現先 前剝落腐触對於2024-T351樣本的疲勞破裂成長速率,並 沒有顯著的影響。 39 1336730 鋁合金的腐蝕侵襲,正統地係歸咎於氧化的複雜過程。 然而’對於一系列飛機合金上所執行的最新研究,早已證 明腐蝕並未侷限於已知的表面損壞過程而已,該表面損壞 過程會透過腐蝕缺口而影響降伏強度以及疲勞壽命,而且 它也是擴散控制材料氫脆化的起因。 對於含有6χχχ系列的鎂來說,除了氧化過程之外,在 腐餘過程期間所產生的氫可擴散於材質中,且導致氫與金 屬之間的交互作用。最新的研究已經顯示出腐蝕會導致 2xxx、7xxx以及8xxx等鋁合金系列之氫脆化。雖然並未充 刀了解虱脆化過程的機制,但是,確認出不同的可能氫捕 捉地點,乃是與合金系統有關。此種氫脆化現象反映出受 腐蝕材質區域的張力延展性之顯著減少。可透過氩引發性 局部微塑性,而解釋所獲得的巨觀氫脆化。使用差排理論, 將此過程予以公式化。要注意的是,腐蝕與氫脆化損壞兩 者是擴散控制過程,意味著材質的機械性能退化僅局部發 生而已。然而,目前,並無任何實驗數據、或確立的實驗 與理論万法,能用以評估材質的腐蝕區域之局部材料特性 的里值。要注意的是,對於腐蝕與疲勞的交互作用上之實 驗研究,ϋ常是關於纟某一腐姓性環境下所執行的疲勞與 疲勞破裂成長測試,但與贱腐料質上所執行的測試無 關’藉此,對讀老舊飛機的_連_實際情形來說,後者 代表不同且更加相關的情形。 預先腐2024則合錢本之❹與損壞容限 特性,已經根據腐蝕與腐蝕引發性氫脆化的協同作用之觀 40 點’而加以研究與討論。所執行的實驗包括:獲得S_N曲 線的疲勞測試、疲勞破裂成長測試,以及破裂堅韌性測試。 對於不同值的應力比例R,執行疲勞裂縫生長測試。為了比 較起見’亦對於未腐蝕材質執行所有的實驗。其結果顯示 現存的腐蝕對於2024合金的疲勞與損壞容限特性之影響, 以及’需說明腐蝕對於結構的腐蝕區域之疲勞與損壞容限 分析中的機械特性上之影響。 孔穴岔度以及受到剝落腐触溶化36小時之鋁2024 T351 的孔穴尺寸之一連串測量,已經顯示出平均孔穴直徑 2· 586x10 3咖,以及每i〇〇mm2具有920個樣本的孔穴密度。 使用正體景〉像分析產生測量。金相腐蝕特徵化顯示出經過36 個小時暴露到剝落腐蝕之後,也可以預期出一些晶粒間腐 蝕。主要腐蝕凹陷以及晶粒間腐蝕的存在,會促進疲勞破 裂的開始,因而,顯著地減少腐蝕樣本的疲勞壽命。如同 預期的一般,在受腐触樣本的疲勞壽命上的減少,會隨著 疲勞應力的減少而增加。疲勞忍耐限度會從用於未腐蝕材 質的175MPa,下降至預先腐蝕過的樣本之95MPa。可使用 迴歸分析,而衍生出用於未腐蝕以及受腐蝕的材質之合適 曲線。 在所有研究的情形中,隨著增加的破裂長度,受腐蝕 樣本的疲勞裂縫生長阻力似乎會退化得比未腐蝕樣本的疲 勞破裂生長阻力更快。如此表現出顯著較少的疲勞壽命, 在受腐蝕樣本的此階段中,顯著地較早進入加速破裂生長 的區域以及較陡峭的曲線。在破壞之前3秒鐘的裂缝長度, 乂1336730 此長度被認為是在仍舊確信的樣本破壞之前代表裂縫長度 測量,此結果對於受腐蝕樣本來說也是較小的。 裂縫生長也可以被解讀成遞增地發生,且對應於特定 數目的低週期疲勞之後,而在出現疲勞之前的材料元件破 壞。藉由假設材料的腐蝕引發性脆化,腐蝕過的材質之破 裂堅韌值將會較小。可藉由下一段所敘述的破裂堅韌性測 量,證實受腐蝕材料的破裂堅韌性減少。上述考量可以解 釋在加速裂縫生長的階段時,更高的生長速度以及較急劇 的裂縫生長增加。被腐蝕材料的降低破裂堅韌值,可解釋 在破壞時的縮減裂縫長度,而且,關於在加速裂縫生長速 率的階段時之較高裂縫生長速率,亦可解釋用於被腐蝕樣 本的縮減疲勞壽命。 已經研究腐蝕以及腐蝕引發性氫脆化對於2024飛機鋁 合金樣本的疲勞與損壞容限特性上之影響。實驗結果顯示 出被腐蝕材質的疲勞抵抗性與損壞容限中之顯著減少。根 據腐蝕與腐蝕引發性氫脆化的協同作用之觀點,而討論所 獲得的結果。這些結果顯示出需要說明預先存在的腐蝕對 於材料特性的影響’以用於含有腐蝕區域的零件之疲勞與 損壞容限分析。 已知 P. V. Petroyianis、Al. Th. Kermanidis、P. Papanikos 與 Sp. G. Pante 1 akis 所提出之「2〇24 與 6013 銘合金的腐蝕引發性氫脆化」(理論與應用破裂機械力學, 2004年4月1日出版第1-3期第41冊第173至183頁), 其中揭示腐蝕對於典型飛機鋁合金的機械特性之影響。此 42 1336730 結果顯示腐蚀暴露會導致降伏與最終張力應力中的適度減 少。此外,記錄延長對於破壞與應變能量密度的顯著減少, 甚至在短暴露時間之後。經發現被腐蝕表面的加工,能夠 恢復降伏與最終張力應力,然而,並未恢復材料的延展性。 在對應於某些氫捕捉地點的熱吸附之溫度的熱處理之後, 後者會逐步地恢復至用於未腐蝕材質的量值。這些發現很 m楚地顯示上述合金的腐蚀是與體積的氫脆化有關。張力 φ 延展性的顯著減少是與被腐蝕材料的殘餘強度之減少有 關。根據多重剥落的概念,使用一種模式將破裂堅韌性與 殘餘強度的減少,以及從被腐蝕與未腐蝕樣本上的張力測 試所獲得之應變能量密度減少,兩者之間產生關聯。已經 ‘ 顯示出,應變能量密度可以被用來精確地預測腐蝕零件的 殘餘強度。 為了評估老化飛機零件的結構完整性,必須說明腐触 的於響,砭疋因為向強度鋁合金的腐蝕以及相關的氫脆化 • 料致災難性的損壞。當腐餘與單-疲勞裂縫或多處位置 損壞等其他形式的損壞產生交互作用時可減弱腐㈣發 性氫脆化的影響。已經組織起許多委員會與國際會議,仔 細考量在較老舊飛機,的材質退化之問題,而其中一項重 要的問題就是腐姓。然而,目前對腐钱引發性結構退化的 考量,係將腐敍的存在與被腐姓結構構件的負載承受能力 之減/ I生相互關聯。腐姓引發性氫脆化對於結構完整 的重要性,目前尚未正確地了解,且仍然低估。目前,铭 合金的腐蚀與氣損壞機制尚無法了解。所涉及的損壞過程 43 1336730 疋以原子等級發生的。鋁合金的腐蝕侵襲被歸因於氧化的 複雜過程。然而’許多測試已經顯示在腐蝕過程期間所產 生的氫’會擴散至材質内部且導致氫在較佳捕捉位置上的 集中與捕捉,這一點是與合金系統有關。 已經對於7xxx系列的A1 -Zn-Mg合金,進行鋁合金的 氫脆化之大部分研究。亞穩氫化鋁已經被認為是受到水蒸 氣中的應力腐蝕破裂的A卜Zn-Mg合金之脆弱晶粒間破裂之 主因。 含有隔離錢的晶粒邊界之優先脫離(decohesion),是 對於這些合金的晶粒間破裂之另一種說明。例如2χχχ、6χχχ 與8χχχ等不同的鋁合金系列之氫脆化,仍然低估且無法適 當地以文件證明。此外,尚無法充分了解’即使在缺少機 械負載的情形下’氫脆化也能夠發生,也就是說,應力腐 蚀破裂對氫脆化來說定非必要。經證實腐触引發性氫脆化 可能是習知2024與6013合金,以及高級2091與8090合 金的堅韌與延展性的急劇退化之主因。可藉由量化2024與 6013合金中的氩釋放,以及確認不同的捕捉地點,而解釋 此退化。已經在對應於每種受檢合金的氫捕捉地點之溫度, 對腐蚀與未腐蝕樣本進行任處理,而運用這些結果。 被腐蝕材質的破裂堅韌性顯著地減少,而且,必須評 估與應變能量密度的減少有關之局部破裂堅韌值。涉及多 重剥落的方式,對於面對具有複雜交互作用的腐蝕氫脆化 過程來說,是非常有效的,因而,建議在多地點損壞(MSD) 問題上,檢查腐蝕引發性氫脆化之影響,其中鉚釘孔的距 44 1336730 離能容許材質的局部體積脆化。 為了量化腐蝕與腐蝕引發性氫脆化在飛機鋁合金2〇24 與6013的機械特性上之影響,所以實施一综合的實驗研究。 除了張力測試之外,使用含有一排雙孔的具凹痕且預先產 生疲勞(MSD)樣本,而實施殘餘強度測試。被腐姓以及未腐 蝕樣本均接受測試。使用一種多重剝落方式,以便將破裂 堅勃性與殘餘強度的減少,以及從腐蚀與未腐触樣本的張 φ 力測試所獲得之應變能量密度減少,兩者之間產生相互關 聯。使用一項廣泛的破斷面分析(fract〇grapgic analysis),可證實上述的實驗結果。 以實驗方式研冗腐蝕對於飛機鋁合金2〇24與6013的 機械特性之影響’獲得以下結論: 機械特性的腐蝕引發性退化,隨著暴露時間逐漸發生。 張力延展性以指數方式減少至一相當低的最終值。 為了解讀此結果,需要利用一種多重剝落方式,以縮 • 丨微觀程度發生的損壞過程以及在材質的巨觀機械特性上 的產生效果間的差距。 以機械方式移除被腐蝕區域,此區域已恢復降伏與最 ’-、張力強度,但並未恢復張力延展性,其中後者僅能夠在 對應於氫捕捉的溫度下,在合金的熱處理之後才能恢復, 如此,意味著受檢合金的腐蝕是與氫脆化有關。 被腐蝕材質的破裂堅韌性顯著地減少,必須評估與應 k此量法、度的減少有關之局部破裂堅韌性。 使用根據張力測試所測量到的應變能量密度減少,以 45 α336730 評估由於腐蚀引發性氫脆化所導致的結構零件之殘餘強度 減少。 已知 Oriani、Richard A·、Hirth,John Ρ·與 Smialowski,Pantelakis et al., “Corrosion of Aluminum Alloys in Corroded 2〇24 T351 Aircraft&#; Fatigue and Damage Tolerance Characteristics” (Theoretical and Applied Fracture Mechanics, 2 〇〇 5 38, published P, Volume 43, 121-132 Page), which reveals the fatigue and damage tolerance characteristics of the 2024 T351 alloy sample, and the comparison with the characteristics of the material. Experimental studies on the derivation of the pre-corrosion and the fatigue fracture growth curve in the case of exfoliation and the measurement of fracture rupture. The fatigue crack growth test was performed for different stress ratios R. Under the same conditions, all mechanical tests were repeated on uncorrupted samples to obtain reference material properties. For corroded materials, significant reductions in fatigue resistance and damage tolerance can be obtained. The results of this experimental study are discussed in terms of the rot of the 2' chain alloy and the hydrogen embrittlement caused by the rot. It shows the need to consider pre-existing corrosion, the effect on the material properties of the fatigue and damage tolerance analysis of parts with corroded areas. Ming aircraft structures are susceptible to corrosion and fatigue damage, and they primarily interact at structural joints. The interaction between corrosion and fatigue may represent a serious threat to the structural integrity of the aircraft, especially as the aircraft becomes older. At present, the consideration of structural degradation caused by corrosion is related to the existence of corrosion and the load bearing capacity of the corroded structural member and the formation of fatigue cracks. In the corrosion pits, the damage is quantified and is associated with a reduction in the fatigue life of the 2024-T3 sample that is subject to corrosion during the alternate soaking process. The effect of corrosion on damage to multiple locations and the structural integrity of the aircraft is believed to be responsible for the multi-site damage (MSD) that begins at the crater. On the other hand, it was found that the previous peeling of the decay had no significant effect on the rate of fatigue crack growth of the 2024-T351 sample. 39 1336730 The corrosion attack of aluminum alloys is orthodox due to the complex process of oxidation. However, the latest research carried out on a range of aircraft alloys has long proven that corrosion is not limited to known surface damage processes that affect the fall strength and fatigue life through corrosion notches, and that it is also diffusion controlled. The cause of hydrogen embrittlement of materials. For magnesium containing the 6 χχχ series, in addition to the oxidation process, the hydrogen produced during the decay process can diffuse into the material and cause interaction between hydrogen and the metal. Recent research has shown that corrosion can lead to hydrogen embrittlement of aluminum alloys such as 2xxx, 7xxx and 8xxx. Although the mechanism of the embrittlement process has not been fully understood, the identification of different possible hydrogen capture sites is related to the alloy system. This hydrogen embrittlement phenomenon reflects a significant reduction in the ductility of the corroded material region. The macroscopic hydrogen embrittlement obtained can be explained by argon-induced local microplasticity. This process is formulated using the difference row theory. It should be noted that both corrosion and hydrogen embrittlement damage are diffusion control processes, meaning that the mechanical degradation of the material is only partially localized. However, at present, there is no experimental data, or established experimental and theoretical methods, which can be used to evaluate the value of the local material properties of the corroded areas of the material. It should be noted that the experimental study on the interaction between corrosion and fatigue is often related to the fatigue and fatigue crack growth tests performed in a certain rot environment, but the tests performed on the septic material. Irrelevant 'by this, for the actual situation of reading old aircraft, the latter represents a different and more relevant situation. Pre-corrosion 2024 is the combination of the cost and the damage tolerance characteristic, which has been studied and discussed according to the synergistic effect of corrosion and corrosion-induced hydrogen embrittlement. The experiments performed included obtaining a fatigue test of the S_N curve, a fatigue crack growth test, and a fracture toughness test. The fatigue crack growth test was performed for stress ratios R of different values. For the sake of comparison, all experiments were performed for uncorroded materials. The results show the effect of existing corrosion on the fatigue and damage tolerance characteristics of the 2024 alloy, as well as the effect of corrosion on the mechanical properties of the fatigue and damage tolerance analysis of the corrosion region of the structure. A series of measurements of the pore size and the pore size of the aluminum 2024 T351 that was stripped of the decaying for 36 hours have shown an average pore diameter of 2 586 x 10 3 coffee, and a density of 920 samples per 〇〇 mm 2 . The measurement is generated using the normal scene image analysis. Metallographic corrosion characterization shows that some intergranular corrosion can also be expected after 36 hours of exposure to exfoliation corrosion. The presence of major corrosion depressions and intergranular corrosion promotes the onset of fatigue fracture and, therefore, significantly reduces the fatigue life of corroded samples. As expected, the reduction in the fatigue life of the sample subjected to corrosion increases as the fatigue stress decreases. The fatigue tolerance limit is reduced from 175 MPa for uncorroded materials to 95 MPa for pre-corroded samples. Regression analysis can be used to derive suitable curves for uncorroded and corroded materials. In all cases studied, the fatigue crack growth resistance of the corroded sample appeared to degrade faster than the fatigue crack growth resistance of the uncorroded sample with increasing fracture length. This results in significantly less fatigue life, at this stage of the corroded sample, significantly earlier into the region of accelerated fracture growth and steeper curves. The length of the crack 3 seconds before the failure, 乂1336730, is considered to represent the crack length measurement before the still believed sample is destroyed, and this result is also small for the corroded sample. Crack growth can also be interpreted as occurring incrementally and corresponding to a specific number of low cycle fatigues, while material elements before failure occur are broken. By assuming corrosion-induced embrittlement of the material, the fractured toughness of the corroded material will be small. The fracture toughness of the corroded material can be reduced by the measurement of the fracture toughness described in the next paragraph. The above considerations can explain the higher growth rate and the sharper crack growth during the accelerated crack growth phase. The reduced fracture toughness of the corroded material can account for the reduced fracture length at the time of failure, and the higher fracture growth rate at the stage of accelerating the fracture growth rate can also explain the reduced fatigue life for the corroded sample. The effects of corrosion and corrosion-induced hydrogen embrittlement on the fatigue and damage tolerance characteristics of 2024 aircraft aluminum alloy samples have been investigated. The experimental results show a significant reduction in the fatigue resistance and damage tolerance of the corroded material. The results obtained are discussed in terms of the synergistic effect of corrosion and corrosion-induced hydrogen embrittlement. These results show the need to account for the effects of pre-existing corrosion on material properties' for fatigue and damage tolerance analysis of parts containing corroded areas. Corrosion-induced hydrogen embrittlement of 2〇24 and 6013 alloys proposed by PV Petroyianis, Al. Th. Kermanidis, P. Papanikos and Sp. G. Pante 1 akis (Theoretical and Applied Fracture Mechanics, 2004) Published on April 1, pp. 1-3, vol. 173-183, which reveals the effect of corrosion on the mechanical properties of typical aircraft aluminum alloys. The result of this 42 1336730 shows that corrosion exposure causes a moderate decrease in the fall and final tensile stress. In addition, the recording extension is a significant reduction in damage and strain energy density, even after a short exposure time. The processing of the etched surface was found to restore the relief and ultimate tensile stress, however, the ductility of the material was not restored. After heat treatment at a temperature corresponding to the thermal adsorption of certain hydrogen capture sites, the latter gradually returns to the amount used for the uncorroded material. These findings show that the corrosion of the above alloys is related to the volume of hydrogen embrittlement. Tensile φ The significant decrease in ductility is related to the reduction in residual strength of the material being corroded. According to the concept of multiple spalling, a model is used to reduce the fracture toughness and residual strength, as well as the strain energy density obtained from the tensile test on corroded and uncorroded samples. It has been shown that strain energy density can be used to accurately predict the residual strength of corroded parts. In order to assess the structural integrity of aged aircraft parts, it is necessary to account for the effects of corrosion, catastrophic damage due to corrosion of the strength aluminum alloy and associated hydrogen embrittlement. When the corrosion interacts with other forms of damage such as single-fatigue cracks or multiple location damages, the effects of rot (4) hydrogen embrittlement can be attenuated. A number of committees and international conferences have been organized to carefully consider the degradation of materials in older aircraft, and one of the important issues is the rotten surname. However, the current consideration of the destructive structure of the rotten money is related to the existence of the rotten and the reduction of the load bearing capacity of the structural members of the surname. The importance of susceptibility-induced hydrogen embrittlement to structural integrity is not yet properly understood and is still underestimated. At present, the corrosion and gas damage mechanisms of Ming alloy are still unknown. The damage process involved 43 1336730 疋 occurs at the atomic level. The corrosion attack of aluminum alloys is attributed to the complex process of oxidation. However, 'many tests have shown that hydrogen produced during the etching process will diffuse into the interior of the material and cause concentration and capture of hydrogen at the preferred capture location, which is related to the alloy system. Most of the hydrogen embrittlement of aluminum alloys has been studied for the 7xxx series of A1 -Zn-Mg alloys. Metastable aluminum hydride has been considered to be the main cause of the fragile intergranular fracture of A Zn-Mg alloy which is cracked by stress corrosion in water vapor. The decohesion of grain boundaries containing sequestration money is another indication of intergranular fracture of these alloys. For example, hydrogen embrittlement of different aluminum alloy series such as 2χχχ, 6χχχ and 8χχχ is still underestimated and cannot be properly documented. In addition, it is not fully understood that 'hydrogen embrittlement can occur even in the absence of mechanical loading, that is, stress corrosion cracking is not necessary for hydrogen embrittlement. Corrosion-induced hydrogen embrittlement has been shown to be the main cause of the sharp degradation of toughness and ductility of the conventional 2024 and 6013 alloys, as well as the advanced 2091 and 8090 alloys. This degradation can be explained by quantifying argon release in the 2024 and 6013 alloys, as well as confirming different capture locations. These results have been applied to the treatment of corroded and uncorroded samples at temperatures corresponding to the hydrogen capture sites of each of the tested alloys. The fracture toughness of the corroded material is significantly reduced, and the local fracture toughness associated with the reduction in strain energy density must be evaluated. The method involving multiple spalling is very effective for the corrosive hydrogen embrittlement process with complex interactions. Therefore, it is recommended to check the effects of corrosion-induced hydrogen embrittlement on multi-site damage (MSD). The distance between the rivet holes of 44 1336730 can allow the local volume of the material to be embrittled. In order to quantify the effects of corrosion and corrosion-induced hydrogen embrittlement on the mechanical properties of aircraft aluminum alloys 2〇24 and 6013, a comprehensive experimental study was carried out. In addition to the tensile test, a residual strength test was performed using a dent and pre-generated fatigue (MSD) sample containing a row of double holes. Both the rotted and uncorroded samples were tested. A multiple spalling method is used to reduce the rupture and residual strength, as well as the strain energy density obtained from the tensile and uncorrupted sample tensile force tests, which are related to each other. The above experimental results can be confirmed using a wide range of fracture analysis (fract〇grapgic analysis). The effect of undamaged corrosion on the mechanical properties of aircraft aluminum alloys 2〇24 and 6013 was experimentally studied. The following conclusions were obtained: Corrosion-induced degradation of mechanical properties gradually occurred with exposure time. Tensile ductility is reduced exponentially to a fairly low final value. In order to interpret this result, it is necessary to use a multiple spalling method to reduce the gap between the damage process occurring at the microscopic level and the macroscopic mechanical properties of the material. Mechanically removes the corroded area, which has recovered to the most '-, tensile strength, but does not restore tensile ductility, where the latter can only recover after heat treatment of the alloy at a temperature corresponding to hydrogen capture. Thus, it means that the corrosion of the alloy to be tested is related to hydrogen embrittlement. The fracture toughness of the corroded material is significantly reduced, and it is necessary to evaluate the local fracture toughness associated with the reduction of the amount and degree. Using the strain energy density reduction measured according to the tensile test, the residual strength of the structural parts due to corrosion-induced hydrogen embrittlement was evaluated at 45 α336730. Known as Oriani, Richard A, Hirth, John Ρ· and Smialowski,

Michael等人所編輯之「鐵合金的氫退化」(miam Andrew Publishing/Noyes, 1985, p.900, ISBN 0-8155-1027-6 ) » 其中提供氫金屬交互作用、機械考量,以及機械特性的退 化現象等基礎部份之重要評論。結構材質的氫退化是一種 在過去五十年裡逐漸注意的嚴重問題。在水溶液中的氫腐 触來源的普遍存在’將帶有潮濕及污染碳氫化合物吸收到 管線内’以及融化過程中的污染物等,均對於此問題的重 要性提出貢獻。 已知 J. Burke、A. Jickels 與 P. Maulik 等人所提出 之「氫對Fe-Ni-Cr沃斯田鐵的結構與特性之影響」 (Proceedings of an International Conference. Moran, Wyoming,1976,pp. 102-115),其點出與氣體方式或電解 方式吸附氫有關之沃斯田鐵鋼内的延展性損耗。雖然此種 材質的敏感性會小於肥粒鐵與麻田散鐵鋼之敏感性,然而, 在咼氫濃度被吸收的條件下,機械特性的變差很大。這一 點對於材質運用來說,具有很明顯的暗示意味。而且,在 -些種類的應力腐姓破裂與氫引發性結構與特性變化之間 所建a起的清楚關聯’已經進—步增加對於了解這些材質 中氣脆化的基本機制之興趣。沃斯田鐵鋼的氫脆化可以分 ,兩個王要的種類:⑴高氫逸度(fugacity)、低擴散性(亦 ?低皿度)與沃斯田鐵穩定性的組合,導致嚴重的内部應 46 ,1336730 變,自發性轉變成α與ε麻田散鐵,以及廣泛的晶粒間與橫 跨晶粒表面的破裂;以及(2)成分的組合、溫度與逸度,能 使氫獲得吸收,但不會伴隨顯著的結構變化。 已知Shimomura,J. ' imanada, Τ·所提出之「在氫侵 襲期間2-l/4Cr-lMo鋼中的碳化物之分解」(Scripta"Hydrogen Degradation of Ferroalloys" edited by Michael et al. (Miam Andrew Publishing/Noyes, 1985, p.900, ISBN 0-8155-1027-6) » which provides hydrogen metal interactions, mechanical considerations, and degradation of mechanical properties Important comments on the basics such as phenomena. Hydrogen degradation of structural materials is a serious problem that has gradually gained attention over the past fifty years. The ubiquity of hydrogen rot sources in aqueous solutions, the absorption of wet and contaminating hydrocarbons into pipelines, and the contaminants in the melting process contribute to the importance of this problem. Known by J. Burke, A. Jickels, and P. Maulik et al., "The Effect of Hydrogen on the Structure and Properties of Fe-Ni-Cr Vostian Iron" (Proceedings of an International Conference. Moran, Wyoming, 1976, Pp. 102-115), which points out the ductile loss in the Worthian iron steel associated with the adsorption of hydrogen by gas or electrolysis. Although the sensitivity of this material is less than that of ferrite iron and 麻田散铁钢, the mechanical properties are greatly deteriorated under the condition that the argon hydrogen concentration is absorbed. This has a very obvious dark indication for material use. Moreover, the clear association between the rupture of some types of stresses and the changes in hydrogen-induced structures and properties has increased the interest in understanding the basic mechanisms of gas embrittlement in these materials. The hydrogen embrittlement of Worthfield Iron and Steel can be divided into two types: (1) high hydrogen fugacity, low diffusivity (also low) and Worthite iron stability, resulting in serious internal Should change 46, 1336730, spontaneously converted into α and ε Ma Tian loose iron, and a wide range of intergranular and rupture across the grain surface; and (2) combination of components, temperature and fugacity, can make hydrogen absorb , but not accompanied by significant structural changes. Known by Shimomura, J. 'imanada, Τ· “Decomposition of Carbides in 2-l/4Cr-lMo Steel during Hydrogen Invasion” (Scripta

Metallurgica, 1985 年出版第 12 期第 19 冊第 1507 至 1511 頁),其中揭示對於2. 25Cr-lMo鋼内的氫侵襲之抵抗性, 可藉由減少Si含量而顯著增進,而且,就碳化物化學性質 來說’係根據Si含量嚴重影響碳化物的成分與晶體結構之 觀察為基礎,已經解釋Si對於氫侵襲的影響。該文件亦揭 示關於在氫侵襲期間所發生的碳化物化學性質的變化之說 明,且將他們與具有不同Si含量的2.25Cr-lMo鋼中的機 械特性變差產生相互關聯。 已知R. Kot所提出之「氫侵襲、偵測、評估與估算」 (2001年,針對非破壞性測試之第1〇屆亞太會議),該文件 提供鋼材内的氫侵襲之偵測、評估與估算方法的概述。在 高溫與高壓下接觸&的裝備可能會遭受氫損壞—熱氫侵 襲。原子的氩很容易在鋼材中擴散,而且,可能由於在高 溫高壓下在金屬内部空隙中形成CH44 &,而引起裂缝。如 此會導致晶粒邊界中的裂缝,以及喪失強度的去碳作用, 如此會使材料變得不可靠或者有危險。受到氫損壞的鋼材 中的徹底減弱,可用於量化材質的機械特性之退化程度。 藉由了解這一點,可以估算受影響的機器設備之殘餘壽命。 氫對於金屬具有各種不同範圍的有害影響。金屬的氫 47 1336730 引發性退化,係藉由暴露至大氣而引起的,其中氫被吸收 到材質中’且導致其機械性能的減少。氫損壞的嚴厲與模 式與以下因素有關:氫的來源—外部(氣體V内部(溶解); 暴露時間;溫度與壓力;存在可能會與金屬產生反應的溶 液或溶劑(例如··酸性溶液);合金種類及其製造方法;金 屬中斷裂的量;暴露表面的處理(障壁層,例如,作為金屬 上的氫滲透障壁之氧化層);金屬表面的最終處理(例如. 鋅鎳電鍍);Μ理方法;及/或殘餘與應用應力的程度。 根據上述變量的組合與數目,氫損壞可以被分類成: 氫脆化、氫化物脆化、固溶體硬化、產生内部㈣,而且,Metallurgica, 1985, Vol. 12, No. 19, pp. 1507 to 1511, which reveals resistance to hydrogen attack in 2.25Cr-lMo steel, which can be significantly improved by reducing Si content, and, in addition, carbides The chemical properties are based on the observation that the Si content seriously affects the composition and crystal structure of the carbide, and the influence of Si on hydrogen attack has been explained. The document also discloses a description of changes in the chemistry of carbides that occur during hydrogen attack and correlates them with the deterioration of mechanical properties in 2.25Cr-lMo steels having different Si contents. Known by R. Kot's “Hydrogen Invasion, Detection, Evaluation and Estimation” (2001, Asia Pacific Conference on Non-Destructive Testing), this document provides detection and assessment of hydrogen attack in steel. An overview of the method of estimation. Equipment that comes into contact with & high temperatures and pressures may suffer from hydrogen damage - thermal hydrogen attack. Argon argon is easily diffused in the steel, and cracks may be caused by the formation of CH44 & in the internal voids of the metal at high temperature and high pressure. This can lead to cracks in the grain boundaries and loss of strength to decarburization, which can make the material unreliable or dangerous. A complete weakening of steel damaged by hydrogen can be used to quantify the degree of degradation of the mechanical properties of the material. By understanding this, the residual life of the affected machinery can be estimated. Hydrogen has a variety of different detrimental effects on metals. Metallic hydrogen 47 1336730 Initiated degradation, caused by exposure to the atmosphere where hydrogen is absorbed into the material' and results in a decrease in its mechanical properties. The severity of hydrogen damage is related to the following factors: the source of hydrogen—external (gas V internal (dissolved); exposure time; temperature and pressure; there are solutions or solvents that may react with metals (eg, acidic solutions); Alloy type and its manufacturing method; amount of fracture in metal; treatment of exposed surface (barrier layer, for example, oxide layer as hydrogen permeation barrier on metal); final treatment of metal surface (eg. zinc-nickel plating); Method; and/or the degree of residual and applied stress. According to the combination and number of the above variables, hydrogen damage can be classified into: hydrogen embrittlement, hydride embrittlement, solid solution hardening, internal production (4), and

如圖8所示,可以再細分成不同的損壞過程。 在氫侵襲機制與防止中,氫會在材質内形成甲燒氣泡, 同時與鋼中的碳產生反應。甲燒氣泡形成於晶粒邊界上與 微小空隙中。由於這類氣泡的膨脹與結合,致使甲燒壓力 增長使Ζ隙擴大成裂縫。裂縫與空隙的生長會使金屬變脆 弱,而此裂縫會發展成較大的主要裂缝。 氫侵襲的程度與溫度、氫局部壓力、應力程度、暴露 時間、鋼成分與結構有關。氫侵襲已經被報導發生於純碳 鋼、低合金鋼’以及甚至—些在473Κ溫度上操作的不鏡鋼 中。氫佼襲是精煉爐中一種主要的問題,在精煉爐内氫與 碳氫化合物蒸氣被操作成高達20MPa以及大約810Κ的程 度。為了防止氫侵襲在高溫及/或高壓下發生,所以,需要 间合金疋素含量。Cr、M〇、w、v、Ti、Nb等為碳化物形成 兀素,這些均可用於鋼材中,以提供想要的抵抗性。 48 『1336730 根據工業經驗為主的API 941的Nelson曲線,其提供 選擇合金的通用指導。適合選擇的合金係顯示成溫度/氫局 部壓力座標右邊或上方的曲線,此代表操作的預期參數。 熱處理會影響鋼材對氫侵襲的抵抗性。例如,受到淬 火與回火的2.2 5Cr-l Mo鋼,對於氫破裂會具有增加的敏感 度,這是由於麻田散鐵與變韌鐵(bainitic)結構對於氫損 壞的低抵抗性之故。可能會產生過高降伏強度程度的熱處 理,應該要加以避免或小心使用。 工業經驗指出Cr-Mo鋼的焊接後熱處理,對於在氫工 作時抵柷氫侵襲是有幫助的。要求氫/氫碳化合物設備的製 造商對於焊接消耗品執行脆化測試,以及在開始製造之前, 將所有「低氫」電極儲存於熱「箱」内,這是一種平常的 慣例。對於低鉻鋼的預熱規定,能夠在製造期間導致縮小 氫所引發的焊接破裂。正確的檢查、品質控制、良好的設 計,以及聲譽良好的製造商,對於確保最終容器或反應器 能夠抵抗氩侵襲來說是必要的。 藉由使鋼材暴露至氫環境,而引起氫侵襲。損壞的嚴 重性是與暴露時間、溫度、氫局部壓力、應力程度、鋼成 分與結構等因素有關。為了避免/防止氫侵襲,應該使用具 有70素形成穩定魏物之崎。應該小(地應用—熱處理, 以避免產生出對氫侵襲具有很低抗性的結構(麻田散鐵、變 韌鐵)。在氫與碳氫化合物操作設備之製造過程期間,需要 正確的檢查以及品質管理系統。在^設備中所使用的鋼 材之氫未受損與受損樣品,應可用於氫侵襲測試等用途。 49 1336730 已知 Takumi Terachi、Nobuo Totsuka、Takuyo Yamada 'As shown in Figure 8, it can be subdivided into different damage processes. In the hydrogen attack mechanism and prevention, hydrogen forms a burning bubble in the material and reacts with carbon in the steel. The beryllion bubbles are formed on the grain boundaries and in the minute voids. Due to the expansion and combination of such bubbles, the pressure of the nail-burning increases, causing the gap to expand into cracks. The growth of cracks and voids can make the metal brittle and weak, and the crack will develop into a larger major crack. The degree of hydrogen attack is related to temperature, hydrogen partial pressure, stress level, exposure time, steel composition and structure. Hydrogen attack has been reported to occur in pure carbon steel, low alloy steel, and even in non-mirror steels operating at 473 Torr. Hydrogen attack is a major problem in refining furnaces where hydrogen and hydrocarbon vapors are operated up to 20 MPa and about 810 Torr. In order to prevent hydrogen attack from occurring at high temperatures and/or high pressures, an intermetallic alloy content is required. Cr, M〇, w, v, Ti, Nb, etc. are carbides forming halogens, which can be used in steel to provide the desired resistance. 48 『1336730 The Nelson curve for API 941 based on industrial experience, which provides general guidance on the selection of alloys. The alloy that is suitable for selection is shown as a curve to the right or above the temperature/hydrogen pressure coordinates, which represents the expected parameters of the operation. Heat treatment can affect the resistance of steel to hydrogen attack. For example, 2.2 5Cr-l Mo steel subjected to quenching and tempering has an increased sensitivity to hydrogen cracking due to the low resistance of the granulated iron and the bainitic structure to hydrogen damage. Heat treatment that may result in excessively high levels of strength may be avoided or used with care. Industrial experience has pointed out that post-weld heat treatment of Cr-Mo steel is helpful for resisting hydrogen attack during hydrogen operation. It is a common practice for manufacturers of hydrogen/hydrocarbon compound equipment to perform embrittlement tests on welding consumables and to store all "low hydrogen" electrodes in the hot "box" before starting production. Preheating regulations for low chrome steel can result in weld cracking caused by shrinking hydrogen during manufacturing. Proper inspection, quality control, good design, and a reputable manufacturer are necessary to ensure that the final vessel or reactor is resistant to argon attack. Hydrogen attack is caused by exposing the steel to a hydrogen environment. The severity of the damage is related to exposure time, temperature, hydrogen partial pressure, stress level, steel composition and structure. In order to avoid/prevent hydrogen attack, it is necessary to use a 70-form stable stable Weisaki. It should be small (applied to heat treatment to avoid the formation of structures with very low resistance to hydrogen attack (Mita iron, toughened iron). During the manufacturing process of hydrogen and hydrocarbon handling equipment, proper inspection and Quality management system. The hydrogen of the steel used in the equipment is not damaged or damaged, and should be used for hydrogen attack testing, etc. 49 1336730 Known Takumi Terachi, Nobuo Totsuka, Takuyo Yamada '

Tomokazu Nakumi 、 Hiroshi Deguchi 、 Masaki Horiuchi 以 及Masato Oshitani等人之「溶解氫對加壓水反應爐中的 主水上所形成的合金600上之氧化膜的影響」(核子科技期 刊’ 2003年,第7期第40冊第509至516頁),該文件揭 示合金600内的主水應力腐蝕破裂(PWSCC)與壓水式反應器 (PWR)的主水中之溶解氫含量,兩者間的敏感性關係之研究 結果。因此,使用掠射X光繞射儀(GIXRD) '掃描式電子顯 微鏡(SEM) ’以及穿透式電子顯微鏡(TEM),而實施在PWR 的模擬主水中之四個不同DH條件下所形成的氧化物之結構 分析。特別地,為了執行此薄氧化膜的精確分析,使用 Spring-8的同步輻射。氧化膜主要是由氧化鎳在沒有氫的 條件下而形成的。另一方面’在1 · 〇ppm的DH下,形成針 狀氧化物。在2. 75ppm的DH之環境中,氧化膜具有薄尖晶 石結構。根據這些結果以及相位圖考量,LOppm的DH附近 的條件’對應於穩定NiO與尖晶石氧化物之間的邊界,而 且,亦對應於PWSCC敏感性的峰值範圍。此結果顯示N 〇與 尖晶石氧化物之間的邊界可能會影響scc的敏感性。 已知有P. M_ Scott所提出之「可作為pwr内的合金6〇〇 之晶粒間應力腐蝕破裂的可能解釋之内部氧化」(關於核能 系統/水反應器中的材質之環境退化的第九屆國際會議), 該文件提供關於壓水式反應器中的内部氧化機制之研究。 Scott與Le Calvar首先於1993年提出内部氧化為氫化pWR 王水中的晶粒間應力腐蝕破裂(IGSCC)之可能機制。從那時 50 1336730 起,已經嘗試好幾個實驗研究,以檢驗此假說。已經使用 二次離子質譜儀(SIMS)以及分析穿透式電子顯微鏡 (ATEM),針對合金6〇〇中的主要與次要裂縫,實施詳細的 員微祆查,而且,已經公告初步的結果。揭示出一些論點, 係關於在典型PWR操作溫度與腐蚀電位下内部氧化機制的 I應用性。關於鎳基合金中的氧晶粒間擴散之外觀反應速 率,以及位於或低於Ni/Ni〇氧化還原反應電位上下的腐蝕 %位之内部氧化的破裂與熱動力要求之觀察速率,使兩個 速率調和致疋一項特殊的問題。假如訴諸此機制來解釋 二次側邊蒸氣發電機管IGA/IGS(X的話,則上述的後者論 點就格外重要。第二個目的是描述在高溫時所觀察到的晶 粒間内部氧化破裂之已知情形的型態,以便在這次會議中 提供其他X㈣參考觀點,此次會·注的議題係在真正 或原型的刚條件下所產生的合纟_内之裂縫的詳細檢 查。 ^ 已知 V.S. Sinyavsky、V.D Valkov 以及 V.D. Kalinin 寺人所提出之「銘合金的腐蚀與保護」(MQseQw,Metai响 1986),該文件揭示出銘合金根據王作條件、合金成份等因 素’而遭受不同種類的腐蝕。這些種類的腐蝕包括:腐蝕 破裂、晶粒間腐蚀以及㈣—。—些含銅的銘合金很容 易遭受晶粒間腐蝕。此種腐蝕有時候發生在含鎂與矽的鋁 合金中。 由於不正確的熱處理,而且有時㈣為在海水、海洋 與工業大氣等許多環境下延長暴露於陽光下,因此,會發 51 1336730 生銘合金的晶粒間腐姓。晶粒間腐触理論認為:在銘合金 的人工老化期間’或者在9〇〇c與27〇〇c之間的溫度範圍内 4熱處理期㈣產生的其他熱作m,M_eu目雜會破壞而 在曰θ粒邊界上產生主要沉澱。此沉澱物的成分很接近金屬 化合物CuAl2。如此,會在邊界附近導致一銅耗盡區域。在 B曰粒内,金屬化合物僅沉澱較少的程度,因此,固溶體在 離開邊界的區域内,銅消耗的量比較少。由於上述溫度範 # 圍内的熱作用,從電化學的觀點來看,紹合金的表面可以 不再被認為是均勻同質的。晶粒邊界與晶粒之間的電位差 可以高達lOOmV,此電位差最終會導致電化學腐蝕。 一般來說,可以藉由適當的熱處理,在整個表面上提 供適當的電位分佈,而防止鋁合金產生晶粒間腐蝕。正確 的熱處理是使合金變得更加均勻同質,且將越多越好的銅 轉變成固溶體,而此固溶體可藉由一快速淬火處理而加以 固定。當硬鋁(duralumin)在冷水(4〇〇c)中從48〇至5〇〇〇c • f施淬火且進-步產生自然老化時,它會具有最佳的腐姓 抵抗性。 當合金同時受到腐蝕環境與靜態張力應力的影響時, 會產生腐蝕破裂。應力可以是外部與内部應力。有一些鋁 合金容易產生應力腐蝕破裂。合金對這類有害腐蝕損壞之 敏感性,是與金屬結構、應力的大小與特性,以及腐蝕性 環境有關。選擇性地侵襲合金的腐蝕性環境有助於產生腐 姑破裂。 剝落腐蝕是一種特別種類的表面下腐蝕,其主要平行 52 1336730 於變形向量而產生’冑變形是在塑造半完成品時產生的, 而且’伴隨有此方向上的裂縫形成、個別金屬顆粒的制落, 或樣品與零件的完全破壞。此種腐蝕可以沿著晶粒邊界, 或樹狀細胞的變形邊界,以及橫跨晶粒等方式產生。剝落 腐蝕大致上是變形半完成品的典型代表。在一些例外情形 中,這一點可以在具有方向性液化的習知鑄造物中觀察得 到’例如,在具有高錳含量的w_Mg_Li合金。 腐蝕剝落可歸因於以下因素:特殊的結構狀態、第二 相位的定向以及在此變形方向中的固溶體結晶、高含量的 合金元素或雜質及其不均勻分佈、内部應力,以及:腐蝕 性環境有關的表面特殊物理化學狀態。 因此,工作中的鋁合金之腐蝕抵抗性,可由下列標準 加以決定:表面精細度、内部壓縮(有利)應力,以及表面 附近的合金之特殊結構,此結構是藉由特殊泮火條件而產 生的。在最佳條件下,施加於鋁合金表面上的超音波衝擊, 可以組合上述所有適合的因素。 已知V.V. Gerasimov所提出之「鋁及其合金的腐蝕」 (Mosc⑽,Metallurgia,1967),該文件揭示鋁的電化學特 性以及腐蝕抵抗性,是與金屬純度有密切的關係。鋁合金 的抵抗性受到Μ素的特性與數量有關。在低於丨帆的溫 度下,純鋁具有最大的腐蝕抵抗性。在水以及不含有活性 離子(例如,自素)的中性環境中,純鋁的靜態電位對應於 -被動區域。因此’錢類條件下,純抗性會相當高。 鋁製成合金會改變陽極處理的動力學。具有1%鐵含量 53 『1336730 的銘之靜態電位對應於此被動區域。如此,可決定出這類 合金的一個相當低腐蝕速率,雖然此速率還是比純鋁的速 率更向。在3%的氯化鈉溶液中,合金的腐蝕速率會從〇. 004% 開始’與鐵含量成正比增加。 銘與銅的合金會使陽極處理(鋁合金溶液)的動力學, 景> 響成比鐵的情形更大的程度。當銅含量增加到〇. 〇丨%時, 可以觀察出3%氣化鈉溶液内的腐蝕速率之稍微增加。隨著 銅含量的進一步增加,可顯著增強腐蝕過程。 銘與鎳的合金會過度減少氫與氧》由於引進鎳的緣故, 陰極處理的加速會增加合金的靜態電位。含有0.2%鎳的合 金之標準電位對應於此被動區域,在此情形中的腐蝕速率 很低。藉由超過0.6%的鎳含量,靜態電位對應於過度鈍化 區域,此腐蝕速率很自然地會增加。 因此’對於鋁來說’合金元素含量高達1%已經在電極 處理的動力學上具有最大的影響◊當與鐵、銅或鎳形成合 金時,鋁合金便含有這些元素的金屬化合物。金屬化合物 的電極電位比鋁的靜態電位更陽性,所以,在鋁合金中作 為陰極之用。 合計達1至2%的錳、鋅、鎂與矽並不能增強腐蝕過程。 當鋅含量增加到25%時,合金的靜態電位會在中性與酸性環 境下變換成陰極方向’事實上’此合金的靜態電位並未受 到鋅含量進一步增加的影響。添加〇. 16%鋅到鋁内,對於陰 極處理速率來說只有很小的影響。因此,具有2· 〇5%的鋅之 銘合金並不會增加,反而甚至稍微減少腐蝕速率。 54 『1336730 含量達5%的鎂並不會顯著地增加鋁的腐蝕。在中性或 酸性環境下’當鋁鎂形成合金時,靜態電位會減少。這樣 的結果,也會發生在與鋰形成合金的情形中。 在中性環境下’事實上,鋁的靜態電位並不會受到珍 的影響;在酸性環境中,則會增加。事實上,固溶體中的 碎對於銘腐蝕沒有影響’然而’矽金屬化合物可能會出現 局部陰極且加速腐蝕。要知道的是,矽似乎能顯著增加鋁The effects of dissolved hydrogen on the oxide film on alloy 600 formed on the main water in a pressurized water reactor by Tomokazu Nakumi, Hiroshi Deguchi, Masaki Horiuchi, and Masato Oshitani (Nuclear Science and Technology Journal, 2003, No. 7) Volume 40, pp. 509-516), which discloses the relationship between the main water stress corrosion cracking (PWSCC) in the alloy 600 and the dissolved hydrogen content in the main water of the pressurized water reactor (PWR). Research result. Therefore, using a grazing X-ray diffractometer (GIXRD) 'Scanning Electron Microscope (SEM)' and a transmission electron microscope (TEM), it is formed under four different DH conditions in the simulated main water of the PWR. Structural analysis of oxides. In particular, in order to perform accurate analysis of this thin oxide film, synchrotron radiation of Spring-8 was used. The oxide film is mainly formed by nickel oxide in the absence of hydrogen. On the other hand, a needle-like oxide is formed at a DH of 1 · 〇 ppm. In the environment of 2.75 ppm of DH, the oxide film has a thin spinel structure. Based on these results and phase diagram considerations, the condition 'n near DH of LOppm corresponds to the boundary between the stabilized NiO and the spinel oxide, and also corresponds to the peak range of PWSCC sensitivity. This result shows that the boundary between N 〇 and spinel oxide may affect the sensitivity of scc. It is known that P. M_ Scott proposed "internal oxidation which may be explained as intergranular stress corrosion cracking of alloy 6〇〇 in pwr" (on the environmental degradation of materials in nuclear energy systems/water reactors) The Ninth International Conference), which provides research on the internal oxidation mechanism in pressurized water reactors. Scott and Le Calvar first proposed a possible mechanism for internal oxidation to intergranular stress corrosion cracking (IGSCC) in hydrogenated pWR aqua regia in 1993. Since then, at 13 1336730, several experimental studies have been tried to test this hypothesis. Detailed analysis of the primary and secondary cracks in the alloy 6〇〇 has been carried out using secondary ion mass spectrometry (SIMS) and analytical transmission electron microscopy (ATEM), and preliminary results have been published. Some arguments are revealed regarding the applicability of the internal oxidation mechanism at typical PWR operating temperatures and corrosion potentials. The apparent reaction rate of oxygen intergranular diffusion in a nickel-based alloy, and the observed rate of internal oxidation cracking and thermodynamic requirements at or below the corrosion % of the Ni/Ni〇 redox reaction potential, resulting in two Rate reconciliation causes a special problem. If the mechanism is used to interpret the secondary side steam generator tube IGA/IGS (X, then the latter argument is particularly important. The second objective is to describe the intergranular internal oxidative rupture observed at high temperatures. The type of known situation, in order to provide other X (four) reference points in this meeting, the topic of this meeting is a detailed examination of the crack in the contract produced under the real or prototype conditions. Known by VS Sinyavsky, VD Valkov and VD Kalinin Temple, "Corrosion and Protection of Ming Alloys" (MQseQw, Metai Ring 1986), this document reveals that Ming alloys suffer from different kinds depending on factors such as king's conditions and alloy composition. Corrosion. These types of corrosion include: corrosion cracking, intergranular corrosion, and (4) - some copper-containing alloys are susceptible to intergranular corrosion. Such corrosion sometimes occurs in aluminum alloys containing magnesium and niobium. Due to improper heat treatment, and sometimes (d) for extended exposure to sunlight in many environments such as seawater, ocean and industrial atmosphere, 51 1336730 The intergranular rot of the grain. The theory of intergranular corrosion is considered: during the artificial aging of the alloy, or in the temperature range between 9〇〇c and 27〇〇c, 4 other heat treatments produced during the heat treatment period (4) M_eu will destroy and produce a main precipitate on the boundary of 曰θ. The composition of this precipitate is very close to the metal compound CuAl2. Thus, a copper depletion region will be caused near the boundary. In the B granule, the metal compound is only The degree of precipitation is small, and therefore, the amount of copper consumed in the region where the solid solution leaves the boundary is relatively small. Due to the thermal action in the above temperature range, the surface of the alloy may not be from an electrochemical point of view. It is considered to be homogeneous and homogenous. The potential difference between grain boundaries and grains can be as high as 100 mV, which eventually leads to electrochemical corrosion. In general, appropriate potential can be provided on the entire surface by appropriate heat treatment. Distribution, to prevent intergranular corrosion of aluminum alloy. The correct heat treatment is to make the alloy more uniform and homogenous, and the more copper is converted into a solid solution, and the solid solution can be It is fixed by rapid quenching treatment. When duralumin is quenched in cold water (4〇〇c) from 48〇 to 5〇〇〇c • f, it will have the best when it is naturally aged. Corrosion resistance. When the alloy is affected by both corrosive environment and static tensile stress, corrosion cracking occurs. The stress can be external and internal stress. Some aluminum alloys are prone to stress corrosion cracking. The alloy is damaged by such harmful corrosion. Sensitivity is related to metal structure, stress size and characteristics, and corrosive environment. Selective attack on the corrosive environment of the alloy helps to produce cracking of the rot. Stripping corrosion is a special kind of subsurface corrosion, which is mainly Parallel 52 1336730 produces a '胄 deformation during deformation of the semi-finished product, and is accompanied by crack formation in this direction, the fall of individual metal particles, or complete destruction of the sample and part. Such corrosion can occur along grain boundaries, or from the deformation boundaries of dendritic cells, as well as across grains. Peeling Corrosion is generally a typical representation of a semi-finished product. In some exceptional cases, this can be observed in conventional castings with directional liquefaction, e.g., in a w_Mg_Li alloy having a high manganese content. Corrosion spalling can be attributed to the following factors: special structural state, orientation of the second phase, solid solution crystallization in this deformation direction, high content of alloying elements or impurities and their uneven distribution, internal stress, and: corrosion The special physical and chemical state of the surface related to the sexual environment. Therefore, the corrosion resistance of aluminum alloys at work can be determined by the following criteria: surface fineness, internal compressive (favorable) stress, and the special structure of the alloy near the surface, which is produced by special igniting conditions. . Under optimal conditions, the ultrasonic shock applied to the surface of the aluminum alloy can combine all of the above suitable factors. The corrosion of aluminum and its alloys (Mosc (10), Metallurgia, 1967) is known from V.V. Gerasimov. This document reveals that the electrochemical properties and corrosion resistance of aluminum are closely related to the purity of metals. The resistance of aluminum alloys is related to the properties and quantity of alizarin. At temperatures below the sail, pure aluminum has the greatest resistance to corrosion. In water and in a neutral environment that does not contain active ions (e.g., self-priming), the static potential of pure aluminum corresponds to the -passive region. Therefore, under the conditions of money, pure resistance will be quite high. Alloying from aluminum changes the kinetics of the anode treatment. The static potential of the Ming with 1% iron content 53 『1336730 corresponds to this passive area. Thus, a relatively low corrosion rate of such alloys can be determined, although this rate is still more variable than that of pure aluminum. In a 3% sodium chloride solution, the corrosion rate of the alloy will increase from 〇. 004%' in proportion to the iron content. The alloy of Ming and copper will make the kinetics of the anodizing treatment (aluminum alloy solution) louder than in the case of iron. When the copper content is increased to 〇. 〇丨%, a slight increase in the corrosion rate in the 3% vaporized sodium solution can be observed. As the copper content increases further, the corrosion process is significantly enhanced. Alloys with nickel and nickel will excessively reduce hydrogen and oxygen. Due to the introduction of nickel, the acceleration of the cathode treatment will increase the static potential of the alloy. The standard potential of the alloy containing 0.2% nickel corresponds to this passive region, and the corrosion rate in this case is very low. With a nickel content of more than 0.6%, the static potential corresponds to an overpassive region, and this corrosion rate naturally increases. Therefore, the content of alloying elements up to 1% for aluminum has the greatest influence on the kinetics of electrode treatment. When alloys are formed with iron, copper or nickel, the aluminum alloy contains metal compounds of these elements. The electrode potential of the metal compound is more positive than the static potential of aluminum, so it is used as a cathode in an aluminum alloy. A total of 1 to 2% of manganese, zinc, magnesium and antimony does not enhance the corrosion process. When the zinc content is increased to 25%, the static potential of the alloy is converted to the cathode direction in a neutral and acidic environment. In fact, the static potential of the alloy is not affected by a further increase in zinc content. Adding 〇. 16% zinc to aluminum has only a small effect on the rate of cathode treatment. Therefore, the zinc alloy with 2·〇5% does not increase, but even slightly reduces the corrosion rate. 54 『1336730 The magnesium content of 5% does not significantly increase the corrosion of aluminum. In a neutral or acidic environment, when the aluminum-magnesium alloy is formed, the static potential is reduced. Such a result also occurs in the case of alloying with lithium. In a neutral environment, in fact, the static potential of aluminum is not affected by Jane; in an acidic environment, it increases. In fact, the smash in the solid solution has no effect on the etched corrosion. However, the ruthenium metal compound may have a local cathode and accelerate corrosion. It should be known that 矽 seems to significantly increase aluminum

表面的氧化膜之保護性,這是因為矽鋁形合金具有非常高 的腐蝕抵抗性。在酸性環境下,從〇.035到〇 〇78%範圍= 的鈉含量,對於鋁的抵抗性來說是很重要的。含有〇 3至〇.钝 鐵雜質的鋁中之最大鈉含量,其範園應該介於〇 〇2與〇 之間。假如存在於銘中的話,則納會強化晶粒間腐^ 〇 0 · 0 8 %的鈣含量會稍微減少商用鋁在中性環境下的抵浐 性。。.5至L0。機會顯著地增加0.5至n驗性溶液中的:The protective properties of the oxide film on the surface are due to the very high corrosion resistance of the bismuth aluminum alloy. In an acidic environment, the sodium content from 〇.035 to 〇 〇 78% = is important for aluminum resistance. The maximum sodium content of aluminum containing 〇 3 to 钝. blunt iron impurities should be between 〇 2 and 〇. If it exists in the inscription, it will strengthen the intergranular rot. 〇 0 · 0 8 % of the calcium content will slightly reduce the resistance of commercial aluminum in the neutral environment. . .5 to L0. The opportunity is significantly increased in the 0.5 to n test solution:

腐触(η表錯液的當量濃度)。切時,崎質是特別 有害。 銘與約的合金能抑制销的不利作用, 上的影響很小。欽含量超過崎増強在酸性= 蚀。却、鈷、銘、銀、兹、飢等均具有不利的作用。例如 具有4齡的銘合金在刪相對澄度⑽的大氣 天之後,就完全被破壞。藉由有效操作Ag2M金屬化人^ 為陰極,可則丨起很高的腐料率。在—些情。物作 増 錫、錢等均不具有任何作用,但是,有時“些去:、 強腐蝕。銻會改善鋁的腐蝕抵抗性。 ‘、θ 55 1336730 即使少量的水銀’也會導致鋁的汞齊化、金屬表面去 純化’以及增加的金屬溶解速率。含水銀的銘保護裝置具 有足夠的負電位,因此事實上,無法隨時間鈍化。 合金景> 響靜態電位以及腐敍抵抗性與PH環境的依附 性。在鹼性環境中,純鋁以及大部份的鋁合金並未具有抵 抗性。在這樣的情形下,摻有〇· 5%鎂的合金具有最小的腐 蝕速率。當鋁與鎂形成合金時,會在金屬表面產生一氧化 膜。此膜含有氫氧化鍰,其不溶於鹼液。在稀釋鹼液中, 合金抵抗性會隨著鎂含量而增加。在濃縮鹼液中,鎂並不 會增進鋁的抵抗性。鎂與錳合金能增加在氨中的抵抗性。 在含有氨的可樂水(c〇ke water)中,99至99.5%鋁以及具 有1. 25%錳或3%鎂的鋁合金,能抵抗腐蝕。 在非氧化性酸液中,矽能增強而鈣會抑制鋁的抵抗性。 鋅與短具有不好的效果’鎂與錫能增強腐触抵抗性。在同 質^金巾’ 1%㈣並不會減弱在硝酸中的純性。在不同 成分組成的合金中’ 1%_就能㈣減弱在65%硝酸中的抵 抗性。1%含量的銅,即使並未完全溶解於鋁中,也能夠在25% 的酸中顯著增強抵抗性。 人在5/。與1〇/❹氫氣酸中,99. 96%銘以及含有ο」%鎮的紹 。金’對於腐姓就具有相當大的抵抗性。在這些情形中的 腐姓速率並未超過3至5g/ffl2天4相同環境下,哪.加 的個別腐蝕速率為352與7780g/ra2天。 雜質與合金元素對g及其合金中的孔穴腐蚀具有很 。、者的衫響。在99.99%的銘中,在淡水中很難觀察到腐餘。 56 ;,:而在99.5至99.8%的銘中,在—週内,腐触深度就可 能到達0. 3咖。銘純度從99 99%減少至議會增加在氧離子 化區域中的陰極處理速率,以及擴散電流與氫離子放電的 限制速率。如此會増強孔穴腐蝕。 局部陰極的作用能増強局部腐蝕。鐵與銅的含量越高, 腐姓孔a的數量及其深度就越大。腐蚀孔穴通常被定向成 對應於金屬化合物排列的滾壓方向。也可以在金屬化合物 出現的刮傷區域觀察到孔穴腐蝕。 當鋁表面以沸水處理時,則會在因為某些原因而受損 的區域中恢復—保護膜。這樣的處理能增進合金對於孔穴 腐蚀的抵抗性。 其他的表面處理’例如··滾壓後去油污、在⑽驗液中 蝕刻在磷酸與硝酸混合物中的化學拋光等,均對於在53 至飢的蒸齒水中之110合金的抵抗性沒有任何影響。在 氯化物'谷液中’表面拋光會減少腐蝕損耗。在0. 0(Π-1· 0-n 濃度的硫酸钾溶液中,拋光過的㈣實上並*會腐触。化 子拋光flt*夠在87 %RH的大氣下,使99.5%铭的腐餘減少 倍。 鋁《金的表面處理會影響其對於孔穴腐蝕的傾向。由 於:步姓刻的緣故,在2S與3S合金(在所使用的加工 銘合金’現在分別標示成1⑽與3003)上的孔穴深度,在 淡水中測試時會增加10至50倍。 塑性變形會瓦解不純晶粒間物質的完整性,因而增加 摻有鐵與鎳的銘對於晶粒間腐姓的抵抗性。藉由在泮火與 57 老化之前使用較低的加熱溫度,可以使晶粒間内部吸附作 用減少’或者在晶粒邊界的固溶體分解。 在腐触性環境以及機械應力的組合效果下,一些鋁合 金(例如·掺有鎂或鎂鋅的合金),會受到一種特殊形式的 侵襲’典型稱之為腐蝕破裂或應力腐蝕。通常在含有氣化 物的環境下可以觀察到此種形式的侵襲。鋁合金的腐蝕破 裂可以解釋成金屬化合物相的Mg2Al3在晶粒邊界的沉澱。 此金屬化合物是藉由金相與電子顯微研究,而發現存在受 到腐蝕破裂的摻鎂鋁合金之晶粒邊界上。 機械應力會在金屬化合物内產生普通顯微鏡看不見的 凹痕與裂縫’促進腐蝕性環境滲透成点相,且強化此相的 分解。此外,張力應力能促進万相沿著結晶體邊界的滲透。 摻鎂鋁合金的腐蝕破裂過程敘述如下:在晶體邊界的 召相並未在氣化物溶液中鈍化,且強烈地分解。金屬化合 物可能在合金的製造與處理期間或張力應力的影響下而沉 殿°点相的分解以及形成普通顯微鏡看不到的裂縫,會導 致形成鋅金屬化合物的濃縮物或沉;殿物。因此,此過程會 強烈地繁殖深入金屬。 環境的除氣或陰極極化,會變換陰極方向的電位,且 減弱石相的分解以及腐蝕破裂過程。陽極極化或與更珍貴 金屬(銅、不鏽鋼)接觸,會增加相(其在氯化物中不會鈍 化)的分解速率,因此可增強腐蝕破裂。當合金表面受到酸 或驗的蝕刻時,此腐蝕破裂過程是最快的。表面拋光會增 加合金到破壞前的壽命。藉由使PH值從0增加到6,樣本 58 到破壞前的壽命也會增加。同轉有難銅㈣合金,比 起鎂銅雙合金來說,較不容易受到腐银破裂的影響。與 0:5-U鋅形成合金’可增強含t卜嶋的合金之腐姓破 裂抵U生田合金變得比較容易受到腐触破裂的影響時, 回火溫度以及變形的程度會增加。 ,在腐姓性環境與交替負載的同時作用下,由於腐姓疲 勞的,彖故合金可能會損壞。因為腐#破裂的緣故,氣化 物會加速銘合金的破壞。在3%氯化納溶液中,2024合金的 疲勞限度為3. 5kg/mm2操作1〇7次。 在封閉系統中,抑制劑被廣泛運用於保護金屬與合金, 以對抗腐蝕。—些氧化劑(例如:鉻酸鹽與重鉻酸鹽)被用 作為中性環境下的腐敍抑制齊!(鈍化劑)。S低溫下,絡酸 鹽可被用以保護鋁及其合金,以便在中性、鹼性與弱酸性 %境下對抗腐蝕。假如添加〇 5_1〇g/1鉻酸鈉或鉻酸卸到 含有至多50-l〇〇mg/1鹽類的水中,則鋁及其合金的腐蝕速 率將會大幅減少。藉由較高的鹽類濃度,特別是銅,則會 減少鉻酸保護特性,且可能會發生孔穴腐蝕。 可以使用其他化合物作為抑制劑,以保護冷卻系統的 鋁製部位。因此,藉由添加3%硝酸鈉、〇〇3%磷酸鈉以及3% 磷酸-鈉鹽到含有35mg/l氯化物的8〇。(:河水,則可以減少 腐蝕速率達2至3倍。添加〇· 〇3%硝酸鈉以及矽酸鈉,3%苯 酸納’則能夠減少腐蝕6至8倍。 G.V. Akimov證實硬鋁的電化學保護。視覺觀察顯示在 鋅f兩固疋的4m長硬铭板,在海水測試之後並未具有任 59 1336730 何腐敍損壞。橫跨氣化銀電極具有-G.8V電位的陰極極化, 能夠保護独在海封持續六個h在料料中,硬紹 船殼可藉由保護裝置而保護免受腐蝕β鎂保護裝置均勻地 位於船底,且藉由鍍鋅鋼螺栓而固定至乙埽基塑膠墊上。 已知S. Vernik以及R. pinner所提出,β a. ZelenovaN.T. 2 Veselova所翻譯編輯的「銘與紹合金的化 予與 % 解處理」(Sudostroyeniye,Leningrad, 1960),該 文件揭示纟&情形中,㉖合金的腐#抵抗性可以藉由應 用保護塗層而顯著地增進。對於鋁合金來說,藉由氧化以 及陽極化而建立起一氧化膜,《—項普通的慣例。陽極化 大幅地增加鋁及其合金在工業大氣下的抵抗性。用於鋁的 取佳氧化膜是具有0.025 — 0.〇15mm厚度且藉由硫酸與草酸 中實施陽極化而獲得的氧化膜。這類的膜在喷麗m氣化納 的條件下,可以禁得起一年的測試。 可以在高溫的水或水溶液中處理金屬,而產生鋁合金 表面上的保護性氧化膜。可以藉由鍍上純鋁’可以達成在 海水中的鋁合金之高抵抗性。此鍍層不僅能使合金與腐蝕 性環境隔離開來,而且還可以電化學方式保護合金。為了 保護鋁合金免受腐蝕,也可以使用琺瑯。琺瑯在水、酸、 弱鹼性洗滌劑,以及都市空氣中,格外耐用。瀝青、聚合 物與油漆塗層’以及油脂’可用於在大氣與土壤中保護鋁 及其合金免受腐姓。 已知N. D. Tomashov以及G. P. Chernova所提出之「腐 蝕理論以及耐腐蝕結構合金」(M〇sc〇w, MetaUurgia, 件揭示當㈣與高域M氣或非電解質接觸 則發生:=:是金屬破壞的代表,現象發生時, 運原反應’好比電化學腐蝕。在金屬的教處理 渴輪喷射引擎、火箭引擎、發電?I内的細部、零件 …。構4作期間’可能會在冶金操作過程中產氣體腐敍。Corrosion (equivalent concentration of η table wrong liquid). When cut, the texture is particularly harmful. The alloy of Ming and about can inhibit the adverse effects of the pin, and the influence on it is small. Chin content exceeds ruggedness in acid = eclipse. However, cobalt, Ming, silver, and hunger all have adverse effects. For example, a 4th-year-old alloy is completely destroyed after the atmosphere of the relative degree (10) is deleted. By effectively operating the Ag2M metallization to the cathode, a high rate of decay can be achieved. In - some love. Things do not have any effect on tin, tin, etc., but sometimes "go some:, strong corrosion. It will improve the corrosion resistance of aluminum. ', θ 55 1336730 even a small amount of mercury 'will lead to aluminum mercury Purification, metal surface de-purification' and increased metal dissolution rate. The mercury-containing protective device has a sufficient negative potential, so in fact, it cannot be passivated over time. Alloy Scenery > Static Potential and Corrosion Resistance and PH Environmental dependence. In an alkaline environment, pure aluminum and most aluminum alloys are not resistant. Under such circumstances, alloys doped with 〇·5% magnesium have the lowest corrosion rate. When magnesium forms an alloy, an oxide film is formed on the surface of the metal. The film contains barium hydroxide, which is insoluble in the alkali solution. In the diluted alkali solution, the alloy resistance increases with the magnesium content. In the concentrated alkali solution, Magnesium does not increase the resistance of aluminum. Magnesium and manganese alloys can increase the resistance to ammonia. In the acyl water containing ammonia, 99 to 99.5% aluminum and 1.25% manganese or 3% magnesium aluminum alloy, can Anti-corrosion. In non-oxidizing acid, strontium can be enhanced and calcium can inhibit the resistance of aluminum. Zinc and short have a bad effect 'Magnesium and tin can enhance the resistance to rot. In the homogenous ^ gold towel' 1% (four) It does not weaken the purity in nitric acid. In the alloys with different composition, '1% _ can (4) weaken the resistance in 65% nitric acid. 1% content of copper, even if it is not completely dissolved in aluminum, It is also able to significantly enhance the resistance in 25% of the acid. In the 5/. and 1〇/❹ hydrogen acid, 99. 96% of the Ming and the ο"% town. Kim’s is quite resistant to the surname. In these cases, the rate of decay was not more than 3 to 5 g/ffl2 for 4 days, and the individual corrosion rates were 352 and 7780 g/ra2 days. Impurities and alloying elements are very corrosive to pores in g and its alloys. The shirt of the person is ringing. In 99.99% of the Ming, it is difficult to observe the corrosion in fresh water. 56;,: In the 99.5 to 99.8% of the Ming, in the week, the depth of the decay may reach 0.3. Ming purity decreased from 99 99% to the increase in the rate of cathodic treatment in the oxygen ionization zone, as well as the rate of diffusion current and hydrogen ion discharge. This will make the hole corrosion. The action of the local cathode can barely localize the corrosion. The higher the content of iron and copper, the greater the number and depth of the hole a. The corrosive voids are typically oriented to correspond to the direction of rolling of the metal compound arrangement. It is also possible to observe hole corrosion in the scratched area where metal compounds are present. When the aluminum surface is treated with boiling water, it will recover in the area damaged for some reason - the protective film. Such treatment enhances the resistance of the alloy to void corrosion. Other surface treatments, such as degreasing after rolling, chemical polishing in a mixture of phosphoric acid and nitric acid in a (10) test, have no effect on the resistance of the 110 alloy in the 53-to-hund steamed tooth water. . Surface polishing in the chloride 'valley' reduces corrosion loss. In a 0. 0 (Π-1· 0-n concentration of potassium sulfate solution, the polished (four) is actually and will be rotted. The chemical polishing flt* is sufficient in an atmosphere of 87 % RH, making 99.5% of the The amount of corrosion is reduced by a factor of 5. Aluminum "gold surface treatment will affect its tendency to corrode. Because of the name of the step, the 2S and 3S alloys (in the processing alloy used in the process are now labeled 1 (10) and 3003 respectively) The depth of the hole above is increased by 10 to 50 times when tested in fresh water. Plastic deformation will disrupt the integrity of the inter-grain between the grains, thus increasing the resistance of the iron-and-nickel-containing imprint to the intergranular rot. By using a lower heating temperature before bonfire and 57 aging, the internal adsorption between grains can be reduced 'or the solid solution decomposition at the grain boundary. Under the combined effect of the corrosive environment and mechanical stress, some Aluminum alloys (such as alloys doped with magnesium or magnesium zinc) are subject to a special form of attack, typically referred to as corrosion cracking or stress corrosion. This form of attack is usually observed in environments containing vapors. Corrosion cracking of aluminum alloy can The precipitation of Mg2Al3 at the grain boundary is explained by the metal compound phase. This metal compound is found by metallographic and electron microscopic studies on the grain boundary of the magnesium-doped aluminum alloy which is corroded by corrosion. The mechanical stress will be in the metal. The dents and cracks in the compound which are invisible to ordinary microscopes are promoted to promote the penetration of the corrosive environment into the point phase, and the decomposition of this phase is strengthened. In addition, the tensile stress can promote the penetration of the 10,000 phases along the boundary of the crystal. Corrosion cracking of the magnesium-doped aluminum alloy The process is described as follows: The phase of the crystal boundary is not passivated in the vapor solution and is strongly decomposed. The metal compound may be decomposed and formed during the manufacture and processing of the alloy or under the influence of tensile stress. Cracks that are not visible to ordinary microscopes can lead to the formation of concentrates or sinks of zinc metal compounds. Therefore, this process will strongly propagate deep into the metal. The degassing or cathodic polarization of the environment will change the potential in the cathode direction. And weaken the decomposition of the stone phase and the corrosion cracking process. Anodic polarization or with more precious metals (copper, stainless steel) Touch, which increases the rate of decomposition of the phase (which is not passivated in the chloride), thus enhancing corrosion cracking. This corrosion cracking process is the fastest when the alloy surface is subjected to acid or etching. Surface polishing increases the alloy. By the time before the destruction, by increasing the pH from 0 to 6, the life of the sample 58 before the destruction will also increase. The same copper (four) alloy is less susceptible to rot silver than the magnesium-copper double alloy. The effect of rupture. Forming alloy with 0:5-U zinc can enhance the rot of the alloy containing t 嶋 抵 抵 抵 U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U Increased. Under the effect of the rot environment and the alternating load, the alloy may be damaged due to the fatigue of the rot. Because of the rupture of the rot, the vapor will accelerate the destruction of the alloy. In the 3% sodium chloride solution, the fatigue limit of the 2024 alloy was 3. 5 kg / mm 2 operation 1 〇 7 times. In closed systems, inhibitors are widely used to protect metals and alloys against corrosion. Some oxidizing agents (for example, chromate and dichromate) are used as a stagnation inhibitor in a neutral environment! (passivating agent). At low temperatures, complex salts can be used to protect aluminum and its alloys against corrosion in neutral, alkaline and weakly acidic environments. If 〇 5_1〇g/1 sodium chromate or chromic acid is added to water containing up to 50-l〇〇mg/1 salt, the corrosion rate of aluminum and its alloys will be greatly reduced. With higher salt concentrations, especially copper, the chromic acid protection properties are reduced and voiding can occur. Other compounds can be used as inhibitors to protect the aluminum portion of the cooling system. Therefore, by adding 3% sodium nitrate, 3% 3% sodium phosphate, and 3% phosphoric acid-sodium salt to 8 含有 containing 35 mg/l of chloride. (: River water can reduce the corrosion rate by 2 to 3 times. Adding 〇· 〇3% sodium nitrate and sodium citrate, 3% sodium benzoate can reduce corrosion by 6 to 8 times. GV Akimov confirms the electrification of hard aluminum Visual protection. Visual observation shows that the 4m long hard plate on the zinc-fluster is not damaged by the seawater test. The cathodic polarization has a potential of -G.8V across the vaporized silver electrode. , can protect the unique sea seal for six h in the material, the hard hull can be protected from corrosion by the protection device. The beta magnesium protection device is evenly located at the bottom of the ship and fixed to the B by galvanized steel bolts.埽 塑胶 塑胶 塑胶 。 。 。 nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik nik This document reveals that in the case of 纟&, the corrosion resistance of Alloy 26 can be significantly enhanced by the application of a protective coating. For aluminum alloys, an oxide film is formed by oxidation and anodization, "- General practice. Anodization is greatly increased And the resistance of the alloy to the industrial atmosphere. The preferred oxide film for aluminum is an oxide film having a thickness of 0.025 - 0. 〇 15 mm and anodized by sulfuric acid and oxalic acid. Under the condition of Li gasification, it can be forbidden for one year. It can be treated in high temperature water or aqueous solution to produce a protective oxide film on the surface of aluminum alloy. It can be achieved by plating pure aluminum. High resistance to aluminum alloys in seawater. This coating not only isolates the alloy from corrosive environments, but also electrochemically protects the alloy. To protect the aluminum alloy from corrosion, it can also be used in water, Acid, weakly alkaline detergents, and urban air are exceptionally durable. Bitumen, polymer and paint coatings and greases can be used to protect aluminum and its alloys from rot in the atmosphere and soil. Known ND Tomashov and GP Chernova's "Corrosion Theory and Corrosion Resistant Structural Alloys" (M〇sc〇w, MetaUurgia, reveals that when (4) is in contact with high-field M gas or non-electrolyte: =: It is the representative of metal damage. When the phenomenon occurs, the original reaction 'is like electrochemical corrosion. In the metal teaching, the thirsty wheel jet engine, the rocket engine, the power generation, the details in the I, the parts... The gas produced during the metallurgical operation is rotted.

金屬抵抗高溫氣體的腐姓侵襲之能力,稱之為熱抵抗 性。金屬在高溫時的另一項重要特性是高溫強度,其可用 以界定在這類條件下材質保持氣好機械特性的能力。金屬 可以耐熱’但是卻無法具有良好的高溫強度(例如,在_ 至450%的銘合金)。在_至7〇〇〇c,冑速鶴鋼可以讨熱, 但疋在rfj溫下並非強壯。The ability of metals to resist the invasion of high temperature gases is called thermal resistance. Another important property of metals at elevated temperatures is the high temperature strength, which can be used to define the ability of the material to maintain good mechanical properties under these conditions. Metals can be heat resistant' but do not have good high temperature strength (for example, in _ to 450% of the alloy). At _ to 7〇〇〇c, Idle Steel can be hot, but it is not strong at rfj.

金屬與氧之間的交互作用(金屬氧化)係根據以下化學 式而發生:Me+02=Me02。到達金屬的氧分子受到金屬表面的 及附(亦即,捕捉)。金屬中的氧吸附通常以下列方式表達: 此物理吸附作用發生於乾淨表面上,藉此,使氧原子與分 子之間的鍵結變弱。分子分離且氧原子吸引電子遠離金屬 原子。當電子朝氧飄移同時形成0-2離子等於金屬氧化合物 (氧化物)的原子核形成時,產生一個化學吸附階段。氧與 金屬的交互作用(氧化物)之產物,能對表面提供一層減少 化學活性的氧化膜。根據厚度而定’金屬上的膜可以分類 成:薄(看不見)一40nm以下的厚度;平均(以回火色看得見) —40至500mn的厚度;厚(看得見)—厚度超過5〇〇nm。例如·· 在鋁的情形中: 在乾燥空氣中’幾天之後,膜為10nm ; 61 '1336730 在600°C且60個小時之後,膜為2〇〇nm ; 在陽極化之後,膜變成3到3〇〇々111厚。 對於金屬與合金來說,氣體腐#速率會受到例如成分、 氣體環境的|力與速度、溫度與加熱條件等外部因素以 及例如合金的特性、化學與相位組成、機械應力與變形等 内部因素之影響。The interaction between metal and oxygen (metal oxidation) occurs according to the following chemical formula: Me+02=Me02. The oxygen molecules that reach the metal are attached to (ie, captured) by the metal surface. Oxygen adsorption in metals is generally expressed in the following manner: This physical adsorption occurs on a clean surface whereby the bond between the oxygen atoms and the molecules is weakened. The molecules separate and the oxygen atoms attract electrons away from the metal atoms. A chemisorption phase is created when electrons drift toward oxygen while forming a nucleus of 0-2 ions equal to the metal oxygen compound (oxide). A product of the interaction of oxygen with metal (oxide) that provides a chemically active oxide film on the surface. Depending on the thickness, the film on the metal can be classified into: thin (invisible) thickness below 40 nm; average (visible in tempered color) - thickness of 40 to 500 mn; thickness (visible) - thickness exceeding 5〇〇nm. For example, in the case of aluminum: after a few days in dry air, the film is 10 nm; 61 '1336730 after 600 ° C and 60 hours, the film is 2 〇〇 nm; after anodization, the film becomes 3 It is thicker than 3〇〇々111. For metals and alloys, the gas rot # rate is subject to external factors such as composition, gas environment force and speed, temperature and heating conditions, and internal factors such as alloy properties, chemical and phase composition, mechanical stress and deformation. influences.

氧化膜的保護特性實質上與合金的特性與組成有關。 鉻、鋁與矽能顯著地減緩鋼氧化過程,由 護特性的薄模,所以能發生此現象。在加熱期 金屬變形,能導致薄膜斷裂、藉此增進氧化速率。初步變 形只有在再結晶溫度以下,會對氧化速率具有很小的影響。 為了達到氣體腐蝕保護,可以使用耐熱合金、保護性 氣體以及保護性塗層。The protective properties of the oxide film are substantially related to the properties and composition of the alloy. Chromium, aluminum and niobium can significantly slow down the oxidation process of steel, and this phenomenon can occur due to the thin mold of the protective properties. Deformation of the metal during heating can cause the film to break, thereby increasing the rate of oxidation. The initial deformation is only below the recrystallization temperature and has a small effect on the oxidation rate. To achieve gas corrosion protection, heat resistant alloys, protective gases, and protective coatings can be used.

已知F. Todt所提出之「腐蝕與腐蝕保護」(Khimiya, Leningrad,1967),該文件揭示電化學腐蝕的過程是兩種 偶合反應的組合》 —陽極反應(氧化)Me = Mez+ + ze ; 陰極反應(復原)D + ze = (Dze); 其中D是去極劑(氧化劑),其可吸引由於陽極反應(金 屬離子化)而引起釋放的z個電子(ze)。電化學腐触過程的 示意圖係顯示於圖9。 實際合金的表面總是異質的,也就是,具有實質上電 位不同的區域❶金屬表面不僅在微不規則性(晶粒邊界、雜 質)上有所差異’而且在亞微不規則性(晶體結構的不完美、 62 晶格中的外來原子等)也有所不同。如此使陽極與陰極處理 達到局部化,且導致產生局部腐蝕(例如,產生孔穴)—在 电化學腐蝕條件下的微電池元素之工作理論。 【發明内容】 本發明係關於一種用超音波衝擊改良金屬性能並對抗 金屬的退化與抑制的方法與演算法。本方法與演算法可對 付在外力、熱力波動與不利的環境因素等影響下之延長工 作期間,使金屬特性產生退化的問題。本發明亦關於對抗(亦 即,防止)並抑制由於性能隨時間的不當變化而導致材質破 壞的危險。會發生這類的問題,一般是因為在金屬的環境 退化過程中所伴隨的已知條件之影響下,而引起材質的起 初結構損壞之緣故。在每個特殊情形中,對抗金屬退化的 已知方法涵蓋很廣泛的技術,從熔化、鑄造、焊接與施加 塗層期間的冶金合金,到表面上的各種熱處理與作用。 本發明提供一種新穎的多功能方法及演算法,以對付 上述所有情形中的退化問題。以下,將詳細說明用於處理 受影響物體的方法與演算法。 在此技術作用之前與之後,金屬邊界層對於其本身的 特性與條件之反應,實質上會影響亞表面層的特徵,這些 特徵不管單獨或與表面特徵結合,均可界定出本方法的^ 術效率。此方法及/或演算法的效率意味著對材質性能上的 影響程度,這是由於材質的特性與結構之指定變化'結構 的應力變形狀態,以及材質抵抗外力、溫度變化與環境作 用的能力等因素之緣故《因此,本發明的方法及/或演算法 63 1336730 點出表面及表面下的材質為兩個獨立但相關的實體,而且, 在本文中,提供一種方法,以便增加物體對抗可能導致其 性能退化的不利因素之能力。所以,對於處理過的表面及 表面下材質的條件等之要求,可決定出左右被影響的物體 表面及其材質之技術特點,以作為此方法的兩個相關但獨 互I技術效率準則。於是,以下將詳細說明超音波衝擊的 方法及/或演算法,以及在物體材質性能退化上具有不同起 • 因的工程領域中之多功能與特殊應用變型。 本發明的方法及/或演算法亦點出改良金屬退化抵抗性 之任務。此方法及/或演算法開始組織並控制此項任務所定 義的超音波衝擊之柔性與強力正常化相位,且獲得實際應 用情形的技術有效,以抑制退化(根據本發明的方法使用超 I波衝擊控制)。「柔性」乃是關於超音波衝擊的相位與: 數,其對應於此項任務且直接管理材質的預定或實驗建立 起的狀態,在材質的衝擊抵抗性能被確認的時候,且當材 • ㈣被處理區域内,根據衝擊相位而產生-定最小量二衝 擊抵抗性時,導致最大可能強化(塑性變形)而同時保 處理材質的中間結構完整性。 組織並控制超音波衝擊的柔性及強力正常化相位之主 要階段包括如下: 在物體表面後續形成最佳中間結構的背景下,評估 質的動態強度; ν 根據此方肢/或演H選擇用以㈣超音波衝 柔性或強力相位之參數與深度; 64 1336730 在抑制開始退化過程且防止其可能性之背景下,材質 表面結構條件與其修㈣任務定義之實驗或專業分析; (根據此㈣方法與演算法)正常化超音波衝擊,對於 此:務所界定的表面上下之材質結構的影響之強度與順序 的實驗或專業選擇; 在維持完整性並提供表面材質中間結構的特殊強化之 柔性相位之後,在超音波衝擊期間,蚊表面材質結構上 的力量作用之參數與順序; 準備且一致地實施本發明的方法及/或演算法; 對結果進行實驗確認,以配合第—實驗系列樣本或模 擬器上的技術任務; 輸入此結果至一資料庫;及/或 在形成材質表面與亞表面特性的階段,根據使用超音 波衝擊控制的程度(由上述方法所選定),而實施此退化抑 制方法及/或演算法。 【實施方式】 本發明係關於一種用超音波衝擊改良金屬性能並對抗 金屬的退化與抑制的方法。本方法可對付在外力、熱力波 動與不利的環境因素等影響下之延長工作期間,使金屬特 性產生退化的問題。本發明亦關於對抗(防止)並抑制由於 性能隨時間的不當變化而導致材質破壞的危險。會發生這 類的問題,一般是因為在金屬的環境退化過程中所伴隨的 已知條件之影響下,而引起材質的起初結構損壞之緣故。 圖88顯示不同種類的金屬環境退化。金屬的環境退化 65 1336730Known by F. Todt, "Corrosion and Corrosion Protection" (Khimiya, Leningrad, 1967), the document reveals that the electrochemical corrosion process is a combination of two coupling reactions - anode reaction (oxidation) Me = Mez + + ze; Cathodic reaction (recovery) D + ze = (Dze); where D is a depolarizer (oxidant) which attracts z electrons (ze) which are released due to the anode reaction (metal ionization). A schematic of the electrochemical decay process is shown in Figure 9. The surface of the actual alloy is always heterogeneous, that is, the surface of the bismuth metal with different potentials differs not only in micro irregularities (grain boundaries, impurities) but also in submicron irregularities (crystal structure). The imperfections, the alien atoms in the 62 lattice, etc.) are also different. This results in localization of the anode and cathode treatments and results in localized corrosion (e. g., void formation) - the theory of operation of the microbattery elements under electrochemical corrosion conditions. SUMMARY OF THE INVENTION The present invention is directed to a method and algorithm for improving metal properties with ultrasonic shock and combating degradation and suppression of metals. The method and algorithm can solve the problem of deteriorating metal characteristics during the extended work under the influence of external forces, thermal fluctuations and unfavorable environmental factors. The present invention also relates to combating (i.e., preventing) and inhibiting the risk of material damage due to undue changes in performance over time. This type of problem occurs because it is caused by the known structural conditions associated with the degradation of the metal environment, which causes the initial structural damage of the material. In each particular case, known methods of combating metal degradation cover a wide range of techniques, from melting, casting, welding and metallurgical alloys during application of the coating, to various heat treatments and effects on the surface. The present invention provides a novel multi-functional method and algorithm to deal with degradation problems in all of the above scenarios. Hereinafter, methods and algorithms for processing an affected object will be described in detail. Before and after the technical action, the reaction of the metal boundary layer to its own characteristics and conditions substantially affects the characteristics of the subsurface layer. These features, whether alone or in combination with surface features, define the method. effectiveness. The efficiency of this method and / or algorithm means the degree of influence on the material performance, which is due to the specified characteristics of the material and the structural changes of the structure 'stress deformation state of the structure, and the ability of the material to resist external forces, temperature changes and environmental effects, etc. The reason for the factors "Therefore, the method and / or algorithm of the present invention 63 1336730 points out the surface and the material under the surface are two independent but related entities, and, in this paper, provide a method to increase the object against the possible The ability to degrade the performance of its performance. Therefore, the requirements of the treated surface and the conditions of the underlying material can determine the technical characteristics of the surface and material of the affected object as the two related but independent technical efficiency criteria. Thus, the following describes in detail the methods and/or algorithms for ultrasonic shock, as well as the versatility and special application variants in the engineering field that have different causes of degradation in object material properties. The method and/or algorithm of the present invention also addresses the task of improving metal degradation resistance. The method and/or algorithm begins to organize and control the flexibility and strong normalization phase of the ultrasonic shock defined by this task, and the technique for obtaining the practical application is effective to suppress degradation (the super-wave is used according to the method of the present invention) Impact control). "Flexibility" is about the phase and number of ultrasonic shocks, which corresponds to this task and directly manages the predetermined or experimentally established state of the material, when the impact resistance of the material is confirmed, and the material (4) In the treated area, when the minimum amount of impact resistance is generated according to the impact phase, the maximum possible strengthening (plastic deformation) is caused while maintaining the intermediate structural integrity of the material. The main stages of organizing and controlling the flexibility and strong normalization phase of ultrasonic shocks are as follows: The dynamic strength of the mass is evaluated in the context of the subsequent formation of an optimal intermediate structure on the surface of the object; ν is selected according to this limb/or H (4) Parameters and depth of ultrasonic impulse or strong phase; 64 1336730 In the context of suppressing the beginning of degradation process and preventing its possibility, the surface structure condition of the material and its repair (4) task definition of experimental or professional analysis; (according to this (four) method and Algorithm) normalizes the ultrasonic shock, for this: the experimental or professional choice of the strength and order of the influence of the material structure above and below the surface defined by the service; after maintaining the integrity and providing a special enhanced flexible phase of the intermediate structure of the surface material Parameters and sequences of force effects on the surface material structure of the mosquito during ultrasonic shock; preparation and consistent implementation of the method and/or algorithm of the present invention; experimental confirmation of the results to match the first experimental series of samples or simulations Technical tasks on the device; enter this result into a database; and/or form a material The stage of surface and subsurface properties is implemented according to the degree of use of ultrasonic shock control (selected by the above method) to implement the degradation suppression method and/or algorithm. [Embodiment] The present invention relates to a method of improving metal properties by ultrasonic shock and resisting degradation and suppression of metals. The method can deal with the problem of deteriorating metal characteristics during extended work under the influence of external forces, thermal fluctuations and adverse environmental factors. The present invention also relates to combating (preventing) and suppressing the risk of material damage due to undue changes in performance over time. This type of problem occurs because of the initial structural damage of the material caused by the known conditions associated with the environmental degradation of the metal. Figure 88 shows the environmental degradation of different kinds of metals. Environmental degradation of metals 65 1336730

:::腐姓:氫損壞' 液態金屬侵襲,以及輕射損壞。腐 广括水㈣腐敍以及高溫腐#。水溶液腐触可以是—般 ,襲或局部的腐蝕侵襲。水溶液的局部侵襲可以包括鍍鋅 錢'裂縫腐#、凹陷、晶粒間腐蝕、選擇性溶濾、侵蝕 腐餘,或腐*破裂。高溫_包括金屬魏化以絲腐蚀。 金屬的氧化可以包括:氫脆化、氫氣泡、薄片、魚眼,以 及粉碎魏’錢侵^氫隸可以包㈣力延展性的損 失:氫應力破裂、氫環境脆化’或者由於氫形成的脆化。 液態:屬侵襲可以包括液態金屬脆化、晶粒邊界滲透,及/ 或液態金屬腐蝕。輻射損壞可以包括輻射成長、空隙膨脹、 輻射強化潛變’及/或輻射強化與脆化。::: Poison: Hydrogen damage ' Liquid metal attack, and light damage. Corrosion Guangshui (four) Husband and high temperature rot #. Aqueous solutions can be attacked by general, local or localized corrosion. Local attack of the aqueous solution may include galvanized money 'fracture rot #, depression, intergranular corrosion, selective leaching, erosion of corrosion, or rot * rupture. High temperature _ including metal Weihua is corroded by wire. Oxidation of metals may include: hydrogen embrittlement, hydrogen bubbles, flakes, fisheyes, and pulverization of Wei's intrusion into hydrogen (including) loss of force ductility: hydrogen stress cracking, hydrogen environment embrittlement' or hydrogen formation Embrittlement. Liquid: Invasion can include liquid metal embrittlement, grain boundary infiltration, and/or liquid metal corrosion. Radiation damage can include radiation growth, void expansion, radiation enhanced creep, and/or radiation enhancement and embrittlement.

*在每個特殊情科’對抗金屬退化的已知方法涵蓋很 廣範圍的技術,包括從炫化、铸造、悍接與應用塗層期間 的冶金相纟纟’到表面上的各種熱處理與作用。本發明提 供-種新穎的方法,用以應付所有上述情形的退化問題。 以下,將詳細說明處理受影響的物體之方法。 在此技術作用之前與之後,金屬邊界層對於此作用及 其特性與條件的反應,實質上會影響亞表面層的特徵,這 些特徵單獨或與表面特徵一起界定此處理方法的技術效 率。此處理方法的技術效率意味著於材質性能的影響程度, 這是由於材質的特性與結構中的指定變化,結構的應力變 形鑄太,以及材質抵抗外力、溫度變化與環境效果的能力 4緣故。因此,本發明的方法點出表面及表面下的材質為 兩個獨互但相關的實體,且在文中提供一種增加物體抵抗 66 1336730 引起本身性能退化的不利因素之能力。對於處理過的表面 及表面下材質的條件等之要求,可決定出左右被影響物體 的表面及其材質之技術特點,以作為此方法的兩個相關但 獨立之技術效率準則。於是,以下將詳細說明超音波衝擊 的方法,以及在物體材質性能退化上具有不同起因的工程 領域中之多功能與特殊應用的變型。 本發明的方法及/或演算法亦點出改良金屬退化抵抗性 之任務。此方法開始組織並控制此項任務所定義的超音波 衝擊之柔性與強力正常化階段,且獲得實際應用情形的技 術效率,以抑制退化(根據本發明的方法使用超音波衝擊控 制)。「柔性」乃是關於超音波衝擊的相位與參數,其對應 於此項任務且直接管理材質的預定或實驗建立起的狀態, 在材質的衝擊抵抗性能被確認的時候,以及當材質的被處 理區域内,根據衝擊相位而產生一定最小量的衝擊抵抗性 時,導致最大可能強化(塑性變形),而同時保持被處理材 質的中間結構完整性。 組織並控制超音波衝擊的柔性及強力正常化相位之主 要階段包括如下: 在物體表面後續形成最佳中間結構的背景下,評估材 質的動態強度; 根據此方法’選擇用以控制超音波衝擊的柔性或強力 相位之參數與深度; 在抑制開始退化過程且防止其可能性之背景下,材質 表面結構條件與其修改的任務定義之實驗或專業分析; 67 1336730 (根據此控制方法)正常化 界定的表面上下之材質結構的影響之對於此任務所 專業選擇; 强度與順序的實驗或 維持芫整性並提供表面材 柔性相位乏桉^ γ 負中間結構的特殊強化之 柔〖生相位足後,在超音波衝擊期間 的力量作用之參數與順序; ’ &表面材質結構上 準備且一致地實施本發明的方法;* Known methods for combating metal degradation in each special esthetic range cover a wide range of technologies, from metallurgical phase 炫 during stenciling, casting, splicing and application of coatings to various heat treatments and effects on the surface . The present invention provides a novel approach to cope with the degradation problems of all of the above scenarios. Hereinafter, a method of processing an affected object will be described in detail. Before and after this technique, the reaction of the metal boundary layer to this effect and its characteristics and conditions substantially affects the characteristics of the subsurface layer, which together with or in combination with the surface features define the technical efficiency of this process. The technical efficiency of this treatment method means the degree of influence on the material properties, which is due to the specified characteristics of the material and the specified changes in the structure, the stress deformation of the structure, and the ability of the material to resist external forces, temperature changes and environmental effects. Thus, the method of the present invention points out that the surface and underlying materials are two separate but related entities, and an ability to increase the resistance of the object to 66 1336730 causing its own performance degradation is provided herein. The requirements for the treated surface and the conditions of the underlying material determine the technical characteristics of the surface of the affected object and its material as two related but independent technical efficiency criteria for this method. Thus, the following describes in detail the method of ultrasonic shock, as well as variations in versatility and special applications in the engineering field with different causes of degradation in the material properties of the object. The method and/or algorithm of the present invention also addresses the task of improving metal degradation resistance. This method begins to organize and control the flexibility and strong normalization phases of the ultrasonic shock defined by this task, and obtains the technical efficiency of the actual application situation to suppress degradation (the ultrasonic shock control is used according to the method of the present invention). "Flexibility" is the phase and parameters of the ultrasonic shock, which corresponds to this task and directly manages the predetermined or experimentally established state of the material, when the impact resistance of the material is confirmed, and when the material is processed In the region, when a certain minimum amount of impact resistance is generated according to the impact phase, the maximum possible reinforcement (plastic deformation) is caused while maintaining the intermediate structural integrity of the material to be treated. The main stages of organizing and controlling the flexibility and strong normalization phase of ultrasonic shock include the following: Evaluating the dynamic strength of the material in the context of the subsequent formation of the optimal intermediate structure on the surface of the object; according to this method 'selecting to control the ultrasonic shock Parameters and depths of flexible or strong phase; experimental or professional analysis of material surface structure conditions and their modified task definitions in the context of inhibiting the initiation of degradation processes and preventing their possibility; 67 1336730 (according to this control method) normalized defined The influence of the material structure on the top and bottom of the surface is the professional choice for this task; the strength and sequence of the experiment or the maintenance of the temperability and the provision of the surface material flexible phase 桉 ^ γ negative intermediate structure of the special reinforcement of the soft Parameters and sequence of force effects during ultrasonic shock; '& surface material is structurally prepared and consistently implemented in accordance with the method of the present invention;

實驗系列樣本或模 對結果進行實驗確認,以配合第— 擬器上的技術任務; 輸入此結果至一資料庫;及/或 在形成材質表面與亞表面的特性之階段,根據使用超 音波衝擊控制的程度(由上述方法所選定),而實施此退化 抑制方法。The experimental series of samples or modules are experimentally confirmed to match the technical tasks on the first simulator; input the results to a database; and/or at the stage of forming the surface and subsurface characteristics of the material, according to the use of ultrasonic shock The degree of control (selected by the above method) is carried out to implement this degradation suppression method.

超音波衝擊伴隨著兩種動作:(1)在震盪系統彈回被處 理表面所引起的彈性恢復力下,震盪系統的移動;以及(2) 連接到一凹痕器的震盪系統端之超音波震盪,如圖34與35 中的範例所TF。如圖所不,基本工具包含至少一凹痕器103、 一波導102、一磁致伸縮傳感器101(其具有一個可作為水 冷卻殼體的殼體107)、一彈簧106,以及一個具有把手的 工具箱105。磁致伸縮傳感器1〇1、波導1〇2、凹痕器1〇3、 工具箱105、彈簧106以及傳感器的殼體107 —起形成此震 盪系統(OS),其具有一個結構上與之固定的處理結構。 以下是本發明說明書以及圖形中所用的縮窝圖例: OS_震盛系統 68 1336730 0SE—裝附至凹痕器柄的震盪系統端 TS—被處理表面 UI—超音波衝擊 vos—震盪系統的震盪速度 V0SE—0SE在超音波頻率的震盪速度 vr—在某一時期’ vQS與Vqse的總合之〇SE的合成震盪 速度Ultrasonic shock is accompanied by two actions: (1) the movement of the oscillating system under the elastic restoring force caused by the oscillating system bounced back to the surface being treated; and (2) the ultrasonic wave connected to the oscillating system end of a dent Concussion, as shown in the examples in Figures 34 and 35. As shown, the basic tool includes at least one indenter 103, a waveguide 102, a magnetostrictive sensor 101 (having a housing 107 as a water-cooling housing), a spring 106, and a handle having a handle. Toolbox 105. The magnetostrictive sensor 1〇1, the waveguide 1〇2, the indenter 1〇3, the toolbox 105, the spring 106, and the housing 107 of the sensor form the oscillation system (OS), which has a structural structure fixed thereto Processing structure. The following is a description of the condensing system used in the specification and graphics of the present invention: OS_ Zhensheng System 68 1336730 0SE - oscillating system end TS attached to the dent handle - processed surface UI - ultrasonic shock vos - oscillation of the oscillating system Velocity V0SE—0SE The oscillating velocity vr at the ultrasonic frequency—in a certain period ′ the sum of vQS and Vqse and the combined oscillating velocity of SE

M〇s—震鱼系統的質量 Pini。一超音波衝擊的力量脈衝 fos—0S的震盪移動之頻率(2〇〇Hz) f0SE—0SE的震盪移動之頻率(27〇〇〇Hz)M〇s - the quality of the shock fish system Pini. The frequency of a supersonic shock force pulse fos_0S oscillation frequency (2〇〇Hz) f0SE—0SE oscillation movement frequency (27〇〇〇Hz)

Aos_OS的震盪移動中之位移振幅(〇 3mm) A0SE—0SE的震盪移動中之位移振幅(〇. 〇3醜) Ψ —超音波震盧的相位 F—0S對抗TS的擠壓_力Displacement amplitude of oscillating movement of Aos_OS (〇 3mm) Displacement amplitude of oscillating movement of A0SE—0SE (〇. 〇3 ugly) Ψ—Phase of ultrasonic shock Lu F_0S against TS squeeze _ force

圖36顯不本發明的超音波衝擊期間之塑性變形分佈。 平均統計上的超音波衝擊包含在物體上的作用之三個時間 間隔(圖36中標不為a'b|^ e),係用以界定在每個衝擊事 件期間被處理材質中的塑性變形分佈之強度。這些間隔包 括:(a)以大於超音波傳感器的頻率之遞增頻率,凹痕 器在被處理表面與震邊玄公B .山、 盈系、.无尾柘又間的變窄間隙内之震 盛,⑻在系、統「震盛系統—凹痕器_被處理表面」内的同 步與相位中連續震L(c)由於震逵系統從被處理表面彈回 义緣故’如圖37所示’在被處理表面與震產系統尾端之間 69 1336730 的遞增間隙内,凹痕器的阻尼震盪。 當發生此情形時,震盪系統的彈回以及衝擊等情形, 會相對於震盪系統的輸出端之超音波震盪(超音波傳感器的 載波震盥)而隨機發生,且形成相位的隨機圖案,如圖犯 所示’代表每個超音波衝擊事件的開始與結束,及其三個 時間間隔,也就是(a)、(b)與(c)。 震盪系統移動速度以及具有凹痕器的震盪系統之超音 波震堡的速度被隨機添加,而在受超音波衝擊所影響的表 面上產生動態過度負載的問題,而超過被處理表面材質中 間結構的動態強度極限。如此將導致以下情形:(a)中間結 構崩潰所引起的表面損壞上之衝擊能量分散,以及這些損 壞ia形在後續衝擊影響下之不利發展;(b )表面材質内引發 的塑性變形之強度與深度之減少,以及所引起的不利壓縮 應力;及(c)超音波震盪能量以及被影響的物體材質中之超 音波應力波的減;>。這些因素使超音波衝擊處理品質控制 變得很難’且降低其技術效率,也就是,在表面預定深度 處’ 一致地再生被處理材質的預定結構、條件與特性之能 力。 金屬的退化伴隨著主要發生在表面層内的中間結構崩 潰;表面材質的動態強度是藉由表面變形速率以下列關係 而定義的:V=2iJ/pc,其中σ是在特定負載速率下的動態 張力強度,Ρ是材質密度’ c是音速或材質中的變形繁殖, V是表面損壞之前或之後的作用之速度,且pc是對於此作 用(動力、聲音、準靜態)的抵抗性。 70 ”十算結果顯示在超音波頻率範圍内,對於遞增的超音 波衝擊強度來說’仍有保留的餘地。因此,在的超 音波震盪振幅以及27kHz的頻率,震盪速度為i5m/sec, 而在具有7〇〇MPa的降伏強度之鋼材上的動態作用下的臨界 速度為34m/sec。如此一來,對於超音波衝擊的較高載波頻 率來說,更谷易實際地改變成8〇kHz。然而,此保留空間很 谷易殳到在長時間工作期間會引發材質特性退化的外部因 素與環境之影響。因此,使用所研發出來的方法,在臨界 向負載金屬結構的構成與維護上是很實際的。 因此,必須解決一項三重的技術任務,其包括:(£〇在 超音波衝擊期間控制材質中間結構’以維持在被處理表面 上的芜整性;(b)恢復退化的材質中間結構;以及(c)在超 音波衝擊期間於被處理表面上下,直接影響金屬的結構狀 態與特性。 此技術任務要求超音波震盛條件必須在以下三個時機 獨形成’(a)當震盪系統接近被處理表面時;(b)假如需 要額外腐蝕的話,則直接在超音波衝擊期間形成;以及(c), 在(a)與(b)的過程期間,超音波衝擊在被處理表面上的作 用之實驗發現週期結束。 如上所示,超音波衝擊處理過程伴隨兩個震盪模式:(a) 震盪系統集中質量(lumped mass)的低頻震盪;以及(1))成 對諧振7L件的超音波頻率震盪,也就是,震盪系統的傳感 器/波導/凹痕器。這些移動的圖形部分以及其振幅速度的 關係特殊計算,顯示於圖39中。 71 1336730 正的振幅對應於0S接近TS。在任何時刻t的一點之位 移、速度與加速度之計算公式,為x(t)=Acos〇L>t、v(t) = -A ω sincu t、a(1;) = -A 6l>2cos ω1:。最大的速度為 Αω。因此, 〇S與0SE的最大速度如:Figure 36 shows the plastic deformation distribution during the ultrasonic shock of the present invention. The average statistical ultrasonic shock impacts the three time intervals on the object (not labeled a'b|^e in Figure 36) to define the plastic deformation distribution in the material being processed during each impact event. Strength. These intervals include: (a) at an increasing frequency greater than the frequency of the ultrasonic sensor, the dent is in the narrowed gap between the surface to be treated and the seismic edge B. Mountain, the surplus system, and the non-tailed ridge Sheng, (8) Synchronization and phase continuous vibration L(c) in the system and system "shock system - dent _ treated surface" due to the shock system from the surface of the treated surface, as shown in Figure 37 'The damping of the dent is oscillated within the incremental gap of 69 1336730 between the treated surface and the end of the seismic system. When this happens, the rebound and impact of the oscillating system will occur randomly with respect to the ultrasonic oscillation at the output of the oscillating system (the carrier shock of the ultrasonic sensor), and a random pattern of phases is formed, as shown in the figure. The crime shown represents the beginning and end of each ultrasonic shock event, and its three time intervals, namely (a), (b) and (c). The speed of the oscillating system and the speed of the ultrasonic shock absorber of the oscillating system with the dent are randomly added, and the problem of dynamic over-loading occurs on the surface affected by the ultrasonic shock, and the intermediate structure of the material of the treated surface is exceeded. Dynamic strength limit. This will lead to the following situations: (a) the dispersion of impact energy on the surface damage caused by the collapse of the intermediate structure, and the unfavorable development of these damaged ia shapes under the influence of subsequent impacts; (b) the strength of the plastic deformation induced in the surface material and The reduction in depth and the resulting unfavorable compressive stress; and (c) the ultrasonic oscillating energy and the reduction of the ultrasonic stress wave in the material of the affected object; >. These factors make it difficult to control the quality of the ultrasonic shock treatment and reduce its technical efficiency, that is, the ability to consistently reproduce the predetermined structure, conditions and characteristics of the material to be processed at a predetermined depth of the surface. Metal degradation is accompanied by the collapse of intermediate structures that occur primarily in the surface layer; the dynamic strength of the surface material is defined by the surface deformation rate in the following relationship: V = 2iJ/pc, where σ is the dynamic at a particular load rate Tensile strength, Ρ is the material density 'c is the speed of sound or deformation propagation in the material, V is the speed of action before or after surface damage, and pc is resistance to this effect (power, sound, quasi-static). The 70" results are shown in the ultrasonic frequency range, and there is still room for preservation for increasing ultrasonic impact strength. Therefore, the amplitude of the ultrasonic oscillation and the frequency of 27 kHz have an oscillation speed of i5 m/sec. The critical speed under dynamic action on steel with a drop strength of 7 MPa is 34 m/sec. As a result, for the higher carrier frequency of ultrasonic shock, it is more practical to change to 8 kHz. However, this reserved space is very susceptible to external factors and environmental factors that may cause degradation of material properties during long periods of work. Therefore, using the developed method, the construction and maintenance of the critical load metal structure is Very practical. Therefore, a triple technical task must be addressed, including: (controlling the intermediate structure of the material during ultrasonic shock to maintain the integrity of the surface being treated; (b) restoring the degraded material The intermediate structure; and (c) directly affect the structural state and characteristics of the metal during the ultrasonic shock on the surface to be treated. This technical task requires supersonic The seismic conditions must be formed at the following three times: (a) when the oscillating system is close to the surface being treated; (b) if additional corrosion is required, it is formed directly during the ultrasonic shock; and (c), at (a During the process of (b), the experimental discovery of the effect of ultrasonic shock on the treated surface ends. As shown above, the ultrasonic shock process is accompanied by two oscillation modes: (a) lumped mass concentration (lumped mass) Low-frequency oscillation; and (1) supersonic frequency oscillation of a pair of resonant 7L parts, that is, the sensor/waveguide/denter of the oscillating system. The relationship between these moving graphic parts and their amplitude and velocity is calculated and displayed. In Figure 39. 71 1336730 The positive amplitude corresponds to 0S close to TS. The formula for the displacement, velocity and acceleration at any point t is x(t)=Acos〇L>t, v(t) = - A ω sincu t, a(1;) = -A 6l>2cos ω1: The maximum speed is Αω. Therefore, the maximum speeds of 〇S and 0SE are as follows:

Vos = 2Aos7rf〇s = 0.38m/sec(最大值),而 V0SE = 2A〇SE7rf0SE = 5.09m/sec(最大值)。 可以看出,震盪系統移動伴隨著震盪速度的兩種頻率 分類’其中載波超音波震盪速度領先震盪系統接近被處理 表面的反應震盪速度達量值的至少十的一次方。 因此’本發明的方法包含以下兩個主要條件: (a) 超音波震盪速度實質上超過震盪系統的速度,而在 衝擊之前接近被處理表面(特別是,如圖所示,在27kHz的 頻率與30微米的超音波震盪振幅,以及200Hz的回彈頻率 與〇. 3mm的回彈頻率時,至少為丨〇倍);以及 (b) 在對應於時間間隔的瞬間,在震盪系統震盪模式内 的快速變化(更正確地說,在特定能量的驅動脈衝之震盪週 期數量,包括補償瞬間過程),這一點足以獲得特定減少, 補償接近速度與超音波震盪速度之間的總合增加,在開始 衝擊時可以保護中間結構對抗不利的損壞,而在衝擊期間 可以直接透過被處理表面影響被處理材質的結構與特性。 在作用於材質中間結構上的階段(亦即’衝擊階段)中 形成衝擊控制的方法之條件,係顯示於圖4〇a至4〇c中。 更特別地’圖40a顯示「先前」,其中0S與0SE的震盪速 度&amp;向量具有-個方向’而〇SE的合成速度Vr為最大值。 72 1336730 當0SE接觸TS時,最大的衝擊脈衝Pimp被傳送至該處。圖 40b顯示「柔性接觸」,其中0S與0SE的震盪速度之向量是 相反的,且合成速度Vr在接觸TS的瞬間為零。更特別地, 在接觸瞬間,衝擊脈衝的超音波分量為零。圖40c顯示「滯 後/柔性衝擊」,其中0S與0SE的震盪速度之向量是相反的。 0SE的合成速度(在接觸區域中)是最小值。衝擊脈衝是最小 值。 因此,在震盪系統末端上超音波震盪速度中的改變, 會在與0SE匹配的相位中產生一些起初必要條件,用以控 制衝擊點的力量脈衝:從增加震盪速度時的「堅硬」,到震 盪速度相等或超音波震盪速度分別在超音波頻率超過震盪 系統接近速度時的「柔性接觸或衝擊」。根據本發明,震盪 系統的這些狀態的向量圖是顯示於圖41中。 圖41中的圖形清楚地反映出震盪系統與被處理表面之 間的第一接觸點的柔性衝擊形成機制。此機制在實際衝擊 的示波圖形上的重疊,則顯示於圖42。在柔性接觸之情形 下,在開始衝擊時,0S與工具的超音波震盪速度之合成值 為零。在柔性衝擊之情形下,在開始衝擊時,0S與工具的 合成超音波震盪速度是負的。在堅硬衝擊之情形下,在開 始衝擊時,0S與工具的合成超音波震盘速度是最大的。 圖43顯示在UIT(xlO)的溝槽形成之前,焊接接點的UIT 之傳統區域。圖44與45顯示ΙΠΤ之後在隨機衝擊條件下 之中間結構缺陷的種類,其中,圖44顯示在UIT期間(x40) 的隨機衝擊條件下,在局部過度強化所導致的溝槽邊緣上 73 1336730 4中間缺陷;而圖45顯示在ϋΙΤ(χ160)期間的隨機衝擊條 件下’在局部過度強化所導致的溝槽中心内之中間缺陷。 圖46顯不在習知強化錘打(亦即,鐵鎚鎚打(χ16〇)後的表 面中間缺陷)之後的中間結構缺陷。圖47顯示在根據本發 明的万法實施UIT(xl60)之後的中間結構(亦即,溝槽中間 結構)的狀態。 從圖47開始,藉由上述的方法控制超音波衝擊參數, 形成被處理表面的表面及中間結構,而不具有可能會引發 焊接接點工作時的退化效應繁殖之損壞。而且,在至少15龍 的深度,可以看見密集的塑性變形區域,而且,產生完整 ^物理障壁,以對抗長時間的工作負載下之幾何應力集中 區域以下,將詳細說明這些作用。在柔性接觸或柔性超 音波衝擊之後,形成強化層的任務,可藉由構成部分本發 明方法的一方法,而且,在表面層與材質中,涉及超音波 應力的波(對於特定材質來說是最大值)之激發任務,此超 音波應力是透過最大(就被處理表面強度而言)功率的柔性 超音波衝擊所引起的塑性變形飽和區域(具有最佳中間結 構)’而以超音波衝擊所引發的。 在亞表面層的處理期間,高功率控制超音波衝擊的控 制參數可藉由此項任務而加以界定。如上所述,超音波衝 擊的柔性相位必須保護被處理表面對抗中間結構損壞,且 產生飽和區域中的塑性變形,以用於UIT過程的最佳延續, 而在表面具有最小的散射損失,而且’因此:⑷震湯系統 的凹痕器之有效超音波震堡,會從表面分離且與其二 74 1336730 及(b)向功率超音波應力波的表面下之激發,這些應力波在 組合修改處理表面的保護特性,以抑制材質特性退化的開 始過程之發生或繁殖。 圖48至51顯示在超音波衝擊的柔性開始之後,在不 同超音波衝擊振幅改變定律的表面下,改變被處理材質塑 性變形的結果。特別是,整合的示波器圖形顯示殘餘表面 塑性變形,以及柔性相位之後具有lms長超音波衝擊的振 • 财之變化條件之間的關係。提供所有的結果,並比較圖48 所示的實際值範圍内的振幅之實際自由掉落分佈,_ 48亦 顯示特足與實際使用的振幅μ m之相同依附性,其在時 間上均勻分佈。明確地說,圖48顯示3()_振幅的獨立與 特定均勻(時間)分佈。圖49顯示超音波振幅在一凸起的抛 物線上之明確分佈,® 5Q顯示超音波振幅在-凹陷的拋物 線上〈明確分佈,圖51顯示根據線性定律從_開始的 振幅之明確增加。 _ 、與所產生的塑性變料關之超音波衝擊(在其柔性相位 〈後)之上述整合示波器圖形分析,顯示出塑性變形在用以 々響材質以抑制金屬退化或其發生條件的任務所界定之每 次衝擊情形期間,可以被控制在一廣泛的範園内。在金屬 結構上的超音波衝擊效果之物理順序首先是由—特定的 任務加以界疋。包含從材質的起初條件轉移至本發明方法 所引發的條件之順序的一些_般步驟,包括如下: ^ (1)表面材質以足夠填滿晶粒間缺陷空隙的速率產生變 形,在柔性衝擊相位所引發的塑性變形期間’維持表面材 75 1336730 質的完整性與中間結構; ⑵在超音波衝擊的柔性與強力相位期間在表面材質 塑性變形期間所發生的力量之影響下,關閉結構缺陷邊界; (3) 藉由包括柔性與強力相位的正常化超音波衝擊,由 被處理材質的塑性變形所引起的彈性殘餘應力之影響下, 啟動缺陷邊界關閉表面; (4) 在重複速率的衝擊所引起的力量脈衝之影響下啟 ^ 動缺陷邊界關閉表面; (5) 在超音波衝擊作用的影響下,敬動缺陷邊界關閉表 T,其中震動速度的向量總合,是由震盪系統集中質量與 分佈質量的移動速度之間的關係而決定的,在合成震盧速 f以及超音波衝擊所引發的力量脈衝所確定的相位中,震 …系統末端的超音波震盧期間,減少至震堡系,统端(具有一 凹痕器); (6) 在衝擊脈衝與超音波的作用期間,在缺陷邊界的位 • 移所引起的摩擦力之影響下,啟動缺陷邊界關閉表面; (7) 在超音波衝擊所引起的力量脈衝期間,在超音波震 1以及透過關閉邊界進行的超音波應力波之 缺陷邊界關閉表面; 響下啟動 (8) 在脈衝作用期間,在結構缺陷與碎片的邊界處之塑 SC形與摩擦所引起的升溫區域中,啟動缺陷邊界關閉表 面,在藉由材質特性與作用所決定的控制方法所確定的相 位中,以超音波衝擊的重複速率復發; (9) 在靜態壓力、力量脈衝、摩擦、加熱與超音波震盪 76 1336730 的影響下’超音波自行擴散以及關閉邊界的消滅; (1 〇)啟動合金相位的沉殿物,例如銘合金内的石夕沉殿 物’以作為根據本發明的方法控制超音波衝擊中的材質強 度改良的主因; (11) 在柔性超音波接觸以及伴隨衝擊的階段,固定不 穩太相位(類似鋁合金的銅),以對抗固溶體内的沉澱物, 且防止退化發展; (12) 啟動固溶體内的沉澱物(類似於鋁合金内的銅)之 逆向自行擴散,這一點是在作為後續金屬退化核心的外力 之影響下,使結構鍵結變弱並產生隱藏結構應力集中的主 因;在此情形中,在柔性相位期間與之後,在正常化超音 波衝擊期間,逆向自行擴散是恢復合金的損失強度與延展 性之方式; (13) 根據本發明的控制方法,例如,由於以奈米結構 程度的内部應力之潛在集中分㈣密度減少,而^致^勞 抵抗性的增加期間,在柔性開始期間與之後,由於正常化 超音波衝擊的緣故,啟動相位移動; (⑷在超音波衝擊的影響下,啟動材質結構自行控制, :中,,音波衝擊的柔性相位以及此超音波衝擊參數的正 常化,是根據被處理表面與被處理材質的結構中,在旋轉、 f曲、成_、再結晶、流動、滑動、降伏與老化時的疋特定 不利變化’上述情形係適用於此任務,^以被處理材質的 奈米結構、微觀與巨觀結構碎片的程度; (15)以微觀程度啟動金屬結構的再分刻、均勻化與排 77 11336730 列,以作為在正常化超音波衝擊下增加退化抵抗性的方式, 其中’柔性相位被控制成如同此任務所定義的一樣,而且, 之後,使超音波衝擊參數獲得正常化; (16) 在組織柔性相位並使此任務定義的超音波衝擊參 數正常化所引發的過程影響下,啟動非結晶化—作為以奈 米程度的表面金屬結構之最終最佳化的方式; (17) 使用控制超音波衝擊的柔性及強力相位之方法, 以對抗金屬在起初條件下的退化集結;在長時間工作期間 或之後,防止並抑制物體材質中的退化; (18) 使用隨機超音波衝擊的柔性及強力相位,以對抗 材質在起初條件的退化引發,根據任何上述方法所獲得的 實驗或專業資料,在長時間工作期間或之後,防止並抑制 材質中的退化》 每個技術任務,其解決方案涉及控制超音波衝擊的柔 性相位以及衝擊本身的參數,在聲音系列「震動系統/凹痕 器/被處理表面」中的同步與相位内(in_phase)超音波震 盪,根據被處理材質的結構敏感度,可以在超音波震堡系 統的輸出,設定控制及匹配接近速度與震盪速度的程度之 不同要求。規定任務的有效工程解決方式的唯一準則,是 獲得退化抑制的想要技術效果,且具有最小的能量消耗。 此情形單獨決定出在超音波衝擊之前與期間,控制在材質 上的作用速度之所需程度的要求。 本發明的方法能藉由超音波衝擊保護金屬對抗退化且 抑制退化,包含提供衝擊能量,根據能夠影響材質的至少 78 1336730 -特性及狀態之任務所確定的,且根據材質的動態強度, 預先決定驅動脈衝引發的時刻,預先決定超音波震蓋系統 的超音波震盪之振幅,在震盪系統接近被處理表面的期間。 為了達成此目的,本方法藉由設定超音波衝擊的上述可調 整參數至一範圍内,而提供表面中間結構完整性包括在 衝擊開始時的速度向量之合成結果的最大值、最小值與補 償值;根據影響被處理表面下的材質結構且根據震產系統 • &amp;被處理表面彈回之要求,直到超音波衝擊結束為止,在 接觸被處理表面的震優系統之後的超音波衝擊期間,設定 並改變震盪振幅。 超音波震盪的振幅與相位,在震盪系統接觸被處理表 面之前,在兩者的接近期間,設定成在衝擊開始時,衝擊 的速度與能量對應於以下條件,這些條件能維持表面層内 的材質之中間結構完整性,且產生被處理表面塑性變形而 並且超飽和心度’但足以將超音波應力波轉移到被處理 •材質内,使聲音損失維持在一範圍内,此範圍是從明確的 後續塑性變形所需之程度,延伸到材質的Q因素所決定的 程度。 本發明的方法進一步包含:根據與其變形的可允許速 率有關的表面材質之動態強度保留,在震盛系統接近被處 理表面的階段中,設定用以控制震盡速度的程度,藉此提 供材免的元整性以及表面層中間結構;根據被處理材質對 於k度成特疋狀感的超音波衝擊之作用的敏感性,在超 f波衝|期間’設定超音波震蓋強度分佈,藉此獲得被處 79 1336730 制震盪速度的程度以及超音波震盪強度分佈。Vos = 2Aos7rf〇s = 0.38m/sec (maximum), while V0SE = 2A〇SE7rf0SE = 5.09m/sec (maximum). It can be seen that the oscillating system moves with two frequency classifications of the oscillating speed, where the carrier ultrasonic oscillating speed leads the oscillating system to a level close to at least ten of the response oscillating speed of the treated surface. Thus, the method of the present invention comprises the following two main conditions: (a) The ultrasonic oscillating velocity substantially exceeds the velocity of the oscillating system, and approaches the surface to be treated prior to impact (in particular, as shown, at a frequency of 27 kHz) 30 micron ultrasonic oscillating amplitude, and 200 Hz rebound frequency and 〇. 3mm rebound frequency, at least 丨〇 times); and (b) at the moment corresponding to the time interval, in the oscillating system oscillating mode Rapid change (more correctly, the number of oscillating cycles of a particular energy drive pulse, including the compensation transient process), which is sufficient to achieve a specific reduction, compensate for the sum of the approach speed and the ultrasonic oscillating speed, at the beginning of the impact The intermediate structure can be protected against unfavorable damage, and the structure and characteristics of the material to be treated can be directly affected by the surface to be treated during the impact. The conditions for forming the impact control in the stage acting on the intermediate structure of the material (i.e., the 'impact phase) are shown in Figs. 4a to 4〇c. More specifically, Fig. 40a shows "previous", in which the oscillating speed &amp; vector of 0S and 0SE has - direction ' and the combined speed Vr of 〇SE is the maximum. 72 1336730 When the 0SE contacts the TS, the maximum shock pulse Pimp is transmitted there. Fig. 40b shows "flexible contact" in which the vector of the oscillation speed of 0S and 0SE is opposite, and the resultant velocity Vr is zero at the moment of contact with the TS. More specifically, at the moment of contact, the ultrasonic component of the shock pulse is zero. Figure 40c shows the "lag/flexible shock" in which the vector of the oscillation speed of 0S and 0SE is reversed. The synthesis speed of 0SE (in the contact area) is the minimum value. The shock pulse is the minimum value. Therefore, the change in the ultrasonic oscillating speed at the end of the oscillating system will produce some initial conditions in the phase matched with 0SE to control the force pulse of the impact point: from the "hard" to increase the oscillating speed, to the oscillating The "flexible contact or impact" of the equal speed or ultrasonic oscillating speed when the ultrasonic frequency exceeds the approach speed of the oscillating system. In accordance with the present invention, a vector diagram of these states of the oscillating system is shown in FIG. The pattern in Figure 41 clearly reflects the flexible impact formation mechanism of the first contact point between the oscillating system and the surface being treated. The overlap of this mechanism on the oscillogram of the actual impact is shown in Figure 42. In the case of a flexible contact, the combined value of the ultrasonic oscillation speed of the 0S and the tool is zero at the start of the impact. In the case of a flexible shock, the resultant ultrasonic oscillating velocity of the 0S and the tool is negative at the start of the impact. In the case of a hard impact, the combined ultrasonic vibration speed of the 0S and the tool is maximum at the start of the impact. Figure 43 shows a conventional area of the UIT of the solder joint before the trench of the UIT (x10) is formed. Figures 44 and 45 show the types of intermediate structural defects under random impact conditions after ΙΠΤ, where Figure 44 shows the edge of the trench caused by local over-strengthening under random impact conditions during the UIT (x40) 73 1336730 4 Intermediate defect; while Figure 45 shows the intermediate defect in the center of the groove caused by local over-strengthening under random impact conditions during ϋΙΤ(χ160). Fig. 46 shows the intermediate structural defects after the conventional reinforcement hammering (i.e., the surface intermediate defect after the hammer hammer (χ16〇)). Fig. 47 shows the state of the intermediate structure (i.e., the groove intermediate structure) after the implementation of the UIT (xl60) according to the method of the present invention. Starting from Fig. 47, the ultrasonic shock parameters are controlled by the above method to form the surface and intermediate structure of the surface to be treated, without damage which may cause degradation of the degradation effect when the solder joint is operated. Moreover, at a depth of at least 15 dragons, dense plastic deformation regions can be seen, and a complete physical barrier is created to counter the geometric stress concentration region under long working loads, and these effects will be described in detail. After a flexible contact or a flexible ultrasonic shock, the task of forming a strengthening layer can be achieved by a method of forming part of the method of the invention, and in the surface layer and material, waves involving ultrasonic stress (for a particular material) The maximum value of the excitation task, which is the ultrasonically deformed region (with the best intermediate structure) caused by the maximum (in terms of the strength of the surface to be treated) the flexible ultrasonic shock of the power. Caused. During the processing of the subsurface layer, the control parameters of the high power control ultrasonic shock can be defined by this task. As mentioned above, the flexible phase of the ultrasonic shock must protect the treated surface from damage to the intermediate structure and produce plastic deformation in the saturated region for optimal continuation of the UIT process with minimal scattering loss on the surface, and Therefore: (4) The effective ultrasonic percussion of the dent of the shock system will be separated from the surface and excited with the surface of the ultrasonic wave stress wave of the two 74 1336730 and (b), these stress waves are combined to modify the treated surface. The protective properties to inhibit the onset or propagation of the degradation of material properties. Figures 48 to 51 show the results of changing the plastic deformation of the material to be treated under the surface of the different laws of ultrasonic shock amplitude change after the start of the ultrasonic shock. In particular, the integrated oscilloscope graph shows the relationship between the plastic deformation of the residual surface and the changing conditions of the vibration of the lms long ultrasonic shock after the flexible phase. All results are provided and the actual free drop distribution of the amplitudes within the actual value range shown in Figure 48 is compared. _48 also shows the same dependence of the amplitude and the actually used amplitude μ m, which are evenly distributed over time. In particular, Figure 48 shows the independent and specific uniform (time) distribution of 3()_ amplitude. Figure 49 shows the clear distribution of the ultrasonic amplitude on a raised parabola. The ® 5Q shows that the ultrasonic amplitude is on the parabolic line of the concave <definitely distributed. Figure 51 shows the clear increase in amplitude from _ according to the linear law. _, the above-mentioned integrated oscilloscope graphical analysis of the ultrasonic shock (after its flexible phase <), showing the plastic deformation in the task of squeaking the material to suppress metal degradation or its occurrence conditions During each defined impact situation, it can be controlled within a wide range of parks. The physical order of the ultrasonic shock effects on the metal structure is first bound by a specific task. Some general steps including the order from the initial conditions of the material to the conditions initiated by the method of the invention include the following: ^ (1) The surface material is deformed at a rate sufficient to fill the inter-die defect voids, in a flexible impact phase During the induced plastic deformation, 'maintaining the qualitative integrity and intermediate structure of the surface material 75 1336730; (2) closing the structural defect boundary under the influence of the force occurring during the plastic deformation of the surface material during the flexibility and strong phase of the ultrasonic impact; (3) Starting the defect boundary to close the surface by the effect of the elastic residual stress caused by the plastic deformation of the material to be processed by the normalized ultrasonic shock including the flexibility and the strong phase; (4) caused by the impact at the repetition rate Under the influence of the force pulse, the boundary of the defect is closed; (5) Under the influence of the ultrasonic impact, the boundary of the dying defect closes the table T, where the vector sum of the vibration velocities is the mass and distribution of the oscillating system. The relationship between the moving speed of the mass, the force generated by the synthetic shock velocity f and the ultrasonic shock In the phase determined by the pulse, the period of the ultrasonic wave at the end of the system is reduced to the seismic system, with a dent (with a dent); (6) during the action of the shock pulse and the ultrasonic wave, at the boundary of the defect The position of the defect is caused by the friction caused by the displacement, and the boundary of the defect is activated to close the surface; (7) The defect of the ultrasonic stress wave in the ultrasonic wave 1 and the closed boundary during the power pulse caused by the ultrasonic shock Boundary closing surface; ringing start (8) During the pulse action, in the temperature rise zone caused by the plastic SC shape and friction at the boundary between the structural defect and the debris, the defect boundary is activated to close the surface, by the material properties and action The phase determined by the determined control method recurs at the repetition rate of the ultrasonic shock; (9) Under the influence of static pressure, force pulse, friction, heating and ultrasonic oscillation 76 1336730 'ultrasonic self-diffusion and closed boundary Destroy; (1 〇) start the phase of the alloy phase, such as the Shi Xi Shen Temple in the alloy, as the method according to the invention controls the ultrasonic rush (11) In the stage of flexible ultrasonic contact and accompanying impact, the unstable phase (aluminum-like copper) is fixed to resist sediment in the solid solution and prevent degradation from developing; (12) Initiating the reverse self-diffusion of the precipitate in the solid solution (similar to copper in the aluminum alloy), which weakens the structural bond and creates a hidden structure under the influence of the external force acting as the core of the subsequent metal degradation. The main cause of stress concentration; in this case, during and after the flexible phase, reverse self-diffusion is the way to restore the loss strength and ductility of the alloy during normalized ultrasonic shock; (13) According to the control method of the present invention, For example, since the potential concentration of the internal stress at the degree of the nanostructure is reduced (4), the density is decreased, and during the increase period of the resistance, the phase shift is initiated due to the normalized ultrasonic shock during and after the start of the flexibility; ((4) Under the influence of ultrasonic shock, start the material structure to control itself, :,,, the flexible phase of the sound wave impact and the ultrasonic shock The normalization of the parameters is based on the structure of the surface to be treated and the material to be treated, and the specific disadvantages of rotation, f, _, recrystallization, flow, sliding, lodging, and aging are the same. Task, ^ the degree of nanostructure, microscopic and macroscopic structural debris of the material being processed; (15) starting the re-scoring, homogenizing and arranging 77 11336730 columns of the metal structure at a microscopic level as a normalized ultrasonic wave The way to increase the resistance to degradation under impact, where 'the flexible phase is controlled as defined by this task, and, afterwards, the ultrasonic shock parameters are normalized; (16) in the tissue flexible phase and defined by this task Under the influence of the process induced by the normalization of the ultrasonic shock parameters, start the non-crystallization - as the final optimization of the surface metal structure at the nanometer level; (17) Using the method of controlling the flexibility and strong phase of the ultrasonic shock To counter the degenerative build-up of metals under initial conditions; to prevent and suppress degradation in the material of the object during or after prolonged work; (18) Use the flexibility and strong phase of random ultrasonic shock to counteract the degradation of the material at the initial conditions. According to the experimental or professional data obtained by any of the above methods, prevent and suppress degradation in the material during or after long periods of work. Technical task, the solution involves controlling the flexible phase of the ultrasonic shock and the parameters of the impact itself, in the synchronism and phase (in_phase) ultrasonic oscillations in the sound series "vibration system / dent / treated surface", according to The structural sensitivity of the material being processed can be set at the output of the ultrasonic seismic system, setting the control and matching the different requirements for the approach speed and the oscillating speed. The only criterion for specifying an effective engineering solution for a task is to obtain the desired technical effect of degradation suppression with minimal energy consumption. This situation alone determines the required degree of control over the speed of action on the material before and during the ultrasonic shock. The method of the present invention is capable of protecting a metal against degradation and suppressing degradation by ultrasonic shock, including providing impact energy, determined according to a task capable of affecting at least 78 1336730 - characteristics and state of the material, and predetermined according to the dynamic strength of the material At the timing of the drive pulse, the amplitude of the ultrasonic oscillation of the ultrasonic cover system is determined in advance while the oscillation system approaches the surface to be treated. In order to achieve this, the method provides the maximum, minimum and compensation values of the composite result of the velocity vector at the beginning of the impact by setting the above-mentioned adjustable parameters of the ultrasonic shock to a range. According to the material structure under the surface to be treated and according to the requirements of the seismic system and the surface to be treated, until the end of the ultrasonic shock, during the ultrasonic shock after the seismic system contacting the treated surface, set And change the amplitude of the oscillation. The amplitude and phase of the ultrasonic oscillation are set so that the shock velocity and energy correspond to the following conditions during the approach of the shock before the oscillation system contacts the surface to be treated. These conditions can maintain the material in the surface layer. The intermediate structural integrity and the plastic deformation of the treated surface and the super-saturation heart' is sufficient to transfer the ultrasonic stress wave into the material to be treated, so that the sound loss is maintained within a range, which is clear from The extent of subsequent plastic deformation is extended to the extent determined by the Q factor of the material. The method of the present invention further comprises: maintaining a dynamic strength retention of the surface material in relation to the allowable rate of deformation thereof, and setting a degree to control the speed of the shock in the phase of the Zhensheng system approaching the surface to be treated, thereby providing material avoidance The elementality of the element and the intermediate structure of the surface layer; according to the sensitivity of the material being processed to the effect of the ultrasonic shock of k-degree, the ultrasonic wave cover intensity distribution is set during the period of the super f wave | Obtain the degree of oscillation at 79 1336730 and the distribution of ultrasonic oscillation intensity.

在本發明的方法中,表面材質是以足夠填滿晶粒間缺 陷空隙的速率變形,同時維持表面材質及其中間結構的完 整性,在衝擊的柔性相位所引發之塑性變形期間。在超音 波衝擊的柔性與強力相位作用所導致的表面材質之塑性變 形期間發生的力量下’關閉結構缺陷邊界。在被處理表面In the method of the present invention, the surface material is deformed at a rate sufficient to fill the voids between the grains while maintaining the integrity of the surface material and its intermediate structure during plastic deformation caused by the flexible phase of the impact. The structural defect boundary is closed under the force occurring during the plastic deformation of the surface material caused by the flexibility and strong phase action of the ultrasonic shock. On the treated surface

理表面底下的結構與材質之至少—特性及/或㈣;並中, 根據此任務所界定的實驗資料或專n技術,而初步決定控 材質的塑性變形所引起的彈性殘餘應力下,啟動缺陷邊界 關閉表面。也可以預定的重複速率,由衝擊所引起的力量 脈衝影響下,啟動缺陷邊界關閉表面。 缺陷邊界關閉表面的啟動,在一相位中的震a系統之 超音波震盪期間,可以伴隨著震盪系統集中質量以及震盪 系統分佈質量的移動之震盪速度的向量總合作用係減少 至震盪系統端,此相位係藉由控制合成震盪速度以及超音 波衝擊所引起的力量衝擊而設定的。在摩擦力的影響下, 啟動缺陷邊界關閉表面’這些摩擦力是藉由衝擊脈衝與超 音波的作用期間之缺陷邊界位移而引起的。 立缺陷邊界關閉表面的啟動伴隨著超音波震盪以及在超 曰波衝擊所引起的力量脈衝之作用下通過關閉邊界進行的 波〈作用。纟本發明的方法中,缺陷邊卩關閉亦在一升溫 區域中被啟動,此升溫區域是在脈衝作用期間於結構缺陷 與碎片的邊界處,藉由塑性變形與摩擦而引起的,以一相 位内的超音波衝擊之重複速率進行復發,係對應於材質特 80 11336730 性與作用的任務。 在震盈系統的靜壓力、力量脈衝、在邊界的摩擦、 加熱、超音波震盪以及超音波應力波等影響下,發生超音 波自行擴散以及關閉邊界的消滅’這些是藉由形成並控制 此任務界定的超音波衝擊之柔性與強力相位的條件而設定 的。 在本發明的一較佳實施例中,合金相的沉澱物,包括 鋁合金中的矽沉澱物,提供增加的材質強度,此乃藉由控 制超音波衝擊而獲得。不穩定的相位,類似鋁合金中的銅, 疋被固定在柔性超音波接觸與衝擊的階段,以便對抗固溶 體中的沉澱物,且防止退化的產生。 為了抑制退化或保遵金屬對抗退化,在固溶體中的不 利沉澱物(類似於鋁合金中的銅)之逆向自行擴散的啟動, 其中此不利的沉澱物會引起結構鍵結的變弱,產生由外力 引起的隱藏結構應力集中,以及引發後續金屬退化,此啟 動係藉由在柔性相位之後即時正常化超音波脈衝強度而獲 得的,且伴隨著恢復合金的損失強度與延展性。 最好,相位移動的啟動其發生的原因,乃是在根據超 音波脈衝密度隨時間的預定變化之柔性開始之後,使超音 波脈衝正常化。最好,此啟動伴隨著增加疲勞抵抗性,這 疋由於以奈米結構程度,在内部應力的潛在集中之分佈密 度的重新分佈與減少而引起的。 在本發明的較佳實施例中,在旋轉、彎曲、成對、再 結晶、流動、滑動、降伏與老化中的材質結構之自行控制, 81 1336730 疋藉由以金屬的奈米結構、微觀結構以及巨觀結構的碎片 紅度,在超音波衝擊的正常化柔性相位與後續強力相位期 間。以微觀程度,材質結構的再分割、均勻化以及排列之 啟動,作為増加退化抵抗性的方式,是柔性與後續強力相 位期間,在超音波衝擊的影響下發生的,其中,這些參數 受到正常化,如同此任務所定義的一樣。發生非晶質化的 啟動,作為以奈米程度的表面材質結構之最終正常化的方At least the characteristics and/or (4) of the structure and material under the surface; and, according to the experimental data or special n technology defined by this task, initially determine the elastic residual stress caused by the plastic deformation of the controlled material, start the defect The border closes the surface. It is also possible to initiate a defect boundary to close the surface under the influence of a force pulse caused by the impact at a predetermined repetition rate. The start of the defect boundary closing surface, during the ultrasonic oscillation of the shock system in one phase, the vector total cooperation system of the oscillating speed of the oscillating system and the moving mass of the oscillating system can be reduced to the oscillating system end. This phase is set by controlling the combined shock velocity and the force shock caused by the ultrasonic shock. Under the influence of friction, the defect boundary is turned off to close the surface. These frictional forces are caused by the boundary displacement of the defect during the action of the shock pulse and the ultrasonic wave. The initiation of the closed surface of the defect boundary is accompanied by ultrasonic oscillations and waves acting through the closed boundary under the action of a force pulse caused by the super-chopper impact. In the method of the present invention, the defect edge closure is also initiated in a temperature rising region which is caused by plastic deformation and friction at the boundary between the structural defect and the debris during the pulse action, in a phase The recurrence of the repetition rate of the ultrasonic shock within the system corresponds to the task of the material 80 81336730. Under the influence of the static pressure of the seismic system, the force pulse, the friction at the boundary, the heating, the ultrasonic vibration, and the ultrasonic stress wave, the ultrasonic self-diffusion and the elimination of the closed boundary occur. These are formed and controlled by this task. Set by the defined flexibility and strong phase conditions of the ultrasonic impact. In a preferred embodiment of the invention, the precipitate of the alloy phase, including the niobium precipitate in the aluminum alloy, provides increased material strength obtained by controlling ultrasonic shock. The unstable phase, similar to copper in aluminum alloys, is fixed at the stage of flexible ultrasonic contact and impact to counteract deposits in the solid solution and prevent degradation. In order to suppress degradation or to comply with metal degradation, the reverse self-diffusion of unfavorable precipitates in solid solution (similar to copper in aluminum alloys), where this unfavorable precipitate causes structural bond weakening, The concealed structural stress concentration caused by the external force is generated, and the subsequent metal degradation is induced, which is obtained by immediately normalizing the ultrasonic pulse intensity after the flexible phase, and is accompanied by the loss strength and ductility of the recovery alloy. Preferably, the phase shift initiation occurs because the ultrasonic pulse is normalized after the flexibility of the predetermined variation of the ultrasonic pulse density over time begins. Preferably, this initiation is accompanied by an increase in fatigue resistance, which is caused by the redistribution and reduction of the distribution density of the potential concentration of internal stress due to the degree of nanostructure. In a preferred embodiment of the invention, the self-control of the material structure in rotation, bending, pairing, recrystallization, flow, sliding, lodging and aging, 81 1336730 疋 by metal structure, microstructure And the fragmentation redness of the macroscopic structure during the normalized flexible phase of the ultrasonic shock and the subsequent strong phase. At the microscopic level, the re-segmentation, homogenization and arrangement of the material structure, as a way to increase the resistance to degradation, occurs during the period of flexibility and subsequent strong phase, under the influence of ultrasonic shock, wherein these parameters are normalized. As defined by this task. The initiation of amorphization occurs as the final normalization of the surface material structure to the nanometer level

弋此乃由於柔性與後續相位期間,超音波衝擊所引發的 過程&lt;緣故。其中,這些參數是根據實驗或專業資料而加 以正常化,如同任務所定義的一樣,以便在金屬的塑性變 形區域内,允許金屬的快速局部加熱與冷卻。控制超音波 衝擊的柔性與強力相位’能保護此材質對抗起初條件下的 退化集結’以及在其長時間工作期間或之後,防止並抑制 結構材質内的退化。This is due to the process caused by ultrasonic shock during the flexibility and subsequent phase. These parameters are normalized according to experimental or professional data, as defined by the task, to allow rapid local heating and cooling of the metal in the plastically deformed region of the metal. The flexibility and strong phase that controls the ultrasonic shock 'protects the material against degraded build-up under initial conditions' and prevents and suppresses degradation within the structural material during or after long periods of operation.

此兩種 —在較佳實施例中’⑴鋁合金受到保護而對抗腐蝕剥 洛;及/或(2)已經受到剥落損壞的鋁合金之特性, 情形會恢復及/或修護。 如以下所述,已經敍述本發明方法相較於習知對抗退 化的方法之作用,且漏使用超功㈣音㈣擊的柔性相 位’提供-系列退化抑制的工程解決方案與技術,以影響 表面中間結構並控制超音波衝擊參數,在影_處理表面 下的被處理材質之特性與條件的柔性相位之後。 以下的範例顯示退化的種類、退化 理學、路、P仆aa r 4· 退化的物 予發生退化的區減,以及根據本發明應用並轉換此方 82 法以衫響被處理表面與被處理材質而抑制退化。 ,其中一種退化為機械疲勞。機械疲勞的徵兆包括疲勞 I縫疲勞過程包括以τ的階m晶格的彈性扭曲 之累積,吃疋因為增加的差排密度;之後在金屬體積内 出現亞微裂縫,其中在個別塊體的質量滑動期間,獲得一 臨界差排密度;以及’最後,微裂縫長成巨觀裂缝。當發 生此奴形時’脆裂的裂縫沿著一條最密集生長的微裂縫發 生。機械疲勞最常發生於橋樑、隧道'鐵路、運輸業的負 載承受結構,以及起重設備' 飛機與運輸業(承受負載的焊 接點應力集中區域)。本發明的方法可產生一補償保護性 障壁,且恢復高功率柔性超音波衝擊的受損材質之特性, 八有與同功率柔性超音波衝擊同步化之驅動脈衝的適應性 開關時間比例調變(〇/QTRM)。為了實施這樣的驅動脈衝開 關時間比例控制,使用脈衝寬度與振幅調變,當同步化的 超音波衝擊的頻率之增加需要一小段暫停(亦即,不足以獨 互的預疋震盡抑制)’ 5戈者過度過程的長度不足以獨立恢復 震盧時’則?丨發這-點。以這樣的方式,可達成以下結果: 在每個超音波衝擊期間,控制時間與空間中的塑性變形密 度分佈;以中間結構與晶體結構之比例,控制表面參數, 其應力變形狀態以及現有或可能損壞區域中之滲透深度; 以及在外部條件(加熱、負載、環境)的影響下,相位的穩 疋化,在不穩定的區域中之結構與特性的同質。 另一種的退化是腐蝕疲勞。腐蝕疲勞的徵兆包括從表 面繁殖的疲勞裂縫《疲勞機制所加速的疲勞破裂是藉由以 83Both of these - in the preferred embodiment - (1) the aluminum alloy is protected against corrosion stripping; and/or (2) the characteristics of the aluminum alloy that has been damaged by spalling, the condition is restored and/or repaired. As described below, the effects of the method of the present invention over conventional methods of combating degradation have been described, and the use of super-functional (four) sound (four) hits of flexible phase 'provide-series degradation suppression engineering solutions and techniques to affect the surface The intermediate structure controls the ultrasonic shock parameters after the flexible phase of the characteristics of the material being processed and the conditions under the shadow surface. The following examples show the type of degradation, the degraded science, the road, the P servant aa r 4 · the degraded material is degraded, and the method of applying and converting this method according to the present invention to slap the treated surface and the treated material And inhibit degradation. One of them degenerates into mechanical fatigue. The signs of mechanical fatigue include fatigue. The fatigue process of the I-slot includes the accumulation of the elastic distortion of the lattice of the order m of τ, the increase in the density of the discharge, and the subsequent occurrence of submicro-cracks in the volume of the metal, in which the mass of the individual blocks During the sliding, a critical difference densit density is obtained; and 'finally, the micro-cracks grow into giant cracks. When this slave shape occurs, the “cracked crack” occurs along one of the most densely grown micro-cracks. Mechanical fatigue most commonly occurs in bridges, tunnels, railways, transportation load-bearing structures, and lifting equipment' aircraft and transportation (stress-concentrated areas of welded joints under load). The method of the present invention can produce a characteristic of a damaged material that compensates for a protective barrier and restores high-power flexible ultrasonic shock, and has an adaptive switching time proportional modulation of a driving pulse synchronized with the same power flexible ultrasonic shock ( 〇/QTRM). In order to implement such a drive pulse switching time proportional control, pulse width and amplitude modulation are used, and when the frequency of the synchronized ultrasonic shock increases, a small pause is required (that is, insufficient for the mutual pre-shock suppression). The length of the 5 Ge people's excessive process is not enough to independently recover the earthquake Lu's then? Burst this point. In this way, the following results can be achieved: Control the plastic deformation density distribution in time and space during each ultrasonic shock; control the surface parameters, the stress deformation state and the existing or possible in the ratio of the intermediate structure to the crystal structure The depth of penetration in the damaged area; and under the influence of external conditions (heating, load, environment), the phase is stabilized, and the structure and characteristics are homogeneous in the unstable region. Another type of degradation is corrosion fatigue. The signs of corrosion fatigue include fatigue cracks that propagate from the surface. Fatigue cracking accelerated by fatigue mechanisms is achieved by 83

下的情形而引發:吸收表面活性物質;以微裂缝產生椅入 效應;以及氫擴散,導致金屬脆化。腐蝕疲勞大部分發生 於橋樑、管線、隧道、海港’以及化學工業用的裝備(遭受 環境侵襲作用的負載焊接點’以及應力集中區域)。本發明 能對抗吸附作用’且防止吸附性内容物免於接觸結構碎片; 移動性的增加,吸附性内容物及表面活性物質與吸附性表 面的鍵結之損失’以及材質或其結構的受損區域中;以及 表面、中間結構及表面層内的粗糙度與殘餘應力之最佳化, 以及對於吸附作用的表面材質抵抗性(表面層中的材質密度 增加)。 另一種退化是熱與熱機械疲勞。熱與熱機械疲勞的徵 兆包括疲勞裂縫。在疲勞破壞過程中,由於低週期或高週 期溫度效應以及其所導致的機械波動應力,而使零件產生 週期變形。當發生此現象時,可以藉由機械工作期間獲得、 耗盡以及伴隨的能量之固有基本過程,可能引起加熱。熱 與熱機械疲勞大部分發生於火力與核能電廠、冶金工廠(鍋 爐、熔爐)、馬達與鐵路運輸,以及機器操作中(煞車裝置 的零件)。本發明對於起初條件以及工作期間的熱與熱機械 損壞,提供增加的抵抗性;根據產生分佈殘餘應力的補償 障壁,而維持並恢復材質特性;在累積熱與熱機械損壞的 區域中緩應力與變形梯度;藉由晶粒材質,填滿結構 缺陷的區域内之晶粒間空間,以及在晶粒邊界的超音波擴 散,以及使摩擦成對表面產生最佳化,以作為減少煞車時 的時間與熱能損耗。 84 另一種退化是化學腐蝕。化學腐蝕的徵兆包括:材質 的均勻刀佈KJ Pa與細小腐触、瑕疫、裂縫腐餘以及腐 姓剥落。化學腐㈣原理包括金屬環境化學交互作用(氣體 或液體)、在表面上形成新的化學化合物減少材質強度, 以及形成應力及區域。化學腐蝕的負面效果最常發生於化 學工咸、核能工程、管線運輸(油槽、管線、反應爐)、飛 機、海洋、鐵路及馬達等運輸業(表殼層、殼體裝甲)。本 φ 發明此保谩被影響的原始表面並恢復材質特性;修改中間 結構與晶體結構,使表面材質非晶質化,根據psui期間在 傳感态/凹痕器/表面系統」内改變的震盪振幅之函數的 公式化,在表面材質内產生殘餘應力的補償障壁;在晶體 内腐蝕所引起的結構破壞區域内的晶粒邊界上之脈衝與超 音波擴散;以及材質的塑性變形,晶粒尺寸均勻性的增加, 藉由晶粒材質填滿晶粒間的空間,晶粒邊界上的脈衝超音 波擴散。 • 另一種退化是電化學腐蝕。電化學腐蝕的徵兆包括: 局部(凹陷)以及伴隨金屬分解的廣泛表面腐蝕損壞。金屬 與環境的電化學交換作用之機制包括:陽極處理 一金屬原子離子化,且形成溶解於溶液内的離子以及 金屬中的未補乜電子,電子從陽極反應區轉移到陰極反應 區&lt;處理,其中陰極反應區是就熱動力學以及力學而言能 產生陰極處理者;施加氧化劑/去極劑於陰極區域上(金屬 離子與電解㈣子的反應);陰極處理—藉由去極劑吸收過 多電子,而且,在陰極區中,恢復處理的熱動力條件是針 85 1336730 對去極劑而提供的;以及表面幾何同質性的分解與擾亂, 結構鍵結的變弱,在此區域中的材質強度之減少。電化學 腐蝕最常發生在海港(殼體裝甲、推進器)、化學工業(油槽: 反應爐)、管線、地表下以及海面下線路。根據本發明,抑 制電化學腐㈣負面效果之方式包括:在材質的起初條件 下,產生電化學腐蝕補償障壁且恢復其特性;使表面的微 觀與巨觀幾何形狀產生最佳化,表面材質微晶結構的同質 性,作為抑制陽極處理的方式之表面材質的奈米結晶與非 晶質化;表面塑性變形,產生壓縮應力的區域以及增加材 質密度,以阻止表面缺陷的電化學腐蝕之局部化;以及, 在最佳表面中間結構的情形中,使用PSUI機制形成上述表 面條件。 另一種退化是熱腐蝕。熱腐蝕的徵兆包括:材質分解 與热發’以及鱗片形成。熱腐蝕的物理原理包括高溫引發 性金屬與環境間的化學交互作用。熱腐蝕最常發生於熱能 廠與核能廠、冶金廠(鍋爐、熔爐),以及化學廠(反應爐)。 本發明能夠在材質的起初條件下產生化學腐蝕補償障壁, 且透過使用PSUI機制而恢復其特性,以使品質最佳化,並 應用保護性耐熱塗層而增加表面合金深度,而且.假如表 面材質特性需要修復的話,可根據需要在一鱗片層上重複 這些操作》 另一種退化是輻射腐蝕。輻射腐蝕的徵兆包括:腐蝕 凹坑與裂缝。在腐蝕過程的動力學上,輻射發射作用的機 制包括:輻解作用,係藉由照射於水上而引起的,且由於 86 1336730 水離子化的緣故而加速陰極處理;以及破壞性作用,包括 彈性與熱金屬表面輻射顆粒交互作用,導致金屬表面層内 的缺以及氧化膜。這些缺陷會促進陽極處理,且對於腐 蝕速率來說,具有最顯著的效果。輻射腐蝕的負面作用最 常發生於核能工程、軍用設備,以及太空系統。本發明影 響被處理表面與被處理材質的方法,能夠在受影響的材質 &lt;起初條件下,產生輻射腐蝕補償保護障壁,且使用psui 機制而恢復其特性;使品質達到最佳化,且應用保護性耐 熱與抗輻射塗層而增加表面合金深度;就粗糙度、中間結 構、微觀晶粒結構與材質非晶質化而言,使表面條件達到 最佳化;且產生有利的壓縮應力場,並增加表面材質密度。 在受損層上重複這些操作,能夠在受影響的原始材質之程 度上,恢復表面材質的輻射抵抗性。The next situation arises: absorption of surface active substances; generation of chair-in effects by micro-cracks; and diffusion of hydrogen, resulting in embrittlement of metals. Most of the corrosion fatigue occurs in bridges, pipelines, tunnels, seaports, and equipment used in the chemical industry (load welding points subjected to environmental attack and stress concentration areas). The present invention is capable of resisting adsorption&apos; and prevents the adsorptive contents from being exposed to structural debris; increased mobility, loss of bond between adsorbent content and surface active material and adsorbent surface&apos; and damage to material or its structure In the region; and the optimization of roughness and residual stress in the surface, intermediate structure and surface layer, and surface material resistance to adsorption (increased material density in the surface layer). Another type of degradation is thermal and thermal mechanical fatigue. The signs of thermal and thermal mechanical fatigue include fatigue cracks. In the process of fatigue failure, the parts are periodically deformed due to low cycle or high cycle temperature effects and mechanical fluctuation stresses caused by them. When this occurs, heating can be caused by the inherent basic processes of energy acquisition, depletion, and accompanying energy during mechanical operation. Thermal and thermal mechanical fatigue occurs mostly in thermal and nuclear power plants, metallurgical plants (pots, furnaces), motor and rail transportation, and machine operations (parts of brake devices). The present invention provides increased resistance to initial conditions and thermal and thermomechanical damage during operation; maintaining and restoring material properties in accordance with a compensation barrier that produces distributed residual stress; and relieving stress in areas of cumulative thermal and thermomechanical damage Deformation gradient; filling the intergranular space in the region of the structural defect by the grain material, as well as the ultrasonic diffusion at the grain boundary, and optimizing the friction paired surface as a time to reduce the braking time Loss with heat energy. 84 Another type of degradation is chemical corrosion. Signs of chemical corrosion include: uniform KJ Pa with fine rot, plague, cracks and rot. Chemical rot (4) principles include metal environmental chemical interactions (gas or liquid), the formation of new chemical compounds on the surface to reduce material strength, and the formation of stresses and regions. The negative effects of chemical corrosion occur most frequently in chemical industry, nuclear energy engineering, pipeline transportation (oil tanks, pipelines, reactors), aircraft, marine, railway and motor transportation (case, shell armor). This φ invents the original surface to be affected and restores the material properties; modifies the intermediate structure and the crystal structure to make the surface material amorphous, according to the oscillation during the psui period in the sensing state/denter/surface system The formulation of the function of amplitude, the compensation barrier that generates residual stress in the surface material; the pulse and ultrasonic diffusion on the grain boundary in the structural failure region caused by corrosion in the crystal; and the plastic deformation of the material, the grain size is uniform The increase in properties fills the space between the grains by the grain material, and the pulsed ultrasonic waves on the grain boundaries diffuse. • Another type of degradation is electrochemical corrosion. Signs of electrochemical corrosion include: localized (depression) and extensive surface corrosion damage associated with metal decomposition. The mechanism of electrochemical exchange between metal and environment includes: anodizing a metal atom ionization, and forming ions dissolved in the solution and unfilled electrons in the metal, and electrons are transferred from the anode reaction zone to the cathode reaction zone. Where the cathode reaction zone is capable of producing a cathode treatment in terms of thermodynamics and mechanics; application of an oxidant/depolarizer to the cathode region (reaction of metal ions with electrolysis (tetra)); cathodic treatment - absorption by a depolarizer Excessive electrons, and, in the cathode region, the thermodynamic conditions for recovery treatment are provided by pin 85 1336730 for the depolarizer; and the decomposition and disturbance of surface geometric homogeneity, the weakening of structural bonds, in this region Reduced material strength. Electrochemical corrosion most commonly occurs in seaports (shell armor, thrusters), chemical industries (oil tanks: reactors), pipelines, subsurface and subsurface routes. According to the present invention, the method for suppressing the negative effects of the electrochemical rot (4) includes: under the initial condition of the material, generating an electrochemical corrosion compensation barrier and restoring its characteristics; optimizing the microscopic and macroscopic geometry of the surface, and the surface material is micro. The homogeneity of the crystal structure, the nanocrystals and amorphization of the surface material as a means of suppressing the anode treatment; the plastic deformation of the surface, the region where the compressive stress is generated, and the increase of the material density to prevent the localization of the electrochemical corrosion of the surface defects And, in the case of an optimal surface intermediate structure, the above surface conditions are formed using a PSUI mechanism. Another type of degradation is hot corrosion. Signs of hot corrosion include: material decomposition and heat generation and scale formation. The physical principles of hot corrosion include chemical interactions between high temperature priming metals and the environment. Hot corrosion occurs most often in thermal and nuclear power plants, in metallurgical plants (boilers, furnaces), and in chemical plants (reactors). The invention can generate a chemical corrosion compensation barrier under the initial condition of the material, and restore its characteristics by using the PSUI mechanism to optimize the quality, and apply a protective heat-resistant coating to increase the surface alloy depth, and if the surface material If the characteristics need to be repaired, these operations can be repeated on a scale layer as needed. Another degradation is radiation corrosion. Signs of radiation corrosion include: corrosion pits and cracks. In the kinetics of the corrosion process, the mechanisms of radiation emission include: radiolysis, which is caused by irradiation on water, and accelerated cathodic treatment due to ionization of 86 1336730 water; and destructive effects, including elasticity Interacts with the radiant particles on the hot metal surface, resulting in defects in the metal surface layer and oxide film. These defects promote anode treatment and have the most significant effect on the rate of corrosion. The negative effects of radiation corrosion occur most often in nuclear engineering, military equipment, and space systems. The invention affects the surface to be treated and the material to be treated, can generate radiation corrosion compensation protection barrier under the affected material &lt; initial condition, and restores its characteristics by using the psui mechanism; optimizes quality and applies Protective heat and radiation resistant coatings increase surface alloy depth; in terms of roughness, intermediate structure, microscopic grain structure and material amorphization, surface conditions are optimized; and a favorable compressive stress field is produced, And increase the surface material density. Repeating these operations on the damaged layer restores the radiation resistance of the surface material to the extent of the affected original material.

另一種退化是腐蝕破裂。腐蝕破裂的徵兆包括腐蝕裂 縫。腐蝕破裂的機制包括:吸附在可移動差排上的溶液陽 離子以及其他缺陷,這些缺陷會減少表面能量且促進金屬 的原子鍵結之崩溃;由於在金屬表面上的微裂縫中,在吸 附作用的表面活性物質之擠入作用的緣故,發生裂縫集結。 在此情形中的高裂縫發展速率,是由裂縫底部的金屬之加 速陽極分解而引起的,其中,受應力變形的狀態一般是藉 由張力應力集中而引起的。腐蝕破裂最常發生於化學工咸、 核能工程,以及管路運輸業(油槽 '管線'加壓設備、反應 爐)。本發明對抗腐蝕破裂的方法,能夠在材質的起初條件 下’產生補償保護障壁,以對抗腐蝕裂縫的形成,且使用PSUI 87 1336730 機制而恢復其特性;使品質達到最佳化,黏著或增加鹿用 至可能或實際受損的表面上之保護性塗層的合金深度,以 及在表面内引發有利的壓縮應力,以強化或改良至一預定 深度’在中間結構的最佳或確定條件下;修改結構並產生 材質結構的應力變形狀態’而使溶液陽離子在移動差排及 其他缺陷上無法產生吸附作用,其中這些缺陷會擠減少表 面此量且減弱原子鍵結;使表面中間結構達到最佳化,且 防止裂縫集結,裂縫集結是由於在金屬表面上的微裂縫中, 在吸附作用的表面活性物質之擠入作用的緣故;在具有最 佳中間結構的表面上,產生擦壓應力場;其量值與深度均 足以對抗裂縫底部的金屬之加速陽極分解所引起的高裂縫 繁殖,其中應力變形狀態一般是由張力應力集中而決定的。 另一種退化是氫脆化。氫脆化的徵兆包括強度特性的 減少以及碎裂裂縫。氫脆化的機制包括:原子氫滲透到空 隙、孔洞與其他晶格缺陷内;氫轉變成產生高壓的分子氣 體;在零件表面上原子氫的吸附,以及形成有金屬與雜質 的化學化合物,這些雜質能減少表面能量以及金屬的碎裂 抵抗性。氫脆化最常發生於冶金工戚以及工程工咸、管線(焊 接結構、鍍鋅廠)、石油化學工廠(反應爐),以及飛機(表 殼層)。本發明對抗氫脆化的方法,係使用PSUI機制而能 夠強化表面合金品質、黏著強度以及鍍鋅塗層的密度;在 表面上產生壓縮應力場且具有最佳的中間結構,其量值與 深度均足以對抗強度特性的減少以及碎裂裂縫的形成,這 些裂缝可能是由原子氫滲透到空隙、孔洞與其他晶格缺陷 88 1336730 内而引起的;氫轉變成產生斷面間高壓的分子氣體;在材 質表面上原子氫的吸附,以及形成有金屬與雜質的化學化 合物’這些雜質能減少表面能量以及金屬的碎裂抵抗性。 另一種退化是液態金屬脆化。液態金屬脆化的徵兆包 括強度特性的減少以及碎裂裂縫。液態金屬脆化的物理原 理包括:溶融金屬吸附滲透至固態金屬預先破壞區域内; 以及在受損區域中減少表面能量與金屬破裂抵抗性。液態 金屬脆化最常發生於冶金工廠(鍍鋅製造本發明防止或 「治療」液態金屬脆化的方法,係使用PSUI而能夠在表面 上產生最佳中間結構與壓縮應力場,其量值與深度均足以 防止·強度特性減少'形成碎裂裂縫、熔融金屬吸附滲透 到固態金屬預先破壞區内、以及表面能量與金屬破裂抵抗 性的減少。 另一種退化是侵蝕。侵蝕的徵兆包括表面起伏變化。 侵蝕的物理原理包括:由於本體接觸移動液體、氣體環境 或侵入的雌的緣故,使得_顆粒從被影響的本體表面 分離’而顆粒是藉由固態顆粒與被影響的表面賴而導致 侵入的。侵#最常發生在管線運輸(管子、加壓設備)、飛 機業(滿輪)、海洋運輸(推進器)、火箭以及飛彈(表殼層)。 2據本發明抑制或恢復受侵料面的方法,係使用簡而 :夠在表面產生最佳密度、㈣度、中間結構與壓縮應力 场,其量值與深度均足以對抗固態顆粒從本體表面的分離, 此分離是由於本體接觸移動㈣、氣體環境或侵人的顆粒 而引起的’而顆以藉由固_粒在被影㈣表面上的碰 89 1336730 撞而導致侵入的。 另一種退化是潛變。潛變的徵兆包括在晶粒邊界形成 微裂縫與孔洞(微空隙)以及亞結構形成。潛變的機制包括: 滑動(差排圖形);扭曲;滑動平面的結合;形成薄片;晶 粒的旋轉與相對移動;馬赛克塊體的旋轉與相對移動;多 角化,擴散塑性;再結晶機制;以及微觀與巨觀程度組合 缺陷與結構損壞。潛變最常發生在火力電嵌以及核能廢、 石油化學工業、以及飛機(結構、反應爐本體,以及在高溫 操作的;尚輪葉片)。根據本發明,用以防止且「治療」#你 的方法,係使用PSUI而能夠在表面上下獲得最佳密度、中 間結構條件以及封裝尺寸的晶粒,以及壓縮巨觀應力與微 觀應力場,其量值與深度均足以防止以下的結果:在晶粒 邊界與亞結構上形成微裂縫與孔洞(微空隙)、滑動(根據差 排圖形)、扭曲、滑動平面的彎曲、形成薄面、晶粒的旋轉 與相對移動、馬赛克塊體的旋轉與相對移動、多角化、擴 散塑性、再結晶,以及微觀與巨觀程度组合缺陷與結構損 壞。 另一種退化是微結構退化。微結構退化的徵兆包括在 材質強度特性中的減少。微結構退化的機制包括來自環境 的分子之吸附作用,此乃藉由在一變形本體内微觀表面2 長(Rebinder效應)以及即時穩定不利的金屬相位,以轉換 不穩定相位的代價,而不會在微結構内產生明顯的變化(老 化)。微結構退化最常發生在電咸、精煉爐⑽架結構)、管 線、海港,以及飛機(本體、表殼層)。根據本發明,用以 90 1336730 止且治療」微結構退化的方法係基於使用p測,而在 材質表面上產生材質的最佳密度與中間結構;使表面上的 塑性變形與壓縮應力場能夠正常化,其量值與深度足以防 止由於微結構退化所引起的材質強度特性減少,該微結構 退化可能包括在變形本體内的微表面生長(Rebinder效應) 所引起的來自環境的分子之吸附作用;及/或即時穩定不利 的金屬相位條件’以轉換不穩定相位的代價,而不會在微 結構内產生明顯變化(老化)。 另一種退化是輻射脆化。輻射脆化的徵兆包括碎裂破 裂,其降伏強度具有突然的增#。钟脆化的物理原理包 括一中子流,此中子流係根據轉移到金屬原子的中子能量, 而可以移動原子或產生金屬晶格内的移動串流,如此導致 具有高空缺集中的體積,係沿著周圍被具有增加密度的空 隙原子的區域所圍繞。輻射脆化最常發生在核能工程(反應 爐)、太2系統,以及軍用設備(飛彈本體外殼)。根據本發 明’用以防止或「治療」輻射脆化的方法,係使用psui, 透過表面上下的塑性變形與壓縮應力場,而能夠獲得被處 理材質的最佳密度與中間結構,其量值與深度足以防止上 述形成’在碎裂裂縫的降伏強度突然增加的情形中,此裂 縫是根據轉移到金屬原子的中子能量,由金屬晶格中的原 子移動或移動串流(在中子流底下)所引起的,而且,之後, 形成具有高濃度空缺,這些空缺係沿著周圍而藉由增加密 度的空隙原子所包圍》 另一種退化是剥落。剝落的徵兆包括金屬的表面腐蝕 91 1336730 彔J落且形成應力集中與強度損失。剝落的物理原理包括 腐姓與氩脆化的協同作用。剥落最常發生於飛機中。根據 本發明’用以防止或抑制正在進行的腐蝕剝落之方法,係 基於使用PSUI’其程度與時間參數對應於實驗獲得的要求, 以獲得被處理材質的最佳密度,且其中間結構具有保證的 疋整性’而且’用於局部點加熱的形成與正常化之條件, 以及從此塑性變形區域、塑性變形本身,以及在被處理表 面上下的壓縮應力場的熱排棄(heat rejection),其量值 與深度均足以: 防止金屬的表面腐蝕剝落,形成應力集中與損失強度, 或者’在特別由腐蝕與氫脆化的協同作用所引起的這些損 壞區域中,恢復金屬特性; 防止能引起成份沉澱的不穩定相位之形成,導致例如 銅的材質之結構鍵與強度之減少程度; 在結構碎片的邊界,啟動自行擴散,且消除晶粒邊界 的腐蝕破裂; 消除結構上的巨觀與微觀缺陷,例如孔洞或在關閉邊 界内的其他種類之晶粒間斷裂,且啟動自行擴散過程; 提供沉澱物的逆向擴散,且恢復穩定相位; 產生合金元素的沉澱物,在此區域中材質的集中密度 與強度之增加; 在其集中區域中,確保結構機械應力的補償、重新分 佈或鬆弛,此集中區域係藉由來自不穩定相位的固溶體之 沉澱物所引起的; 92 1336730 形成超細晶粒結構,其非晶質化,材質強度的增加, 以及在此基礎上的腐蝕抵抗性。 上述的特定工程解決方式,能夠轉換成本發明金屬退 化抑制方法的一些特殊應用範例。以下,將詳細說明使用 超曰波衝擊的本發明方法在不同材質上的作用所產生之技 術效果。以下,亦詳細說明此作用的實驗研究結果、其條 件以及所獲得的效果。更特別地,以下,將詳細說明根據 本發明的方法,超音波衝擊對於抑制金屬中的退化現象之 效果。 因此,在鑄鐵中,所獲得的材質效果是鑄鐵製成的汽 車煞車鼓與煞車碟之壽命延長,此結果顯示於圖52至53。 圖52顯示微硬度分佈,而圖53顯示殘餘應力分佈。最好, 欲獲得此材質效果的υιτ條件乃是如下:f—27kHz; A_3〇 &quot;m ;壓力一21kg ;凹痕器一6_ 35x25mm,R5.5nnn ;直徑一 419龍;轉速—190RPM ;動作丨:進給—〇 8mm/min ;動作2 : 進給一0.4mm/min。此材質效果可藉由引進高程度的壓縮應 力、表面層的微硬度增加,以及保護中間結構對抗工作與 過程中所引發的損壞。 根據本發明,藉由UIT在鑄鐵中的另一項材質作用是 增加的腐蚀強度,特別是水柱鐵管ansi/awwa C151/A21.51-96由VCh45-5型的銻鐵製成。其結果顯示於 圖54至56。更特別地,圖54顯示一個未處理樣本在1〇〇 /im冰度的結構,圖55顯示一個UIT處理過的樣本在1〇〇“ m深度的結構,且圖56顯示被UIT處理過的樣本以及未被 93 1336730 UIT處理過的樣本JL在自來水中進行測試的樣本之比較結 果。最好,用於此材質效果的UIT條件乃是如下:f_44kHz A—18/if 壓力一5kg;凹痕器一5x25mm,R5隨;直徑—23〇随; 轉速-16RPM ;進給—〇.25mm/min。此材質效果是藉由以下 方式而獲得的,藉由密集正常化塑性變形的表面層結構之 修改,產生壓縮應力區域;以及抑制能夠在工作期間引發 中間結構損壞的表面缺陷。 在鋼材中所獲得的材質效果是Weld〇x 42〇型鋼中的焊 接樣本之增加疲勞抵抗性。其結果顯示於圖57中。最好, 欲獲得於此材質效果的UIT條件乃是如下:f—27kHz; p— 達到9GGW ·,A-30/iin ·’壓力-5kg ;超音波衝擊持續時間: 1.2-3msec。此材質效果是藉由以下方式而獲得的藉由在 應力集中區域中,引進高程度壓縮應力 '應力集中減少、 超音波塑性變形,以及被處理材質的結構修改。已經藉由 實驗方式建立起超音波震盪的條件、壓力以及凹痕器尺寸 之間的較佳關係,此凹痕器尺寸能夠紐保護中間結構對 抗工作期間的過程中所引起的損壞與操作損壞,以及藉由 使用PSUI製備一表面。 在鋼材中所獲得的另一材質效果是Weld0x 700型鋼中 的焊接樣本之增加疲勞抵抗性。其結果顯示於圖58中。最 好,欲獲得於此材質效果的UIT條件乃是如下:f—27kHz ; P-達到; A-3Mm ;壓力-5kg ;超音波衝擊持續時 間.0.8-1 · 2msec。此材質效果是藉由以下方式而獲得的, 藉由在應力集中區域中,引進高程度壓縮應力 '應力集中 94 1336730 減y '超音波塑性變形,以及被處理材質的結構修改。已 给藉由實驗方式建立起超音波震堡的條件、壓力以及凹痕 ^尺寸的較佳關係’此凹痕器尺寸能絲證保護中間 ’·=構對k工作期間的過程中利^的損壞與操作損壞,以 及藉由使用PSUI製備一表面。Another type of degradation is corrosion cracking. Signs of corrosion cracking include corrosion cracks. The mechanism of corrosion cracking includes: solution cations adsorbed on the movable row and other defects, which reduce the surface energy and promote the collapse of the atomic bond of the metal; due to the adsorption in the micro-cracks on the metal surface Crack accumulation occurs due to the intrusion of the surface active material. The rate of high crack growth in this case is caused by the accelerated anodic decomposition of the metal at the bottom of the crack, wherein the state of stress deformation is generally caused by the concentration of tensile stress. Corrosion cracking occurs most often in chemical, salt, nuclear, and pipeline transportation (oil tank 'pipeline' pressurization equipment, reactors). The method for resisting corrosion cracking of the present invention can generate a compensation barrier against the formation of corrosion cracks under the initial conditions of the material, and restore its characteristics using the PSUI 87 1336730 mechanism; optimize the quality, adhere or increase the deer The depth of the alloy applied to the protective coating on the surface that may be or is actually damaged, and the initiation of favorable compressive stresses within the surface to reinforce or improve to a predetermined depth 'under optimal or defined conditions of the intermediate structure; The structure and the resulting stress-deformation state of the material structure make the solution cations unable to adsorb on the mobile row and other defects, wherein these defects can reduce the surface amount and weaken the atomic bonding; optimize the surface intermediate structure. And preventing crack build-up, which is caused by the squeezing action of the adsorbed surface active material in the micro-cracks on the metal surface; on the surface having the best intermediate structure, a rubbing stress field is generated; Both the magnitude and depth are sufficient to resist the high cracks caused by the accelerated anodic decomposition of the metal at the bottom of the crack. Propagation, in which the state of stress deformation is generally determined by the concentration of tensile stress. Another type of degradation is hydrogen embrittlement. Signs of hydrogen embrittlement include a reduction in strength characteristics and cracking cracks. Hydrogen embrittlement mechanisms include: atomic hydrogen permeates into voids, pores and other lattice defects; hydrogen is converted into a molecular gas that produces high pressure; atomic hydrogen is adsorbed on the surface of the part, and chemical compounds are formed with metals and impurities. Impurities reduce surface energy and metal chipping resistance. Hydrogen embrittlement occurs most often in metallurgical work, as well as in engineering, salt, pipelines (welding structures, galvanizing plants), petrochemical plants (reactors), and aircraft (shell). The method for resisting hydrogen embrittlement of the present invention can strengthen the surface alloy quality, the adhesion strength and the density of the galvanized coating by using the PSUI mechanism; generate a compressive stress field on the surface and have an optimal intermediate structure, the magnitude and depth thereof. It is sufficient to resist the reduction of strength characteristics and the formation of fracture cracks, which may be caused by the penetration of atomic hydrogen into voids, pores and other lattice defects 88 1336730; hydrogen is converted into a molecular gas that produces high pressure between the sections; The adsorption of atomic hydrogen on the surface of the material, as well as the formation of chemical compounds of metals and impurities, can reduce surface energy and metal chipping resistance. Another type of degradation is liquid metal embrittlement. Signs of liquid metal embrittlement include reductions in strength characteristics and cracking cracks. The physical principles of liquid metal embrittlement include: adsorption of molten metal into the pre-destructive zone of solid metal; and reduction of surface energy and metal fracture resistance in damaged areas. Liquid metal embrittlement occurs most often in metallurgical plants (galvanizing the method of the present invention to prevent or "treat" liquid metal embrittlement, using PSUI to produce an optimal intermediate structure and compressive stress field on the surface, the magnitude and Depth is sufficient to prevent · decrease in strength characteristics 'formation of fracture cracks, adsorption of molten metal into the pre-destructive zone of solid metal, and reduction of surface energy and metal fracture resistance. Another degradation is erosion. Signs of erosion include surface fluctuations The physical principles of erosion include: the separation of the particles from the affected body surface due to the contact of the body with moving liquids, the gaseous environment or the invading females, while the particles are invaded by the solid particles and the affected surface. Invasion # most commonly occurs in pipeline transportation (pipes, pressurized equipment), aircraft industry (full wheel), marine transportation (propellers), rockets and missiles (case). 2 According to the invention, the material is inhibited or restored. The method of surface is simple: enough to produce the best density on the surface, (four) degrees, intermediate structure and compressive stress field, the amount Both the depth and the depth are sufficient to resist the separation of the solid particles from the surface of the body. This separation is caused by the contact movement of the body (4), the gas environment or the invading particles, and the particles are caused by the solid particles on the surface of the shadow. 1336730 Collision leads to intrusion. Another type of degradation is latent change. The signs of latent changes include the formation of micro-cracks and pores (micro-voids) at the grain boundaries and the formation of sub-structures. The mechanisms of latent changes include: sliding (difference pattern); Distortion; combination of sliding planes; formation of flakes; rotation and relative movement of grains; rotation and relative movement of mosaic blocks; diversification, diffusion plasticity; recrystallization mechanism; and combination of microscopic and macroscopic degrees of defects and structural damage. The most common occurrences occur in thermal power embedding and nuclear energy waste, the petrochemical industry, and aircraft (structures, reactor bodies, and high temperature operating; still wheel blades). According to the present invention, to prevent and "treat" #你的Method, using PSUI to obtain the best density, intermediate structural conditions, and package size of the grain above and below the surface, as well as compressing the giant stress The micro-stress field, its magnitude and depth are sufficient to prevent the following results: micro-cracks and holes (micro-voids), sliding (according to the difference pattern), distortion, sliding plane bending, formation on grain boundaries and substructures Thin surface, rotation and relative movement of crystal grains, rotation and relative movement of mosaic block, multi-angle, diffusion plasticity, recrystallization, and combination of microscopic and macroscopic defects and structural damage. Another degradation is microstructural degradation. Microstructure The signs of degradation include a reduction in the strength characteristics of the material. The mechanism of microstructural degradation includes the adsorption of molecules from the environment by microscopic surface length 2 (Rebinder effect) and immediate stabilization of unfavorable metal phases in a deformed body. To convert the unstable phase at the cost without significant changes (aging) within the microstructure. Microstructural degradation most commonly occurs in salty, refining furnaces (10) structures, pipelines, seaports, and aircraft (ontologies, Case layer). According to the present invention, the method for treating the microstructure degradation with 90 1336730 is based on the use of p-measurement to produce the optimum density and intermediate structure of the material on the surface of the material; the plastic deformation and compressive stress field on the surface can be normalized. The magnitude and depth are sufficient to prevent a decrease in the strength characteristics of the material due to degradation of the microstructure, which may include adsorption of molecules from the environment caused by the micro-surface growth (Rebinder effect) in the deformed body; And/or the immediate stabilization of unfavorable metal phase conditions 'at the cost of converting unstable phases without significant changes (aging) within the microstructure. Another type of degradation is radiation embrittlement. Signs of radiation embrittlement include fragmentation and cracking, with a sudden increase in the intensity of the fall. The physical principle of bell embrittlement includes a neutron flux that can move atoms or generate moving streams within a metal lattice based on the neutron energy transferred to the metal atoms, thus resulting in a volume with high vacancy concentration. , surrounded by a region surrounded by void atoms with increased density. Radiation embrittlement occurs most often in nuclear energy engineering (reactors), Tai 2 systems, and military equipment (missile body shells). According to the present invention, the method for preventing or "treating" radiation embrittlement is to use psui to obtain the optimum density and intermediate structure of the material to be processed through the plastic deformation and compressive stress field above and below the surface, and the magnitude and Depth is sufficient to prevent the above formation 'in the case of a sudden increase in the drop strength of the fracture crack, which is moved or moved by atoms in the metal lattice according to the neutron energy transferred to the metal atom (under the neutron flux) The resulting degradation, and then, forms a high concentration of vacancies that surround the periphery by enlarging the density of the void atoms. Another degradation is spalling. The signs of spalling include surface corrosion of the metal 91 1336730 彔J falls and stress concentration and strength loss are formed. The physical principles of spalling include the synergy between rot and argon embrittlement. Peeling occurs most often in aircraft. The method for preventing or suppressing ongoing corrosion spalling according to the present invention is based on the use of PSUI's degree and time parameters corresponding to experimentally obtained requirements to obtain an optimum density of the material to be processed, and the intermediate structure is guaranteed The temperability 'and' conditions for the formation and normalization of local point heating, and the heat rejection from the plastic deformation zone, the plastic deformation itself, and the compressive stress field above and below the surface being treated, Both the magnitude and the depth are sufficient to: prevent surface corrosion of the metal from peeling off, form stress concentration and loss strength, or 'recover metal properties in these damaged areas caused by the synergistic effect of corrosion and hydrogen embrittlement; prevent formation of components The formation of an unstable phase of precipitation leads to a reduction in the structural bond and strength of, for example, copper; at the boundary of the structural debris, self-diffusion is initiated, and corrosion cracking at the grain boundaries is eliminated; and macroscopic and microscopic defects on the structure are eliminated. , for example, holes or other kinds of grain breaks within the closed boundary, and start The diffusion process is provided; the reverse diffusion of the precipitate is provided, and the stable phase is restored; the precipitate of the alloying element is produced, and the concentrated density and strength of the material are increased in this region; in the concentrated region, the compensation of the mechanical stress of the structure is ensured, Distribution or relaxation, which is caused by precipitates from unstable phases of solid solution; 92 1336730 Forms an ultrafine grain structure, which is amorphous, increases the strength of the material, and on this basis Corrosion resistance. The specific engineering solutions described above can be converted to some special application examples of the metal degradation inhibition method of the invention. Hereinafter, the technical effects produced by the action of the method of the present invention using ultrasonic wave impact on different materials will be described in detail. The experimental results of this effect, the conditions thereof, and the effects obtained are also described in detail below. More specifically, hereinafter, the effect of ultrasonic shock on suppressing degradation in metal according to the method of the present invention will be described in detail. Therefore, in cast iron, the material effect obtained is that the life of the automobile brake drum and the brake disc made of cast iron is prolonged, and the results are shown in Figs. 52 to 53. Figure 52 shows the microhardness distribution, while Figure 53 shows the residual stress distribution. Preferably, the υιτ condition for obtaining the effect of this material is as follows: f-27 kHz; A_3 〇 &quot;m; pressure 21 kg; dent 6_35x25 mm, R5.5nnn; diameter 419 dragon; speed - 190 RPM;丨: Feeding—〇8mm/min; Action 2: Feeding a 0.4mm/min. This material effect can be achieved by introducing a high degree of compressive stress, an increase in the microhardness of the surface layer, and protection of the intermediate structure against damage caused by work and process. According to the present invention, another material used in the cast iron by UIT is an increased corrosion strength, and in particular, the water column iron ansi/awwa C151/A21.51-96 is made of ferroniobium of the VCh45-5 type. The results are shown in Figures 54 to 56. More specifically, Fig. 54 shows the structure of an unprocessed sample at 1 〇〇 / im ice, and Fig. 55 shows the structure of a UIT processed sample at 1 〇〇 m depth, and Fig. 56 shows the treatment by UIT The comparison of the sample and the sample JL that has not been treated by 93 1336730 UIT in tap water. The best UIT conditions for this material effect are as follows: f_44kHz A-18/if pressure 5kg; dent 5x25mm, R5 with; diameter - 23〇; speed -16RPM; feed - 〇.25mm / min. This material effect is obtained by the following method, by densely normalizing the plastic deformation of the surface layer structure Modifications to create areas of compressive stress; and to suppress surface defects that can cause damage to intermediate structures during operation. The material effect obtained in steel is the increased fatigue resistance of welded samples in Weld〇x 42〇 steel. The results are shown in In Fig. 57, preferably, the UIT conditions for obtaining the effect of this material are as follows: f-27 kHz; p- reach 9 GGW, A-30/iin · 'pressure-5 kg; ultrasonic impact duration: 1.2-3 msec This material effect It is obtained by the introduction of a high degree of compressive stress in the stress concentration region, a reduction in stress concentration, a supersonic plastic deformation, and a structural modification of the material to be processed. Ultrasonic oscillation has been established experimentally. A preferred relationship between conditions, pressure, and dent size, which can protect the intermediate structure against damage and operational damage during operation, and to prepare a surface by using PSUI. Another material effect obtained in the material is the increased fatigue resistance of the welded specimen in the Weld0x 700 steel. The results are shown in Fig. 58. Preferably, the UIT conditions for obtaining the effect of this material are as follows: f-27 kHz; P-reach; A-3Mm; pressure -5kg; ultrasonic shock duration. 0.8-1 · 2msec. This material effect is obtained by the introduction of high compressive stress in the stress concentration region. Stress concentration 94 1336730 minus y 'ultrasonic plastic deformation, and structural modification of the material being processed. The conditions for establishing the ultrasonic shock castle by experimental means have been established. The preferred relationship between the pressure and the indentation size is that the size of the indenter can be used to protect the middle of the damage during operation and the operational damage during the work of the pair k, and to prepare a surface by using the PSUI.

在鋼材中所獲得的另一材質效果是45Mnl7Ai3型鋼中 勺日:加腐蝕疲勞強度。其結果顯示於圖59中。最好,欲庐 得於此材質效果的Un條件乃是如下:f—2施;p—達^ 9_; A-30_’·壓力—5kg;超音波衝擊持續時間·· i 5_Another material effect obtained in steel is the 45Mnl7Ai3 steel in the spoon: corrosion fatigue strength. The result is shown in Fig. 59. Preferably, the Un condition for the effect of this material is as follows: f-2 application; p-up ^ 9_; A-30_'. pressure - 5 kg; duration of ultrasonic shock · · i 5_

Wc。此材質效果是藉由以下方式而獲得的,藉由引進高 程度壓縮應力於被處理表面與被處理材質内,且修改其結 構。已經藉由實驗方式建立起超音波震盧的條件、壓力以 及凹痕器尺找_較佳_,此喊器尺核夠保證在 工作期間㈣中間結構,且根據本發明的方法使用超音波 衝擊而處理一表面。Wc. This material effect is obtained by introducing a high degree of compressive stress into the treated surface and the material being processed, and modifying the structure. It has been experimentally established that the conditions, pressures, and dents of the ultrasonic vibrations are better, which is sufficient to ensure intermediate structures during operation (4), and the ultrasonic wave impact is used according to the method of the present invention. And deal with a surface.

在鋼材中所獲得的另-材質效果是⑽训心型橋樣 鋼中的增加衝擊強度。其結果顯示於圖6Q中1好, 得於此材質效果的UIT條件乃是如下:f—alp, _w;A-3Q〜壓力—5kg;超音波衝擊持續時m 此材質效果是藉由以下方式而獲得的,藉由夺米 程产:的塊體結構之㈣,以及產生壓職力的區域,此壓 縮應力足以阻止中間結構損壞,在超音波衝 靜態與動態負載對被處理材質的作用,超音;= 此任務以及操作力而界定。 手你棺田 95 1336730 在鋼材中所獲得的另一材質效果是SUJ2與S33C型高 強度鋼中的晶粒精煉。其結果顯示於圖61中。最好,欲獲 得於此材質效果的UIT條件乃是如下:f—27kHz ; A—25、30 與 33 # m ;壓力一20kg ;凹痕器一6. 35x25mm ;直徑一5mm ; 轉速一500RPM ;超音波衝擊持續時間:1. 5-1. 6msec。此材 質效果是藉由以下方式而獲得的,藉由被處理材質的密集 超音波塑性變形’奈米程度的塊體結構之排列,以及抑制 中間結構的損壞。 在鋼材中所獲得的另一材質效果,是在主要管線的 10Mn2VNb鋼焊接接點以及SUJ2高強度鋼的樣本中獲得一「白 層」,其結果顯示於圖62與63中。更特別地,圖62顯示 10Mn2VNb鋼的焊接接點,而圖63顯示SUJ2高強度鋼的樣 本。最好,欲獲得於此材質效果的UIT條件乃是如下: 對於 10Mn2VNb 鋼來說:f—27kHz ; P —達到 g〇OW ; A —3 0 μ m ;超音波衝擊持續時間:0. 8_ 12msec。 對於 SUJ2 鋼來說:f—27kHz;A—25、30 與 33em;NI80 ; 壓力_20kg ;凹痕器一6. 35x25mm ;直徑一~5mm ;轉速— 500RPM。此材質效果是藉由以下方式而獲得的,藉由以高 變形負載速率的正常化超音波衝擊,表面材質的密集超音 波衝擊變形,以及從衝擊區域的快速熱量移除。 在鋼材中所獲得的另一材質效果,是藉由υπ對,焊接 碳造船鋼lOCrSiNiCu的焊接金屬結晶化上之影響,其包括: (1)在未處理焊接點(UIT之前)中的樹狀結構,是比處理過 的焊接點(UIT之後)中的更粗;(2)晶粒結構,最好是具有 96 1336730 較細微的晶粒’普遍存在於UIT處理過的洋接點内;以及⑶ 在UIT之前的未處理焊接點中之樹狀突,在υιτ之後的較 厚晶粒間層内較長且較寬。其結果顯示於圖64與65中, 更明確地,圖64顯示不具有UIT的焊接,而圖65則顯示 具有UIT的焊接。最好,欲獲得於此材質效果的υιτ條件 乃疋如下· f — 27kHz ; Α —30 μ m ;壓力一20kg ;凹痕器一 6.35χ25ππη ;超音波衝擊持續時間:15_2msec。此材質效 果是藉由以下方式而獲得,擴散過程的強化,以及在超音 波、聲音流、聲音壓力以及空穴等作用下的金屬再結晶, 括些作用是由在超音波衝擊期間,與超音波震盪系統的載 波震盪同步之凹痕器超音波震盪所引發的。 影響材質的結構與狀態之另一材質效果,是藉由燒結 過的粉末鋼之υιτ而獲得的。此作用提供含有〇 4%c、 0·85%Μ〇、剩餘Fe的鋼樣本之強化機械特性,包括:(1)密 度增加高達4.9%,以及(2)強度增加高達32?^ ϋπ之前與 UIT之後的燒結樣本之結構狀態,係分別顯示於圖與 中》最好,欲獲得於此材質效果的ϋΙΤ條件乃是如下:f— 27kHz,A—28/zm ; NI64 ;壓力一nkg ;凹痕器—6. 35x25mm ; 進給:400_/min;橫向進給:0 5_/行程;以〇 5Ys的程 度實施靜態擠壓;超音波衝擊持續時間:12_2msec。此材 質效果是藉由以下方式而獲得,表面材質的密集超音波塑 性變形,以及透過在&amp;音波衝擊期間的超音波所引起的擴 散過程之啟動。 藉由本發明UIT在鋁合金中所獲得的材質效果,是 97 6061T6合金製成的樣本之疲勞極限增加2ι%,而等於此種 焊接點的結構之疲勞極限則增加m。其結果顯示於圖Μ 中。最好,欲獲得於此材質效果的ϋΙΤ條件乃是如下:f— 27kHz ; P—達到9_ ; a—達到3〇_ ;處理速度一每2個 動作為l,2Sec/c:m,亦即,對於重#焊接點來說,每個動作 為〇.6sec/cm;超音波衝擊持續時間:12_&quot;㈣c。此材 質效果是藉由以下方式而獲得,引進高程度的壓縮應力、 應力集中減少,且產生物理障壁,以對抗中間結構缺陷形 成,每些缺陷係位於對應此缺陷程度的指定塑性變形與壓 縮應力的區域中。 在鋁合金中所獲得的另一材質效果,是增加的高週期 疲勞強度,特別是在鋁合金AA5〇83(或A1Mg45Mn)中的焊 接點,對於8mm重疊接點以及具有縱向附件的樣本來說大 約疋80%。其結果顯示於圖69至7〇中。更特別地圖69 顯示具有縱向附件的8_樣本之S_N曲線,而圖7〇顯示具 有重疊接點的8mm樣本之S-N曲線。最好,欲獲得於此材 質效果的UIT條件乃是如下:f_27kHz ; p—達到9〇〇w ; a 一達到3〇vm ;超音波衝擊持續時間:i.2_17msec。此材 質效果是藉由以下方式而獲得,引進高程度的壓縮應力, 應力集中減少’以及抑制藉由固溶體中的超音波再結晶所 可能產生的中間結構損壞,以及在本發明的超音波衝擊期 間,在晶粒邊界的超音波擴散之啟動。 在鋁合金中所獲得的另一材質效果,是抑制近表面(特 別是深度達2.5mm的鑄造多孔性),以及由AlSi7Mg、AlSi9Mg 98 1336730 以及A!Sil!Mg等合金製成的銻輪、汽車車輪之备 其結果顯示於圖7J至72中。β # 可Ρ 的UIT隸^ 取好,欲獲得於此材質效果 的UIT條件乃是如下:f— ^ . n , / Z7kHz,進給—400職/min :橫向 進給.0. 5πππ/行程;壓力一15 g β 〇c 9ς g ’ A ,動作〗··凹痕 益—6· 35χ25πππ,R5. 5mm :動作 超音波衝擊持續時門.&quot;卜9.〇5X25,R1°mm; 曰皮㈣持續時間.以以敗。此材質效果是藉由以The additional material effect obtained in steel is (10) increased impact strength in the bridge type steel. The result is shown in Figure 6Q, which is good. The UIT conditions for this material effect are as follows: f-alp, _w; A-3Q~pressure-5kg; ultrasonic shock duration m This material effect is obtained by the following method And obtained by the rice structure: (4), and the area where the pressing force is generated, the compressive stress is sufficient to prevent the damage of the intermediate structure, and the effect of the ultrasonic static and dynamic load on the material to be processed, Supersonic; = This task is defined by the operational force. Hand You Putian 95 1336730 Another material effect obtained in steel is the grain refining in SUJ2 and S33C high strength steel. The result is shown in Fig. 61. Preferably, the UIT conditions for obtaining the effect of this material are as follows: f-27 kHz; A-25, 30 and 33 #m; pressure 20 kg; indenter 6.35 x 25 mm; diameter 5 mm; speed 500 RPM; Ultrasonic shock duration: 1. 5-1. 6msec. This material effect is obtained by intensive ultrasonic plastic deformation of the material to be processed, arrangement of the bulk structure of the nanometer degree, and suppression of damage of the intermediate structure. Another material effect obtained in the steel is that a "white layer" is obtained in the 10Mn2VNb steel welded joint of the main pipeline and the SUJ2 high strength steel sample, and the results are shown in Figs. 62 and 63. More specifically, Fig. 62 shows the welded joint of 10Mn2VNb steel, and Fig. 63 shows the sample of SUJ2 high strength steel. Preferably, the UIT conditions for obtaining the effect of this material are as follows: For 10Mn2VNb steel: f-27 kHz; P - reach g 〇 OW; A - 30 μm; ultrasonic shock duration: 0. 8_ 12 msec . For SUJ2 steel: f-27 kHz; A-25, 30 and 33em; NI80; pressure _20 kg; dents a 6.35 x 25 mm; diameter one ~ 5 mm; speed - 500 RPM. This material effect is obtained by normalizing the ultrasonic shock at high deformation load rates, dense ultrasonic shock deformation of the surface material, and rapid heat removal from the impact area. Another material effect obtained in steel is the influence of the υπ pair on the crystallization of the weld metal of the welded carbon steel ship lOCrSiNiCu, which includes: (1) a tree shape in the untreated joint (before UIT) The structure is thicker than the treated solder joint (after UIT); (2) the grain structure, preferably having 96 1336730 finer grains 'common in UIT-treated ocean joints; (3) The dendrites in the untreated solder joints before the UIT are longer and wider in the thicker intergranular layer after υιτ. The results are shown in Figures 64 and 65. More specifically, Figure 64 shows the weld without UIT, while Figure 65 shows the weld with UIT. Preferably, the υιτ condition for obtaining the effect of this material is as follows: f — 27 kHz; Α 30 μ m; pressure 20 kg; dent 1 6.35 χ 25ππη; ultrasonic impact duration: 15_2 msec. This material effect is obtained by the following methods, the strengthening of the diffusion process, and the recrystallization of metal under the action of ultrasonic waves, sound flow, sound pressure, and holes, which are caused by the ultrasonic shock and super The oscillating system of the oscillating system is triggered by the ultrasonic oscillating dent of the carrier oscillating synchronization. Another material effect that affects the structure and state of the material is obtained by sintering the powdered steel. This effect provides enhanced mechanical properties of steel samples containing 〇4%c, 0.85% Μ〇, and remaining Fe, including: (1) a density increase of up to 4.9%, and (2) an increase in strength of up to 32?^ ϋπ before The structural state of the sintered sample after UIT is shown in the figure and the middle respectively. The conditions for obtaining the effect of this material are as follows: f-27kHz, A-28/zm; NI64; pressure-nkg; concave Tracer—6. 35x25mm; Feed: 400_/min; Transverse feed: 0 5_/stroke; static extrusion with a degree of Y5Ys; duration of ultrasonic shock: 12_2msec. This material effect is obtained by the intensive ultrasonic plastic deformation of the surface material and the activation of the diffusion process caused by the ultrasonic waves during the &amp; The material effect obtained by the UIT of the present invention in an aluminum alloy is that the fatigue limit of the sample made of the 97 6061T6 alloy is increased by 2%, and the fatigue limit of the structure equal to such a welded joint is increased by m. The results are shown in Figure 。. Preferably, the conditions for obtaining the effect of this material are as follows: f - 27 kHz; P - up to 9 _; a - up to 3 〇 _; processing speed for every 2 actions is 1, 2 Sec / c: m, ie For heavy # solder joints, each action is 〇.6sec/cm; ultrasonic shock duration: 12_&quot;(four)c. This material effect is obtained by introducing a high degree of compressive stress, reducing stress concentration, and creating physical barriers against the formation of intermediate structural defects, each of which is located at a specified plastic deformation and compressive stress corresponding to the extent of the defect. In the area. Another material effect obtained in aluminum alloys is the increased high cycle fatigue strength, especially in the aluminum alloy AA5〇83 (or A1Mg45Mn), for 8mm overlapping joints and samples with longitudinal attachments About 疋80%. The results are shown in Figures 69 to 7B. More specifically, map 69 shows the S_N curve of the 8_sample with the longitudinal attachment, while Figure 7〇 shows the S-N curve of the 8 mm sample with the overlapping joint. Preferably, the UIT conditions for obtaining this material effect are as follows: f_27 kHz; p - up to 9 〇〇 w; a up to 3 〇 vm; duration of ultrasonic shock: i.2_17 msec. This material effect is obtained by introducing a high degree of compressive stress, reducing stress concentration, and suppressing intermediate structure damage which may occur by ultrasonic recrystallization in a solid solution, and ultrasonic waves in the present invention. The initiation of ultrasonic diffusion at the grain boundaries during the impact. Another material effect obtained in the aluminum alloy is to suppress the near surface (especially the casting porosity of up to 2.5 mm), and the wheel made of alloys such as AlSi7Mg, AlSi9Mg 98 1336730 and A!Sil!Mg, The results of the car wheel are shown in Figures 7J to 72. The UIT condition of β # 可Ρ is good, and the UIT condition for obtaining the effect of this material is as follows: f— ^ . n , / Z7kHz, feed—400 jobs/min: lateral feed. 0. 5πππ/stroke ;pressure 15 g β 〇c 9ς g ' A , action〗··dentation benefit—6·35χ25πππ, R5. 5mm: action ultrasonic shock duration door.&quot;Bu 9.〇5X25,R1°mm; 曰Pi (4) duration. To defeat. This material effect is by

下万式而獲得’被處理材質近表面層的密集塑性變形在 缺陷邊界的超音波擴散,在超音波衝擊下的關閉,在材質 中王現孔洞或斷裂的形式’以及抑制在正常化塑性變形與 壓縮應力的區域中之中間結構缺陷,對應於塑性變形的程 度’在本發明的正常化超音波衝擊以及伴隨其對結構的影 響下’這些作用特別是藉由超音波衝擊產生變形的材質中, 超音波應力波的繁殖期間,減少的變形阻力而引起的。 除了被處理材㊆的增加強度之外,根據本發明的υιτ, 在銘σ金中所獲知的另一材質效果,是被處理材質的維持 衝擊強度特別是在由A1Si7Mg、AlSi9Mg以及 等合金製成的鑄輪之處理中,其結果顯示於圖73至74中。 更特別地’ ® 73顯示具有強化凹痕的樣本上之衝擊強度, 而圖74顯示從強化輪切出的樣本上之衝擊強度。uiT以及 超音波衝擊加工(UIM)條件,可以固定密集塑性變形區域中 的衝擊強度,其中,此塑性變形是由位於起初材質高度的 衝擊負載所引起的。在超音波衝擊所引發的超音波應力波 之作用區域中,衝擊強度增加12%。最好,欲獲得於此材質 效果的UIT條件乃是如下:f—27kHz ;進給—4〇〇關/min ; 99 1336730 壓力一15kg ;銷—9. 05x25mm ; RO. 25mm ;樓子 44。;條件 1 : A—10/im ;條件 2 : A—20/zm ;條件 3 : A—30#m ;超音波 衝擊持續時間:1. 2-1. 7msec。額外的UIT條件為:f __ 27kHz,,凹痕器—6. 35x25mm ; R25mm ; UIT 條件:動作 1 : A—20 # m;動作 2 : A—12 e m; V—18m/min;進給:〇. 5mm/rev ; 凹痕器一6. 35x33mm ; R25mm ;動作 1 :壓力一15kg 且 Α—·22In the tens of thousands of styles, the intensive plastic deformation of the near-surface layer of the treated material is obtained at the boundary of the ultrasonic wave at the boundary of the defect, the closure under the impact of ultrasonic waves, the form of the hole or fracture in the material of the material, and the suppression of normalized plastic deformation. Intermediate structural defects in the region with compressive stress, corresponding to the degree of plastic deformation 'in the normalized ultrasonic shock of the present invention and its influence on the structure', in particular, the material which is deformed by ultrasonic shock , during the propagation of ultrasonic stress waves, reduced deformation resistance caused by. In addition to the increased strength of the material to be treated 7, another material effect known from the σιτ according to the present invention is that the sustained impact strength of the material to be treated is made, in particular, from A1Si7Mg, AlSi9Mg, and the like. The results of the casting wheel are shown in Figures 73 to 74. More specifically, the ® 73 shows the impact strength on the sample with the reinforced indentation, and Figure 74 shows the impact strength on the sample cut from the reinforcing wheel. The uiT and Ultrasonic Impact Processing (UIM) conditions can be used to fix the impact strength in a densely plastically deformed region caused by an impact load at the initial material height. In the region where the ultrasonic stress wave is caused by the ultrasonic shock, the impact strength is increased by 12%. Preferably, the UIT conditions for obtaining the effect of this material are as follows: f-27 kHz; feed- 4 〇〇 off/min; 99 1336730 pressure 15 kg; pin - 9. 05 x 25 mm; RO. 25 mm; Condition 1 : A-10/im; Condition 2: A-20/zm; Condition 3: A-3030; Ultrasonic Impact duration: 1. 2-1. 7 msec. Additional UIT conditions are: f __ 27 kHz, dent - 6.35 x 25 mm; R25 mm; UIT condition: action 1: A-20 # m; action 2: A-12 em; V-18 m/min; 〇. 5mm/rev ; dents a 6. 35x33mm; R25mm; action 1: pressure a 15kg and Α - 22

Mm,動作2 :壓力一7kg且A—12 &quot;m ;超音波衝擊持續時 間:1. 2-1. 7msec。由於在UIM與UIT期間,可能會在密集 的塑性變形下,而產生結構扭曲,如此可能導致差排的阻 止,且在被處理材質上以晶粒比例形成其他缺陷,這些缺 陷係根據本發明而定義的。其中在UIT之後的應力集中條 件,Charpy樣本的衝擊強度直接與樣本尺寸有關,亦即, 變形與未變形材質的體積之間的關係。為了便於說明, Charpy測試是一種鐘擺式單次吹動衝擊測試,其中通常具 有凹痕的樣本,在兩端被支撐成一簡單樑,且藉由一掉落 鐘擺的撞擊而在凹痕處(動態應力集中裝置)破裂。所吸收 的能量被絲測量衝擊強度或凹痕堅祕,係藉由將鐘擺 隨後升起而計算出來(緊接著正在破裂的樣本的撞擊之 後)。此外,Charpy值直接受到凹痕中間表面的條件所影響, 這一點根據本發明,係藉由本發明超音波衝擊及其所引發 的超音波之作用期間,藉由正常化塑性㈣而加以控制。 根據本發明的UIT’在鋁合金中所獲得的另^材質效 果,是來自AlSUlMg合金的固溶體之㈣容物的沉殿其 為合金内容物且增加材質強度。此結果顯示於圖Μ至π 100 1336730 中。更特別地,圖75顯示具有一未處理的樣本結構,圖76 顯示在UIT處理過的樣本上之矽沉澱物,而圖77顯示在未 處理樣本以及UIM樣本深度中的微硬度分佈,清楚地顯示 由於此層中的ί夕内容物之沉;殿,在至少2mm的深度之被處 理表面以及被處理材質的微強度。最好,欲獲得於此材質 效果的UIT條件乃是如下:f—27kHz ; V—18m/min ;進給一 0· 5mm/rev ;凹痕器一6. 35x25mm,R25mm ;動作 1:擠壓一15kg 且A—22//m ;動作2 :擠壓一7kg且A—12/im ;超音波衝擊 持續時間:1.2-1. 7msec。藉由其中發生結構變化而強化一 表面層,本發明的UIM可以獲得此材質效果。此表面層中, 更加固態的共溶結構(a +Si )+Si)由起初結構(α +共溶 U+Si)+Si)的兩相位條件形成。此過程亦伴隨矽内容物在 超音波衝擊的影響下移動到表面内,且大致上反映出由於 近表面層中的矽沉澱,導致強化A卜Si合金的客觀能力。 根據本發明的UIT/UIM,在鋁合金中所獲得的另一材質 效果,是恢復腐蝕剝落後的2024-T351合金之特性。在本 發明的UIT之後,已剝落的樣本之降伏強度增加33%(對於 未處理且未剝落材質則增加19%),最終強度增加24%(對於 未處理未剝落材質,在UIT/UIM之後,在測量精確範圍内, 可增加至材質的一般強度)。此結果顯示於圖78至79中。 最好,欲獲得於此材質效果的UIT條件乃是如下:f—36kHz ; 凹痕器一5x17mm,R25mm ; A —18 # m ; NI64 ;歷力一3kg ;進 給:400mm/min ;橫向進給:0. 5min/行程;超音波衝擊持續 時間:1.0-1. 3msec。此材質效果是藉由在晶粒邊界的超音 101 波衝擊擴散而獲得的β 根據本發明的UIT’在鋁合金中所獲得的另—材質效 果,是增加樣本的週期壽命,這些樣本式由7075_T6合金 良成,且從機翼表殼層嵌板切下,在—個係數3.2的稍微 腐蝕樣本以及一個係數2.9嚴重腐蝕樣本中。圖8〇顯示本 發明的UIT對於具有不同腐蝕程度的樣本之疲勞抵抗性的 影響。最好,欲獲得於此材質效果的UIT條件乃是如下:f —'36kHz ;凹痕器一5xi7mm,R25mm ; A—20ym ; NI64 ;壓力 —3kg ;進給—400mm/min ;橫向進給—〇. 5mm/行程;超音波 衝擊持續時間:1.0-1. 3msec。本發明的un改變裂縫集妗 機制。因此,對於沒有UIT的腐蝕樣本來說,裂縫從腐蝕 區域與基材的界面上之晶粒間裂缝開始集結,而且,對於 實施本發明UIT且受到輕微腐蝕的樣本來說,裂縫不會集 結。此效果可以藉由機械式關閉晶粒邊界,接著在密集超 音波塑性變形影響下的晶粒間腐蝕損壞之區域中的超音波 擴散。 根據本發明的UIT,在鋁合金中所獲得的另一材質效 果,是2024-T351合金(平均從ΐ6·52ηιπ到8-lOmn)的冷軋 板的更精煉結構,相較於起初狀態。此結果顯示於圖81至 82中。更明確地,圖81顯示ϋΙΤ處理之前的表面層,而圖 82顯不UIT所精煉過的較細微晶粒結構。最好,欲獲得於 此材質效果的UIT條件乃是如下:f —36kHz;凹痕器一 5x17mm,R25mm ; A —15/zm ; NI64 ;壓力一3kg ;進給: 1000mm/min ;橫向進給:〇 5mm/行程;超音波衝擊持續時 102 1336730 間:0.9-1. 2msec。晶粒精煉的此材質效果的發生原因如下: 由於額外變形,而形成高差排密度以及成對結構;形成微 f 構,微·^結構再分刻成亞微晶粒;以及,將亞晶粒進 一步破壞成等軸的(eqUiaxecj)。 根據本發明的UIT,在銘合金中(特別是2024-T351合 金的冷軋板)所獲得的另一材質效果,是沉澱物移動以及產 生l〇-15mn寬的微帶。此伴隨亞微晶粒自行排列的過程, 且增加中間結構對於表面層内奈米等級的機械與腐蝕損壞 之抵抗性。因此’由於本發明的UIT而發生的兩種效果, 是表面層中的微硬度增加’以及材質的靜態強度之增加, 且透過沉澱物的分佈密度減少(亦即,結構應力集中),產 生疲勞強度改良用的條件’以及,表面層中的結構同質性 增加。此效果顯示於圖83至85中。更特別地,圖83顯示 微硬度分佈,圖84顯示本發明UIT處理之前的表面層結構, 且圖85顯示UIT樣本中的微帶。使用能量分散光譜學(EDS) 檢查沉澱物’指出這些沉澱物富含A1、Cu、Fe、Μη與Si。 然而,這些沉澱物的密度經發現在UIT的表面以及近表面 處具有最小值。與剛滾軋過的狀態之比較結果,顯示出UIT 之後的沉澱物尺寸展現出縮小的比例,而其密度在此帶内 顯示最大值。藉由整體比較上述觀察結果,潛在應力集中 分佈密度一般在結構程度上減少》如此可以被認為是用於 增加材質抵抗疲勞損壞形成的能力之必須條件。最好,欲 獲得於此材質效果的UIT條件乃是如下:f一36kHz;銷一 5x17mm,R25mm ; A —18//m ; NI64 ;壓力—3kg ;進給: 103 丄 ΓΓΓΓ橫向進給:G.W行程;超音波衝擊持續時間: 乂 :sec。此材質效果是藉由幾何動態再結晶過程而獲 付_中,而能量與高溫可以達到臨界程度,因此,導Mm, Action 2: Pressure 7kg and A-12 &quot;m; Ultrasonic impact duration: 1. 2-1. 7msec. Since during the UIM and UIT, structural distortion may occur under dense plastic deformation, it may lead to the prevention of the difference of the rows, and other defects are formed in the grain ratio on the material to be processed, which are according to the present invention. Defined. Among the stress concentration conditions after the UIT, the impact strength of the Charpy sample is directly related to the sample size, that is, the relationship between the deformation and the volume of the undeformed material. For ease of explanation, the Charpy test is a pendulum type single blow impact test in which a sample with a generally dent is supported at both ends as a simple beam and at the dent by a drop of the pendulum impact (dynamic The stress concentration device) is broken. The absorbed energy is measured by the wire to measure the impact strength or dent, which is calculated by raising the pendulum later (following the impact of the ruptured sample). Further, the Charpy value is directly affected by the condition of the intermediate surface of the dimple, which is controlled according to the present invention by the normalized plasticity (4) during the action of the ultrasonic shock and the ultrasonic wave induced by the present invention. The other material effect obtained by the UIT' according to the present invention in the aluminum alloy is that the (IV) content of the solid solution of the AlSUlMg alloy is the alloy content and the material strength is increased. This result is shown in Figure Μ to π 100 1336730. More specifically, Figure 75 shows an untreated sample structure, Figure 76 shows the ruthenium precipitate on the UIT-treated sample, and Figure 77 shows the micro-hardness distribution in the untreated sample and UIM sample depth, clearly Shows the sinking due to the contents of the layer in this layer; the temple, the treated surface at a depth of at least 2 mm and the micro-strength of the material being processed. Preferably, the UIT conditions for obtaining the effect of this material are as follows: f—27 kHz; V—18 m/min; feed a 0·5 mm/rev; dents a 6.35×25 mm, R25 mm; action 1: extrusion A 15kg and A-22 / / m; action 2: squeeze a 7kg and A-12 / im; ultrasonic impact duration: 1.2-1. 7msec. The UIM of the present invention can obtain this material effect by reinforcing a surface layer by a structural change therein. In this surface layer, a more solid co-solubilized structure (a + Si ) + Si) is formed by the two-phase condition of the initial structure (α + co-solvent U + Si) + Si). This process is also accompanied by the fact that the contents move into the surface under the influence of ultrasonic shock, and substantially reflect the objective ability of strengthening the A-Si alloy due to the precipitation of ruthenium in the near surface layer. According to the UIT/UIM of the present invention, another material effect obtained in the aluminum alloy is the property of the 2024-T351 alloy which restores the corrosion peeling. After the UIT of the present invention, the exfoliated sample has a 33% increase in the drop strength (19% for untreated and unpeeled materials) and a final strength increase of 24% (for untreated unpeeled materials, after UIT/UIM, Can be increased to the general strength of the material within the precise measurement range). This result is shown in Figures 78 to 79. Preferably, the UIT conditions for obtaining the effect of this material are as follows: f—36 kHz; dents 5×17 mm, R25 mm; A—18 # m; NI64; calendar force 3 kg; feed: 400 mm/min; Give: 0. 5min / stroke; ultrasonic shock duration: 1.0-1. 3msec. This material effect is obtained by the supersonic 101 wave impact diffusion at the grain boundary. The other material effect obtained by the UIT' in the aluminum alloy according to the present invention is to increase the cycle life of the sample. The 7075_T6 alloy is well formed and cut from the wing's case panel, in a slightly corroded sample with a factor of 3.2 and a severely corroded sample with a factor of 2.9. Fig. 8A shows the effect of the UIT of the present invention on the fatigue resistance of samples having different degrees of corrosion. Preferably, the UIT conditions for obtaining this material effect are as follows: f - '36 kHz; dents 5 x 7 mm, R 25 mm; A - 20 ym; NI 64; pressure - 3 kg; feed - 400 mm / min; Mm. 5mm / stroke; ultrasonic shock duration: 1.0-1. 3msec. The present invention unchanges the crack collection mechanism. Therefore, for a corroded sample without UIT, the crack starts to accumulate from intergranular cracks at the interface between the corroded region and the substrate, and the crack does not aggregate for the sample in which the UIT of the present invention is subjected to slight corrosion. This effect can be achieved by mechanically closing the grain boundaries and then spreading the ultrasonic waves in areas of intergranular corrosion damage under the influence of dense ultrasonic plastic deformation. According to the UIT of the present invention, another material effect obtained in the aluminum alloy is a more refined structure of the cold-rolled sheet of 2024-T351 alloy (average from ΐ6·52ηιπ to 8-lmn), compared to the initial state. This result is shown in Figures 81 to 82. More specifically, Fig. 81 shows the surface layer before the ruthenium treatment, and Fig. 82 shows the finer grain structure refined by the UIT. Preferably, the UIT conditions for obtaining the effect of this material are as follows: f - 36 kHz; dents - 5 x 17 mm, R 25 mm; A - 15 / zm; NI 64; pressure - 3 kg; feed: 1000 mm / min; 〇5mm/stroke; ultrasonic shock duration 102 1336730: 0.9-1. 2msec. The reason for this material effect of grain refining is as follows: due to additional deformation, a high-difference density and a paired structure are formed; a micro-f structure is formed, and the micro-structure is sub-divided into submicron grains; and, the sub-crystal The granules are further broken into equiaxed (eqUiaxecj). According to the UIT of the present invention, another material effect obtained in the alloy of the alloy (especially the cold-rolled sheet of 2024-T351 alloy) is the movement of the precipitate and the generation of a microbelt of l〇-15mn width. This is accompanied by a process in which the submicron grains are self-aligned, and the resistance of the intermediate structure to mechanical and corrosion damage of the nanoscale in the surface layer is increased. Therefore, 'the two effects that occur due to the UIT of the present invention are an increase in the microhardness in the surface layer' and an increase in the static strength of the material, and a decrease in the distribution density of the deposited material (that is, a structural stress concentration) causes fatigue. The conditions for strength improvement 'and the structural homogeneity in the surface layer increase. This effect is shown in Figures 83 to 85. More specifically, Fig. 83 shows the microhardness distribution, Fig. 84 shows the surface layer structure before the UIT process of the present invention, and Fig. 85 shows the microstrip in the UIT sample. Examination of precipitates using energy dispersive spectroscopy (EDS) indicates that these precipitates are rich in A1, Cu, Fe, Μ, and Si. However, the density of these precipitates was found to have a minimum at the surface of the UIT as well as near the surface. As a result of comparison with the as-rolled state, it is shown that the size of the precipitate after the UIT exhibits a reduced ratio, and its density shows a maximum within the band. By comparing the above observations as a whole, the potential stress concentration distribution density is generally reduced at the structural level. This can be considered as a necessary condition for increasing the ability of the material to resist the formation of fatigue damage. Preferably, the UIT conditions for obtaining the effect of this material are as follows: f - 36 kHz; pin 5 x 17 mm, R 25 mm; A - 18 / / m; NI 64; pressure - 3 kg; feed: 103 丄ΓΓΓΓ lateral feed: GW Stroke; duration of ultrasonic shock: 乂: sec. This material effect is obtained by the geometric dynamic recrystallization process, and the energy and high temperature can reach a critical level.

致〉儿;殿物產生移動。在任付彳主# A 在任仃h形中’此效果伴隨著超音波 衝擊、局邵加熱、熱移除、正常化超音波的分佈等正常化 作用’因此’也伴隨著金屬塑性變料正常化。To the children; the temples move. In the role of Ren Fu #主# A in the 仃h shape, this effect is accompanied by the normalization of ultrasonic shock, local heat, heat removal, normalized ultrasonic distribution, etc. .

根據本發明的UIT,在黃_中所獲得的材質效果,是腐 域勞強度的增加,特別是eu3黃銅推進器⑽lgFe4N14)e 此結果顯示於圖86至87 +。更特別地,圖86顯示在未處 理的樣本表面上之腐㈣壞’且圖87顯示在UIT之後的樣 本表面。最好’欲獲得此材質效果的UIT條件乃是如下:f —27kHz ; p—900W ; A—達到 3〇_ ;銷—3x2〇mm,R3㈣。此 材質效果是藉由以下方式而獲的,引進高程度的壓縮應力,According to the UIT of the present invention, the material effect obtained in the yellow _ is an increase in the rot strength, especially the eu3 brass pusher (10) lgFe4N14)e. The results are shown in Figs. 86 to 87 +. More specifically, Fig. 86 shows that the rot (four) is bad on the untreated sample surface and Fig. 87 shows the sample surface after the UIT. The best UIT conditions for obtaining this material effect are as follows: f - 27 kHz; p - 900 W; A - up to 3 〇 _; pin - 3 x 2 〇 mm, R3 (four). This material effect is obtained by introducing a high degree of compressive stress.

修改表面層結構,在例如孔洞的結構缺陷之邊界關閉的超 音波擴散,對抗損壞’以及抑制微觀與巨觀程度的中間結 構損壞。 由於具有不同本性的裂縫表現出主要種類的金屬退化 之·王要最終證據,所以,在裂缝引發與發展的動力學上,UIT 效果的幾種特定方法包括: (a)「非常」平滑的表面,其粗糙度例如不超過〇. , 且殘餘壓縮應力引發到相當小的深度(〇7則j),其中,這樣 的表面允許在裂縫引發中的「長效」延遲,而可能在開始 之後產生更快速的裂縫發展,以及,藉由上述本發明的UIT 技術所產生之抑制; 104 1336730 (b) 具有粗糙度0 5/zm以上的平滑表面,完整無損的 中間結構,以及壓縮應力被引發至15mm的中間深度,這 一點將允許對開始之後的裂縫引發與生長的較大材質抵抗 性,在南壓縮應力場中至更明顯的深度,但不小於〇. 1.5mm ; (c) 具有完整無損表面中間結構的平滑表面(較少的表 面損壞可以到達不大於〇 〇〇3随的深度),亞表面層中的細 微晶粒,以及壓縮應力被引發至2. 5mm的更大深度,如此, 導致對開始之後的裂缝引發的較大材質抵抗性,且減緩裂 縫生長,在細微晶粒結構及壓縮應力場的區域中; (d) 具有完整無損表面中間結構的平滑表面(較少的表 面損壞可以到達不大於〇. 〇〇8mm的深度),近表面層中的細 微晶粒與非晶質結構,以及壓縮應力被引發至指定材質的 最大深度(高達4_ 0mm),使用受控制的超音波衝擊,如此, 導致對開始之後的裂縫引發之較大材質抵抗性,且減緩裂 缝生長,在細微晶粒及/或非晶質結構的區域内,且在壓縮 應力場中持續裂縫阻止,這些壓縮應力大致上可以對抗被 處理材質的降伏強度。 此外’開始裂縫產生硬化,而且,藉由本發明u I τ的 以下效果,可阻止發展中的疲勞裂縫: (a) 裂缝邊界的擴散結合; (b) 裂縫發展區沉浸到殘餘壓縮應力區(裂縫保存); (c) 移除破裂的金屬表面層(類似研磨)到未受損金屬。 上述材質效果可藉由在柔性與強力相位期間控制超音 105 波衝擊參數而獲得◊而且 則是一項牿砝沾 叹疋超音波衝擊參數的主要準 此外,«實驗或專業料,^.料奸制深度的要求。 此,μη 寻m可設疋超音波衝擊參數。因 Λ明,控制超音波衝擊參數的深产,特$ β A 衝擊開始時的合成速衣度特別疋在 ^衝擊量’重複速率,以及衝擊 = 幅與相位’係根據實驗或專業資料的特定Modifying the surface layer structure, the ultrasonic wave that is closed at the boundary of the structural defect such as the hole, resists damage' and suppresses the intermediate structure damage of the microscopic and macroscopic extent. Since the cracks with different natures show the final evidence of the main types of metal degradation, the specific methods of UIT effects in the dynamics of crack initiation and development include: (a) "very" smooth surface , the roughness of which, for example, does not exceed 〇., and the residual compressive stress is induced to a relatively small depth (〇7, j), wherein such a surface allows for a "long-term" delay in crack initiation, which may occur after the start Faster crack development, and suppression by the UIT technique of the present invention described above; 104 1336730 (b) Smooth surface with roughness above 0.5/zm, intact intermediate structure, and compressive stress induced to 15mm intermediate depth, which will allow for greater material resistance to crack initiation and growth after the start, to a more pronounced depth in the south compressive stress field, but not less than 〇. 1.5mm; (c) intact a smooth surface of the intermediate structure of the surface (less surface damage can reach a depth not greater than 〇〇〇3), fine grains in the subsurface layer, and compression Is induced to a greater depth of 2. 5mm, thus, resulting in greater material resistance to cracks after the start, and slowing crack growth, in the area of fine grain structure and compressive stress field; (d) complete Non-destructive surface smooth surface of the intermediate structure (less surface damage can reach no more than 〇. 〇〇 8mm depth), fine grain and amorphous structure in the near surface layer, and compressive stress is induced to the maximum of the specified material Depth (up to 4 mm), using controlled ultrasonic shock, thus resulting in greater material resistance to cracks after initiation and slowing crack growth in areas of fine grain and/or amorphous structure And continuous crack prevention in the compressive stress field, these compressive stresses can substantially resist the fall strength of the material being processed. In addition, 'the crack starts to harden, and the following effects of u I τ of the present invention can prevent the development of fatigue cracks: (a) diffusion bonding of the crack boundary; (b) the crack development zone is immersed in the residual compressive stress zone (crack) ()) Remove the cracked metal surface layer (like grinding) to the undamaged metal. The above material effects can be obtained by controlling the supersonic 105-wave impact parameters during the flexible and strong phase, and it is the main criterion for the smashing of the ultrasonic shock parameters. «Experimental or professional materials, ^. The requirements of the depth of the rape. Therefore, μη mm can be set to the ultrasonic impact parameter. Because of the prominence of controlling the deep-impact parameters of the ultrasonic shock parameters, the synthetic speed at the beginning of the special $βA impact is particularly at the 'shock amount' repetition rate, and the impact = amplitude and phase' is based on the specificity of the experimental or professional data.

=加以界定’其中’這些參數是根據特定的技術要求以 實際結果而以5%的分散性設定成任意值。 b上述結果證實使用本發明的超音波衝擊技術(根據本發 月所研發出來的)之高技術效率,能抑制引發金屬退化的現 ,及假如在機器與結構工作期間所發生的退化。= Defined 'where' these parameters are set to arbitrary values with 5% dispersion based on actual results according to specific technical requirements. b The above results demonstrate that the high technical efficiency of the ultrasonic shock technique of the present invention (developed according to this month) can suppress the occurrence of metal degradation and the degradation that occurs during the operation of the machine and structure.

、要知道的疋可以藉由單獨或組合方式,利用上述工程 万式在材質上防止或抑制退化的上述種類或徵兆,以提供 至少一項想要的材質效果,達成任何想要的技術效果或任 務。例如,可以個別地對付腐蝕破裂為主的退化,以達成 項技術效果,或者,例如,以組合方式對應熱破裂及/或 姓’達成另一項技術效果。因此,不同的資料元素是可 以互換的’以達成用於不同任務的不同結果或技術效果。 對於熟知此項技術者來說,在上述說明的範圍内,仍 可以產生許多不同的修改。落在熟知此項技術者能力中的 這類修改,仍形成本發明的一部分,且由以下的申請專利 範圍加以涵蓋。 【圖式簡單說明】 圖1顯示壽命對於MnSi鋼的管金屬之易碎狀態(T5())轉 106 1336730 變溫度上的影響(先前技術)。 圖2顯示產生破裂的時間卜以及17MnSi鋼管的起初應 力強度係數Ki之間的關係(先前技術),此鋼管有(1)剛製造 好、(2)工作管’以及(3)緊急管三種樣本。 圖3顯示工作對於變形老化傾向的影響(先前技術)。 圖4顯示老化管的面積減少(先前技術)。 圖5顯示在延長工作3〇年之後,17MnSi鋼的管金屬之 内部摩擦Q—1的時間相關性(先前技術)。 圖6顯示緊急庫存中17MnSi鋼的管金屬之内部摩擦q-1的時間相關性(先前技術)。 圖7顯示與鋁合金的高溫應用有關之潛在損壞機制(先 前技術)^ 圖8顯示氫損壞的不同分類(先前技術)。 圖9顯示電化學腐蝕過程的示意圖(先前技術)。 圖10顯示金屬原子離子轉變成溶液的雙重電化學層形 成之示意圖(先前技術)。 圖11顯示從溶液轉變成金屬表面的陽離子的雙重電化 學層形成之示意圖(先前技術)。 圖12顯示在緊急庫存管與工作2〇年之後的管之管部 位(鋼X65)的表面上所獲得的表面微硬度資料之完整性(先 前技術)。 圖13顯示具有鏡面精度且具有能清楚指出端面成長的 斷口形像(剪力模式成長)的原始材質之表面裂縫開始與裂 縫成長(先前技術)。 107 1336730 圖14顯示具有EDM精度且具有顯示多個裂縫核心證據 的近表面區域之原始材質的表面裂缝開始與裂縫成長(先前 技術)。 圖15顯示具有延伸至大約15〇 深度的端面區域, 以及被裂缝狀疲勞破裂所包圍的端面區域之S11q_2qq%_45。 CS0樣本的角落裂縫開始位置(先前技術 圖16顯示具有能指出表面裂缝開始、裂縫分支以及繁 殖路徑的斷口形像之LSP 10GW/cm2(2個動作)的裂缝開始與 早期裂缝成長(先前技術)。 圖17顯示具有能指出表面裂縫開始、裂缝分支以及繁 殖路徑的斷口形像之LSP 10GW/Cm2(3個動作)的裂縫開始與 早期裂縫成長(先前技術)。 圖18顯示具有能指出來自典型彈丸錘打凹痕的表面裂 縫開始以及裂縫分支之斷口形像的雙重處理之裂縫開始與 早期裂缝成長(先前技術)。 圖19與20顯示空間中心或體心的立方體晶格(先前技 術)。 圖21與22顯示面心立方體晶格(先前技術)。 圖23至25顯示簡單立方體晶格中的主要滑動裂縫平 面(先前技術)。 圖26顯示鑄鐵的微結構(先前技術)。 圖27顯示退火鐵的微結構(先前技術)。 圖28至30顯示在鋅的單晶體渾圓樣本之張力下的滑 動(先前技術)。 108 1336730 圖31顯示變形鐵的微結構(先前技術)。 圖32顯示未變形鐵的微結構(先前技術)。 圖33顯示在鐵的未蝕刻金相剖面上的滑動線(先前技 術)。 圖34與35顯示一震盪系統,其中,在此震盪系統從 一被處理表面彈回所導致的彈性恢復力,以及連接到一凹 痕益的障盈系統端之超音波震盛之影響下,超音波衝擊伴 隨著震盧系統的移動。The cockroaches to be known can be used to prevent or suppress the above-mentioned types or signs of degradation on the material by means of the above-mentioned engineering singularly or in combination, to provide at least one desired material effect, to achieve any desired technical effect or task. For example, corrosion-based degradation can be dealt with individually to achieve a technical effect, or, for example, in combination with thermal rupture and/or surname&apos; to achieve another technical effect. Thus, different data elements are interchangeable to achieve different results or technical effects for different tasks. Many variations may still be made to those skilled in the art within the scope of the above description. Such modifications, which fall within the capabilities of those skilled in the art, still form part of the present invention and are covered by the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows the effect of lifetime on the variability of the tube metal of MnSi steel (T5()) to 106 1336730 (previous technique). Figure 2 shows the relationship between the time when the crack occurred and the initial stress intensity coefficient Ki of the 17MnSi steel pipe (previous technique). The steel pipe has three samples: (1) just manufactured, (2) working pipe', and (3) emergency pipe. . Figure 3 shows the effect of work on the tendency to deform aging (prior art). Figure 4 shows the area reduction of the aged tube (prior art). Figure 5 shows the time dependence of the internal friction Q-1 of the tube metal of 17MnSi steel after 3 years of extended work (prior art). Figure 6 shows the time dependence of the internal friction q-1 of the tube metal of 17MnSi steel in emergency stock (prior art). Figure 7 shows the potential damage mechanism associated with high temperature applications of aluminum alloys (prior art). Figure 8 shows a different classification of hydrogen damage (prior art). Figure 9 shows a schematic of an electrochemical corrosion process (prior art). Figure 10 shows a schematic diagram of the formation of a dual electrochemical layer in which metal atom ions are converted into a solution (prior art). Figure 11 is a schematic view showing the formation of a double electrochemical layer of a cation which is converted from a solution to a metal surface (prior art). Figure 12 shows the integrity of the surface microhardness data obtained on the surface of the tube section (steel X65) after the emergency stock tube and 2 years of operation (prior art). Fig. 13 shows the surface crack initiation and crack growth of the original material having specular precision and having a fracture shape (shear mode growth) which clearly indicates the growth of the end face (prior art). 107 1336730 Figure 14 shows surface crack initiation and crack growth of the original material with EDM accuracy and near surface area showing multiple crack core evidence (prior art). Fig. 15 shows an end face region having a depth of about 15 延伸 and an end face region surrounded by crack-like fatigue cracking, S11q_2qq%_45. The corner crack start position of the CS0 sample (previously, Fig. 16 shows crack initiation and early crack growth with LSP 10GW/cm2 (2 actions) indicating the start of the surface crack, the fracture branch and the fracture pattern of the propagation path (previous technique) Figure 17 shows crack initiation and early crack growth (previous technique) with LSP 10GW/Cm2 (3 actions) indicating the start of surface cracks, fracture branches, and fracture patterns of the propagation path. Figure 18 shows that it can be pointed out from a typical The crack initiation of the surface crack of the projectile hammer and the double treatment of the fracture pattern of the fracture branch begin with the early crack growth (previous technique). Figures 19 and 20 show the cubic lattice of the center of the space or body (previous technique). Figures 21 and 22 show a face centered cubic lattice (prior art). Figures 23 through 25 show the major sliding crack planes in a simple cubic lattice (prior art). Figure 26 shows the microstructure of cast iron (prior art). Microstructure of annealed iron (prior art). Figures 28 to 30 show the sliding under the tension of a single crystal round sample of zinc. Prior art.) 108 1336730 Figure 31 shows the microstructure of deformed iron (prior art) Figure 32 shows the microstructure of undeformed iron (prior art) Figure 33 shows the sliding line on the unetched metallographic section of iron (previously Fig. 34 and 35 show a oscillating system in which the elastic restoring force caused by the oscillating system bounces back from a treated surface, and the ultrasonic vibration of the barrier system connected to a dent Under the influence, the ultrasonic shock is accompanied by the movement of the shock system.

圖36顯示在本發明的超音波衝擊期間之塑性變形分 佈。 圖37顯示超音波衝擊的頻率圖。 圖38顯示任意對準的隨機超音波衝擊。 圖39顯示一震盪系統即時運動的一部分圖形。 圖40a至40c顯示在縮減成一凹痕器柄的震盪系統端, 此震盧系統的速度向量之先前、軟性接觸以及滞後/柔性衝 擊。Figure 36 shows the plastic deformation distribution during the ultrasonic shock of the present invention. Figure 37 shows the frequency plot of the ultrasonic shock. Figure 38 shows an arbitrary aligned random ultrasonic shock. Figure 39 shows a portion of the graph of an instantaneous motion of a oscillating system. Figures 40a through 40c show the previous, soft contact and hysteresis/flexible impact of the velocity vector of this quake system at the end of the oscillating system that is reduced to a dent handle.

圖41顯示圖40as40c的震盈系統之速度的向量圖。 圖42顯示任意對準的超音波衝擊之示波器圖形。 圖43顯示在UIT的溝槽形成之前,焊接接點的犯之 傳統區域。 圖44顯示在UIT期間的隨機衝擊條件下,在局部過度 強化所導致的溝槽邊緣上之中間缺陷。 圖45顯示在UIT期間的隨機衝擊條件下在局部過度 強化所導致的溝槽中心内之中間缺陷。 109 1336730 圖46顯示在習知強化錘打之後的中間結構缺陷。 圖47顯示在根據本發明的方法實施UIT之後的溝槽中 間結構的狀態。 圖48顯示30 μ m振幅的獨立與明確均勻(時間)分佈。 圖49顯示超音波振幅在一凸起的拋物線上之明確分 佈。 圖50顯示超音波振幅在一凹陷的拋物線上之明確分 佈。 圖51顯示根據線性定律從開始的振幅之明確增 加0 圖52顯示鑄鐵的微硬度分佈之圖形。 圖53顯示鑄鐵的殘餘應力分佈之圖形。 圖54顯示一未處理樣本在100/zm深度處的鎮鐵結構 之腐蝕強度。 圖55顯示一 UIT處理過的樣本在lOOym深度處的鎮 鐵結構之改良腐姓強度。 圖56顯示受UIT處理以及未受處理的樣本,在關於腐 蝕的自來水中進行測試之比較結果。 圖57顯示多數焊接鋼材樣本的改良疲勞抵抗性之圖 形,這些樣本分別為剛焊接好的、使用5mm銷實施UIT之 後的、經鐵鐘鐘打之後的、經彈丸錘打之後的、經TIG整 理過的、經TIG整理且接著實施UIT的,以及使用3mm銷 實施UIT之後的。 圖58顯示鋼的焊接樣本之改良疲勞抵抗性之圖形。 110 1336730 圖59顯示鋼的改良腐触疲勞強度之圖形。 圖60顯示鋼的改良衝擊疲勞強度之測試結果的圖形。 圖61顯示一具有晶粒縮減範圍的高強度鋼之再分割結 構。 圖62與63顯示在一主要管路的i〇Mn2VNb鋼焊接接點 以及高強度鋼SUJ2内的白層》 圖64與65顯示UIT對於焊接碳造船鋼中的金屬結晶 化之影響。 圖66與67顯示鋼樣本的改良機械特性。 圖68顯示8mm短柄焊接點的S-N曲線之圖形,以顯示 鋁合金製成的樣本之疲勞限度。 圖69顯示具有縱向附件的8mm樣本的s-N曲線之圖形, 以顯示在鋁合金中焊接點的高週期疲勞強度的改良。 圖70顯示具有重疊接點的8mm樣本的S-N曲線之圖形, 以顯示在链合金中焊接點的高週期疲勞強度的改良。 圖71與72顯示對多孔性抑制到2. 5mm的深度,以及 銘合金製成的鑄輪之壽命延件。 圖73與74顯示在鋁合金製成的鑄輪之處理中的維持 衝擊強度。 圖75與76顯示梦在鋁合金内的沉殿物。 圖77顯示矽在鋁合金中的沉澱物之微硬度分佈的圖 形。 圖78與79顯示在腐蝕剥落之後,鋁合金的強度特性 之改良。 111Figure 41 shows a vector diagram of the velocity of the shake system of Figure 40as40c. Figure 42 shows an oscilloscope graph of an arbitrary aligned ultrasonic shock. Figure 43 shows the conventional area of the solder joint before the formation of the trench of the UIT. Figure 44 shows the intermediate defects on the edge of the trench caused by local over-strengthening under random impact conditions during UIT. Figure 45 shows the intermediate defects in the center of the trench caused by local over-strengthening under random impact conditions during UIT. 109 1336730 Figure 46 shows intermediate structural defects after conventional reinforcement hammering. Figure 47 shows the state of the interstitial structure of the trench after the UIT is implemented in accordance with the method of the present invention. Figure 48 shows the independent and well-defined uniform (time) distribution of the 30 μm amplitude. Figure 49 shows the clear distribution of the ultrasonic amplitude on a raised parabola. Figure 50 shows the clear distribution of the ultrasonic amplitude on a concave parabola. Figure 51 shows a clear increase in amplitude from the beginning according to the linear law. Figure 52 shows a graph of the microhardness distribution of cast iron. Figure 53 shows a graph of the residual stress distribution of cast iron. Figure 54 shows the corrosion strength of an iron-free structure of an untreated sample at a depth of 100/zm. Figure 55 shows the improved corrosion resistance of a UIT-treated sample at a depth of 100 μm. Figure 56 shows the results of a comparison of tests conducted in UHT-treated and untreated samples in tap water for corrosion. Figure 57 shows a graph of improved fatigue resistance for most welded steel samples, which were individually welded, after the UIT with a 5mm pin, after the iron clock, after the hammering, and by TIG After that, after TIG finishing and then implementing UIT, and using the 3mm pin to implement UIT. Figure 58 shows a graph of improved fatigue resistance of a welded sample of steel. 110 1336730 Figure 59 shows a graph of improved corrosion fatigue strength of steel. Figure 60 shows a graph of test results for improved impact fatigue strength of steel. Fig. 61 shows a re-segmentation structure of a high-strength steel having a grain reduction range. Figures 62 and 63 show the i〇Mn2VNb steel welded joints in a main pipe and the white layer in the high-strength steel SUJ2. Figures 64 and 65 show the effect of UIT on metal crystallization in welded carbon shipbuilding steel. Figures 66 and 67 show the improved mechanical properties of the steel samples. Figure 68 shows a graph of the S-N curve for an 8 mm short-handle weld to show the fatigue limit of a sample made of aluminum alloy. Figure 69 shows a graph of the s-N curve of an 8 mm sample with a longitudinal attachment to show an improvement in the high cycle fatigue strength of the welds in the aluminum alloy. Figure 70 shows a graph of the S-N curve for an 8 mm sample with overlapping contacts to show an improvement in the high cycle fatigue strength of the solder joints in the chain alloy. Figure 71 and Figure 72 show the reduction in porosity to a depth of 2. 5 mm, and the life extension of the cast wheel made of the alloy. Figures 73 and 74 show the sustained impact strength in the treatment of cast wheels made of aluminum alloy. Figures 75 and 76 show the sinking in the aluminum alloy. Figure 77 shows a graph of the microhardness distribution of the precipitate of cerium in an aluminum alloy. Figures 78 and 79 show the improvement in the strength characteristics of the aluminum alloy after the corrosion peeling. 111

Claims (1)

1336730 第095135182號 99年2月25曰替梅修正本 以年月M ·推(史)正賴頁 十、申請專利範圍: 一種用超音波對抗金屬退化與抑制退化之方法,係利 用能影響材質的至少一性質或狀態的任務所界定之衝擊 能量且根據材質的動態強度,該方法包含以下步驟: 在震盪系統接近欲處理表面以提供表面中間結構的完 整性期間,預先決定驅動脈衝引發的時刻,一超音波震 堡系統端的超音波震盪之相位與振幅於一範圍内,此範 園包括最大值、最小值以及衝擊開始時的合成速度向量 之補償值;以及 在超音波衝擊接觸該表面之後,在超音波衝擊期間設 疋並改變震盪振幅,以影響被處理表面底下的材質結 構,且根據震盪系統從被處理表面彈回的要求,直到超 音波衝擊結束為止, 其中,在震盪系統與表面的接近期間,在震盪系統接觸 該表面之前,設定超音波震盪的振幅與相位,致使,在1336730 No. 095135182 February 25, 1999 曰 修正 修正 修正 修正 修正 修正 修正 修正 修正 修正 修正 修正 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The impact energy defined by at least one property or state of task and depending on the dynamic strength of the material, the method comprises the steps of: predetermining the timing of the drive pulse initiation during the oscillation system approaching the surface to be treated to provide the integrity of the surface intermediate structure The phase and amplitude of the ultrasonic oscillation at the end of a supersonic seismic system are in a range including the maximum value, the minimum value, and the compensation value of the resultant velocity vector at the beginning of the impact; and after the ultrasonic shock contacts the surface Set the oscillating amplitude during the ultrasonic shock to change the oscillating amplitude to affect the material structure under the surface to be treated, and according to the requirements of the oscillating system to bounce back from the surface to be treated until the end of the ultrasonic shock, where the oscillating system and surface During the approach period, set the ultrasonic oscillation before the oscillation system contacts the surface. Amplitude and phase, resulting in 開始接觸時’衝擊的速度與能量對應於可維持表面層中 的材質之中間結構完整性的條件,以被處理表面塑二變 形的程度,而不會超過其飽和值,但是足以將—超音波 '材質内而使聲音損失維持在一範圍内,此範圍 足以用於指定的後續塑性變形,但並未超過材質q因素 所決定的範圍。 一種用超音波對抗金屬退化與抑制退化之方法,係利 =能影響材質的至少-性質或狀態的任務所界定之衝擊 此量且根據材質的動態強度,該方法包含以下步驟: 113 2. 1336730 +月曰修(更)正替換頁 在震4系統接近欲表由以提構的完 整性期間’預先決定驅動脈衝引發的時刻,一超音波震 盈系統端的超音波震盈之相位與振幅於一範圍内,此範 圍包括最大值、最小值以及衝擊開始時的合成速度向量 之補償值;以及 在超音波衝擊接觸該表面之後’在超音波衝擊期間設 定並改變震盪振幅,以影響被處理表面底下的材質結At the beginning of the contact, the velocity and energy of the impact correspond to the condition that the intermediate structural integrity of the material in the surface layer can be maintained, so that the surface to be treated is deformed to a degree that does not exceed its saturation value, but is sufficient to Within the material, the sound loss is maintained within a range that is sufficient for the specified subsequent plastic deformation, but does not exceed the range determined by the material q factor. A method of using ultrasonic waves to counter metal degradation and suppress degradation, which is an impact that can affect the at least-property or state of the material as defined by the task and according to the dynamic strength of the material, the method comprises the following steps: 113 2. 1336730 + month 曰 repair (more) is replacing the page in the shock 4 system close to the desired period by the time of the construction of the integrity of the 'predetermined drive pulse, the phase and amplitude of the ultrasonic shock at the end of a supersonic shock system Within a range, the range includes the maximum value, the minimum value, and the compensation value of the resultant velocity vector at the beginning of the impact; and after the ultrasonic shock contacts the surface, 'set and change the oscillation amplitude during the ultrasonic shock to affect the surface to be treated Bottom material knot 構,且根據震盪系統從被處理表面彈回的要求,直到超 音波衝擊結束為止; 在震後系統接近該表面的階段中,根據與變形的可允 許速率有關之表面材質的動態強度,設定用以控制震盪 速度的程度,藉此提供材質與表面層中間結構的完整 性;以及 在超音波衝擊期間,根據被處理材質對應於過度到指 定狀態的超音波衝擊作用之敏感性,設定超音波震盪強And according to the requirement that the oscillating system bounces back from the surface to be treated until the end of the ultrasonic shock; in the stage of the system approaching the surface after the earthquake, according to the dynamic strength of the surface material related to the allowable rate of deformation, the setting is To control the degree of oscillating speed, thereby providing the integrity of the intermediate structure between the material and the surface layer; and setting the ultrasonic oscillation during the ultrasonic shock according to the sensitivity of the treated material corresponding to the ultrasonic shock effect exceeding the specified state. Strong 度分佈,其足以獲得該材質結構以及表面下的材質之至 少一特性; 其中,控制震盪速度與超音波震盪強度分佈的程度, 係根據實驗數據或該任務所界定的專業技術而初步決 定。 3_ 如申請專利範圍第1項之方法,進—步包含: 在震盈系統接近表面的階段中,根據與變形的可允許速 率有關之表面材質的動態強度保留,設定用以控制震盪 速度的程度,藉此提供材質與表面層中間結構的完整t 114 .99. 2. 0 5 性;以及 一 1二; 在超音波衝擊期間,根據被處理材質對應於過度到指 疋狀態的超音波衝擊作用之敏感性,設定超音波震盪強 度刀佈,其足以獲得該材質結構以及表面下的材質之至 少—特性; 其中’控制震盪速度與超音波震盪強度分佈的程度,The degree distribution is sufficient to obtain at least one characteristic of the material structure and the material under the surface; wherein the degree of control of the oscillation speed and the distribution of the ultrasonic oscillation intensity is initially determined based on experimental data or the expertise defined by the task. 3_ As in the method of claim 1, the further step includes: in the stage of the arrival of the seismic system close to the surface, according to the dynamic strength retention of the surface material related to the allowable rate of deformation, setting the degree of control of the oscillation speed Thereby providing a complete t 114 .99. 2. 0 5 property of the intermediate structure of the material and the surface layer; and a 1 2; during the ultrasonic shock, according to the ultrasonic impact of the material being processed corresponding to the excessive to the finger state Sensitivity, setting the ultrasonic oscillating strength knives, which is sufficient to obtain at least the characteristics of the material structure and the material under the surface; wherein 'the degree of control of the oscillating velocity and the intensity distribution of the ultrasonic oscillating intensity, 係根據實驗數據或該任務所界定的專業技術而初步決 定。 如申凊專利範圍第1至3項中任一項之方法,其中, 在2陵變形以及該任務所預定的柔性衝擊相位期間該 材負的表面的變形之速率與能量,係足以填滿晶粒間缺 69二隙,而維持材質表面及其中間結構的完整性。 •如申請專利範圍第1至3項中任一項之方法,其中, 〜構缺陷邊界是在力量的影響下關閉的,該力量是在超It is initially determined based on experimental data or the expertise defined by the task. The method of any one of claims 1 to 3, wherein the rate and energy of deformation of the negative surface of the material during the deformation of the 2 and the flexible impact phase predetermined by the task are sufficient to fill the crystal There is a gap between the two particles, and the integrity of the material surface and its intermediate structure is maintained. The method of any one of claims 1 to 3, wherein the boundary of the defect is closed under the influence of force, and the force is super 曰波的柔和與強力相位之作用下所引起的材質表面塑性 變形期間發生的。 .如申請專利範圍第1至3項中任一項之方法,其中, 在材質表面的塑性變形所引起的彈性殘餘應力之影響 下’啟動缺陷邊界關閉表面。 7.如申請專利範圍第1至3項中任一項之方法,其中, 在具有預定重複速率的衝擊所引起的力量脈衝之影響 下’啟動缺陷邊界關閉表面。 •如申請專利範圍第1至3項中任一項之方法,其中, 在·'相位内的超音波震盪系統端之超音波震盪期間啟 Π5 1336730 ' 9a 2. .0 5 , Λ ' 4修(更)正矣: 動缺陷邊界關閉表面係伴隨著震盪系統震盪 系統分佈質量的移動之震盪速度的向量總合,減少至該 震I系統端,該相位對應於獲得合成震堡速度的相位 内,以及伴隨超音波衝擊所引起的力量脈衝,其中,該 合成震S速度與力量脈_捕此任務而預先決定的。 9.如申請專利範圍第】纟3項中任一項之方法,其中, 在衝擊脈衝與超音波的作用期間,在缺陷邊界位移所引 φ 起的摩擦力之影響下,啟動缺陷邊界關閉表面。 汛如申請專利範圍第i至3項中任—項之方法,其中, 在超音波衝擊所引起的力量脈衝之作用期間,啟動缺陷 邊界關閉表面係伴隨著超音波震a及穿過關閉邊界的波 之作用。 U.如申請專利範圍第1至3項中任一項之方法,其中, 在—控制相位中以超音波衝擊的重複速率復發且由材質 特性與任務所指定的脈衝作關間,在—升溫區域中啟 • 動缺陷邊界關閉表面,該升溫係由塑性變形以及在結構 缺陷與碎片的邊界上之摩擦而引起的。 12·如申請專利範圍第1至3項中任一項之方法,其中, 在震盪系統的靜態壓力、力量脈衝、邊界的摩擦、加熱、 超音波錢錢超音波應力波之料下,發生關閉邊界 的超音波自行擴散以及消滅。 13·如申請專利範圍第1至3項中任一項之方法,其中, 合金相位的沉澱物,包括鋁合金中的矽沉澱物,可提供 増加的材質強度’且由於控制超音波衝擊的緣故而被啟 [ 116 1336730 |9τ; -----—·ί 動。 年月.日修(更)正智 14. 如申請專利範圍第!至3項中任—項之方法,其中, 不定的相位’包括銘合金中的銅,在超音波接觸與衝 擊的1¾ &amp;中又到固定’以對抗固溶體中的沉殿物且防止 退化產生。 15. 如申請專利範圍第…項中任一項之方法,其中, 啟動固溶體中的沉殿物之逆向自行擴散,包括链合金中 φ 的銅’如此導致結構鍵的變弱,產生由外力引起的隱藏 結構應力集中,以及引發後續的金屬退化,該啟動係由 於在超音波衝擊的柔性相位之後正常化此超音波衝擊的 緣故而發生的’且伴隨合金的損失強度及延展性之恢 復。 16. 如申請專利範圍第^ 3項中任一項之方法,其中, 由於在柔性相位開始之後正f化此超音波衝擊的緣故, 所以’發生相位移動的啟動,該啟動伴隨著疲勞抵抗性 • 的増加,這是由於奈米結構等級的内部應力之潛在集中 分佈的密度減少之緣故。 如申請專利範圍第!至3項中任一項之方法,其中, 旋轉、弯曲、成對、再結晶、流動、滑動、降伏以及老 化中的金屬結構的自行控制,是以金屬的奈米結構、微 觀結構與巨觀結構的碎片等級而啟動的,這是由於控制 柔性相位的形成以及超音波衝擊參數的後續正常化之緣 故。 18·如申請專利範圍第1至3項中任一項之方法,其中, 117 1336730 个#’f日修(更 &gt;正替換f I 以微觀程度啟騎冑結 以作為增加退化抵抗性的方式,該啟動係在超音波衝擊 的影響下,由於任務所定義的超音波衝擊之柔和相位以 5 19.What happens during the plastic deformation of the material surface caused by the soft and strong phase of the chopping wave. The method of any one of claims 1 to 3, wherein the defect boundary is closed to the surface under the influence of elastic residual stress caused by plastic deformation of the surface of the material. The method of any one of claims 1 to 3, wherein the defect boundary is closed by the effect of a force pulse caused by an impact having a predetermined repetition rate. • The method of any one of claims 1 to 3, wherein during the ultrasonic oscillation of the ultrasonic oscillation system at the end of the phase, 5 1336730 '9a 2. .0 5 , Λ '4 repair (more) positive: the dynamic defect boundary closure surface is accompanied by the vector sum of the oscillating velocity of the moving mass of the oscillating system oscillating system, reduced to the seismic system end, which corresponds to the phase in which the synthetic seismic velocity is obtained. And a pulse of force caused by the ultrasonic shock, wherein the synthetic shock S speed and the power pulse are pre-determined by the task. 9. The method of any one of the preceding claims, wherein, during the action of the shock pulse and the ultrasonic wave, the boundary of the defect boundary is activated under the influence of the friction force induced by the displacement of the defect boundary . For example, in the method of claim ii to 3, wherein during the action of the power pulse caused by the ultrasonic shock, the start of the defect boundary closing surface is accompanied by ultrasonic shock a and passing through the closed boundary. The role of waves. U. The method of any one of claims 1 to 3, wherein in the control phase, the repetition rate of the ultrasonic shock recurs and the material characteristic is matched with the pulse specified by the task, and the temperature is raised. In the region, the dynamic defect boundary closes the surface, and the temperature rise is caused by plastic deformation and friction at the boundary between the structural defect and the debris. 12. The method of any one of claims 1 to 3, wherein the closing of the static pressure of the oscillating system, the force pulse, the friction of the boundary, the heating, and the ultrasonic wave stress wave of the ultrasonic wave occur. Ultrasonic waves on the boundary spread and destroy themselves. The method of any one of claims 1 to 3, wherein the precipitation of the alloy phase, including the cerium precipitate in the aluminum alloy, provides an added material strength 'and due to the control of ultrasonic shock And was opened [ 116 1336730 | 9τ; ------· ί moving. Year of the month. Japanese repair (more) Zhengzhi 14. If you apply for patent scope! The method of any of the three items, wherein the indefinite phase 'includes copper in the alloy, in the ultrasonic contact and impact of the 13⁄4 & in the fixed ' to resist the solid matter in the solid solution and prevent Degeneration occurs. 15. The method of any one of the preceding claims, wherein the reverse self-diffusion of the sinking matter in the solid solution, including the copper of φ in the chain alloy, causes the structural bond to weaken, resulting in The concentrated structural stress concentration caused by external force and the subsequent metal degradation caused by the normalization of the ultrasonic shock after the flexible phase of the ultrasonic shock' and the loss of strength and ductility of the alloy . 16. The method according to any one of the preceding claims, wherein, since the ultrasonic shock is being fucked after the start of the flexible phase, the start of the phase shift occurs, which is accompanied by fatigue resistance. • The increase in density is due to the reduced density of the potential concentration of internal stresses at the nanostructure level. Such as the scope of patent application! The method of any one of the three, wherein the self-control of the metal structure in the rotation, bending, pairing, recrystallization, flow, sliding, undulation, and aging is a nanostructure, a microstructure, and a giant view of the metal The fragmentation level of the structure is initiated due to the control of the formation of the flexible phase and the subsequent normalization of the ultrasonic shock parameters. 18. The method of any one of claims 1 to 3, wherein, 117 1336730 ##f日修(更&gt; is replacing f I with a microscopic degree of riding a knot as an increase in degradation resistance In this way, the starting system is under the influence of ultrasonic shock, due to the soft phase of the ultrasonic shock defined by the mission. 20. 及後續的強力相位之參數正常化的緣故而發生的。 如申請專利範圍第!至3項中任一項之方法,其中, 啟動非晶質化,以作為奈米等級的表面材質結構之最終 最佳化,該啟動係由於任務所定義的動態模型所引發的 過長〈緣故而發生的,該動態模型係用以控制柔和相位 且使超音波衝擊的參數正常化。 如申請專利範圍第!至3項中任-項之方法,其中, 控制超音波衝擊的柔和與強力相位,係被用以保護金屬 對抗起初條件下的退化集結,以及在長時間工作期間或 之後,防止並抑制結構内的材質退化。20. And the subsequent normal phase parameters are normalized. Such as the scope of patent application! The method of any one of the three, wherein the amorphization is initiated to be the final optimization of the surface material structure of the nanoscale, which is too long due to the dynamic model defined by the task. As a result, the dynamic model is used to control the soft phase and normalize the parameters of the ultrasonic shock. Such as the scope of patent application! The method of any of the three items, wherein controlling the soft and strong phase of the ultrasonic shock is used to protect the metal against degradation build-up under initial conditions, and to prevent and inhibit structural damage during or after prolonged operation The material is degraded. 21.如申請專利範圍第4 3項中任一項之方法,其中, 鋁合金受到保護,而對抗腐蝕剝落,而且/或,恢復及/ 或修護已經由於剥落而受損的鋁合金其他特性。 22·如申請專利範圍第1至3項中任一項之方法,其中, 獲得至少一技術效果,包括: 藉由高功率柔和超音波衝擊(PSUI),其具有與高功率柔 和超音波衝擊同步的驅動脈衝之適應的開關時間比例調 變(0/0TRM) ’而產生-補償保護障壁,且恢復受損材質 的特性,其中,為了實施驅動脈衝開關時間比例的這類 控制,使用脈衝寬度與振幅調變,此兩者係在同步超音 波衝擊的頻率增加需要—暫停或_過度過程的長度時受 118 到啟動,邊暫停不足以用於兩者之間的獨立預定震盧抑 制,而該過度過程不足以用於獨立恢復震盪,藉此達成: 在每個超音波衝擊期間,在時間與空間上,控制塑性 變形強度分佈; 以中間結構與微晶結構的比例,控制表面參數,材質的 應力變形狀悲’以及滲透至現有或潛在損壞區域内的深 度,及/或 在加熱、負載及/或環境的外部條件影響下的不穩定 區域中,穩定相位、結構的同質性,以及金屬特性。 如申請專利範圍第1至3項中任一項之方法,其中, 獲得至少一技術效果,包括: 對抗吸附,且防止吸附性内容物接觸結構碎片; 增加移動性,以及吸附性内容物與表面活性物質與吸 附性表面、材質的受損區域或材質結構的鍵結損失;及 /或 藉由增加表面層中的材質密度,使得被處理表面、中 間結構,以及表面的粗糙度、表面層中的殘餘應力,以 及表面材質對吸附的抵抗性達到最佳化。 如申請專利範圍第1至3項中任一項之方法,其中, 獲得至少一技術效果,包括: 増加在起初條件以及工作時對於熱與熱機械損壞的抵 抗性; 維持並恢復材質特性,此係根據產生分佈殘餘應力的 補償障壁、在累積熱與熱機械損壞的區域中緩和應力與 1336730The method of any one of claims 4 to 3, wherein the aluminum alloy is protected against corrosion and spalling, and/or, restoring and/or repairing other characteristics of the aluminum alloy that have been damaged by spalling . The method of any one of claims 1 to 3, wherein at least one technical effect is obtained, comprising: synchronizing with a high power soft ultrasonic shock by a high power soft ultrasonic shock (PSUI) The drive pulse is adapted to the switching time proportional modulation (0/0TRM)' to generate-compensate the protection barrier and restore the characteristics of the damaged material, wherein in order to implement such control of the drive pulse switching time ratio, the pulse width is used Amplitude modulation, which is caused by the increase in the frequency of the synchronized ultrasonic shock - the length of the pause or _excessive process is 118 to start, and the pause is not sufficient for independent predetermined shock suppression between the two, and The excessive process is not sufficient for independent recovery of the oscillation, thereby achieving: controlling the plastic deformation intensity distribution in time and space during each ultrasonic shock; controlling the surface parameters by the ratio of the intermediate structure to the microcrystalline structure, the material Stress-induced shape and depth to penetrate into existing or potentially damaged areas, and/or external strips in heating, load and/or environment Under the influence of the unstable region, the stable phase, homogeneous structure, and a metal characteristic. The method of any one of claims 1 to 3, wherein at least one technical effect is obtained, comprising: combating adsorption and preventing the adsorptive content from contacting structural debris; increasing mobility, and adsorbing the contents and surface The bond loss of the active material to the adsorbent surface, the damaged area of the material, or the material structure; and/or the roughness of the surface to be treated, the intermediate structure, and the surface, and the surface layer by increasing the density of the material in the surface layer The residual stress and the resistance of the surface material to adsorption are optimized. The method of any one of claims 1 to 3, wherein at least one technical effect is obtained, comprising: adding resistance to thermal and thermomechanical damage at initial conditions and during operation; maintaining and restoring material properties, Relieves stress in areas of cumulative thermal and thermomechanical damage based on the compensation barrier that produces distributed residual stress and 1336730 0勺2間,以;5力总鉍硌苽也立 以及在晶粒邊界的超音波擴散等方式的至少之 變形梯度 使摩擦偶合表面最佳化 失之方式。 以作為減少煞車時間與熱損 25.如申請專利範圍第!至3項中任—項之方法,並中, 獲得至少一技術效果,包括: ^ 保4受影響的原始表面,並恢復材質特性; 修改中間以及微晶結構,表面材質非晶質化,產生表 面材質内的殘餘補償應力之補償障壁,此係根據高功率 柔性超音波衝擊期間的「傳感器/凹痕器/表面」系統中 變化的震盪振幅之函數的公式化而定; 在微晶間腐蝕所引起的結構破壞之區域中,在晶粒邊 界的脈衝與超音波擴散;及/或 材質的塑性變形,增加晶粒尺寸均勾性,以晶粒材質 真滿0ΕΓ粒間的空間,或者在晶粒邊界的脈衝超音波擴 26·如申請專利範園第1至3項中任一項之方法,其中, 獲得至少一技術效果,包括: 在材質的起初條件中,產生電化學腐蝕補償障壁,且 恢復至少其一特性; 強化表面的微觀與巨觀幾何形狀,材質表面的微晶結 構之同質性,材質表面的奈米結晶化與非晶值化,作為 阻止陽極處理的方式; 120 1336730 » ------- 丨_.·期〇_更)正麵;:;丨 一表面塑形變形,產生壓縮應力的區域:及增加 法度α阻止表面缺陷的電化學腐银之局部化;及/或 使用阿功率柔性超音波衝擊機制,以形成強化的表面 條件及表面中間結構。 27.如申請專利範圍第11 3項中任-項之方法,其中, 獲得至少一技術效果,包括: 透過使用高功率柔性超音波衝擊機制,在材質的起初 條件中,產生化學腐敍補償障壁且恢復至少其一特性, 以強化品質並增進表面合金深度,而且’假如需要且需 要修護材質特性的話,可在—鱗片層上應㈣護性耐熱 塗層且重複這些操作。 28.如申清專利範圍第】至3項中任一項之方法其中, 獲得至少一技術效果,包括: 使用高功率柔性超音波衝擊機制,在受影響的材質之 起初條件中,產生輻射腐蝕補償保護障壁,且恢復至少 其一特性;藉此 應用保護性耐熱與耐輻射塗層,而強化品質且增加表 面合金深度; ϊ尤粗幸这度、中間結構、微晶粒結構以及材質非晶質化 而言’強化表面條件;以及 產生有利的壓縮應力場,且增加表面材質密度其中, 在一受損層上重複這些操作,能夠以受影響的起初材質 之和·度上’恢復表面材質的輻射抵抗性。 29.如申請專利範圍第1至3項中任一項之方法,其中, 121 1336730 獲得至少一技術效果,包括:The method of optimizing the frictional coupling surface is optimized by at least a deformation gradient of 0 scoops, 2, 5, and 超, and ultrasonic diffusion at grain boundaries. In order to reduce the time and heat loss of the brakes 25. For example, the scope of patent application! To the method of any of the three items, and obtain at least one technical effect, including: ^ Protecting the affected original surface and restoring the material properties; Modifying the intermediate and microcrystalline structure, the surface material is amorphous, resulting in Compensation barrier for residual compensating stress in the surface material, which is based on the formulation of varying oscillating amplitudes in the “sensor/denter/surface” system during high power flexible ultrasonic shock; In the region where the structural damage is caused, the pulse and ultrasonic diffusion at the grain boundary; and/or the plastic deformation of the material increases the grain size, the space between the grains is really full, the space between the grains, or the crystal The method of any one of claims 1 to 3, wherein at least one of the technical effects is obtained, comprising: generating an electrochemical corrosion compensation barrier in an initial condition of the material, And restore at least one of its characteristics; strengthen the microscopic and giant geometry of the surface, the homogeneity of the microcrystalline structure on the surface of the material, and the nanocrystallization of the surface of the material Value, as a way to prevent anode treatment; 120 1336730 » ------- 丨 _.· 期〇 _ _) front;:; 表面 a surface deformation deformation, the area that produces compressive stress: and increase the law The localization of electrochemical rosting that prevents surface defects by alpha; and/or the use of a power flexible ultrasonic shock mechanism to form enhanced surface conditions and surface intermediate structures. 27. The method of any one of the preceding claims, wherein at least one of the technical effects is obtained, comprising: generating a chemical smear compensation barrier in the initial condition of the material by using a high-power flexible ultrasonic shock mechanism And restore at least one of its characteristics to enhance the quality and increase the depth of the surface alloy, and 'if necessary and need to repair the material properties, the protective coating on the scale layer should be (4) protective heat-resistant coating and repeat these operations. 28. The method of any one of claims 1-3, wherein at least one of the technical effects is obtained, comprising: using a high power flexible ultrasonic shock mechanism to generate radiation corrosion in an initial condition of the affected material Compensating for the barrier and restoring at least one of its characteristics; thereby applying a protective heat and radiation resistant coating to enhance the quality and increase the depth of the surface alloy; ϊ 粗 这, intermediate structure, micro-grain structure and amorphous material In terms of chemistry, 'enhance surface conditions; and generate favorable compressive stress fields, and increase the surface material density. Repeat these operations on a damaged layer to restore the surface material to the sum of the affected initial materials. Radiation resistance. 29. The method of any one of claims 1 to 3, wherein 121 1336730 obtains at least one technical effect, comprising: 月日修&lt;更)正替换貞 藉由使用高功率柔性超音波衝擊(PSUI)機制’在材質 的起初條件中,產生補償保護障壁,以對抗腐蝕裂縫的 形成,且恢復至少其一特性;藉此 強化品質、黏著性或增加應用至可能或實際受損的表 面上之保護塗層的合金深度,將有利的壓縮應力引導到 材質表面内,以便在中間結構的強化或特定條件下,強 化或修改至一預定深度;The monthly repair &lt;more&quot; is replaced by the use of a high power flexible ultrasonic shock (PSUI) mechanism to create a compensation barrier against the formation of corrosion cracks in the initial condition of the material, and to restore at least one of its characteristics; Thereby enhancing the quality, adhesion or increasing the depth of the alloy applied to the protective coating on the surface that may be or actually damaged, guiding the favorable compressive stress into the surface of the material, in order to strengthen under the strengthening or specific conditions of the intermediate structure Or modified to a predetermined depth; 修改材質結構且產生材質結構的應力變形狀態,可以 使溶液陽離子在移動差排以及其他結構缺陷上無法產生 吸附’該等缺陷能減少表面能量且使原子鍵變弱; 由於吸附在材質表面上的微裂缝内之表面活性物質的 擦入作用’而強化表面中間結構且防止裂缝集結;及/ 或Modifying the material structure and generating the stress-deformation state of the material structure can prevent the solution cations from being adsorbed on the moving row and other structural defects. These defects can reduce the surface energy and weaken the atomic bonds; due to adsorption on the surface of the material The rubbing action of the surface active material in the microcracks to strengthen the surface intermediate structure and prevent crack buildup; and/or 在具有強化中間結構的被處理表面上,產生一壓縮應 力場’其量值與深度均足以對抗高裂縫繁殖速率,此速 率是藉由在裂縫底部的金屬之加速陽極分解而引起的, 其中’應力變形狀態一般是由張力應力集中而決定的。 30·如申請專利範圍第1至3項中任一項之方法,其中, 獲得至少一技術效果,包括: 使用高功率柔性超音波衝擊(PSljI)機制;藉此 強化表面合金品質、黏著性強度,以及鍍鋅塗層的密 度;及/或 在具有強化中間結構的被處理表面上,產生一壓縮應 122 1336730 力場,其量值與深度均足以對抗強度特性上的減少及碎 裂裂縫的形成,該等裂縫係藉由以下至少一方式引起 的:原子氫滲透到空隙、孔洞或其他晶格缺陷内;氫轉 換成能產生高碎片間壓力的分子氣體;及/或原子氮吸 附於零件與内部缺陷的表面上,該等内部缺陷形成有金 屬與雜質的化學化合物,這些雜質能減少材質的表面能 量以及碎裂抵抗性。On the treated surface with the strengthened intermediate structure, a compressive stress field is generated which is both large in magnitude and depth to resist the high crack propagation rate caused by accelerated anodic decomposition of the metal at the bottom of the crack, where ' The state of stress deformation is generally determined by the concentration of tensile stress. 30. The method of any one of claims 1 to 3, wherein at least one technical effect is obtained, comprising: using a high power flexible ultrasonic shock (PSljI) mechanism; thereby enhancing surface alloy quality, adhesion strength And the density of the galvanized coating; and/or on the treated surface having the reinforced intermediate structure, a compressive strain of 122 1336730 is generated, the magnitude and depth of which are sufficient to counteract the reduction in strength characteristics and the cracking of the crack. Formed, the cracks are caused by at least one of the following: atomic hydrogen permeates into voids, pores or other lattice defects; hydrogen is converted into a molecular gas capable of generating high inter-fragment pressure; and/or atomic nitrogen is adsorbed to the part On the surface with internal defects, these internal defects are formed with chemical compounds of metals and impurities, which can reduce the surface energy of the material and the resistance to chipping. 31·如申請專利範圍第1至3項中任一項之方法,其中, 獲得至少一技術效果,包括: 使用高功率柔性超音波衝擊,在表面上產生強化中間 結構與壓縮應力場,其量值與深度均足以對抗強度特性 上的減少,碎裂裂縫的形成,熔融金屬吸附滲透到固態 金屬預先破壞區内,表面能量減少,以及金屬破裂抵抗 性。 32‘ $申請專利範圍第U 3項中任一項之方法,其中The method of any one of claims 1 to 3, wherein at least one technical effect is obtained, comprising: using a high power flexible ultrasonic shock to generate a strengthened intermediate structure and a compressive stress field on the surface, the amount Both the value and the depth are sufficient to counteract the reduction in strength characteristics, the formation of fracture cracks, the penetration of molten metal into the pre-destructive zone of the solid metal, the reduction of surface energy, and the resistance to metal fracture. The method of any one of the U.S. patents, wherein 獲得至少一技術效果,包括: 使用高功率柔性超音波衝擊,在表面上產生強化穿 度、粗糙度、中間結構與壓縮應力場,其量值盥深&quot; =以對抗固態顆粒與材質結構分離,此分離係由於^ 2觸移動液體、氣體環境或侵人的固態顆粒的緣故,邊 者由於粒撞擊被影㈣表面上之緣故。 專利範圍第1至3項中任-項之方法,其中, 又于至少一技術效果,包括: 使用回功率柔性超音波衝擊,在表面上下產生強化密 123 d. I; 月9修(更)正瞀铂;; y中間結構條件與晶粒封裝尺寸r以;力 ”微觀應力場,其量值與深度収以對抗:在晶粒邊界 與亞結構上的微裂縫與孔洞(微空隙)形成、滑動、成對、 滑動平面的彎曲、形成薄片'晶粒的旋轉與相對移動、 =克塊體的旋轉與相對移動、多角化、擴散塑性、再 結晶化’及/或,以微觀與巨觀程度組合缺陷與結構損 壞。 、Obtaining at least one technical effect, including: using high-power flexible ultrasonic shock to produce enhanced penetration, roughness, intermediate structure and compressive stress field on the surface, the magnitude of which is deeper &quot; = against solid particles and material structure separation This separation is due to the movement of the liquid, the gaseous environment or the invading solid particles, which are caused by the impact of the particles on the surface of the (4). The method of any one of clauses 1 to 3, wherein, at least one of the technical effects comprises: using a back-powered flexible ultrasonic shock to generate a dense density on the surface 123 d. I; month 9 repair (more)瞀 瞀 Platinum;; y intermediate structural conditions and grain package size r; force "microscopic stress field, its magnitude and depth contrast: micro-cracks and pores (microvoids) formation on grain boundaries and substructures , sliding, pairing, bending of the sliding plane, forming a sheet of 'rotation and relative movement of the grains, = rotation and relative movement of the gram block, polyhedification, diffusion plasticity, recrystallization ' and/or to microscopic and giant The degree of combination of defects and structural damage. 队=申請專利範園第1至3項中任-項之方法,其中, 獲得至少一技術效果,包括:Team = the method of applying for any of the items in items 1 to 3 of the Patent Park, in which at least one technical effect is obtained, including: 使用高功率柔性超音波衝擊,在材質表面上產生材質 的強化密度與中間結構,以及在表面上使塑性變形與壓 縮£力#正ίί(化’其量值與深度均足以防止由於微結構 退化所引起的材質強度特性之減少,該結構退化包括分 子藉由微表面發展成一變形本體而從環境吸附,及/或 金屬相位條件在時間中的;定,以不穩定相位的轉 換作為代價,但在微結構中並未產生明顯的改變。 35.如申請專利範圍第1至3項中任一項之方法,其中, 獲得至少一技術效果,包括: 使用高功率柔性超音波衝擊,透過在表面上下塑性變 形的正常化以及壓縮應力場,而獲得被處理材質的強化 雀度與中間結構,其量值與深度均足以防止碎裂裂縫的 降伏強度之突然增加,這些裂缝是根據中子轉移到金屬 原子的能量在金屬晶格内的中予流之影響下,由原子移 動或移動串流而引起的,以及,防止之後形成高濃度空 124 1336730 更)正替換v j 缺這些玄缺係沿著周圍而受到具有增加密度的空隙原 子區域所圍繞。 36. 如申凊專利範圍第1至3項中任一項之方法,其中, 獲得至少一技術效果,包括:Using high-power flexible ultrasonic shock, the material's reinforced density and intermediate structure are produced on the surface of the material, as well as plastic deformation and compression on the surface. The magnitude and depth are sufficient to prevent degradation due to microstructure. The resulting reduction in the strength properties of the material, including degradation of the molecules from the environment by the development of the microsurface into a deformed body, and/or metal phase conditions in time; at the expense of unstable phase conversion, but 35. The method of any one of claims 1 to 3, wherein at least one of the technical effects is obtained, comprising: using a high power flexible ultrasonic shock through the surface The normalization of the upper and lower plastic deformation and the compressive stress field, and the obtained material and the intermediate structure of the material to be treated, the magnitude and depth of which are sufficient to prevent the sudden increase of the fracture strength of the fracture crack, which is transferred according to the neutron to The energy of a metal atom is caused by the movement of atoms or moving streams under the influence of the pre-current in the metal lattice. And, after a high concentration to prevent more air 1241336730) v j being replaced missing missing black lines along the periphery of the subject to the original sub-region having the void density increase surrounded. The method of any one of claims 1 to 3, wherein at least one technical effect is obtained, comprising: 使用高功率柔性超音波衝擊,其程度與時間參數均對 應於實驗發現的要求,以獲得被處理材質的強化密度, 而具有其中間結構的保證密度,且用於局部點加熱的形 成與正常化之條件,以及來自塑性變形區域、塑性變形 本身,以及在被處理表面上下的壓縮應力場之熱排棄速 率,其量值與深度均足以: 防止金屬的表面腐钱剝落’而形成應力集中並損 失強度,或者恢復這些損壞區域中的金屬特性,這些損 壞是由腐蝕與氫脆化的協同作用而引起的; 防止形成能引起材質沉澱的不穩定相位,導致結構鍵與 材質強度的減少程度,以及晶粒間腐蝕;The use of high-power flexible ultrasonic shock, the degree and time parameters correspond to the requirements found in the experiment, to obtain the strengthening density of the material to be processed, and the guaranteed density of the intermediate structure, and for the formation and normalization of local point heating. The conditions, as well as the rate of heat rejection from the plastic deformation zone, the plastic deformation itself, and the compressive stress field above and below the surface to be treated, are both of magnitude and depth sufficient to prevent metal surface rot and form stress concentration and Loss of strength, or recovery of metal properties in these damaged areas, caused by the synergistic effect of corrosion and hydrogen embrittlement; preventing the formation of unstable phases that can cause precipitation of materials, resulting in a reduction in structural bond and material strength, And intergranular corrosion; -消除結構上的微觀與巨觀缺陷,包括在關閉其邊 界且啟動自行擴散過程的多孔性或其他晶粒間斷裂; 啟動在結構碎片上的邊界之自行擴散,且消除在晶粒邊 界上的腐蝕破裂; -提供沉澱物的逆向擴散,且恢復穩定相位; -提供合金元素的沉澱物,增加被處理材質的集中 密度與強度; -在集中的區域中,確保結構機械應力的補償、再 分佈或減緩’這是藉由來自不穩定相位的固溶體之沉澱 125 1336730 物而引起的,及/或 —形成超細晶粒結構 及腐轴抵抗性。 非晶質化、增加材質強度以- Elimination of microscopic and macroscopic defects in the structure, including porosity or other intergranular fractures that close the boundary and initiate the self-diffusion process; initiate self-diffusion of the boundary on the structural debris and eliminate the boundaries at the grain boundaries Corrosion cracking; - Provides reverse diffusion of precipitates and restores stable phase; - Provides deposits of alloying elements to increase concentrated density and strength of treated materials; - Ensures compensation and redistribution of structural mechanical stresses in concentrated areas Or slowing down 'this is caused by the precipitation of 125 1336730 from the unstable phase of the solid solution, and / or - forming ultra-fine grain structure and corrosion resistance. Amorphous, increase material strength to 如申請專利範圍第1至3項中任-谓之方法,其中, 獲得至少一結果,包括: 、?ί進大量程度的壓縮應力,表面層微硬度的增加,及 ^保護中騎構對抗#鐵煞車鼓與煞車碟㈣工作與 過程引起的損壞。 38. 39. 如令請專利範圍第】至3項中任一項之方法,其中, 獲得至少一結果,包括: 藉由密集正常化塑性變形,修改表面結構層,產生壓 縮應力區域,及/或抑制在工作期間會引發中間結構損 壞的表面缺陷,以增加鱗鐵管中的腐蝕強度。 如中請專利範圍第!至3項中任一項之方法,其中, 獲得至少一結果,包括:For example, in the method of claim 1 to 3, wherein at least one result is obtained, including: ίInto a large degree of compressive stress, the increase in the micro-hardness of the surface layer, and the damage caused by the work and process of the protection of the rider and the brake disc (4). 38. The method of any of claims 1-3, wherein the obtaining at least one result comprises: modifying the surface structural layer by intensive normalized plastic deformation to create a region of compressive stress, and/ Or suppress surface defects that may cause damage to the intermediate structure during operation to increase the corrosion strength in the scale tube. For example, please ask for the scope of patents! The method of any of the three, wherein the obtaining at least one result comprises: 在應力集中區域中,引進大量程度的愿縮應力,滅力 集中減少,超音波塑性變形,以及被處理材質的結構修 改:其中超音波震盧、壓力與凹痕器尺寸的條件能確保 保護中間結構對抗工作期間的過程引起的損壞愈操作損 壞,以及確純用高功率柔性超音波衝擊而製備表面,、 以增加焊接鋼的疲勞抵抗性。 仉如申請專利範圍第u3项中任一項之方法其中, 獲得至少一結果,包括: 引進大量程度的壓縮應力到被處理表面與被處理材質 [S 126 1336730 . V pa: 2··:丨o fei修(更)正替w:; 内且修改其結構,其中,超音盪、-壓-另-遍^襄器- 尺寸的條件能確保在工作期間保護中間結構,且確保使 用逆超音波衝擊處理-表面,以強化鋼材的腐触疲勞強 度。 1.如申叫專利範圍第i至3喝中任一項之方法其中, 獲得至少一結果’包括: 乂奈米等級排列一塊體結構,且產生壓縮應力的區 1 β壓縮應力足以藉由準靜態與㈣負載在被處理材 質上的作用期間,阻止中間結構損壞,以強化鋼材的衝 擊強度’該等負載是藉由任務所定義的正常化超音波衝 擊以及操作力而引起的。 42.如申請專利範圍第!至3项中任一項之方法,其中, 獲得至少一結果,包括: 被處理材質的密集超音波塑性變形’以奈米等級排列 中間結構,及/或抑制鋼材的中間結構損壞。 43..如令請專利範園第】至3項中任一項之方法,並中, 獲得至少一結果,包括: 在-大量變形速率的正常化超音波超衝擊之影響下, 表面材質的密集超音波塑性變形,在相位轉變區域中的 局部暖身,及/或從一衝擊區域的快速熱量移除,藉此 在鋼材中獲得一白層。 4·如中請專利範圍第】至3項中任一項之方法, 獲得至少一結果,包括: 在超音波、聲音流、聲音壓力及氣穴的作用下,強化 1336730 [」力日修(更)正瞀換'Γί 擴散過程與金屬再結㉟,這些作収 與超音波震盪系統的載波震盪同步之凹痕器超音波震湯 所%發的,藉此強化鋼材的金屬結晶化。 ’ 45.如_請專利範圍第1至3項中任一項之方法,其中 獲得至少一結果,包括: 表面材質的密集超音波塑性變形,及/或透過超音波 衝擊期間的超音波所引起的擴散過程之啟動,藉此強化 鋼材的機械特性。 曰 46.如令請專利範園第1 S 3項中任—項之方法,其中, 獲得至少一結果,包括: 引進大量程度的壓縮應力,應力集中減少及/或產 生物理障壁,以對抗指定塑性變形以及對應於缺陷程度 的壓縮應力之區域内的中間結構缺陷形成藉此強化銘 合金的疲勞限度。 47·如申請專利範圍第U 3項中任—項之方法,其中, 獲得至少一結果,包括: 引進大量程度的壓縮應力,應力集中減少,及/或藉 曰固冷aa中的超音波再結晶以及在超音波衝擊期間啟動 4邊界上的超音波擴散,而抑制可能的中間結構損 壞’藉此強化銘合金的高週期疲勞強度。 、 48.如中請專利範圍第U 3項中任„項之方法,其中, 獲得至少一結果,包括: s在正常化超音波衝擊以及伴隨超音波衝擊對材質上的 影響之作用下,被處理材質的密集塑性變形、後表面層、 128 1336730 ΐ' / ''Τ'?7·—------- j手Λ曰修(更)正替換* Γ邊界上㈣音波純,錢t^ 曰下關閉’且以材質中的孔洞或斷裂之形式出現及/ 或抑制正巾化塑性變形與對應於純變形程度的壓瘤麻 :之區域内的中間結構缺陷,其中,該等效果特別是^ 超音波衝在受到超音波衝擊而變形的材質内 ^減少的變形阻力而引起的,藉此抑制多孔性到預定 冰度,且延長鋁合金的壽命。In the stress concentration region, a large amount of shrinkage stress is introduced, the concentration of the force is reduced, the ultrasonic deformation of the ultrasonic wave, and the structural modification of the material to be processed: the conditions of the ultrasonic shock, the pressure and the size of the dent are ensured to protect the middle. The structure is more resistant to damage caused by the process during the work, and the surface is prepared by high-power flexible ultrasonic shock to increase the fatigue resistance of the welded steel. For example, the method of any one of the claims of the invention, wherein the obtaining of at least one result comprises: introducing a large amount of compressive stress to the surface to be treated and the material to be treated [S 126 1336730 . V pa: 2··: 丨o fei repair (more) just replace w:; and modify its structure, in which the super-sonic, -pressure-other-pass-size device can ensure the protection of the intermediate structure during work, and ensure the use of inverse super Sonic shock treatment - surface to enhance the corrosion fatigue strength of steel. 1. The method of claiming any one of the patent scopes i to 3, wherein obtaining at least one result 'includes: 乂 nanometer ranks a block structure, and the zone 1 compressive stress generating compressive stress is sufficient Static and (iv) During the action of the load on the material being treated, the intermediate structure is prevented from being damaged to enhance the impact strength of the steel. These loads are caused by the normalized ultrasonic shock and operating force defined by the task. 42. If you apply for a patent scope! The method of any one of the preceding claims, wherein at least one result is obtained, comprising: dense ultrasonic plastic deformation of the material being processed', arranging the intermediate structure in a nanometer scale, and/or inhibiting damage to the intermediate structure of the steel material. 43. If the method of any one of the patents is applied to any one of the three items, to obtain at least one result, including: under the influence of the normalized ultrasonic super shock of a large deformation rate, the surface material Dense ultrasonic plastic deformation, local warm-up in the phase transition region, and/or rapid heat removal from an impact region, thereby obtaining a white layer in the steel. 4. The method of any one of the patent scopes 至 至3, to obtain at least one result, including: under the action of ultrasonic waves, sound flow, sound pressure and cavitation, strengthen 1336730 [" In addition, the 扩散 Γ Γ 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散 扩散The method of any one of claims 1 to 3, wherein at least one result is obtained, comprising: dense ultrasonic plastic deformation of the surface material, and/or caused by ultrasonic waves during ultrasonic shock The initiation of the diffusion process, thereby enhancing the mechanical properties of the steel.曰 46. The method of claim 1, wherein the obtaining of at least one result includes: introducing a large degree of compressive stress, reducing stress concentration and/or creating a physical barrier to counteract the designation The plastic deformation and intermediate structural defects in the region corresponding to the compressive stress of the degree of defect are formed to thereby strengthen the fatigue limit of the alloy. 47. The method of claim 9, wherein obtaining at least one result comprises: introducing a large degree of compressive stress, reducing stress concentration, and/or borrowing ultrasonic waves from the solid aa Crystallization and initiation of ultrasonic diffusion at the 4 boundary during ultrasonic shock, while inhibiting possible intermediate structural damage ' thereby enhancing the high cycle fatigue strength of the alloy. 48. The method of any of the items of U3 of the patent scope, wherein at least one result is obtained, including: s under the effect of normalizing ultrasonic shock and the influence of ultrasonic shock on the material, Intensive plastic deformation of the treated material, the back surface layer, 128 1336730 ΐ' / ''Τ'?7·------- j hand repair (more) is replacing * Γ border (4) sound pure, money t^ 曰下下' and the occurrence of holes or fractures in the material and/or suppression of the plastic deformation of the lining and the intermediate structure defects in the area corresponding to the degree of pure deformation, wherein the effects In particular, the ultrasonic wave is caused by the reduced deformation resistance in the material which is deformed by the ultrasonic shock, thereby suppressing the porosity to a predetermined degree of ice and prolonging the life of the aluminum alloy. 如_請專利範圍第K 3項中任一項之方法,其中, 獲得至少一結果,包括: 由於超印波塑性變形的緣故,維持或增加金屬(包括 鋼材與銘合金)内的衝擊強度,其中,由錄止塑性變 开〜構中的差排或其他結構缺陷之緣故,衝擊強度可以 在習知的塑性變形影響下減少,導致材質塑性的減少保 留。The method of any one of the claims, wherein the obtaining at least one result comprises: maintaining or increasing the impact strength in the metal (including the steel and the alloy) due to the plastic deformation of the super-printed wave, Among them, the impact strength can be reduced under the influence of the conventional plastic deformation, which results in the reduction of the plasticity of the material, due to the plasticity of the recording, the difference in the structure, or other structural defects. 49. 50.如申請專利範圍第4 3項中任一項之方法,其中, 獲得至少一結果,包括: 由於超音波衝擊參數的預定控制所引起的結構改變之 彖故在超音波衝擊加工期間的強化表面層,特別是鋼; 表面層内的起初結構之兩相條件的轉換,特別是在鋁 合金中,以及形成更加固態共熔結構;及/或 合金内容物移動到被處理表面,特別是鋁合金中的矽 内容物,藉此強化受影響的表面。 51·如申請專利範圍第4 3項中任一項之方法,其中, 獲得至少一結果,包括: I 129 1336730 ; ·*~——··〜·-— , ;99, 2, 05^ 在晶粒邊界的超音波齡一 峨更)正雜了 /皮衝擊,以便後、.恢 復鋁合金的特性。 52.=申請專利範圍第4 3項中任一項之方法,其中, 獲侍至少一結果,包括: 上提供曰0粒精煉’特別是在鋁合金中且增加其強度, =點是由於形成增加的差«度以及因為額外變形的 ,’°構’形成微帶結構,微帶結構再分劉成亞微晶粒,The method of any one of claims 4 to 3, wherein at least one result is obtained, comprising: a structural change due to predetermined control of the ultrasonic shock parameter during ultrasonic surge processing a reinforced surface layer, in particular steel; the conversion of the two-phase condition of the initial structure in the surface layer, in particular in an aluminium alloy, and the formation of a more solid eutectic structure; and/or the movement of the alloy contents onto the treated surface, in particular It is the ruthenium content in the aluminum alloy, thereby strengthening the affected surface. The method of claim 4, wherein at least one result is obtained, comprising: I 129 1336730; ·*~——··~·--, ;99, 2, 05^ The supersonic age of the grain boundary is more complicated.) The miscellaneous/skin impact is applied to restore the characteristics of the aluminum alloy. The method of claim 4, wherein the method of obtaining at least one of the results includes: providing 曰0 refining on the surface, particularly in the aluminum alloy and increasing its strength, = point is due to formation The increased difference «degrees and because of the extra deformation, the '° structure' forms a microstrip structure, and the microstrip structure is subdivided into Liu submicron grains. 或亞晶粒進—步破壞鱗軸等緣故而發生的。 53. 如申請專利範圍第1 $ ^ 弟1至3項中任—項之方法,其中, 獲仔至少一結果,包括: 曰以奈米等級與微觀等級’提供晶粒的幾何動態再結 阳’其中’衝擊能量與局部加熱的溫度達到—個相對於 材質有利結構條件來說很重要的程度,且能夠在銘合金 ”起微帶中的沉㈣之有利移動,這—點是由於正常 化此超音波衝擊,局部加熱、熱移除、超音波的分佈條Or the sub-grain advances and destroys the scale axis and so on. 53. For example, the method of applying for the patent scope 1st $^1 to 3 of the items, wherein at least one result is obtained, including: 曰 providing the geometric dynamics of the grain with nanometer and microscopic grades 'Where the impact energy and the local heating temperature reach a level that is important relative to the material's favorable structural conditions, and can move in the microstrip in the micro-belt (4). This is due to normalization. This ultrasonic shock, local heating, heat removal, ultrasonic distribution strip 件’以及金屬塑性變形的正常化等緣故,如此伴隨著金 屬強度以及特性退化抵抗性之增加。 认如申請專利範圍第u3項中任一項之方法, 獲得至少一結果,包括: ” 引進大量程度的壓縮應力,冑改表面層結構,在含有 孔洞的結構缺陷之邊界關閉的超音波擴散,對抗損壞, 以及抑制微觀與巨觀程度的中間結構損壞,藉此強化黃 銅的腐蝕疲勞強度。 只 55·如申請專利範園第1至3項中任一;之方法,其中 130 1336730 獲得至少 全士 果,包括 修(更)正齡The article 'and the normalization of the plastic deformation of the metal, etc., are accompanied by an increase in the resistance of the metal strength and the characteristic deterioration. A method of claiming any one of the scopes of claim 5, obtaining at least one result, comprising: ” introducing a large degree of compressive stress, tampering with the surface layer structure, and supersonic diffusion that is closed at the boundary of the structural defect containing the hole, Corresponding to damage, and suppressing the intermediate structure damage of the microscopic and macroscopic degree, thereby strengthening the corrosion fatigue strength of the brass. Only 55. For example, any one of the first and third items of the patent application garden; 130 1336730 Whole fruit, including repair (more) 柔力中:結構完整性的條件下,控制超音波衝擊的 ,:強力相位,可改變在包括銘合金的腐轉本内之 =裂縫集結機制’其中,在中間晶粒腐蝕損壞的區域 裂縫㈣與發展,是藉由關閉且隨後消除其邊界而 :止:,廷一點是在密集塑性變形以及後續的超音波擴 &amp;之^下而發生的’藉此增加材質對於腐触與疲勞損 壞的抵抗性。 56.如中請專利範圍第項中任—項之方法其卜 不同本性的裂縫之集結與發展之動力學,其可作為金屬 退化的主要種類之主要最後證據’藉由控制超音波衝擊的柔和與強力相位’可景彡_動力學,以龍並抑制此 退化,且獲得以下效果:In the soft force: under the condition of structural integrity, the control of the ultrasonic shock: strong phase, can be changed in the rot-containing book including the alloy of the alloy = crack assembly mechanism 'where the crack in the middle grain corrosion damage (4) And development, by closing and then eliminating its boundaries: stop: the point is caused by dense plastic deformation and subsequent ultrasonic expansion &amp; Resistance. 56. The method of arranging the term "part" of the patent scope, the dynamics of the assembly and development of cracks of different nature, which can be used as the main last evidence of the main types of metal degradation' by controlling the softness of ultrasonic shock With the strong phase 'spot 彡 _ dynamics, the dragon is suppressed and this degradation is achieved, and the following effects are obtained: -具有粗糙度不超過〇.5em的平滑表面,且殘餘壓 縮應力引發到大約0.7随的深度,其中,這樣的表面將 延遲裂縫的引發; 具有粗知度0.5々m以上的平滑表面,完整無損的 中間結構,以及壓縮應力被引發至大約15mm的深度, 這一點將使開始後的裂縫引發與生長之較長材質抵抗 性,在大量壓縮應力場中’允許至一預定的深度,但不 小於大約1. 5mm ; -具有完整無損表面中間結構的平滑表面,其中較 少的表面損壞可以到達不大於約0. 0〇3mm的深度,亞表 面層中的細微晶粒,以及壓縮應力被引發至大約2.5mm 131 1336730 的深度,如此,導致在細微晶粒結構及壓縮應力場的區 域中,對於開始之後的裂縫引發,產生較高的材質抵抗 性’且減緩裂縫生長;及/或- a smooth surface having a roughness of not more than 〇5em, and the residual compressive stress is induced to a depth of about 0.7, wherein such a surface will delay the initiation of the crack; a smooth surface having a roughness of 0.5 々m or more, intact The intermediate structure, as well as the compressive stress is induced to a depth of approximately 15 mm, which will cause the crack initiation and growth of the material after the start to resist, and is allowed to a predetermined depth in a large number of compressive stress fields, but not less than Approximately 1. 5 mm; a smooth surface having a complete lossless surface intermediate structure, wherein less surface damage can reach a depth of no more than about 0. 3 〇 3 mm, fine grains in the subsurface layer, and compressive stress are induced to A depth of about 2.5 mm 131 1336730, thus, resulting in higher material resistance and slowing crack growth in the region of fine grain structure and compressive stress field, for crack initiation after initiation; and/or —具有完整無損表面中間結構的平滑表面,其中較 少的表面損壞可以到達不大於約0. 0 0 8mm的深度,近表 面層中的細微晶粒與非晶質結構,以及使用受控制的超 音波衝擊,使壓縮應力被引發至指定材質内達4 0mm的 最大深度,如此,導致在細微晶粒及/或非晶質結構的 區域内,對於開始之後的裂缝引發’產生較高的材質抵 抗性,減緩裂縫生長,且在壓縮應力場中持續裂縫阻止, 這些壓縮應力大致上可以對抗被處理材質的降伏強度; 其中,開始的裂縫產生硬化,而藉由以下方式阻止發 展中的疲勞裂縫: 裂縫邊界的擴散結合; 裂縫發展區沉浸到殘餘壓縮應力區以及裂縫保存;及- a smooth surface with a complete lossless surface intermediate structure, wherein less surface damage can reach depths of no more than about 0.08 mm, fine grain and amorphous structures in the near surface layer, and use of controlled super The sonic impact causes the compressive stress to be induced to a maximum depth of 40 mm within the specified material, thus resulting in a higher material resistance to crack initiation in the region of fine grain and/or amorphous structure. Sexuality, slowing crack growth, and continuing crack prevention in the compressive stress field, these compressive stresses can roughly resist the lodging strength of the material being processed; wherein the initial crack produces hardening, and the developing fatigue crack is prevented by: Diffusion bonding of crack boundaries; immersion of crack development zone to residual compressive stress zone and preservation of cracks; 藉由超音波衝擊的強力相位,從未受損金屬移除破裂 的金屬表面層。 57.如申請專利範圍第1至3項中任一項之方法,其中, 控制至少一超音波衝擊參數,在衝擊開始時的合成速 度’衝擊能量,重複速率,以及衝擊時間 '衝擊的振幅 與相位’該參數係'根據預定資料的特定任務加以界定, 其中,孩至少一參數是根據預定的技術要求以及欲產生 的預定結果,而以5%的分散性設定成任意值。 132The ruptured metal surface layer is removed from the undamaged metal by the strong phase of the ultrasonic impact. The method of any one of claims 1 to 3, wherein the at least one ultrasonic shock parameter is controlled, and the combined velocity 'shock energy, repetition rate, and impact time' impact amplitude at the start of the impact is The phase 'this parameter' is defined according to the specific task of the predetermined data, wherein at least one parameter is set to an arbitrary value with a dispersion of 5% according to predetermined technical requirements and a predetermined result to be generated. 132
TW095135182A 2005-09-23 2006-09-22 Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact TWI336730B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71955105P 2005-09-23 2005-09-23
US11/342,846 US20070068605A1 (en) 2005-09-23 2006-01-31 Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact

Publications (1)

Publication Number Publication Date
TWI336730B true TWI336730B (en) 2011-02-01

Family

ID=37892419

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095135182A TWI336730B (en) 2005-09-23 2006-09-22 Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact

Country Status (6)

Country Link
US (1) US20070068605A1 (en)
JP (1) JP5682993B2 (en)
KR (1) KR101362019B1 (en)
CN (1) CN101558174B (en)
TW (1) TWI336730B (en)
WO (1) WO2007038378A2 (en)

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024764B2 (en) * 2008-01-22 2012-09-12 独立行政法人産業技術総合研究所 Fatigue test method in hydrogen gas
JP2009282926A (en) * 2008-05-26 2009-12-03 Toshiba Corp Time-series data analyzing system, method, and program
US10189100B2 (en) * 2008-07-29 2019-01-29 Pratt & Whitney Canada Corp. Method for wire electro-discharge machining a part
US10252376B2 (en) * 2009-03-03 2019-04-09 U-Haul International, Inc. Welded lap joint with corrosive-protective structure
US20110146361A1 (en) * 2009-12-22 2011-06-23 Edwards Lifesciences Corporation Method of Peening Metal Heart Valve Stents
US8894279B2 (en) * 2010-08-06 2014-11-25 Sloan Victor Cryogenic transition detection
US8840739B2 (en) * 2010-09-16 2014-09-23 GM Global Technology Operations LLC Corrosion resistance of magnesium alloy article surfaces
EP2630437B1 (en) 2010-10-21 2018-11-21 Vibrant Corporation Utilizing resonance inspection of in-service parts
DE102010043837A1 (en) * 2010-11-12 2012-05-16 Hilti Aktiengesellschaft Schlagwerkskörper, percussion and hand tool with a striking mechanism
DE102010044034B4 (en) 2010-11-17 2023-01-19 Airbus Defence and Space GmbH Process for increasing the strength of friction stir welded components
JP5971890B2 (en) * 2010-12-16 2016-08-17 セイコーインスツル株式会社 Timepiece parts manufacturing method and timepiece parts
US9335305B2 (en) 2011-01-06 2016-05-10 The Lubrizol Corporation Ultrasonic measurement
RU2467078C1 (en) * 2011-08-15 2012-11-20 Открытое акционерное общество "Завод им. В.А. Дегтярева" Method of straightening thin-wall cylindrical articles from maraging steels
CN102329937A (en) * 2011-08-20 2012-01-25 中国人民解放军装甲兵工程学院 Quantitative part surface nanorization device based on electrohydraulic servo control
JP5724779B2 (en) * 2011-09-13 2015-05-27 旭硝子株式会社 Method for measuring strength of chemically strengthened glass, method for reproducing cracks in chemically strengthened glass, and method for producing chemically strengthened glass
DE102011054718B4 (en) * 2011-10-21 2014-02-13 Hitachi Power Europe Gmbh Method for generating a voltage reduction in erected tube walls of a steam generator
CN102500575B (en) * 2011-11-08 2014-11-26 佛山市中研非晶科技股份有限公司 Loss-reducing method for amorphous alloy C type iron core section
KR101626227B1 (en) * 2011-11-21 2016-05-31 신닛테츠스미킨 카부시키카이샤 Hot-rolled steel sheet for nitriding and cold-rolled steel sheet for nitriding with excellent fatigue strength and manufacturing method therefor, as well as automobile parts of excellent fatigue strength using same
RU2484448C1 (en) * 2011-11-22 2013-06-10 Дмитрий Сергеевич Сирота Method and device to realise contact of electrochemical protection parameters monitoring unit with pipe with applied weighting concrete coating
CN102433427A (en) * 2011-12-05 2012-05-02 沈阳理工大学 Method for enhancing surface intensity of rail steel
CN102608213B (en) * 2012-01-16 2014-05-07 中国特种设备检测研究院 Acoustic detection method for defects of cast iron material
DE102012208870A1 (en) * 2012-05-25 2013-11-28 Robert Bosch Gmbh Percussion unit
CN102839276B (en) * 2012-09-19 2014-12-10 哈尔滨工业大学 Method for ultrasonically loosening residual stress of connecting part of metal part bolt
US9280620B2 (en) * 2012-10-16 2016-03-08 Siemens Aktiengesellschaft Method and system for probabilistic fatigue crack life estimation
CN103135622A (en) * 2013-01-21 2013-06-05 北京理工大学 Local residual stress ultrasonic testing and closed-loop control device
KR101497793B1 (en) * 2013-02-14 2015-03-05 한국해양과학기술원 augmentation method of cavitation resistance using ultrasonic nano crystal surface modification
CN103114185A (en) * 2013-03-11 2013-05-22 上海理工大学 Steel with multi-scale twin-crystal structure and preparation method of steel
SG11201506895VA (en) 2013-03-15 2015-09-29 United Technologies Corp Cast component having corner radius to reduce recrystallization
KR101455524B1 (en) * 2013-03-28 2014-10-27 현대제철 주식회사 METHOD OF MANUFACTURING Al-Mg-Si BASED ALLOY
JP6024566B2 (en) * 2013-03-29 2016-11-16 日本精機株式会社 Shift position detection device
DE102013209994A1 (en) 2013-05-29 2014-12-04 MTU Aero Engines AG TiAl blade with surface modification
US9222865B2 (en) * 2013-08-23 2015-12-29 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Fatigue assessment
CN103469132B (en) * 2013-09-29 2015-10-28 常州市润源经编机械有限公司 A kind for the treatment of process improving magnesium alloy materials intensity and toughness
CA2865630C (en) 2013-10-01 2023-01-10 Hendrickson Usa, L.L.C. Leaf spring and method of manufacture thereof having sections with different levels of through hardness
CN109830269B (en) * 2013-10-10 2023-09-19 思高博塔公司 Method for selecting a material composition and designing a material having a target property
CN103551523B (en) * 2013-11-04 2015-10-21 新昌县鸿裕工业产品设计有限公司 A kind of method preparing Al-Ti alloy impeller
CN103627885B (en) * 2013-11-18 2016-04-06 江苏大学 A kind of based on the inner-wall reinforced method of magnetostrictive aperture and device
US9079211B1 (en) * 2013-12-31 2015-07-14 The United States Of America As Represented By The Secretary Of The Navy Intergranular corrosion (IGC) and intergranular stress corrosion cracking (IGSCC) resistance improvement method for metallic alloys
FR3019794B1 (en) * 2014-04-10 2017-12-08 Jtekt Europe Sas ESTIMATING THE AGING OF AN ASSISTED DIRECTION
US10317332B2 (en) * 2014-09-05 2019-06-11 Southwest Research Institute System, apparatus or method for characterizing pitting corrosion
JP6416565B2 (en) 2014-09-19 2018-10-31 株式会社日立製作所 Material processing method and material processing apparatus
KR20170001011U (en) 2015-09-09 2017-03-17 오병서 The tunnel luminaires on the adjustable angle Easy
RU2639278C2 (en) * 2016-01-15 2017-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Method of plastic deformation of metals and alloys
KR102548843B1 (en) * 2016-01-26 2023-06-30 신토고교 가부시키가이샤 cast iron projectiles
CN209605636U (en) * 2016-02-29 2019-11-08 古河电气工业株式会社 Heat pipe and radiator with the heat pipe
RU2653741C2 (en) * 2016-04-13 2018-05-14 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" Method of plastic deformation of alloys from aluminum
CN105689959A (en) * 2016-04-26 2016-06-22 吉林大学 Ultrasonic surface rolling finishing feedback system capable of automatically regulating and controlling static pressure
US10908055B2 (en) 2016-05-13 2021-02-02 Shpp Global Technologies B.V. Evaluation of applications using digital image correlation techniques
RU2661980C1 (en) * 2016-06-21 2018-07-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Method of plastic deformation of aluminum and aluminum alloys
CN109074037A (en) * 2016-06-22 2018-12-21 沙特阿拉伯石油公司 For in quick predict pipeline, pressure vessels and pipes system hydrogen induced cracking (HIC) (HIC) and the system and method for taking relative action
CN106269998B (en) * 2016-08-26 2018-01-23 广东工业大学 Weld integral panel online adaptive laser peening straightening method and device
CN107782592B (en) * 2016-08-30 2020-11-03 中国石油天然气股份有限公司 Method and system for manufacturing circumferential weld crack defects
KR101858226B1 (en) * 2016-08-31 2018-05-16 단국대학교 산학협력단 Crack repairing method for deterring growth of surface cracks on the wall using ultrasound
JP6996700B2 (en) * 2016-09-08 2022-02-04 国立大学法人北海道大学 Metal processing method
BE1024565B1 (en) * 2016-09-15 2018-04-17 Rein4Ced Besloten Vennootschap Met Beperkte Aansprakelijkheid Hybrid composite
KR101910467B1 (en) * 2016-11-11 2019-01-04 선문대학교 산학협력단 Surface treatment method using local heating and ultrasonic nanocrystal surface modification
CN107103138B (en) 2017-04-25 2021-01-26 广东工业大学 Variable-rigidity lightweight method for laser shot blasting
CN109108317B (en) * 2017-06-23 2022-01-18 河南理工大学 Composite vibration drilling method suitable for CFRP/titanium (aluminum) alloy laminated material
CN108237225B (en) * 2018-02-12 2023-07-21 山东建筑大学 Method for preparing porous titanium-based composite material by composite ultrasonic vibration and high-pressure torsion
CN108405609B (en) * 2018-02-26 2019-07-30 中南大学 A kind of ultrasonic vibration auxiliary milling method producing low residual stress aluminium alloy strips
CN108535309B (en) * 2018-04-16 2020-06-09 安徽工业大学 In-situ measurement of Fe in low-carbon alloy steel3Method for separating out C
JP2019196918A (en) * 2018-05-07 2019-11-14 日本電信電話株式会社 Method, device, and program for estimating fracture starting point in steel material
CN108614941B (en) * 2018-05-08 2022-04-12 湖南城市学院 Board-level packaging design optimization method for integrated QFN chip
CN108984872B (en) * 2018-06-30 2023-04-18 中国石油大学(华东) Method for analyzing and evaluating motion of oscillator in casing mud and effect of oscillator on casing
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
WO2020186227A1 (en) * 2019-03-13 2020-09-17 Biofouling Technologies, Inc. Biofouling protection
CN111487142B (en) * 2019-01-29 2023-05-23 吉林建筑大学 Detection system for dynamic fracture toughness of concrete porous brick wall
CN110172566B (en) * 2019-05-10 2020-10-16 北京理工大学 Device and method for reducing and homogenizing residual stress of complex component
CN110042221B (en) * 2019-05-15 2021-01-05 北京科技大学 Method for eliminating aging embrittlement of A508-3 steel by pulse current
CN110280884B (en) * 2019-07-29 2020-12-22 吉林大学 Ultrasonic impact toughening joint with groove added with alloy powder
CN112410693B (en) * 2019-08-23 2023-11-03 盛美半导体设备(上海)股份有限公司 Annealing chamber air inlet device
CN110773721B (en) * 2019-09-25 2020-10-09 马鞍山市三川机械制造有限公司 Anti-oxidation treatment process before heat treatment of steel structure material
CN111088469B (en) * 2019-12-31 2021-06-18 江苏大学 Method for regulating and controlling toughness of aluminum alloy surface
US20210214815A1 (en) * 2020-01-09 2021-07-15 Progress Rail Services Corporation Method of hardening manganese steel using ultrasonic impact treatment
CN111189641B (en) * 2020-01-17 2021-09-14 湖北三江航天红峰控制有限公司 Dynamic and static loading device of swing servo mechanism
CN111523268B (en) * 2020-04-22 2021-06-01 四川大学 Material fatigue-resistant optimization design method based on machine learning
US20220019190A1 (en) * 2020-07-14 2022-01-20 Saudi Arabian Oil Company Machine learning-based methods and systems for deffect detection and analysis using ultrasound scans
WO2022026711A2 (en) * 2020-07-29 2022-02-03 Massachusetts Institute Of Technology Systems and methods for regulating hydrogen transport out of structural materials
CN111982799A (en) * 2020-08-24 2020-11-24 中国人民解放军海军航空大学青岛校区 Atmospheric corrosion prediction method for building block type airplane structural member
CN112149242A (en) * 2020-08-26 2020-12-29 北京航空航天大学 Fatigue reliability assessment method for in-pile component compression spring considering stress relaxation and irradiation influence
CN112268794B (en) * 2020-09-29 2021-08-31 中国科学院金属研究所 Method for determining optimal anti-armor-piercing microstructure state of metal material
CN112329219B (en) * 2020-10-26 2024-01-26 中国科学院力学研究所 Method for calculating tensile damage area of rock containing micropores and microcracks in Brazilian split experiment
CN112322872B (en) * 2020-10-30 2022-05-13 太原理工大学 Device and method for preparing block nano structure/superfine crystal metal material
CN112414932A (en) * 2020-11-20 2021-02-26 中国直升机设计研究所 Evaluation method for sand erosion resistance of protective material of helicopter rotor blade
CN112666066B (en) * 2020-12-15 2022-11-11 中国石油大学(华东) Pipeline hydrogen embrittlement temperature threshold prediction method based on hydrogen diffusion dynamics and application
CN113084379A (en) * 2021-04-07 2021-07-09 中车青岛四方机车车辆股份有限公司 Device and method for regulating and controlling residual stress and deformation after welding
CN113267750A (en) * 2021-04-16 2021-08-17 重庆邮电大学 Wind power plant radar interference suppression system based on intelligent information modulation surface
CN113293343B (en) * 2021-05-14 2022-09-23 扬州大学 Packaging method for heat treatment of powder sample
CN113945457B (en) * 2021-10-14 2023-05-26 辽宁科技大学 Method for analyzing damage mechanism of rock under complex unloading stress condition
CN113894409B (en) * 2021-11-12 2023-11-24 深圳软动智能控制有限公司 Laser axis control method, laser axis control device, laser equipment and storage medium
CN114293121B (en) * 2021-12-30 2022-06-24 西北工业大学 Thin-wall blade regional ultrasonic impact strengthening method
CN114459912B (en) * 2022-01-24 2023-08-08 湖南继善高科技有限公司 Method and system for determining volume of oil and gas fracturing cracks
CN114609358B (en) * 2022-03-24 2023-06-06 西南科技大学 Residual performance evaluation method for existing rust steel structure
CN114700386A (en) * 2022-03-25 2022-07-05 重庆大学 Method for simultaneously improving strength and plasticity of pure magnesium plate
CN114717398A (en) * 2022-04-08 2022-07-08 燕山大学 Electric field assisted post-forging heat treatment hydrogen diffusion method for large forging
CN114563273B (en) * 2022-04-28 2022-08-09 中国矿业大学(北京) Anchor rod combination stress performance test system and evaluation method
CN115308114B (en) * 2022-07-15 2024-06-18 广西大学 Concrete coating protective performance quantitative evaluation method based on ocean partition erosion
CN115341167B (en) * 2022-08-26 2024-01-16 西安电子科技大学 Nanometer twin crystal ZrN diffusion shielding layer and preparation method thereof
CN116516114A (en) * 2023-03-03 2023-08-01 河南牧业经济学院 Process method for processing GCr15 steel by using ultrasonic-assisted ECAP
CN116695043A (en) * 2023-05-31 2023-09-05 武汉理工大学 Electromagnetic impact technical method for improving stress fatigue performance of titanium alloy
CN116689531B (en) * 2023-08-09 2023-10-27 成都先进金属材料产业技术研究院股份有限公司 Preparation method of high-strength TC4 pipe
CN117026171B (en) * 2023-08-16 2024-02-06 上海亿氢能源科技有限公司 Method for preparing PEM electrolytic cell porous diffusion layer based on pulse laser deposition technology
CN116920180B (en) * 2023-09-14 2023-12-15 乐普(北京)医疗器械股份有限公司 Degradable metal material and preparation method and application thereof

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1703111A (en) * 1929-02-26 Method of welding
USRE16599E (en) * 1927-04-19 Rmatt
US1770932A (en) * 1929-05-17 1930-07-22 Arthur G Leake Method of strengthening structural members under load
US2537533A (en) * 1946-12-17 1951-01-09 Gerald E Ingalls Method of repairing cracks in castings
DE1216064C2 (en) * 1959-10-06 1966-11-10 Stahl Und Walzwerke Rasselstei Device for the production of metallic coatings, possibly also lacquer and plastic coatings, with a certain surface roughness, in particular on metal strips and sheets
US3274033A (en) * 1963-08-12 1966-09-20 Branson Instr Ultrasonics
US3622404A (en) * 1969-02-19 1971-11-23 Leonard E Thompson Method and apparatus for stress relieving a workpiece by vibration
US3650016A (en) * 1969-04-28 1972-03-21 Univ Ohio State Process for torquing threaded fasteners
DE2054528C3 (en) * 1970-11-05 1981-07-23 Vsesojuznyj naučno-issledovatel'skij i konstruktorsko-technologičeskij institut trubnoj promyšlennosti, Dnepropetrovsk Device for hardening pipes from the rolling heat
US3961739A (en) * 1972-04-17 1976-06-08 Grumman Aerospace Corporation Method of welding metals using stress waves
US3864542A (en) * 1973-11-13 1975-02-04 Nasa Grain refinement control in tig arc welding
US3945098A (en) * 1975-04-18 1976-03-23 Petr Ivanovich Yascheritsyn Pulse impact tool for finishing internal surfaces of revolution in blanks
US4049186A (en) * 1976-10-20 1977-09-20 General Electric Company Process for reducing stress corrosion in a weld by applying an overlay weld
US4126031A (en) * 1977-07-07 1978-11-21 Ignashev Evgeny P Apparatus for producing metal bands
US4250726A (en) * 1978-08-28 1981-02-17 Safian Matvei M Sheet rolling method
US4330699A (en) * 1979-07-27 1982-05-18 The United States Of America As Represented By The Secretary Of The Navy Laser/ultrasonic welding technique
JPS5726119A (en) * 1980-07-24 1982-02-12 Inoue Japax Res Inc Treatment for improving physical and mechanical characteristics of material
US4453392A (en) * 1982-05-11 1984-06-12 Fiziko-Tekhnichesky Institut Akademii Nauk Belorusskoi Ssr Method of hardening shaped surfaces by plastic deformation
US4624402A (en) * 1983-01-18 1986-11-25 Nutech, Inc. Method for applying an overlay weld for preventing and controlling stress corrosion cracking
DE3676703D1 (en) * 1986-09-26 1991-02-07 Vsr Martin Eng Gmbh METHOD FOR OPERATING A MACHINE FOR RELAXING WORKPIECES BY VIBRATION.
US4968359A (en) * 1989-08-14 1990-11-06 Bonal Technologies, Inc. Stress relief of metals
US5035142A (en) * 1989-12-19 1991-07-30 Dryga Alexandr I Method for vibratory treatment of workpieces and a device for carrying same into effect
US5166885A (en) * 1991-01-28 1992-11-24 General Electric Company Non-destructive monitoring of surfaces by 3-D profilometry using a power spectra
US5352305A (en) * 1991-10-16 1994-10-04 Dayton Walther Corporation Prestressed brake drum or rotor
US5286313A (en) * 1991-10-31 1994-02-15 Surface Combustion, Inc. Process control system using polarizing interferometer
US5193375A (en) * 1991-11-27 1993-03-16 Metal Improvement Company, Inc. Method for enhancing the wear performance and life characteristics of a brake drum
US5330790A (en) * 1992-02-07 1994-07-19 Calkins Noel C Impact implantation of particulate material into polymer surfaces
US5242512A (en) * 1992-03-13 1993-09-07 Alloying Surfaces, Inc. Method and apparatus for relieving residual stresses
JPH081344A (en) * 1994-06-20 1996-01-09 Hitachi Ltd Method and device for repairing in-furnace structural member of nuclear reactor
US5826453A (en) * 1996-12-05 1998-10-27 Lambda Research, Inc. Burnishing method and apparatus for providing a layer of compressive residual stress in the surface of a workpiece
US5841033A (en) * 1996-12-18 1998-11-24 Caterpillar Inc. Process for improving fatigue resistance of a component by tailoring compressive residual stress profile, and article
RU2180274C2 (en) * 1997-03-27 2002-03-10 Компания "ЮАйТи, Л.Л.С." Apparatus for exciting electroacoustic converter
DE29713448U1 (en) * 1997-07-29 1997-10-23 Spaichingen Gmbh Maschf Device for ultrasound processing of workpieces
JPH11286787A (en) * 1998-04-06 1999-10-19 Nisshinbo Ind Inc Surface treating method for back plate for friction material
US6932876B1 (en) * 1998-09-03 2005-08-23 U.I.T., L.L.C. Ultrasonic impact machining of body surfaces to correct defects and strengthen work surfaces
US6458225B1 (en) * 1998-09-03 2002-10-01 Uit, L.L.C. Company Ultrasonic machining and reconfiguration of braking surfaces
US20050145306A1 (en) * 1998-09-03 2005-07-07 Uit, L.L.C. Company Welded joints with new properties and provision of such properties by ultrasonic impact treatment
US6338765B1 (en) * 1998-09-03 2002-01-15 Uit, L.L.C. Ultrasonic impact methods for treatment of welded structures
US20060016858A1 (en) * 1998-09-03 2006-01-26 U.I.T., Llc Method of improving quality and reliability of welded rail joint properties by ultrasonic impact treatment
US6171415B1 (en) * 1998-09-03 2001-01-09 Uit, Llc Ultrasonic impact methods for treatment of welded structures
FR2801322B1 (en) * 1999-11-18 2002-02-08 Snecma METHOD FOR ULTRASONIC BLASTING OF LARGE DIMENSIONAL ANNULAR SURFACES ON THIN PARTS
CN1107119C (en) * 2000-04-21 2003-04-30 清华大学 Method and equipment for reducing internal stress in steel or iron workpieces by magnetic treatment of low-frequency pulses
CA2348834A1 (en) * 2000-05-30 2001-11-30 George I Prokopenko Device for ultrasonic peening of metals
EP1447455A4 (en) * 2001-06-12 2006-08-23 Leonid Mikhaylovich Lobanov Method for processing welded metalwork joints by high-frequency hummering
US7175722B2 (en) * 2002-08-16 2007-02-13 Walker Donna M Methods and apparatus for stress relief using multiple energy sources
JP4112952B2 (en) * 2002-11-19 2008-07-02 新日本製鐵株式会社 Method for producing metal product with nanocrystallized surface layer
JP4319830B2 (en) * 2002-11-19 2009-08-26 新日本製鐵株式会社 Ultrasonic shock treatment machine and ultrasonic shock treatment device
US7399371B2 (en) * 2004-04-16 2008-07-15 Nippon Steel Corporation Treatment method for improving fatigue life and long-life metal material treated by using same treatment
US7301123B2 (en) * 2004-04-29 2007-11-27 U.I.T., L.L.C. Method for modifying or producing materials and joints with specific properties by generating and applying adaptive impulses a normalizing energy thereof and pauses therebetween
US7326629B2 (en) * 2004-09-10 2008-02-05 Agency For Science, Technology And Research Method of stacking thin substrates by transfer bonding
US8062096B2 (en) * 2005-06-30 2011-11-22 Cabot Microelectronics Corporation Use of CMP for aluminum mirror and solar cell fabrication

Also Published As

Publication number Publication date
WO2007038378A3 (en) 2009-05-14
KR20080050519A (en) 2008-06-05
JP5682993B2 (en) 2015-03-11
KR101362019B1 (en) 2014-02-11
WO2007038378A2 (en) 2007-04-05
US20070068605A1 (en) 2007-03-29
JP2009510256A (en) 2009-03-12
CN101558174B (en) 2013-03-13
CN101558174A (en) 2009-10-14

Similar Documents

Publication Publication Date Title
TWI336730B (en) Method of metal performance improvement and protection against degradation and suppression thereof by ultrasonic impact
Wang et al. Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel
Davis Metals handbook desk edition
Jones Mechanisms of stress-corrosion cracking
Dayal et al. Hydrogen embrittlement in power plant steels
Lynch Hydrogen embrittlement phenomena and mechanisms
Kerlins Modes of fracture
Ćwiek Hydrogen degradation of high-strength steels
Khalifeh Stress corrosion cracking behavior of materials
John et al. Effect of ultrasonic impact peening on stress corrosion cracking resistance of austenitic stainless-steel welds for nuclear canister applications
Milella Hydrogen Embrittlement and Sensitization Cracking
Diegle et al. The role of film rupture during slow strain-rate stress corrosion cracking testing
Ibrahim Overview of structural life assessment and reliability, part IV: Corrosion and hydrogen embrittlement of naval ship structures
Arya et al. Impact of Hydrogen Embrittlement in Pipeline Structures—A Critical Review
Valdez-Vallejo Cathodic Hydrogen Embrittlement of Duplex Stainless Steels
Parkins Environment sensitive fracture of metals
Alkateb Experimental and numerical investigation of corrosion crack growth in mild structural steel
Bika Dynamic embrittlement in metallic alloys
Vo Effect of Mechanical Loading Conditions on Near-neutral pH Stress Corrosion Cracking (NNpHSCC) Initiation and Early-stage Growth for Bent Pipeline
Chan Corrosion and Hydrogen Embrittlement of Laser Surface Treated Stainless Steels
Miannay et al. Advances in Mechanical Behaviour, Plasticity and Damage
Van Der Schijff et al. Hydrogen Damage and Embrittlement
Shipilov Stress corrosion cracking and corrosion fatigue: A record of progress, 1873–1973
Saleem Microstructure of CRA bolts used subsea in relation to resistance to hydrogen embrittlement
Seifi Sensitization Effects on Environmentally Assisted Cracking of Al-Mg Naval Alloys

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees