TWI327173B - - Google Patents

Download PDF

Info

Publication number
TWI327173B
TWI327173B TW095125880A TW95125880A TWI327173B TW I327173 B TWI327173 B TW I327173B TW 095125880 A TW095125880 A TW 095125880A TW 95125880 A TW95125880 A TW 95125880A TW I327173 B TWI327173 B TW I327173B
Authority
TW
Taiwan
Prior art keywords
mass
alloy
degree
copper
rolling
Prior art date
Application number
TW095125880A
Other languages
Chinese (zh)
Other versions
TW200706661A (en
Original Assignee
Nippon Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co filed Critical Nippon Mining Co
Publication of TW200706661A publication Critical patent/TW200706661A/en
Application granted granted Critical
Publication of TWI327173B publication Critical patent/TWI327173B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Description

1327173 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種銅合金’其同時具備優異強度、導 電率及彎曲加工性’且適用於端子、連接器、開關、繼電 器等電氣電子零件》 【先前技術】 於電氣電子機器之各種端子、連接器、繼電器或開關 等’在重視製造成本的用途係使用廉價之黃銅。又,重視 彈性性能的用途係使用磷青銅,而重視彈性性能及耐蝕性 的用途則使用鎳銀合金。該等銅合金係固溶強化型合金, 由於合金元素的作用可提升強度及彈性性能,但 電率及熱料率低。 的導 另一方面,近年來取代固溶強化型合金,析出強化型 銅合金的使用量正增加中。析出強化型銅合金之特徵在1327173 IX. Description of the Invention: [Technical Field] The present invention relates to a copper alloy which has excellent strength, electrical conductivity and bending workability and is suitable for electrical and electronic parts such as terminals, connectors, switches and relays. [Prior Art] Various terminals, connectors, relays, switches, etc. for electrical and electronic equipment use inexpensive brass for applications that emphasize manufacturing costs. Further, the use of phosphor bronze is emphasized for applications where elasticity is emphasized, and nickel-silver alloys are used for applications where flexibility and corrosion resistance are emphasized. These copper alloys are solid solution-strengthened alloys, which can improve strength and elastic properties due to the action of alloying elements, but have low electrical and thermal properties. On the other hand, in recent years, in place of a solid solution-strengthened alloy, the amount of precipitation-strengthened copper alloy is increasing. The characteristics of precipitated reinforced copper alloy are

於,使合金元素於Cu基質中以微細化合物粒子析出。合 金元素析出時’強度上昇、同時導電率亦上昇。因此,: 出強化:銅合金’相對於固溶強化型合金,可以相同強度 付到更鬲之導電率。析出強化型銅合金,# Cu〜Ni — Si 系合金、Cu—Be系合金、Cu—Ti系合金、Cu—Zr系合金 々然而’於析出強化型合金,需要用以將合金元素先固 ’合於CU中之高溫、短時間的熱處理(固溶處理)及用以使合 金兀素析出之低溫、長時間的熱處理(時效處理),其製造 步驟複雜。又,人么4本山·、 «金兀素,由於含有Si、Ti ' zr、Be等活 1327173 胜、&難以控制铸鍵品質。因此,析出強化型合金之 製造成本遠高於固溶強化型合金之製造成本。 近年來,伴隨電子機H零件的小型化,端子、連接器、 開關、,電器等亦小型化,而銅合金之通電部的截面積亦 變J右通電部的截面積變小,則流通電流時之發埶量將 =。只要使用具有更高導電率之銅合金,即可抑制該發 熱量之增大。 使用以往之固溶強化型合金時’若選擇導電率高之銅 口’由於其強度低’故於電氣接點會產生接觸力不足之 相對於此,若使用析出強化型合金,雖可於不使強 ^ + —成本會棱咼。由於市場對於銅 合金價格的要求甚嚴’故難以容許成本增加。 、上之者景中JL研究著藉由改良固溶強化型合金, 以開發具有所需充分之導電 鋼中代表的Cu—Zn合金,製造容:度二廉價的銅合金1 係炷眾&合易,再加上Zn價格便宜, 性特了低成本製造之合金。改… 性,期望可擴大電子零件材料之 竹 卜專利文獻2、專利文獻3,揭示纟’於專利文獻 加Sn之銅合金。 卜種在Cu—Zn合金添 專利文獻i:日本特開平卜162737號公報。 專利文獻2:日本特開平2— Μ%4號公報。 專利文獻3:日本特開平7一 258777號公報。 【發明内容】 然而 該等文獻所揭示之c卜Zn_Sn系合金,並無Thus, the alloying elements are precipitated as fine compound particles in the Cu matrix. When the alloy element is precipitated, the strength rises and the conductivity increases. Therefore, the strengthening: the copper alloy 'can be made to have a higher electrical conductivity than the solid solution strengthening alloy at the same strength. Precipitation-enhanced copper alloy, #Cu~Ni—Si-based alloy, Cu-Be-based alloy, Cu-Ti-based alloy, Cu-Zr-based alloy 々 However, in the precipitation-strengthened alloy, it is necessary to fix the alloying elements first. The high-temperature, short-time heat treatment (solution treatment) in the CU and the low-temperature, long-time heat treatment (aging treatment) for precipitating the alloy bismuth are complicated in the production steps. In addition, people 4 Benshan·, «金兀素, because of the inclusion of Si, Ti 'zr, Be, etc. 1327173 wins, & difficult to control the quality of the cast bond. Therefore, the production cost of the precipitation-strengthened alloy is much higher than the manufacturing cost of the solid solution-reinforced alloy. In recent years, with the miniaturization of H parts of electronic machines, terminals, connectors, switches, and electric appliances have also been miniaturized, and the cross-sectional area of the energized portion of the copper alloy has also changed. The amount of hair will be =. As long as a copper alloy having a higher conductivity is used, the increase in the amount of heat generation can be suppressed. When a conventional solid solution-strengthened alloy is used, "if a copper port having a high conductivity is selected, the strength is low", so that the contact force is insufficient at the electrical contact, and if a precipitation-strengthened alloy is used, it may not be used. Make strong ^ + - the cost will be ambiguous. Since the market demand for copper alloys is very strict, it is difficult to tolerate cost increases. In the above, JL researched to develop a solid solution-strengthened alloy to develop a Cu-Zn alloy represented by a sufficient amount of conductive steel, and to manufacture a copper alloy 1 system. Heyi, coupled with the cheap price of Zn, is characterized by a low-cost alloy. In order to expand the electronic component materials, it is expected that the electronic component materials can be expanded. Patent Document 2 and Patent Document 3 disclose a copper alloy in which Sn is added to the patent document. The seed is added to the Cu-Zn alloy. Patent Document i: Japanese Patent Laid-Open No. 162737. Patent Document 2: Japanese Patent Laid-Open No. Hei. No. 4 publication. Patent Document 3: Japanese Laid-Open Patent Publication No. Hei 7-258777. SUMMARY OF THE INVENTION However, the c Zn_Sn alloy disclosed in the documents does not have

1JZ/1tJ 兼具良好之導雷車、Α 器零件小型化者。Α及故無法因應電子機 率二Γ:Γ,係提供一種同時具備所需充分的導電 合金。 機15零件的小型化、低成本之銅 本發明人等’藉由調整Cu— 7人人 詈之Sn *袖杜 —Zn D金之zn量後添加少 ::S:並調整金屬組織,而得到具有所需充分之導電率、 強度及考曲加工性之銅合金。 亦即,本發明,係提供: ()種電氣電子機器用銅合金其特徵在於含 2〜12質量%之Zn及^ ·ϋ買重/之Sn,Sn之質詈% 濃度([% Sn])與Zn之質量%、·費许r「0/ 買s % /農度([% Zn])之關係,係調整 為式⑴之範圍’剩餘部分為銅及不可避免之雜質所構成, 不可避免之雜質中s >農度為3G f量以下〜農度為π 質量PPm以下,且具有35%1奶以上之導電率及㈣隐 以上之拉伸強度’可進行平行方向(彎曲轴與壓延方向平行 之方向)及正交方向(f曲抽與壓延方向正交之方向)之刚 度密合彎曲加工。 〇-5^[%Sn]+〇.16[%Zn]^2.〇 …⑴ (2) 如上述(!)之電氣電子機器用銅合金,其含有合計 為 0 005 〜0 5 質量 % 範圍之 Ni、Mg、Fe、P、Mn、Co、Be、1JZ/1tJ combines a good guide car and a miniaturized component. It is impossible to respond to the electronic probability of Γ: Γ, is to provide a sufficient conductive alloy at the same time. The inventors of the present invention have reduced the size of the zn of the Sn* sleeve Du-Zn D gold of the Cu-7, and added less::S: and adjusted the metal structure, A copper alloy having a desired sufficient electrical conductivity, strength, and testability is obtained. That is, the present invention provides: () A copper alloy for electric and electronic equipment characterized by containing 2 to 12% by mass of Zn and ϋ ϋ / / , , , , , , , , ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( The relationship between the mass % of Zn and the cost of Zn, “0/buy s % / agronomy ([% Zn]) is adjusted to the range of formula (1). The remainder is composed of copper and unavoidable impurities. Avoid the impurities s > the degree of agriculture is less than 3G f amount ~ the agricultural degree is π mass below PPm, and has a conductivity of 35% 1 milk or more and (4) the tensile strength above the hidden 'can be parallel direction (bending axis and The direction in which the rolling direction is parallel) and the orthogonal direction (the direction in which the arc is orthogonal to the rolling direction) is closely combined with the bending process. 〇-5^[%Sn]+〇.16[%Zn]^2.〇... (1) (2) The copper alloy for electric and electronic equipment according to the above (!), which contains Ni, Mg, Fe, P, Mn, Co, Be in a total range of 0 005 to 0 5 % by mass.

Ti、Cr、Zr、A1及Ag t —種以上之元素。 (3) 如上述(i)〜(2)之電氣電子機器用銅合金,其中, 於平行於壓延方向及厚度方向的截面,長度超過5〇μιη之 丄乂/173 •爽雜物的個數,為0.5個/mm2以下。 (4) 如上述(1)〜(2)之電氣電子機器用銅合金其中, 於平行於壓延面之截面的金屬組織中,構成金屬組織之晶 粒,具有被拉伸於壓延方向的形狀,並且,令晶粒之與壓 延方向成正交方向的平均粒徑為a、與壓延方向成平行方 向的平均粒徑為b時,係具有下述尺寸, a=1.0〜ΙΟ.Ομιη、較佳為 i 〇〜5 〇μιη b / a = 1,2〜2_5。 (5) 如上述(1)〜(2)之電氣電子機器用銅合金,其中, 7由壓延面之(2〇〇)面及(220)面所得之X射線繞射強度分 別為luoq及並令由銅粉末之(2〇〇)面及(22〇)面所得 .之x射線繞射強度分別為1。(_)及Iq(22G)時, - 0.23 1(200)/ I〇(2〇〇)S 1.0 - 2.0$ 1(22。)/ 1。(22。)$ 5.0。 (6) —種電氣電子機器用銅合金之製造方法,係用以 • 製造(1)〜(5)之電氣電子機器用銅合金,其特徵在於,依序 進行下述步驟: 〜ΙΟμιη ; 1 〜1 Ομηι、 A. 中間再結晶退火,將晶粒粒徑加工成i B. 加工度35〜9〇%之中間冷壓延; c.最終再結晶退火,將晶粒粒徑加工成 較佳為1〜5 μπι ; D.加工度15〜6〇%之最後冷壓延。 本發明,可以低成本製造同時具備所需充分之導電率 及強度、並且可因應電子機器零件小型化的銅合金。 1327173 【實施方式】 本發明認為所需充分之特性如下述。 (A) 導電率•·V^IACS以上、此導電率可與析出強化 型合金之Cu—Ni —Si系合金(卡遜合金)的導電率相匹敵。 又’黃銅(C2600)之導電率為28%IACS、磷青銅(C521〇)之 導電率為13% IACS。 (B) 拉伸強度:410MPa以上。此拉伸強度係相當 於JIS規格(JISH3100)所規定之黃銅(C26〇〇)之等級H的二 •伸強度。 (c) f曲加工性:可進行正交方向及平行方向之18〇 *度密合彎曲加工。於該彎曲測試中,若無發生龜裂或嚴重 之表面皺摺,則可進行對連接器所施行最嚴苛等級之贊曲 加工。 亦即,本發明所提供之銅合金,同時具備黃銅之強度、 '卡㉟♦金之導電帛、與黃銅或卡遜合金同等以上之寶曲加 工性,可適用於小型化持續進展之電子機器零件材料。 參 以往之CU—Zn—Sn合金中,並無滿足上述⑷(B)(C) 食部之合金。例如,專利文獻3所揭示之合金,滿足與 (B),但由於未進行用以達成(C)所需之組織控制(夾雜物分 希、晶粒形狀、結晶方位等之最佳化),故其f曲加工性係 R/t=〇.8之9〇度^曲化為寶曲半徑、t為試樣板厚) 的等級。 此處’上述二種類之弯曲測試方法的概略如圓i所示。 本發明中’為了得到上述特性,將本發明合金之成分、 1327173 組織及製造方法作如下限定。 (1) Ζη及Sn濃度 本發明之銅合金,係以211與Sn作為基本成分,藉由 兩元素之作用控制機械特性βΖη濃度及^濃度之範圍, 係分別為2〜12質量%及q.m.”量%。以若低於2%, 則會喪失Cu-Zn合金良好製造性之特徵。&若超過12%, 則即使調整Sn濃度亦無法得到所欲之導電率。 特性當重視之導電率時,較佳為將Zn控制於7質量^ 下,當重視強度時,較佳為使Zn超過7質量%。Ti, Cr, Zr, A1 and Ag t are more than one type of element. (3) The copper alloy for electric and electronic equipment according to (i) to (2) above, the length of the cross section parallel to the rolling direction and the thickness direction exceeds 5〇μηη/173 • the number of cool impurities , 0.5 or less. (4) The copper alloy for electric and electronic equipment according to the above (1) to (2), wherein the crystal grains constituting the metal structure in the metal structure parallel to the cross section of the rolling surface have a shape stretched in the rolling direction. Further, when the average particle diameter of the crystal grains in the direction orthogonal to the rolling direction is a, and the average particle diameter in the direction parallel to the rolling direction is b, the following dimensions are obtained, a = 1.0 ΙΟ. Ο μιη, preferably For i 〇~5 〇μιη b / a = 1, 2~2_5. (5) The copper alloy for electric and electronic equipment according to (1) to (2) above, wherein the X-ray diffraction intensities obtained from the (2 〇〇) plane and the (220) plane of the rolling surface are luoq and The x-ray diffraction intensity obtained from the (2 〇〇) plane and the (22 〇) plane of the copper powder was 1, respectively. (_) and Iq (22G), - 0.23 1 (200) / I 〇 (2 〇〇) S 1.0 - 2.0$ 1 (22.) / 1. (22.) $5.0. (6) A method for producing a copper alloy for an electric and electronic device, for manufacturing the copper alloy for electric and electronic equipment according to (1) to (5), wherein the following steps are carried out in sequence: ~ΙΟμιη; 1 〜1 Ομηι, A. Intermediate recrystallization annealing, processing grain size into i B. intermediate cold rolling of 35~9〇% of processing degree; c. final recrystallization annealing, processing grain size to preferably 1~5 μπι; D. Finishing degree 15~6〇% of the final cold rolling. According to the present invention, it is possible to manufacture a copper alloy which has sufficient conductivity and strength as required and which can be miniaturized in response to electronic equipment parts. 1327173 [Embodiment] The present invention recognizes that sufficient characteristics are required as described below. (A) Conductivity • V^IACS or higher, this conductivity is comparable to that of the Cu—Ni—Si alloy (Carson Alloy) of the precipitation strengthened alloy. Further, the conductivity of brass (C2600) was 28% IACS, and the conductivity of phosphor bronze (C521〇) was 13% IACS. (B) Tensile strength: 410 MPa or more. This tensile strength is equivalent to the two-strength strength of the grade H of brass (C26〇〇) prescribed by JIS (JISH3100). (c) F-curve workability: 18 〇 * degree close bending can be performed in the orthogonal direction and the parallel direction. In this bending test, if no cracks or severe surface wrinkles occur, the most stringent grade of the fastener can be processed. That is, the copper alloy provided by the present invention has the strength of brass, the conductive yttrium of 'card 35 y gold, and the processing property equivalent to that of brass or cassin alloy, and can be applied to miniaturization and continuous progress. Electronic machine parts materials. In the conventional CU-Zn-Sn alloy, there is no alloy satisfying the above (4) (B) (C) food portion. For example, the alloy disclosed in Patent Document 3 satisfies (B), but since the structural control (inclusion classification, grain shape, crystal orientation, etc.) required for (C) is not performed, Therefore, the f-mechanical system R/t=〇.8 is 9 degrees, the curvature is the radius of the curve, and t is the thickness of the sample. Here, the outline of the above two types of bending test methods is as shown by the circle i. In the present invention, in order to obtain the above characteristics, the composition of the alloy of the present invention, the 1327173 structure and the production method are defined as follows. (1) Ζη and Sn concentration The copper alloy of the present invention has 211 and Sn as basic components, and the range of mechanical properties βΖη concentration and concentration is controlled by the action of two elements, respectively, 2 to 12% by mass and qm" If the amount is less than 2%, the Cu-Zn alloy is inferior in manufacturability. If it exceeds 12%, the desired conductivity cannot be obtained even if the Sn concentration is adjusted. In the case of Zn, it is preferable to control Zn to 7 mass%, and when importance is emphasized, it is preferable to make Zn more than 7% by mass.

Sn具有於壓延時促進加工硬化之作用,若sn低於〇1 %則強度不足。另-方面’若Sn超過〇1%,則會降低合 金之製造性》Sn has a function of promoting work hardening at a pressure delay, and if sn is less than 〇1%, the strength is insufficient. The other side - if Sn exceeds 〇1%, it will reduce the manufacturability of the alloy.

Sn與Zn之合計濃度(τ),係調整如下。 0.5^ 2.0 T= [%Sn]+ 0.16[%Ζη] 此處,[%811]及[%211]係分別為Sn及Ζη之質量%濃 度。若使Τ在2.0以下,則可得到35%IACS以上之導電 率。又,若使T在0.5以上,藉由適當調整金屬組織,可 得到410MPa以上之拉伸強度》因此’將τ規定為〇 5〜2 〇。 更佳之T的範圍為1.0〜1.7’藉由調整為該範圍,可 得到更加安定之35%IACS以上之導電率及41〇MPa以上 之拉伸強度。 (2) Ni、Mg、Fe、P、Mn、Co、Be、Ti、Cr、Zr、A1 Ag 1327173 本發明合金中’為了改善合金之強度、耐熱性、耐應 力緩和性等,可添加合計0.005〜〇.5質量%之Ni、Mg、Fe、 P、Μη、Co、Be、Ti、Cr、Zr、A1 及 Ag 中一種以上之元 素。但是,合金元素之追加,由於會導致導電率之降低、 製造性之降低、原料成本之增加等,故必須考慮此點/ 若上述元素之合計量低於0.005質量%,則無法發揮 提升特性之效果。另一方面,若上述元素之合計量超過〇5 質量%,則導電率顯著降低。因此,將合計量規定為〇〇〇5 〜〇·5質量%。 (3)夾雜物個數、S濃度、〇丨農度 觀察平行於壓延方向且平行於厚度方向的截面,將長 度超過50μιη之夾雜物個數限制為〇 5個/爪爪2以下。若 夾雜物超過0.5個/mm2,則彎曲加工性顯著降低而無法 進行180度密合彎曲。 為了將夾雜物調整為上述範圍,而將3及〇濃度分別 規定為30質量ppm以下及5〇質量ppm以下。s或〇濃度 若超過該範圍,則該夹雜物會超過〇 5個/mm2。 (4)結晶粒形狀 若觀察本發明合金之平行於壓延面之截面的金屬組 織’則可觀察到具有被拉伸於壓延方向之形㈣晶粒。若 令晶粒之與愿延方向成正交方向的平均粒徑| a、與愿延 方向成平行方向的平均粒徑為b,則a值及b/a值與合金 的強度及f曲加工性具相關性β因此’可將此作為參數來 調整合金的特性。 11 1327173 人3若低於ιμπι則彎曲加工性降低而無法進行i8〇度密 合彎曲》a若超過1〇μΐη則強度降低而難以得到4ι〇Μρ&以 上之拉伸強度,並且進行彎曲加工實彎曲部會產生嚴重之 表面敏摺。因此,將a規定為卜⑺㈣、更佳為卜㈣。 b/a若超過2.5,則彎曲加工性降低而無法進行18〇 度密合彎曲。b/a若不滿丨.2,則強度降低而難以得到 41〇MPa以上之拉伸強度。因此,將b/a規定為12〜25。 又,在最終退火時組織未完全再結晶而殘留壓延加工 組織的情形’當最後冷壓延之加工度非常高時,晶粒的變 形顯著而難以測定b/ a。具有如此組織之合金的彎曲加工 性非常差,無法進行180度密合彎曲。 (5)壓延面之結晶方位 藉由於銅合金之壓延面進行X射線繞射,可求得壓延 面之(200)、(220)、(111)、(3 11)面之集成度。本發明合金 之情形,(200)面及(220)面的集成度與合金的強度及彎曲加 工性具有相關性。因此,可將該等作為參數來調整合金的 特性。 將由合金壓延面之(200)面及(220)面所得之X射線繞 射強度分別令為I(2QQ)及Ι(22ϋ)、由銅粉末之(200)面及(220) 面所得之X射線繞射強度分別令為及1〇(22()),以I與 1〇之比(1/ IG)來評價各面的集成度。此處,銅粉末係使用 隨機方位之標準試樣,藉由將試樣之繞射強度(I)除以銅粉 末之繞射強度(1〇),可不受裝置或測定條件的影響,而得到 規格化之集成度之值。 12 1327173 若bow/ ΐίκ2。。}超過1.0,則進行正交方向之18〇度 密合f曲時,f曲面之表面敏摺變大。另一方面,若低2 〇_2,則進行平行方向之180度密合弯曲時,變曲面之表面 皺摺變大。因此,將1(200〆10(2〇〇)規定為0 〇。 若Iopw低於2.0,則強度降低而難以得到 4H)MPa以上之拉伸強度。另—方面1超過5 (),則弯曲 加工性降低而無法進行18〇度密合彎曲。因此,將^2。〆 1〇(22。)規定為 2.0〜5.0。The total concentration (τ) of Sn and Zn was adjusted as follows. 0.5^ 2.0 T= [%Sn]+ 0.16[%Ζη] Here, [%811] and [%211] are the mass% concentrations of Sn and Ζn, respectively. When the enthalpy is 2.0 or less, a conductivity of 35% IACS or more can be obtained. Further, when T is made 0.5 or more, a tensile strength of 410 MPa or more can be obtained by appropriately adjusting the metal structure. Therefore, τ is defined as 〇 5 to 2 〇. More preferably, the range of T is from 1.0 to 1.7'. By adjusting to this range, a more stable conductivity of 35% IACS or more and a tensile strength of 41 MPa or more can be obtained. (2) Ni, Mg, Fe, P, Mn, Co, Be, Ti, Cr, Zr, A1 Ag 1327173 In the alloy of the present invention, in order to improve the strength, heat resistance, stress relaxation resistance, etc. of the alloy, a total of 0.005 may be added. 〇. 5 mass% of one or more of Ni, Mg, Fe, P, Μη, Co, Be, Ti, Cr, Zr, A1 and Ag. However, since the addition of the alloying element causes a decrease in electrical conductivity, a decrease in manufacturability, and an increase in raw material cost, it is necessary to take this into consideration. If the total amount of the above elements is less than 0.005% by mass, the lifting property cannot be exhibited. effect. On the other hand, when the total amount of the above elements exceeds 5% by mass, the electrical conductivity is remarkably lowered. Therefore, the total amount is defined as 〇〇〇5 to 〇·5 mass%. (3) Number of inclusions, S concentration, and agronomic degree The cross section parallel to the rolling direction and parallel to the thickness direction was observed, and the number of inclusions having a length exceeding 50 μm was limited to 〇5/claw 2 or less. When the inclusions exceed 0.5/mm2, the bending workability is remarkably lowered, and the 180-degree adhesion bending cannot be performed. In order to adjust the inclusions to the above range, the concentrations of 3 and cerium are set to 30 ppm by mass or less and 5 Å by mass or less, respectively. If the s or strontium concentration exceeds this range, the inclusions will exceed 个5/mm2. (4) Crystal grain shape If the metal structure of the alloy of the present invention parallel to the cross section of the calendering surface was observed, it was observed that the (4) crystal grains were stretched in the rolling direction. If the average particle diameter of the crystal grains in the direction orthogonal to the desired direction is a, and the average particle diameter in the direction parallel to the direction of the desired direction is b, the a value and the b/a value and the strength of the alloy and the f-curve processing The sex dependence β can therefore be used as a parameter to adjust the properties of the alloy. 11 1327173 If the person 3 is lower than ιμπι, the bending workability is lowered and the i8 twist tightness bending cannot be performed. a If the strength exceeds 1 〇μΐη, the strength is lowered and it is difficult to obtain a tensile strength of 4 〇Μ & & and above, and bending is performed. The curved portion produces a severe surface sensation. Therefore, a is defined as (7) (four) and better (iv). When b/a exceeds 2.5, the bending workability is lowered and the 18-degree tight bending cannot be performed. If b/a is less than 丨2, the strength is lowered and it is difficult to obtain a tensile strength of 41 MPa or more. Therefore, b/a is defined as 12 to 25. Further, in the case where the microstructure is not completely recrystallized at the time of final annealing, the calendered structure remains. When the degree of processing of the final cold rolling is very high, the deformation of crystal grains is remarkable and it is difficult to measure b/a. The alloy having such a structure has extremely poor bending workability and cannot be bent at 180 degrees. (5) Crystal orientation of the calendering surface By X-ray diffraction by the rolling surface of the copper alloy, the degree of integration of the (200), (220), (111), and (31) planes of the calendering surface can be obtained. In the case of the alloy of the present invention, the degree of integration of the (200) plane and the (220) plane is correlated with the strength and bending workability of the alloy. Therefore, these characteristics can be used as parameters to adjust the properties of the alloy. The X-ray diffraction intensities obtained from the (200) and (220) faces of the alloy rolling surface are I (2QQ) and Ι (22 ϋ), respectively, and the X (200) and (220) faces of the copper powder are obtained. The ray diffraction intensities were respectively 1 〇 (22 ()), and the integration degree of each surface was evaluated by the ratio of I to 1 ( (1/IG). Here, the copper powder is obtained by using a standard sample of a random orientation, and by dividing the diffraction intensity (I) of the sample by the diffraction intensity (1 〇) of the copper powder, it is not affected by the apparatus or the measurement conditions. The value of the normalized integration. 12 1327173 If bow/ ΐίκ2. . } When it exceeds 1.0, it is 18 degrees in the orthogonal direction. When f is tight, the surface of the f-surface is greatly reduced. On the other hand, if it is 2 〇 2 lower, the surface wrinkles of the curved surface become larger when the 180-degree close bending is performed in the parallel direction. Therefore, 1 (200 〆 10 (2 〇〇) is defined as 0 〇. If Iopw is less than 2.0, the strength is lowered and it is difficult to obtain a tensile strength of 4H) MPa or more. On the other hand, if the thickness exceeds 5 (), the bending workability is lowered and the 18-degree tightness bending cannot be performed. Therefore, ^2 will be. 〆 1〇 (22.) is specified as 2.0~5.0.

(6)製造方法 本發明合金,係依序進行下述步驟,以加工成電氣電 子機器用材料。 (A)中間再結晶退火:將晶粒粒徑調整成1〜1 〇^m。 (Β)中間冷壓延:加工度35〜9〇%。 (C) 最終再結晶退火:將晶粒粒徑調整成i〜i 、 較佳為1〜5μηι。 (D) 最後冷壓延:加工度15〜60%。 此處,加工度R,係以下式定義。 R~~ (t()— t)/ toGo :壓延前之厚度、t:壓延後之厚度) 若最後冷壓延的加工度不滿15%,則b/a會低於丨·2、 且1(22())/丨叫叫會低於2.0。另一方面,若最後冷壓延的 加工度超過60%,則b/a會超過2.5、且I(22。)/ IG(22。)會 超過5.0。因此’將最後冷壓延之加工度規定為15〜6〇%。 最終退火之晶粒粒徑若低於1 μπι則a低於1 μιη。另一 ’若最終退火之晶粒粒徑超過10μιη則a超過i(^m。 13 1327173 因此’將最終退火之晶粒粒徑規定為1〜ΙΟμιη、較佳為1 〜5μπι 〇 中間冷壓延之加工度若不滿35% ’則Ι(200)/ 10(200)會 低於0_2。另一方面,若中間冷壓延之加工度超過90% , 則1(200)/ 10(200)會超過1.〇。因此,將中間冷壓延之加工 度規定為35〜90%。 中間退火之晶粒粒徑若低於Ιμιη,則1(2⑽)/ 1〇(2()())會 超過1.0。另一方面,若中間退火之晶粒粒徑超過1〇μηι, 則一叫/ 1〇(2〇())會低於0.2 »因此,將中間退火之晶粒粒 徑規定為1〜1〇 μχη。 又’於最後冷壓延後,為改善彈性界限值、應力腐餘 龜•裂敏感度、耐應力緩和性等,而進行去應變退火,亦可 同樣得到本發明之上述作用效果。又,於最後冷壓延之表 面’施以熔焊鍍錫等鍍敷’只要鍍敷層之厚度為5μιη以内, 亦可同樣得到本發明之上述作用效果。 【實施例】 使用咼頻感應電爐,於内徑6〇mm、深度200mm之石 墨坩堝中熔解2kg之電解銅。以木炭片覆蓋熔融液表面後, 添加Zn及Sn。又,視需要可添加CuS以調整s濃度且 視需要可添加CuO以調整〇濃度。將熔融液溫度調整為 1200X:後,將熔融液澆鑄至模具中,以製造寬度6〇1^爪、 厚度30mm之鑄錠,並以下述之步驟作為標準步驟,加工 至厚度為0.3mm。 (步驟1)以85〇t:加熱3小時後,熱壓延(熱軋)至厚度 14 1327173 為 8 mm 〇 (步驟2)將熱壓延板表面之氧化鏽垢以磨具加以研磨、 除去。 (步驟3)冷壓延(素壓延)至板厚為1.5mm。 (步驟4)作為再結晶退火(中間退火),於大氣中以4〇〇 °C加熱30分鐘,將晶粒粒徑調整為約3μιη。 (步驟5)依序進行以10質量%硫酸一 1質量%過氧化 氫溶液之酸洗、及以#1200研磨紙之機械研磨,以除去退 火所生成之表面氧化膜。 (步驟6)以冷壓延(中間壓延),以加工度71%壓延至厚 度為 0.43mm。 (步驟7)作為再結晶退火(最終退火),於大氣中以4〇〇 °C加熱30分鐘,將晶粒粒徑調整為約3μιη。 (步驟8)依序進行以1〇質量%硫酸_1質量%過氧化 氫溶液之酸洗、及以#12〇〇研磨紙之機械研磨,以除去退 火所生成之表面氧化膜。 (步驟9)以冷壓延(最後壓延)’以加工度3〇%壓延至 0.3mm。 對所製得之試樣’進行以下之評價。 夾雜物之測宗 將平行於壓延方向及厚度方向之截面,以機械研磨加 工成鏡面,使用光學顯微鏡,以400倍之倍率進行觀察, 測定長度(壓延方向之寬度)為5_以上之夹雜物的個數。 由綿延於壓延方向之粒子所構成之夹雜物(B $失雜物), 15 1327173 •以1—以下之間隔分布之粒子群視為一個夾雜物。夾雜 物之測定,係對100職2的面積進行,將所確認之夹雜物 個數換算成每1 mm2的個數。 晶粒形狀(6) Manufacturing method The alloy of the present invention is subjected to the following steps in order to be processed into a material for an electric electronic device. (A) Intermediate recrystallization annealing: The grain size is adjusted to 1 to 1 〇^m. (Β) Intermediate cold rolling: processing degree 35~9〇%. (C) Final recrystallization annealing: The grain size is adjusted to i~i, preferably 1 to 5 μm. (D) Final cold rolling: processing degree 15~60%. Here, the degree of processing R is defined by the following formula. R~~ (t()—t)/ toGo: thickness before rolling, t: thickness after rolling) If the final cold rolling processing degree is less than 15%, b/a will be lower than 丨·2, and 1 ( 22 ()) / screaming will be lower than 2.0. On the other hand, if the degree of final cold rolling is more than 60%, b/a will exceed 2.5, and I(22.) / IG(22.) will exceed 5.0. Therefore, the processing degree of the final cold rolling is specified to be 15 to 6 %. If the grain size of the final annealing is less than 1 μπι, then a is less than 1 μηη. Another 'if the grain size of the final annealing exceeds 10 μm, then a exceeds i (^m. 13 1327173 Therefore 'the grain size of the final annealing is specified to be 1 to ΙΟμιη, preferably 1 to 5 μπι 〇 intermediate cold rolling If the degree of processing is less than 35% ', then Ι(200) / 10(200) will be lower than 0_2. On the other hand, if the intermediate cold rolling process exceeds 90%, 1(200) / 10(200) will exceed 1 Therefore, the processing degree of the intermediate cold rolling is specified to be 35 to 90%. If the grain size of the intermediate annealing is lower than Ιμιη, 1 (2 (10)) / 1 〇 (2 () ()) will exceed 1.0. On the other hand, if the grain size of the intermediate annealing exceeds 1 〇μηι, then a /1〇(2〇()) will be lower than 0.2 » Therefore, the grain size of the intermediate annealing is specified to be 1~1〇 Μχη. Further, after the final cold rolling, in order to improve the elastic limit value, the stress corrosion tortoise, the crack sensitivity, the stress relaxation resistance, etc., the strain relief annealing is performed, and the above-mentioned effects of the present invention can be similarly obtained. On the surface of the final cold rolling, 'plating by soldering tin plating, etc.', as long as the thickness of the plating layer is within 5 μm, the same can be obtained on the surface of the present invention. [Examples] 2 kg of electrolytic copper was melted in a graphite crucible having an inner diameter of 6 mm and a depth of 200 mm using a krypton-frequency induction furnace. After the surface of the melt was covered with a charcoal sheet, Zn and Sn were added. It is necessary to add CuS to adjust the s concentration and add CuO as needed to adjust the cerium concentration. After adjusting the temperature of the melt to 1200X: the melt is cast into a mold to make a casting having a width of 6 〇 1 ^ claw and a thickness of 30 mm. The ingot was processed to a thickness of 0.3 mm using the following procedure as a standard step. (Step 1) After heating at 85 Torr: 3 hours, hot calendering (hot rolling) to a thickness of 14 1327173 was 8 mm 〇 (Step 2 The rust scale on the surface of the hot rolled plate is ground and removed by a grindstone (Step 3) cold calendering (primary calendering) to a plate thickness of 1.5 mm (Step 4) as recrystallization annealing (intermediate annealing), The film was heated at 4 ° C for 30 minutes in the atmosphere to adjust the grain size to about 3 μm. (Step 5) Sour pickling with 10% by mass of sulfuric acid-1% by mass of hydrogen peroxide solution, and #1200 Mechanical grinding of abrasive paper to remove surface oxidation generated by annealing (Step 6) Calendering to a thickness of 0.43 mm by cold rolling (intermediate calendering) at 71% (Step 7) as recrystallization annealing (final annealing), heating at 4 ° C for 30 minutes in the atmosphere. The grain size is adjusted to about 3 μm. (Step 8) Acid washing with 1% by mass of sulfuric acid_1% by mass of hydrogen peroxide solution and mechanical grinding with #12〇〇 abrasive paper are sequentially performed to remove The surface oxide film formed by annealing is (step 9) calendered to 0.3 mm by a cold rolling (final calendering) of 3% by weight. The following evaluation was performed on the prepared sample. The measurement of the inclusions will be parallel to the cross section in the rolling direction and the thickness direction, and machined into a mirror surface by mechanical polishing. The optical microscope is used to observe at a magnification of 400 times, and the length (width of the rolling direction) is 5 or more. The number of objects. Inclusions composed of particles extending in the direction of rolling (B $ depleted matter), 15 1327173 • Particle groups distributed at intervals of 1 to below are regarded as one inclusion. The measurement of the inclusions is performed on the area of the 100th position, and the number of the confirmed inclusions is converted into the number per 1 mm2. Grain shape

對完成中間退火、完成畏炊,B 凡珉敢終退火及完成最後壓延之試 樣,觀察與壓延面平行之截面的組織。 將壓延面以機械研磨與電解研磨加工成鏡面後,以蝕 刻使結晶晶界顯出,並拍攝組織照片。钱刻液係使用氨 水與過氧化氫水混合之水溶液,組織照片之拍攝係適當 使用光學顯微鏡及掃描電子顯微鏡。另一方面,當晶粒粒 .捏小而難以以化學银刻判別結晶晶界時,則使用完成電解 研磨之鏡面試樣,以EBSP(Electr〇nρ_Γη, 電子回散射圖案)法拍攝方位圖像,使用此影像來進行晶粒 形狀之測定。 於上述組織圖像’朝與壓延方向正交之方向畫一直線, 鲁求出由直線所切割之晶粒個數。而將直線的長度除以該晶 粒個數之值定為同樣的,朝與壓延方向平行的方向畫 一直線,求出由直線所切割之晶粒個數,並將直線的長度 除以該晶粒個數之值定為b。 對完成中間退火及完成最終退火之試樣,求出(a + b) /2之值,並將其視為完成退火之晶粒粒徑。而完成最後 壓延之試樣,則求出b/a之值。 繞射強唐 使用RINT2500(理學(股)製)作為χ射線繞射裝置,使 16 1327173 - 用Co管球,於試樣之壓延面,測定(200)面及(22〇)面之積 分強度。又,對325網眼之銅粉末試樣亦進行同樣的測定。 導電率 根據JIS Η 0505,以4端子法測定。 拉伸強度 使用加壓機製作JIS13B號測試片使拉伸方向與壓延方 向成平行。根據JIS — Ζ2241對該測試片進行拉伸測試,求 出拉伸強度。 籲 彎曲加工性 使用寬度l〇mm之細長狀試樣,以jIS ζ 2248為依據, 於Good Way (彎曲轴與壓延方向正交之方向,以下稱“正 交方向”)及Bad Way (彎曲轴與壓延方向平行之方向,以 下稱“平行方向”),進行180度密合彎曲測試。對彎曲後 之試樣,由彎曲部之表面及截面,觀察龜裂之有無及表面 皺摺之程度。 • 未產生龜裂且表面皺摺輕微時評價為〇,雖未產生龜 裂但表面敵摺嚴重時評價為△’而產生龜裂時評價為X。 又,與180度密合彎曲測試同時,根據JIS H 311〇, 亦進行R=0.24mm(R/t=0.8)之90度W彎曲測試,而後 述之全部發明例合金及比較例合金,於正交方向及平行方 向皆得到〇之評價結果。 (實施例1) 說明Sn及Zn濃度對導電率及拉伸強度所造成之影 響。以上述標準步驟,製造具有表1之Sn及Zn濃度且厚 17 1327173 度為0.3mm之試樣《該等試樣之S濃度已調整為i〇〜u 質量ppm之範圍、〇濃度已調整為2〇〜3〇質量ppm之範 圍。又’長度為5〇Mm以上之夾雜物個數為〇」 以下。並且,a為3μιη左右,b/a為 J H 么々,丄(200)/ 丄〇(200) 為0·4〜0.6之範圍,I /τ (220〆1〇(22。)為4.0〜4.5之範圍。又, 任一合金,於正交方向及 十仃方向之180度密合彎曲測試 的結果皆為〇。 ~ & π弓Observe the structure of the section parallel to the calendering surface for the completion of the intermediate annealing, the completion of the fear, and the final annealing of the B and the final calendering. After the calendered surface was processed into a mirror surface by mechanical polishing and electrolytic polishing, the crystal grain boundaries were observed by etching, and a photograph of the structure was taken. The money engraving liquid is an aqueous solution in which ammonia water and hydrogen peroxide water are mixed, and the photographing of the photograph is suitably carried out using an optical microscope and a scanning electron microscope. On the other hand, when the crystal grain is pinched and it is difficult to discriminate the crystal grain boundary by chemical silver etching, the mirror sample which is subjected to electrolytic polishing is used, and the orientation image is taken by EBSP (Electr〇nρ_Γη, electron backscatter pattern) method. This image was used to measure the grain shape. The above-mentioned tissue image ' is drawn in a direction orthogonal to the rolling direction, and the number of crystal grains cut by the straight line is obtained. The value of the length of the straight line divided by the number of the crystal grains is determined to be the same, a straight line is drawn in a direction parallel to the rolling direction, the number of crystal grains cut by the straight line is obtained, and the length of the straight line is divided by the crystal. The value of the number of grains is set to b. For the sample which completed the intermediate annealing and completed the final annealing, the value of (a + b) /2 was determined and regarded as the grain size of the finished annealing. When the final calendered sample is completed, the value of b/a is obtained. Diffraction Ding Tang uses RINT2500 (science) to use the X-ray diffraction device to make 16 1327173 - use Co ball to measure the integrated strength of (200) and (22) faces on the rolling surface of the sample. . Further, the same measurement was carried out on the copper powder sample of 325 mesh. Conductivity was measured by a 4-terminal method in accordance with JIS Η 0505. Tensile strength A JIS 13B test piece was produced using a press machine so that the stretching direction was parallel to the rolling direction. The test piece was subjected to a tensile test according to JIS - Ζ 2241 to determine the tensile strength. For bending workability, a slender specimen of width l〇mm is used, based on jIS ζ 2248, in Good Way (direction in which the bending axis is orthogonal to the rolling direction, hereinafter referred to as "orthogonal direction") and Bad Way (bending axis) The direction parallel to the rolling direction, hereinafter referred to as "parallel direction", was subjected to a 180 degree close bending test. For the bent sample, the surface and the cross section of the bent portion were observed for the presence or absence of cracks and the degree of surface wrinkles. • When cracks were not generated and the surface wrinkles were slight, it was evaluated as 〇. Although no crack was generated, the surface was found to be Δ' when the surface was severely broken, and X was evaluated when the crack occurred. Further, in conjunction with the 180-degree adhesion bending test, a 90-degree W bending test of R = 0.24 mm (R/t = 0.8) was also performed according to JIS H 311, and all the inventive examples and comparative alloys described later were Both the orthogonal direction and the parallel direction were evaluated. (Example 1) The influence of the concentration of Sn and Zn on the electrical conductivity and the tensile strength was explained. The sample having the Sn and Zn concentrations of Table 1 and a thickness of 17 1327173 degrees of 0.3 mm was prepared by the above standard procedure. The S concentration of the samples was adjusted to the range of i〇~u mass ppm, and the germanium concentration was adjusted to 2 〇 ~ 3 〇 mass ppm range. Further, the number of inclusions having a length of 5 〇 Mm or more is 〇". Further, a is about 3 μm, b/a is JH, 丄(200)/丄〇(200) is in the range of 0·4 to 0.6, and I /τ (220〆1〇(22.) is 4.0 to 4.5). In addition, for any alloy, the results of the 180 degree close bending test in the orthogonal direction and the tenth direction are all 〇. ~ & π bow

18 1327173 【表1】18 1327173 [Table 1]

ΧΤΛ Zn Sn [%Sn] + 0.16[%Zn] 其他添加元素 導電率 拉伸強度 lNU. (質量%) (質量%) (質量%) (%IACS) (MPa) 發 1 8.1 0.12 1.42 — 43.6 445 明 2 8.0 0.29 1.57 — 41.0 472 例 3 8.1 0.46 1.76 — 38.6 476 4 8.0 0.67 1.95 — 35.0 479 5 2.7 0.29 0.72 — 58.3 417 6 3.5 0.30 0.86 — 54.9 430 7 4.8 0.30 1.07 — 50.1 442 8 6.2 0.30 1.29 — 46.0 463 9 8.6 0.31 1.69 — 39.0 474 10 10.4 0.30 1.96 — 35.5 480 11 2.2 0.69 1.04 — 50.6 461 12 3.1 0.19 0.69 — 60.2 420 13 3.3 0.54 1.07 — 49.4 443 14 3.8 0.95 1.56 — 40.4 492 15 4.0 0.42 1.06 — 50.0 450 16 5.0 0.79 1.59 — 40.8 487 17 5.1 0.20 1.02 — 51.2 439 18 5.5 0.55 1.43 — 44.3 473 19 5.9 0.14 1.08 — 49.6 428 20 6.0 0.68 1.64 — 40.2 480 21 6.3 0.92 1.93 — 36.0 494 22 6.9 0.25 1.35 — 45.2 468 23 7.0 0.65 1.77 — 39.1 479 24 7.2 0.43 1.58 — 41.2 475 25 9.0 0.51 1.95 — 35.5 491 26 9.1 0.18 1.64 — 40.9 462 27 10.2 0.13 1.76 — 38.4 472 28 11.5 0.12 1.96 — 35.3 464 29 4.7 0.18 0.93 — 51.7 437 30 2.7 0.17 0.60 — 59.4 417 31 2.5 0.16 0.56 — 61.4 414 32 8.0 0.30 1.58 0.25Ag 40.7 483 33 7.9 0.31 1.57 0.18Ni 37.4 496 34 8.0 0.29 1.57 0.05ΤΪ 38.1 510 19 1327173ΧΤΛ Zn Sn [%Sn] + 0.16[%Zn] Other added elements Conductivity Tensile strength lNU. (% by mass) (% by mass) (% by mass) (%IACS) (MPa) Issue 1 8.1 0.12 1.42 — 43.6 445 Ming 2 8.0 0.29 1.57 — 41.0 472 Example 3 8.1 0.46 1.76 — 38.6 476 4 8.0 0.67 1.95 — 35.0 479 5 2.7 0.29 0.72 — 58.3 417 6 3.5 0.30 0.86 — 54.9 430 7 4.8 0.30 1.07 — 50.1 442 8 6.2 0.30 1.29 — 46.0 463 9 8.6 0.31 1.69 — 39.0 474 10 10.4 0.30 1.96 — 35.5 480 11 2.2 0.69 1.04 — 50.6 461 12 3.1 0.19 0.69 — 60.2 420 13 3.3 0.54 1.07 — 49.4 443 14 3.8 0.95 1.56 — 40.4 492 15 4.0 0.42 1.06 — 50.0 450 16 5.0 0.79 1.59 — 40.8 487 17 5.1 0.20 1.02 — 51.2 439 18 5.5 0.55 1.43 — 44.3 473 19 5.9 0.14 1.08 — 49.6 428 20 6.0 0.68 1.64 — 40.2 480 21 6.3 0.92 1.93 — 36.0 494 22 6.9 0.25 1.35 — 45.2 468 23 7.0 0.65 1.77 — 39.1 479 24 7.2 0.43 1.58 — 41.2 475 25 9.0 0.51 1.95 — 35.5 491 26 9.1 0.18 1.64 — 40.9 462 27 10.2 0.13 1.76 — 38.4 472 28 11.5 0.12 1.96 — 35.3 464 29 4.7 0.18 0.93 — 51.7 437 30 2.7 0.17 0.60 — 59.4 417 31 2.5 0.16 0.56 — 61.4 414 32 8.0 0.30 1.58 0.25Ag 40.7 483 33 7.9 0.31 1.57 0.18Ni 37.4 496 34 8.0 0.29 1.57 0.05ΤΪ 38.1 510 19 1327173

35 5.0 0.20 1.00 0.03P 45.6 452 36 5.0 0.19 0.99 0.08Mg 48.0 464 37 0.20 1.02 0.1 OFe 46.2 450 38 5.1 0.20 1.02 0.20Mn 43.2 452 _39 4.9 0.19 0.97 0.05Zr, 0.1 Cr 49.2 471 40 8.1 0.32 1.62 0.05Be, 0.02C〇 39.6 503 41 7.8 0.30 1.55 0.08A1 38.4 491 比 42 8.0 0.03 1.31 — 45.8 398 較 43 7.9 0.80 2.06 — 33.3 482 例 44 U 0.22 0.49 — 62.5 407 45 122 0.30 2.25 — 31.4 486 導電率及拉伸強度之測定數據示於表1。Sn及Zn濃 度調整為下述範圍之發明例No. 1〜41,可得目標之35% IACS以上之導電率與4i〇MPa以上之拉伸強度。 [%Zn]=2〜12、[%Sn]=0.1 〜1.0 0.5^ 2.0 T= [%Sn]+ 0.16[%Zn] 發明例之No.l〜4、比較例之Νο·42、43係將Zn定為 8%,而改變Sn濃度者。若Sn增加,則導電率降低而拉 伸強度增加。Sn不滿0.1 %之No.42,其拉伸強度低於 410MPa。於No.43,T超過2,導電率低於35% IACS。 發明例之No.2、5〜10、比較例之No.45係將Sn定為 0.3%,而改變Zn濃度者。若Zn增加,則導電率降低而拉 伸強度增加。於Zn超過12%之No_45,T超過2而導電率 低於 35%IACS。 T不滿0.5之No.44 ’拉伸強度低於410MPa。 圖2,係使用未添加Sn與Zn以外元素之發明例1〜3 1 及比較例42〜45之數據,顯示τ與導電率之關係者。可 20 1327173 知τ與導電率具有密切之關棣。 (實施例2) 說明S、〇濃度及夾雜物個數對彎曲加工性所造成之 影響。以上述方法製造表2所示之S及〇相異之cu〜2n —Sn合金鑄錠。其中,於製造s濃度為5ppm以下之鑄錠 時’係添加碳酸鈉以進行脫疏處理。又,於製造〇濃度為 5PPm以下之鑄錠時,係於氬氣流中進行原料的熔解。二丄 述標準步驟將該等鑄疑加工至厚度為Q3mm。該等試樣之 a為3μιη左右’ b/a為1.4左右,I 〆τ Α 夕玆 (200>/ 1〇(2〇〇)為 0.4〜0.6 範圍’ 1(22。〆 ^0(22。)為4.0〜4.5之範圍。35 5.0 0.20 1.00 0.03P 45.6 452 36 5.0 0.19 0.99 0.08Mg 48.0 464 37 0.20 1.02 0.1 OFe 46.2 450 38 5.1 0.20 1.02 0.20Mn 43.2 452 _39 4.9 0.19 0.97 0.05Zr, 0.1 Cr 49.2 471 40 8.1 0.32 1.62 0.05Be, 0.02 C〇39.6 503 41 7.8 0.30 1.55 0.08A1 38.4 491 Ratio 42 8.0 0.03 1.31 — 45.8 398 Compared with 43 7.9 0.80 2.06 — 33.3 482 Example 44 U 0.22 0.49 — 62.5 407 45 122 0.30 2.25 — 31.4 486 Conductivity and tensile strength The measurement data is shown in Table 1. Inventive examples No. 1 to 41 in which the concentrations of Sn and Zn were adjusted to the following ranges were obtained, and the target had a conductivity of 35% IACS or more and a tensile strength of 4 i 〇 MPa or more. [%Zn]=2~12, [%Sn]=0.1 〜1.0 0.5^ 2.0 T= [%Sn]+ 0.16[%Zn] No.1~4 of the invention example, Νο·42,43 of the comparative example The Zn was determined to be 8%, and the concentration of Sn was changed. If Sn is increased, the electrical conductivity is lowered and the tensile strength is increased. Sn is less than 0.1% of No. 42 and has a tensile strength of less than 410 MPa. At No. 43, T exceeded 2 and the conductivity was less than 35% IACS. In No. 2, 5 to 10 of the invention examples and No. 45 of the comparative example, Sn was changed to 0.3%, and the Zn concentration was changed. If Zn is increased, the electrical conductivity is lowered and the tensile strength is increased. In No. 45 where Zn exceeds 12%, T exceeds 2 and the conductivity is lower than 35% IACS. The No. 44' tensile strength of T less than 0.5 is less than 410 MPa. Fig. 2 shows the relationship between τ and conductivity using data of Inventive Examples 1 to 31 and Comparative Examples 42 to 45 in which elements other than Sn and Zn were not added. 20 1327173 Knowing that τ has a close relationship with conductivity. (Example 2) The influence of the S, the concentration of bismuth and the number of inclusions on the bending workability was explained. The S and 〇 different cu~2n-Sn alloy ingots shown in Table 2 were produced by the above method. Among them, in the case of producing an ingot having an s concentration of 5 ppm or less, sodium carbonate is added to carry out a desalination treatment. Further, in the case of producing an ingot having a crucible concentration of 5 ppm or less, the raw material is melted in an argon gas stream. The standard steps are to process the castings to a thickness of Q3 mm. The a of the samples is about 3 μm, and the b/a is about 1.4, and I 〆 τ Α ( (200 > / 1 〇 (2 〇〇) is in the range of 0.4 to 0.6 '1 (22. 〆 ^ 0 (22. ) is in the range of 4.0 to 4.5.

21twenty one

180度密合彎曲 平行方 向 ° 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 XI XI XI 正交方向 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 X] XI 拉伸強度 (MPa) 472 473 474 472 — 1 470 I 471 472 470 477 472 ν〇 1 418 469 433 496 469 472 475 導電率 (%IACS) 41.0 41.0 41.3 1 41.0 I 41.2 1 41.0 1 41.0 41.2 41.0 51.0 1 60.4 39.5 54.7 35.5 41.0 41.5 41.1 夾雜物個数 (個/mm2) 0.00 0.00 0.00 0.15 0.21 0.00 0.00 0.00 0.09 0.26 0.00 0.46 0.00 0.02 0.00 a 3 1 〇 (質量ppm) 00 CN Ο CN 〇\ CA cs 寸 CN CN CN CN oo 卜 o ro CO (質量ppm) 〇\ Vi 00 CN m 寸 CN ν〇 r-H CN 00 CN CN VO [%Sn]+0.16[% Zn] 1.58 1.56 1.60 1.57 1.58 1.56 1.57 1.55 1.57 1.60 1.02 0.67 1.72 0.86 1.93 1.56 1.58 1.57 eg (質量%) 0.30 0.28 0.30 0.29 0.30 | 0.30 | 0.29 0.30 0.29 0.30 0.20 0.19 1 012 0.30 0.94 0.28 0.30 0.29 N (質量%) 1_ 〇 00 o 00 oo o 00 o 00 ON o 00 00 Ο οό οό uS Ο ro 10.0 in rn CN vd o oo o oo Ο 〇6 CN cn 寸 v〇 卜 oo 〇\ ο (N ro 寸 IT) VO 卜 00 -O 1327173 發明例No. 1〜15,其S為30質量ppm以下、〇為50 質量ppm以下、長度50μιη以上之夹雜物個數為〇 5個/ mm2 〇該等試樣,於180度密合彎曲測試令,於正交方向 及平行方向,皆未產生龜裂且表面皺摺小。 發明例之No· 1〜5、比較例之No. 16、1 7,係8% Zn — 〇.3%Sn合金且將〇定為25〜30質量ppm,而改變s漠度 者。S超過30質量ppm之No.16、17,夾雜物個數超過〇 5 個/ mm2 ’且於180度密合彎曲產生龜裂。 發明例之No.3、6〜10、比較例之No.18,係8% Zn — 〇.3%Sn合金且將S定為12〜15質量ppm,而改變〇濃度 者。Ο超過50質量ppm之No.18,夾雜物個數超過〇」個 /mm2,且於180度密合彎曲產生龜裂。 (實施例3) 說明晶粒形狀 '壓延面之結晶方位、製造方法對拉伸 強度及彎曲加工性所造成之影響1上述方法製造表3之 Cu-Zn- Sn *金铸旋,並加工至厚度為〇3随。於此加 工中’相對於標準步驟,改轡 ^ 汉變於素壓延(步驟3)及中間 延(步驟6)之完成厚度。 於再、纟0日日退火(步驟4)及最線 …時間疋為30分鐘、並改變加熱溫度。 23 1327173180 degree tight bending parallel direction ° 〇〇〇〇〇〇〇〇〇〇〇〇〇〇XI XI XI orthogonal direction 〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇〇X] XI tensile strength (MPa) 472 473 474 472 — 1 470 I 471 472 470 477 472 ν〇1 418 469 433 496 469 472 475 Conductivity (%IACS) 41.0 41.0 41.3 1 41.0 I 41.2 1 41.0 1 41.0 41.2 41.0 51.0 1 60.4 39.5 54.7 35.5 41.0 41.5 41.1 Number of inclusions (pieces/mm2) 0.00 0.00 0.00 0.15 0.21 0.00 0.00 0.00 0.09 0.26 0.00 0.46 0.00 0.02 0.00 a 3 1 〇 (mass ppm) 00 CN Ο CN 〇\ CA cs inch CN CN CN oo 卜o ro CO (mass ppm) 〇\ Vi 00 CN m inch CN ν〇rH CN 00 CN CN VO [%Sn]+0.16[% Zn] 1.58 1.56 1.60 1.57 1.58 1.56 1.57 1.55 1.57 1.60 1.02 0.67 1.72 0.86 1.93 1.56 1.58 1.57 eg (% by mass) 0.30 0.28 0.30 0.29 0.30 | 0.30 | 0.29 0.30 0.29 0.30 0.20 0.19 1 012 0.30 0.94 0.28 0.30 0.29 N (% by mass) 1_ 〇00 o 00 oo o 00 o 00 ON o 00 00 Ο οό οό uS Ο ro 10.0 in rn CN vd o oo o oo Ο 〇6 CN cn V 〇 oo N 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 The number is 〇5/mm2 〇The samples are tightly bent at 180 degrees, and no cracks are formed in the orthogonal direction and the parallel direction, and the surface wrinkles are small. In the examples of the invention, No. 1 to 5, and No. 16, 17 of the comparative example are 8% Zn - 〇.3% of the Sn alloy, and the amount is determined to be 25 to 30 ppm by mass, and the s-moisture is changed. No. 16 and 17 in which S exceeds 30 mass ppm, and the number of inclusions exceeds 个 5 / mm 2 ' and cracks are formed at 180 degrees in close contact with each other. In the examples of the invention, No. 3, 6 to 10, and No. 18 of the comparative example were 8% Zn - 3%.3% Sn alloy and S was set to 12 to 15 ppm by mass, and the yttrium concentration was changed. When No. 18 of more than 50 mass ppm, the number of inclusions exceeds 〇" / mm2, and the crack is caused by tight bending at 180 degrees. (Example 3) Description of crystal grain shape 'Crystal orientation of rolling surface, influence of manufacturing method on tensile strength and bending workability 1 The above method was used to manufacture Cu-Zn-Sn* gold casting of Table 3, and processed to a thickness of 〇3 with. In this process, the thickness is changed relative to the standard step, which is changed to the calendering (step 3) and the intermediate extension (step 6). Anneal, 纟0 day annealing (step 4) and the most line time 疋 is 30 minutes, and the heating temperature is changed. 23 1327173

180度密合背曲 〇 〇 〇 〇 〇 〇 x| X| <] 〇 〇 〇 〇 xl X < 〇 〇 〇 〇 0 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 XI <] 〇 〇 〇 〇 〇 xl 〇 〇 〇 〇 < 〇 〇 〇 〇 <1 拉伸 強度 (MPa) 384 寸 m 3 CN 00 »r> g Ό 3 <s 00 (S Tf v〇 寸 对 〇\ <N «Ο Ri 寸 ro Ό JO s s 寸 寸 V) w CN TO s 寸 s 寸 導電率 (%IACS) 40.8 40.9 40.5 j 40.6 40.7 40.7 40.6 40.4 50.2 50.3 49.9 50.1 49.8 49.5 48.7 45.3 45.0 45.0 45.0 44.9 ! 40.7 40.6 40.4 40.6 40.6 板面方位, 1/10 m 2.43 | 3.52 4.25 4.56 j 4.75 4.96 3.71 3.91 4.15 4.28 4.40 4.46 4.59 4.65 4.56 4.35 4.27 4.15 4.63 4.49 4.31 4.23 4.05 ο 0.92 0.78 0.62 :0.44 1_- . -_ 0.36 0.31 0.26 0.22 0.49 0.53 0.54 0.54 0.55 0.53 0.51 1 0.27 0.55 0.91 3 i 0.22 0.55 0.82 a 晶粒形状 *5 1.17 <N 1.32 ON vq 2.00 2.33 \2M 茛 <N 1.44 1.42 1.44 1.44 1.47 1.45 >〇 v) 1.42 1.42 1.45 vn ^ 1 >w rn r<i 寸 <N 'd o 〆 〇 00 ΓΟ wS 〇 VO — r4 p v〇 寸* 寸· — «Ο 寸· <N 寸· c^i 卜 c<i rN — 寸 PO « I Sw> 〇 〇 c0 00 <N (N r〇 rn o ΓΛ o CO 1 ro fO (N rS vq a ΓΊ p〇 o ΓΟ ro OS fN rS v〇 <N VO <N ON «Ν CO 〇 最後壓延 加工度 (%) g 18.9 25.0 40.0 50.0 a 3 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 板厚 (mm) r<i cJ Γ<·> 〇 d d d d 〇 PO d d d m d ΡΛ d d d o c〇 d o m d m d d r*j d o ΡΛ d m 〇 CO d 最終退火 粒柽 (um) o On CO 〇s CN o ro o rn ON o rn 3 00 vq 寸· ΓΛ VO ON «Ν fO ΓΛ oo <N o o rS 00 CN o CO ro <N 温度 ΓΟ 〇 寸 〇 o 〇 寸 〇 寸 〇 o 〇 寸 〇 寸 O s rt •n cs 〇 s ΓΛ o 〇 叶 〇 寸 o 〇 寸 O 〇 叶 o 寸 o 寸 〇 寸 〇 中間壓延 加工度 (%) 76.7 75.3 1 73.3 71.3 60.0 53.3 46.7 36.7 71.3 71.3 71.3 71.3 71.3 71.3 71.3 3 38.6 71.3 82.8 71.3 71.3 71.3 71.3 71.3 板厚 (mm 0.35 0.37 0.40 !〇.5〇 0.60 0.70 0.80 0.95 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 中間退火 粒柽 (μηι) o rn OS CN <N rn o co o cs CO <N PO o CO cn (N ri ίΝ ΓΛ CO o rn o ro o OS CN OS CN 寸 CO c<i 13.8 v〇 00 On tN 00 溫度 (°C) 〇 寸 〇 rr 〇 o 〇 Tf o 〇 寸 o 寸 〇 对 〇 寸 o 寸 〇 寸 Ο 〇 〇 寸 〇 寸 〇 寸 〇 〇 寸 o 〇 寸 o 寸 〇 寸 g CO 素壓延 板厚 (mm) >〇 »〇 in «η ir> 〇 卜 o »〇 fN o U"i in u-ϊ in [%Sn] + 0.16 [%Zn] s 1.62 v〇 CO V〇 1.62 <N v〇 1.62 1.64 1.09 1.10 m vq 1.08 g 1.37 1.34 U-i rn «s v〇 v〇 s s t〇 vq Sn (質量%) 0.29 S 0.28 0.29 0.28 0.28 0.28 0.29 0.28 0.29 0.30 0.30 0.29 0.30 0.30 0.29 0.25 0.24 0.25 0.23 0.24 0,20 0.20 0.19 0.20 0.19 Zn (質量%> 2 «λ 〇〇 ΓΛ 00 00 00 m 〇6 W"> od o »τϊ 00 — o »〇 ON — 〇\ 々· Ov — q 〇\ v〇 〇\ v〇 o 卜 v〇 〇\ oo 00 od Os oo o 〇\ σί i I比較例| I發明例| |發明例| |發明例| |發明例| 1發明例 比較例 比較例| |比較例| I發明例1 |發明例| 1發明例 |發明例 比較例 I比較例 |比較例| |發明例 發明例 發明例 比較例 |比較例 |發明例 |發明例 發明例 比較例 寸 v〇 卜 00 〇\ o <s v〇 卜 00 α\ <N 1327173 表3之No.l〜8 ’係藉由改變完成中間麼延之板厚, 以改變最後壓延加工度者。又,該等之中間壓延加工度係 在本發明之範圍内。隨最後壓延加工度升高,b/a變大、 l(200)> 1(220)/ 1〇(220)升南 最後壓延加工度不滿15%之No.l,b/a低於丨2、丨 (2 2 0 ^ / 1。(2 2())低於2_0。No. 1之拉伸強度低於41 〇MPa。180 degree close-fitting back curve x| X| <] 〇〇〇〇xl X < 〇〇〇〇0 〇〇〇〇〇〇〇〇〇〇〇XI <] 〇〇〇 〇〇xl 〇〇〇〇<〇〇〇〇<1 tensile strength (MPa) 384 inch m 3 CN 00 »r> g Ό 3 <s 00 (S Tf v〇 inch 〇 \ <N «Ο Ri inch ro Ό JO ss inch inch V) w CN TO s inch s inch conductivity (% IACS) 40.8 40.9 40.5 j 40.6 40.7 40.7 40.6 40.4 50.2 50.3 49.9 50.1 49.8 49.5 48.7 45.3 45.0 45.0 45.0 44.9 ! 40.7 40.6 40.4 40.6 40.6 Plane orientation, 1/10 m 2.43 | 3.52 4.25 4.56 j 4.75 4.96 3.71 3.91 4.15 4.28 4.40 4.46 4.59 4.65 4.56 4.35 4.27 4.15 4.63 4.49 4.31 4.23 4.05 ο 0.92 0.78 0.62 :0.44 1_- . -_ 0.36 0.31 0.26 0.22 0.49 0.53 0.54 0.54 0.55 0.53 0.51 1 0.27 0.55 0.91 3 i 0.22 0.55 0.82 a Grain shape *5 1.17 <N 1.32 ON vq 2.00 2.33 \2M 茛<N 1.44 1.42 1.44 1.44 1.47 1.45 >〇v) 1.42 1.42 1.45 Vn ^ 1 >w rn r<i inch<N 'do 〆〇00 ΓΟ wS 〇VO — r4 pv〇 inch * inch · — «Ο · <N inch · c^i 卜c<i rN — inch PO « I Sw> 〇〇c0 00 <N (N r〇rn o ΓΛ o CO 1 ro fO (N rS Vq a ΓΊ p〇o ΓΟ ro OS fN rS v〇<N VO <N ON «Ν CO 〇 final calendering degree (%) g 18.9 25.0 40.0 50.0 a 3 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 Plate thickness (mm) r<i cJ Γ<·> 〇dddd 〇PO dddmd ΡΛ dddoc〇domdmddr*jdo ΡΛ dm 〇CO d final annealing 柽(um) o On CO 〇s CN o Ro o rn ON o rn 3 00 vq inch · ΓΛ VO ON «Ν fO ΓΛ oo <N oo rS 00 CN o CO ro <N temperature 〇 〇 inch 〇o 〇 inch 〇o 〇 inch inch O s Rt •n cs 〇s ΓΛ o 〇叶〇 inch o 〇 inch O 〇叶 o inch o inch 〇 inch 〇 intermediate calendering degree (%) 76.7 75.3 1 73.3 71.3 60.0 53.3 46.7 36.7 71.3 71.3 71.3 71.3 71.3 71.3 71.3 3 38.6 71.3 82.8 71.3 71.3 71.3 71.3 71.3 Plate thickness (mm 0.35 0.37 0.40 !〇.5〇0.60 0.70 0.80 0.95 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 Intermediate annealed granules (μηι) o rn OS CN <N rn o co o cs CO <N PO o CO cn (N ri ίΝ ΓΛ CO o rn o ro o OS CN OS CN 寸CO c<i 13.8 v〇00 On tN 00 Temperature (°C) 〇inch〇rr 〇o 〇Tf o 〇 inch o inch 〇 〇 inch o inch 〇 inch 〇〇 inch inch inch inch inch inch inch o o inch inch inch gg CO plain rolled plate thickness (mm) >〇»〇in «η ir> 〇o o »〇fN o U"i in u-ϊ in [%Sn] + 0.16 [%Zn ] s 1.62 v〇CO V〇1.62 <N v〇1.62 1.64 1.09 1.10 m vq 1.08 g 1.37 1.34 Ui rn «sv〇v〇sst〇vq Sn (% by mass) 0.29 S 0.28 0.29 0.28 0.28 0.28 0.29 0.28 0.29 0.30 0.30 0.29 0.30 0.30 0.29 0.25 0.24 0.25 0.23 0.24 0,20 0.20 0.19 0.20 0.19 Zn (% by mass) 2 «λ 〇〇ΓΛ 00 00 00 m 〇6 W"> od o »τϊ 00 — o »〇ON — 〇\ 々· Ov — q 〇\ v〇〇\ v〇o 卜v〇〇\ oo 00 od Os oo o 〇\ σί i I comparative example | I invention example | invention example | invention example | | 1 invention example comparative example | comparative example | I invention example 1 | invention example | 1 invention example | invention example comparison example 1 comparative example|comparative example| | invention example invention example invention example Inventive Example Inventive Example Comparative Example Inch v 〇 00 〇 \ o < sv 〇 00 α \ < N 1327173 Table No. 1 to 8 ' is changed by changing the thickness of the middle to change The final calendering process. Further, the intermediate calendering degree of these is within the scope of the present invention. With the increase of the final calendering degree, b/a becomes larger, l(200)> 1(220)/ 1〇(220) liters, the final calendering degree is less than 15% of No.l, b/a is lower than 丨2. 丨 (2 2 0 ^ / 1. (2 2 ()) is lower than 2_0. The tensile strength of No. 1 is lower than 41 〇 MPa.

No.7、8係最後壓延加工度超過60%者。於N〇 7,bNo.7 and 8 are those in which the final rolling degree exceeds 60%. At N〇 7,b

/a超過2.5»於No.8晶粒之變形大而無法測定^及b/a, 且ϊ(22〇〆10(220>超過5.0。180度密合彎曲中,於N〇 7之 平行方向產生龜裂’而於No.8之正交方向、平行方向則皆 產生龜裂。 表3之No.9〜15,係藉由改變最終退火溫度,以改變 完成最終退火之晶粒粒徑者。隨完成最終退火之晶粒粒徑 變大,a亦變大。 完成最终退火之晶粒粒徑超過10μπι之N〇9, a超過 ΙΟμιη。N〇.9之拉伸強度不滿410MPa,且於18〇度密合彎 曲中產生大面積之表面皺摺。另一方面,將完成最終退火 粒徑調整為7.8μιη而a為7 3卿之Ν〇 1〇,18〇度 密合脊曲之表面皺指雖肖Ng.u〜13稍大,但實用上並無 :題而判斷為等級(〇)。然而,於特別重視彎曲外觀的場 合’較佳為’將完成最終退火之晶粒粒徑調整為5μιη以下 且使a為5gm以下。 ι凡成最终退火之晶粒粒徑不滿之Νο·14,a低於 km。於N〇·14,於平行方向之180度密合彎曲中產生龜 25 1327173 裂。/a exceeds 2.5» in No.8, the deformation of the grain is large and it is impossible to measure ^ and b/a, and ϊ(22〇〆10(220> exceeds 5.0. 180 degree tight bending, in the parallel direction of N〇7 Cracks are generated and cracks are generated in the orthogonal direction and the parallel direction of No. 8. No. 9 to 15 in Table 3 are used to change the grain size of the final annealing by changing the final annealing temperature. As the grain size of the final annealing becomes larger, a also becomes larger. The grain size of the final annealing exceeds 10 μm, N〇9, a exceeds ΙΟμιη. The tensile strength of N〇.9 is less than 410 MPa, and Large-area surface wrinkles are produced in 18-degree tightness bending. On the other hand, the final annealing particle size is adjusted to 7.8 μm and a is 7 3 Ν〇1〇, 18 密 密 脊 脊 之 surface Wrinkles Although Xiao Ng.u ~ 13 is slightly larger, but practically no: the title is judged as grade (〇). However, in the case of paying special attention to the curved appearance, 'preferably' will complete the final annealing grain size Adjusted to 5μηη or less and a to be 5gm or less. ι凡成The grain size of the final annealing is less than Νο·14, a is lower than km. In N〇·14, in parallel Cracking to produce the turtle 251327173 180 ° adhesion bending.

No. 15係於完成最终银令 、 大時’係殘留有未再結晶部(壓 延組織)者,a及b/ a之測金么4 疋無法進行。Νο·15,於18〇产 密合彎曲中,正交方向、平 又 1 十仃方向皆產生龜裂。No. 15 is the case where the final silver order is completed, and the non-recrystallized portion (calendered structure) remains in the large time, and the measurement of a and b/a is not possible. Νο·15, in the 18-inch production tight bend, cracks occur in the orthogonal direction, flat and 1 仃 direction.

表 3 之 Ν ο _ 16 2 0,ζίίι I 係藉由改變完成素壓延之板厚, 以改變中間壓延加工度者。Table 3 ο ο _ 16 2 0, ζίίι I is to change the intermediate calendering degree by changing the thickness of the finished calendering.

隨中間壓延加工度升高,I (200)/ 1〇(2〇〇)升尚、而 Ιί22〇、 / I〇(22G)稍微降低。 中間壓延加工度不滿15%之& Μ,其^ 低於〇·2。於Ν。·16,平行方向之180度密合f曲中產生嚴 重之表面敏指。 中間壓延加工度超過9〇%之亂20,其1(200/1〇(2〇〇) 超過1.0。於No.20,正$太a ★ , „ 止父方向之18〇度密合彎曲中產生嚴 重之表面皺摺。 表 3 之 — - , 你錯由改變中間退火溫度,以改 變完成中間退火之晶粒粒徑者。隨完成中間退火之晶粒粒 徑變=,1(2。。)/ 1。_升高、* 1(22。〆‘2。)稍微降低。 完成中間退火之晶粒粒徑超過1〇μπΐ2 N〇 21,其〗(咖) / 低於0.2。於No.21,其平行方向之18〇度密合彎 曲中產生嚴重之表面皺摺。 Ν〇·25,係中間退火時殘留有未再結晶部(壓延組織)且 無法將平均晶粒粒徑調整為1μπι以上者,^/ ‘叫超 過1.0 1NO.25’其正交方向之18〇度密合弯曲中產生嚴 重之表面皺摺。 26 1327173 【圖式簡單說明】 圖1,係彎曲測試方法之概略圖。 圖2,係使用未添加Sn與Zn以外元素之發明例1〜3 1 及比較例42〜45之數據,顯示T與導電率之關係圖。 【主要元件符號說明】 無As the intermediate calendering process increases, I (200) / 1 〇 (2 〇〇) rises, while Ιί22 〇, / I 〇 (22G) decreases slightly. The intermediate calendering degree is less than 15% & Μ, which is lower than 〇·2. Yu Yu. • 16, a 180 degree parallel in the parallel direction produces a severe surface sensitive finger in the f curve. The intermediate calendering degree exceeds 9〇% of the chaos 20, and 1 (200/1〇(2〇〇) exceeds 1.0. In No.20, the positive $太a ★, „18-degree close-fitting bending in the direction of the father Severe surface wrinkles are produced. Table 3 - - , you change the intermediate annealing temperature to change the grain size of the intermediate annealing. The grain size changes with the completion of the intermediate annealing = 1, (2). ) / 1. _ rise, * 1 (22. 〆 '2.) slightly lower. The grain size of the intermediate annealing is over 1〇μπΐ2 N〇21, which is (yes) / less than 0.2. 21, in the parallel direction of the 18-degree tightness, the bending causes severe surface wrinkles. Ν〇·25, the intermediate annealing has no recrystallized portion (calendered structure) and the average grain size cannot be adjusted to 1 μm In the above, ^/ 'called more than 1.0 1NO.25' in the orthogonal direction of the 18-degree close-fitting bending produces severe surface wrinkles. 26 1327173 [Simple diagram of the diagram] Figure 1, is a schematic diagram of the bending test method Fig. 2 is a graph showing the relationship between T and conductivity using data of Inventive Examples 1 to 31 and Comparative Examples 42 to 45 in which elements other than Sn and Zn were not added. [Main component symbol description] None

2727

Claims (1)

1327173 、 發明考1327173, invention test 880號(98年10月修正) ^年(0月Z曰修 正本 1· 一種電氣電子機器用銅合金’其特徵在於,含有2〜 12質量%之Zn及0.1〜1.0質置%之Sn,Sn之質量%濃度 ([% Sn])與Zn之質量%濃度([% Zn])之關係係調整為下式範 圍,剩餘部分為銅及不可避免之雜質所構成,不可避免之 雜質中S濃度為30質量ppm以下、〇濃度為5〇質量ppm 以下’且具有35% I ACS以上之導電率及41〇MPa以上之拉 伸強度’可進行平行方向(彎曲軸與壓延方向平行之方向) • 及正交方向(彎曲轴與壓延方向正交之方向)之180度密合 彎曲加工; 0.5^ [% Sn]+ 0.16[%Zn]^ 2.0 又’平行於壓延面之截面的金屬組織中,構成金屬組 織之晶粒具有被拉伸於壓延方向的形狀,並且,令晶粒之 與壓延方向成正交方向的平均粒徑為a、與壓延方向成平行 方向的平均粒徑為b時,具有下述尺寸, a= 1.0〜1〇·〇μιπ、 b/a= 1.2〜2·5 並且,令由壓延面之(200)面及(220)面所得之χ射線繞 射強度分別為Ipoq及卜22…、並令由銅粉末之(2〇〇)面及(22〇) 面所得之X射線繞射強度分別為1〇(2⑼)及1〇(22〇)時, 〇·2^Ι(2〇〇)/Ι0(200)^ ι·〇 2.0^ ^(220)/^ 10(220) = 5.0 ο 2.如申請專利範圍第1項之電氣電子機器用銅合金, 其含有合計為0.005〜0_5質量%範圍之Ni、Mg、Fe、Ρ、 28 1327173 I _、Co、Be、Ti、Cr、Zr、A1及Ag中一種以上之元素。 3. 如申凊專利範圍第1或2項之電氣電子機器用銅合 #,其中,在平行於壓延方向及厚度方向的截面,長度超 過別叫1之夾雜物的個數為0_5個/mm2以下。 4. 如中請專利範圍第15戈2項之電氣電子機器用銅合 . 金’其中 ’ a=1.0 〜5 .Ομπι。 5· —種電氣電子機器用銅合金之製造方法,係用以製 '申請專利範圍第i至4項之電氣電子機器用鋼合金,其 特徵在於’依序進行下述步驟: Α·中間再結晶退火,將晶粒粒徑精加 、 战 1 〜1 Ομιη ; Β·加工度35〜90%之中間冷壓延; C.最終再結晶退火’將晶粒粒徑精加工士 1 战 1 〜1 Ομπι ; * D·加工度15〜60%之最後冷壓延。 . 6·如申請專利範圍第5項之電氣電子機器用銅合金之 製造方法,其中,C步驟之晶粒粒徑為ι〜5μ〇ι。 十一、圖式: 如次頁 29No. 880 (amended in October, 1998) ^Year (October Z曰 Amendment 1) A copper alloy for electric and electronic equipment, characterized in that it contains 2 to 12% by mass of Zn and 0.1 to 1.0% of Sn. The relationship between the mass % concentration of Sn ([% Sn]) and the mass % concentration of Zn ([% Zn]) is adjusted to the following formula, and the remainder is composed of copper and unavoidable impurities. The concentration is 30 mass ppm or less, the cerium concentration is 5 〇 mass ppm or less 'and the electrical conductivity of 35% I ACS or more and the tensile strength of 41 〇 MPa or more' can be parallel direction (the direction in which the bending axis is parallel to the rolling direction) • 180 degree close bending of the orthogonal direction (the direction in which the bending axis is orthogonal to the rolling direction); 0.5^ [% Sn]+ 0.16[%Zn]^ 2.0 and 'parallel to the metal structure of the section of the calendering surface The crystal grains constituting the metal structure have a shape stretched in the rolling direction, and the average particle diameter of the crystal grains in the direction orthogonal to the rolling direction is a, and the average particle diameter in the direction parallel to the rolling direction is b. With the following dimensions, a = 1.0~1〇·〇μιπ, b/a= 1.2~2·5 Further, the diffraction intensities of the x-rays obtained from the (200) plane and the (220) plane of the calendering surface are Ipoq and Bu 22, respectively, and the (2〇〇) plane and the (22〇) plane of the copper powder are obtained. When the X-ray diffraction intensities are 1〇(2(9)) and 1〇(22〇), respectively, 〇·2^Ι(2〇〇)/Ι0(200)^ ι·〇2.0^ ^(220)/^ 10 (220) = 5.0 ο 2. The copper alloy for electric and electronic equipment according to claim 1, which contains Ni, Mg, Fe, Ρ, 28 1327173 I _, Co, Be in a total range of 0.005 to 0_5% by mass. And one or more elements of Ti, Cr, Zr, A1, and Ag. 3. The copper-clad # for electrical and electronic equipment of claim 1 or 2, wherein the cross section parallel to the rolling direction and the thickness direction, The number of inclusions whose length exceeds 1 is 0_5/mm2 or less. 4. For the purpose of the patent range, the 15th and 2nd items of the electrical and electronic equipment are copper. Gold 'where' a=1.0 〜5 .Ομπι. 5. A method for producing a copper alloy for an electric and electronic device, which is used for the manufacture of a steel alloy for electric and electronic equipment according to items i to 4 of the patent application, characterized in that the following steps are carried out in sequence. : Α·intermediate recrystallization annealing, fine grain size, war 1 ~1 Ομιη; Β·degree of processing 35~90% of intermediate cold rolling; C. final recrystallization annealing 'grain particle size finishing 1 battle 1 ~ 1 Ομπι; * D · processing degree 15~60% of the final cold rolling. 6. The method for producing a copper alloy for an electric and electronic machine according to claim 5, wherein the crystal grain size of the step C is ι 5 μμι. XI. Schema: as the next page 29
TW095125880A 2005-07-15 2006-07-14 Cu-Zn-Sn alloy for electrical and electronic equipment TW200706661A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207556 2005-07-15

Publications (2)

Publication Number Publication Date
TW200706661A TW200706661A (en) 2007-02-16
TWI327173B true TWI327173B (en) 2010-07-11

Family

ID=37609650

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095125880A TW200706661A (en) 2005-07-15 2006-07-14 Cu-Zn-Sn alloy for electrical and electronic equipment

Country Status (3)

Country Link
KR (1) KR100792653B1 (en)
CN (1) CN1897171B (en)
TW (1) TW200706661A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339995B2 (en) * 2009-04-01 2013-11-13 Jx日鉱日石金属株式会社 Cu-Zn-Sn alloy plate and Cu-Zn-Sn alloy Sn plating strip
JP5140171B2 (en) * 2011-03-18 2013-02-06 Jx日鉱日石金属株式会社 Copper alloy strip used for battery tab material for charging
JP5148023B2 (en) * 2011-04-15 2013-02-20 株式会社小松ライト製作所 Thermal protector and battery using the same
JP6029296B2 (en) * 2012-03-08 2016-11-24 Jx金属株式会社 Cu-Zn-Sn-Ca alloy for electrical and electronic equipment
JP6111028B2 (en) * 2012-03-26 2017-04-05 Jx金属株式会社 Corson alloy and manufacturing method thereof
JP5130406B1 (en) * 2012-03-29 2013-01-30 Jx日鉱日石金属株式会社 Cu-Zn-Sn copper alloy strip
JP5826160B2 (en) * 2012-04-10 2015-12-02 Jx日鉱日石金属株式会社 Rolled copper foil, copper-clad laminate, flexible printed wiring board and manufacturing method thereof
WO2014115307A1 (en) * 2013-01-25 2014-07-31 三菱伸銅株式会社 Copper-alloy plate for terminal/connector material, and method for producing copper-alloy plate for terminal/connector material
JP2015086452A (en) * 2013-11-01 2015-05-07 株式会社オートネットワーク技術研究所 Copper alloy wire, copper alloy twisted wire, coated cable, wire harness and manufacturing method of copper alloy wire
JP6101750B2 (en) * 2015-07-30 2017-03-22 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, conductive parts and terminals for electronic and electrical equipment
JP7024925B2 (en) * 2019-11-29 2022-02-24 三菱マテリアル株式会社 Copper alloys, plastic working materials for copper alloys, parts for electronic and electrical equipment, terminals, bus bars, heat dissipation boards
CN114507828B (en) * 2022-02-17 2022-12-02 贵溪奥泰铜业有限公司 Phosphor bronze alloy with excellent conductivity and production method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3105392B2 (en) * 1994-03-18 2000-10-30 同和鉱業株式会社 Manufacturing method of copper base alloy for connector
JP3520046B2 (en) * 2000-12-15 2004-04-19 古河電気工業株式会社 High strength copper alloy
CN1177946C (en) * 2001-09-07 2004-12-01 同和矿业株式会社 Copper alloy for connector use and producing method thereof
CN1624177A (en) * 2004-12-08 2005-06-08 昆明贵金属研究所 High compact, non-segregation wear-resisting copper alloy and its preparation process

Also Published As

Publication number Publication date
CN1897171B (en) 2012-11-28
TW200706661A (en) 2007-02-16
KR100792653B1 (en) 2008-01-09
KR20070009433A (en) 2007-01-18
CN1897171A (en) 2007-01-17

Similar Documents

Publication Publication Date Title
TWI327173B (en)
JP4408275B2 (en) Cu-Ni-Si alloy with excellent strength and bending workability
EP1179606B1 (en) Silver containing copper alloy
JP4143662B2 (en) Cu-Ni-Si alloy
JP5840310B1 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
JP4444245B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment
TW200948990A (en) Cu-ni-si alloy to be used in electrically conductive spring material
TW201211281A (en) Copper alloy sheet material and process for producing same
WO2010126046A1 (en) Cu-Ni-Si-Mg-BASED ALLOY HAVING IMPROVED ELECTRICAL CONDUCTIVITY AND BENDABILITY
TW200902732A (en) Cu-Ni-Si-based alloy for electronic material
JP2008223136A (en) SHEET MATERIAL OF Cu-Ni-Si-BASED COPPER ALLOY AND MANUFACTURING METHOD THEREFOR
TW201026864A (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
TWI475119B (en) Cu-Zn-Sn-Ni-P alloy
JP4524471B2 (en) Copper alloy foil and manufacturing method thereof
TW201239107A (en) Cu-Ni-Si based alloy and process for manufacturing same
WO2013018228A1 (en) Copper alloy
JP6366298B2 (en) High-strength copper alloy sheet material and manufacturing method thereof
JP4439003B2 (en) Titanium copper alloy excellent in strength and bending workability and manufacturing method thereof
WO2009116649A1 (en) Copper alloy material for electric and electronic components
JP2000080428A (en) Copper alloy sheet excellent in bendability
JP6696770B2 (en) Copper alloy plate and connector
TWI509090B (en) Copper alloy plate, and with its high current with electronic components and thermal electronic components
JP6111028B2 (en) Corson alloy and manufacturing method thereof
JP4781145B2 (en) Terminal, connector or relay using Cu-Zn-Sn alloy and Cu-Zn-Sn alloy strip
TWI510654B (en) Cu-Zn-Sn-Ni-P alloy