1299578 (1) 玖、發明說明 【發明所屬之技術領域】 本發明相關於用於半導體積體電路及其驅動方法的技 術。本發明也相關於一種發光裝置,該發光裝置在其驅動 電路部分和像素部分中含有本發明的半導體積體電路;特 別是,本發明相關於一種 < 主動矩|車發光裝_置,其具有本發 明的半導體積體電路作爲驅動電路部分中的信號線驅動電 路,以及排列形成矩陣圖案的多個像素,以及在每個像素 含有開關元件以及發光元件。 【先前技術】 最近幾年,開發使用自發光發光元件的發光裝置已經 取得進展。利用例如高質量影像,薄和重量輕的優點,這 些發光裝置可以廣泛用於行動電話和個人電腦的顯示幕。 特別是,使用發光元件的發光裝置的特徵在於它們對動畫 顯示有合適的快速回應速度,以及低電壓和低功耗驅動。 因此,使用發光元件的這些發光裝置期望廣泛用於各種目 的,包括新一代行動電話和個人數位助理(PDA),並正在 引起注意作爲下一代顯示器。 發光裝置的一個實例是有一個陽極和一個陰極的有機 發光二極體(OLED)。它具有在上述陽極和陰極之間夾有 有機化合物層的結構。有機化合物層通常有疊層結構,可 由Eastman Kodak Company的Tang提出的”電洞傳輸層, 發光層和電子傳輸層”的疊層結構表示。 -6 - (2) 1299578 爲了使發光元件發射光,驅動發光元件的半導體裝置 是由有大的導通電流的多晶矽(ρ 〇 1 y S i 1 i C 〇 η )(多晶矽)形 成的。流入發光元件的電流量和發光元件的亮度互相成正 比,由此,發光元件發光強度與流到有機化合物層的電流 量有關。作爲驅動發光元件的半導體裝置,使用多晶政形 成的多晶矽電晶體。 然而’使用有發光元件的發光裝置顯示多灰度級的影 像時,可以給出驅動裝置的方法,例如類比灰度級法(類 比驅動法),或數位灰度級法(數位驅動法)。兩者的差別 在於’它們控制發光元件處於發光或不發光狀態的方法。 前者’類比灰度級法利用控制流入發光元件的電流由此得 到灰度級的類比方法。後者,數位灰度級法,利用其中發 光元件只能在兩種狀態驅動,即開態(幾乎100%發光)和 關態(幾乎0%發光)。 另外’利用發光元件爲實例,提出電流輸入法,借助 可以劃分輸入發光裝置的信號類型。在這種電流輸入法中 ’可以假設控制流入發光元件的電流量,而不受驅動發光 元件的TFT的影響。 電流輸入法可應用上述的類比灰度級法和數位灰度級 法。電流輸入法是一種方法,其中輸入到像素的視頻信號 是一個電流,而發光元件的發光可以依照流入發光元件的 車时入視頻丨g號(電流)的電流控制。 下面’參照圖1 4解釋使用發光裝置的電流輸入法和 由此的驅動方法的一個像素的電路結構的實例。在圖i 4 1402 (3) 1299578 中,一個像素具有信號線1401,第一到第三掃描線 到1 404,電源線1 405,電晶體1 406到1 409,電容 件1 4 1 0和發光元件1 4 1 1。電流源電路1 4 1 2提供給 線。 電晶體1406的閘極連接到第一掃描線1402。電 1 406的第一電極連接到信號線1401,而它的第二電 接到電晶體1 407的第一電極、電晶體1 408的第一電 電晶體1 409的第一電極。電晶體1 407的閘極連接到 掃描線1 403。電晶體1407的第二電極連接到電晶體 的閘極。電晶體1 408的第二電極連接到電流線1405 晶體1 409的閘極連接到第三掃描線1 404。電晶體 的第二電極連接到發光元件1 4 1 1的電極之一。電容 件1410連接在電晶體1 408的閘極和第二電極之間, 持電晶體1408的閘源電壓。電流線1 405和發光 1 4 1 1的陰極接收一個給定電位,以保持相互間的電 〇 下面描述從視頻信號寫到光發射的操作。首先, 輸入到第一掃描線1 402和第二掃描線1 403,使電 1 406和1 407導通。在這一點流入信號線1401的信 流用Idata表記,並由電流源電路丨412供電。 電晶體14〇6剛剛導通後,在電容器元件1410上 有電荷保存,因此電晶體1 408保持在關態。換言之 時只有在電容器元件1 4 1 0上已經積累的電荷引起的 在流動。 器元 信號 曰 m* 晶體 極連 極和 第二 1408 。電 1409 器元 以保 元件 位差 脈衝 晶體 號電 還沒 ,這 電流 -8- (4) (4)1299578 其後,電荷慢慢積累在電容器元件1410上,引起兩 個電極之間的電位差。當電極間的電位差達到電晶體 1 4 08的起始値Vth時,電晶體14〇8導通産生電流流動。 然後流入電容器元件1 4 1 0的電流慢慢減少。然而,減少 的電流並不會停止在電容器元件1410上進行的電荷積累 〇 在電容1 41 0上的電荷積累,一直持續到它的兩個電 極上的電位差即電晶體1 4 0 8的閘源電壓,達到一個給定 電壓,它是高到足以引起電流Idata在電晶體1 408中流動 的電壓(VGS)。當電荷積累結束時,電流Idata還在電晶體 1 4 0 8中繼續流動。如上所述,進行了信號寫操作。最後 ,第一掃描線1 402和第二掃描線1403停止被選擇,關閉 電晶體1 4 0 6和1 4 0 7。 下面是光發射操作。脈衝輸入到第三掃描線1404, 使電晶體14〇9導通。藉由前述操作中寫入並保持在電容 器1410上的VGS,使電晶體1 408導通,電流從電流源線 1405流動。這引起發光元件1411發光。這時如果電晶體 1 408設置爲在飽和區工作,即使當電晶體1408的源汲電 壓被改變時,流入發光元件1 4 1 1的光發射電流IEL也不 會偏離Idata 。 如前所述,電流輸入法是指一種方法,其中汲極電流 値等於或與電流源電路1 4 1 2置定的信號電流値成正比的 汲極電流在電晶體1 4 0 8的源汲之間流動,發光元件1 4 1 1 發光,其強度與汲極電流對應。藉由使用對如上所述的電 -9 - (5) 1299578 流輸入法像素,可以減少構成像素的各電晶體間的特性波 動的影響’一個期望的電流可以供給它的發光元件。其他 電流輸入法像素電路,已在US6,229,506B1和JTP2001-147659A中報道。1299578 (1) Description of the Invention [Technical Field] The present invention relates to a technique for a semiconductor integrated circuit and a method of driving the same. The present invention is also related to a light-emitting device comprising a semiconductor integrated circuit of the present invention in its driving circuit portion and a pixel portion; in particular, the present invention relates to an <active moment|vehicle lighting device, The semiconductor integrated circuit of the present invention is used as a signal line drive circuit in the drive circuit portion, and a plurality of pixels arranged in a matrix pattern, and a switching element and a light-emitting element are included in each pixel. [Prior Art] In recent years, development of a light-emitting device using a self-luminous light-emitting element has progressed. These light-emitting devices can be widely used for display screens of mobile phones and personal computers by utilizing, for example, high-quality images, thinness, and light weight. In particular, illuminating devices using illuminating elements are characterized in that they have a suitable fast response speed for animation display, as well as low voltage and low power driving. Therefore, these light-emitting devices using light-emitting elements are expected to be widely used for various purposes, including a new generation of mobile phones and personal digital assistants (PDAs), and are attracting attention as next-generation displays. An example of a light-emitting device is an organic light-emitting diode (OLED) having an anode and a cathode. It has a structure in which an organic compound layer is sandwiched between the above anode and cathode. The organic compound layer usually has a laminated structure and can be represented by a laminated structure of "hole transport layer, light-emitting layer and electron transport layer" proposed by Tang of Eastman Kodak Company. -6 - (2) 1299578 In order for the light-emitting element to emit light, the semiconductor device that drives the light-emitting element is formed of a polysilicon (ρ 〇 1 y S i 1 i C 〇 η ) (polysilicon) having a large on-current. The amount of current flowing into the light-emitting element and the brightness of the light-emitting element are proportional to each other, whereby the light-emitting intensity of the light-emitting element is related to the amount of current flowing to the organic compound layer. As the semiconductor device for driving the light-emitting element, a polycrystalline germanium transistor formed by polycrystalline is used. However, when a light-emitting device having a light-emitting element is used to display an image of a plurality of gray scales, a method of driving the device, such as an analog gray scale method (analog driving method) or a digital gray scale method (digital driving method) can be given. The difference between the two is that they control the light-emitting element in a state of being illuminated or not. The former 'analogous gray scale method uses an analogy method of controlling the current flowing into the light-emitting element to thereby obtain a gray scale. The latter, the digital gray scale method, utilizes a light-emitting element that can only be driven in two states, an open state (almost 100% illumination) and a closed state (almost 0% illumination). Further, by using the light-emitting element as an example, a current input method is proposed by which the type of signal that can be input to the light-emitting device can be divided. In this current input method, it can be assumed that the amount of current flowing into the light-emitting element is controlled without being affected by the TFT that drives the light-emitting element. The current input method can apply the analog gray scale method and the digital gray scale method described above. The current input method is a method in which the video signal input to the pixel is a current, and the light emission of the light-emitting element can be controlled in accordance with the current of the video 丨g (current) flowing into the vehicle of the light-emitting element. An example of the circuit configuration of one pixel using the current input method of the light-emitting device and the thus-driving method will be explained below with reference to Fig. 14. In Fig. i 4 1402 (3) 1299578, one pixel has a signal line 1401, first to third scan lines to 1 404, power line 1 405, transistors 1 406 to 1 409, capacitors 1 4 1 0 and illuminating Element 1 4 1 1. The current source circuit 1 4 1 2 is supplied to the line. The gate of transistor 1406 is coupled to first scan line 1402. The first electrode of the electric 1 406 is connected to the signal line 1401, and its second electrode is connected to the first electrode of the transistor 1 407 and the first electrode of the first electro-op crystal 1 409 of the transistor 1 408. The gate of transistor 1 407 is connected to scan line 1 403. The second electrode of transistor 1407 is coupled to the gate of the transistor. The second electrode of the transistor 1 408 is connected to the current line 1405. The gate of the crystal 1 409 is connected to the third scan line 1 404. The second electrode of the transistor is connected to one of the electrodes of the light-emitting element 1 41 1 . Capacitor 1410 is coupled between the gate of transistor 1 408 and the second electrode to hold the gate voltage of transistor 1408. The current line 1 405 and the cathode of the illuminating 1 4 1 1 receive a given potential to maintain mutual electrical power. The following describes the operation from writing a video signal to light emission. First, input to the first scan line 1 402 and the second scan line 1 403 causes the electrodes 1 406 and 1 407 to be turned on. At this point, the flow of the incoming signal line 1401 is denoted by Idata and supplied by the current source circuit 丨412. Immediately after the transistor 14〇6 is turned on, there is charge retention on the capacitor element 1410, so the transistor 1 408 remains in the off state. In other words, only the charge that has accumulated on the capacitor element 1 4 1 0 causes the flow. The cell signal 曰 m* crystal pole and the second 1408. Electric 1409 to ensure the component difference pulse crystal number is not yet, this current -8- (4) (4) 1299578 Thereafter, the charge slowly accumulates on the capacitor element 1410, causing a potential difference between the two electrodes. When the potential difference between the electrodes reaches the initial 値Vth of the transistor 1 4 08, the transistor 14〇8 is turned on to generate a current flow. Then the current flowing into the capacitor element 1 4 1 0 is gradually reduced. However, the reduced current does not stop the charge accumulation on the capacitor element 1410, and the charge accumulation on the capacitor 1 41 0 continues until the potential difference between its two electrodes, that is, the gate of the transistor 1 4 0 8 The voltage, reaching a given voltage, is a voltage (VGS) high enough to cause current Idata to flow in transistor 1408. When the charge accumulation ends, the current Idata continues to flow in the transistor 1408. As described above, a signal write operation is performed. Finally, the first scan line 1 402 and the second scan line 1403 stop being selected, turning off the transistors 1 4 0 6 and 1 4 0 7 . Below is the light emission operation. The pulse is input to the third scan line 1404 to turn on the transistor 14〇9. The transistor 1 408 is turned on by the VGS written and held on the capacitor 1410 in the foregoing operation, and current flows from the current source line 1405. This causes the light-emitting element 1411 to emit light. At this time, if the transistor 1 408 is set to operate in the saturation region, even when the source voltage of the transistor 1408 is changed, the light emission current IEL flowing into the light-emitting element 1 4 1 1 does not deviate from Idata. As mentioned above, the current input method refers to a method in which the drain current 値 is equal to or proportional to the signal current 値 set by the current source circuit 14 1 2, and the drain current is at the source of the transistor 1 4 8 8 Between the two, the light-emitting element 1 4 1 1 emits light, and its intensity corresponds to the drain current. By using the -9 - (5) 1299578 stream input method pixel as described above, the influence of the characteristic fluctuation between the transistors constituting the pixel can be reduced. A desired current can be supplied to its illuminating element. Other current input method pixel circuits have been reported in US 6,229,506 B1 and JTP 2001-147659A.
在使用電流輸入法的發光裝置中,嚴格反映視頻信號 的信號電流必須被輸入到像素。然而,當多晶矽晶體管用 於建立輸入信號電流到像素的驅動電路(電路對應於圖1 4 中的電流源電路1 4 1 2)時,在各多晶矽電晶體之間的特性 波動導致信號電流的波動和顯示影像的不均勻。特性波動 是由晶體生長方向和晶粒間界的缺陷,疊層厚度不均勻和 膜圖形化的不夠精確引起的。因爲在各多晶矽電晶體之間 的大的特性波動,難以産生精確信號電流,顯示的影像將 充滿垂直連續的條紋。In a light-emitting device using a current input method, a signal current that strictly reflects a video signal must be input to a pixel. However, when a polysilicon transistor is used to establish an input signal current to a pixel driving circuit (the circuit corresponds to the current source circuit 14 1 2 in FIG. 14), characteristic fluctuations between the respective polycrystalline silicon transistors cause fluctuations in signal current. And display the unevenness of the image. The characteristic fluctuation is caused by the crystal growth direction and the grain boundary defect, the uneven thickness of the laminate, and the inaccuracy of the patterning of the film. Because of the large characteristic fluctuations between the polycrystalline germanium transistors, it is difficult to produce an accurate signal current, and the displayed image will be filled with vertically continuous stripes.
換言之,對使用電流輸入法的發光裝置,必須減小構 成把信號電流輸入到像素的驅動電路的各電晶體之間的特 性波動的影響。這意味著,對構成驅動電路的電晶體和構 成像素的電晶體兩者,都必須減少特性波動的影響。 【發明內容】 本發明已對上述問題作了考慮,因此本發明的一個目 的是提供一種半導體積體電路,以及驅動這種半導體積體 電路的方法,該積體電路減小電流源電路的電流源之間電 晶體特性波動的影響,直至電晶體特性不影響該電路。 本發明的另一個目的是提供一種發光裝置’它包含驅 -10- (6) (6)1299578 動電路部分和像素部分,其中驅動電路部分含有該半導體 積體電路。 特別是’本發明的一個目的是提供一種主動矩陣發光 裝置’它含有該半導體積體電路作爲驅動電路部分中的信 號線驅動電路,它含有排列形成矩陣圖案的多個像素,它 在每個像素中含有開關元件和發光元件。 本發明的另一個目的是提供一種發光裝置,其中像素 部分和驅動電路部分的半導體元件由多晶矽薄膜電晶體組 成’在同一基底上集成形成像素部分和驅動電路部分。 電流源電路由一個或多個電流源構成。一個電流源有 一個或多個電晶體。提供恒定電流的電流源稱爲恒流源。 本發明的半導體積體電路,其特徵在於具有信號線’ 一輸出將被輸入到信號線的電流的電流源電路,和一個每 次經過一個給定的時間開關電流源電路的裝置,該電流源 連接到信號線,(此後簡稱爲開關裝置。開關裝置包含有 開關函數的多個電路,因此也稱爲開關電路)。 本發明的開關裝置開關連接到信號線的電流源’並由 此以給定時間間隔開關輸入到信號線的電流’即使從電流 源電路輸出的電流存在波動。因此,流入發光裝置的電流 量,即亮度看起來隨時間變均勻,可以解決顯示不均句性 。於是提供了一種不受電晶體特性波動影響的發光裝置。. 【實施方式】 實施例模式 -11 - (7) 1299578 本發明的半導體積體電路的要點,如信號線驅動電路 將參照圖6描述。爲容易理解,圖6集中注意電流源電路 的三個電流源C(i),C(i+l)和C(i + 2),以及供給像素電流的 信號線S(m)。 如圖6所示,電流源C(i),c(i+i)和C(i + 2)藉由開關裝 置連接到信號線S(m)。本發明特徵在於,開關裝置從來 自三個電流源 C(i),C(i+l)和 C(i + 2)的電流I(i)、電流 1(丨+1)和電流1(丨+ 2)中選擇將被輸入到信號線3(111)的一個 電流’並每次在經過給定的時間時從一個電流開關到另一 個電流。 下面描述開關裝置。圖7給出開關裝置的結構。電流 源C(i)、C(i+l)和C(i + 2)分別具有使電流I(i)、I(i + l)和 I(i + 2)流動的特性。電流源C(i)、C(i+1)和C(i + 2)這樣放 置,使得它們可以藉由開關連接到信號線S(m)。一個信 號輸入到開關,根據該信號,開關把信號線S(m)連接到 電流源C(i),C(i+l)和C(i + 2)中的一個。 當開關建立與電流源C(i)的連接時’電流I(i)流入信 號線S ( m)。當開關建立與電流源C (i + 1)的連接時,電流 Hi+l)流入信號線S(m)。當開關與電流源C(i + 2)連接時, 電流I(i + 2)流入信號線S(m)。簡而言之,將要流入信號線 S(m)的電流在l(i),I(i+l)和I(i + 2)之間開關。 爲容易理解,圖6和圖7的實例集中注意一個信號線 和三個電流源。然而,如下列實施例所示’ 一個實際的信 號線驅動電路有多個信號線和多個電流源。作爲圖7中的 -12- (8) (8)1299578 開關裝置的開關有一個端子,但是實際上,開關函數由類 比開關或如下列實施例中所示的其他電路提供。 在這一給定時間周期開關的周期是非常短的。因此’ 即使在電流源間存在特性差別,即電流源供給的電流有波 動,顯示的影像對人眼似乎是均勻的。 用上述的開關裝置,本發明得到包含不受電晶體特性 影響的電流源電路的一種半導體積體電路。這使得提供一 種發光裝置成爲可能,它能把希望的信號電流供給發光元 件並能夠顯示均勻的影像。 使用函數槪括本發明,本發明是一種半導體積體電路 ,它包含:m個信號線電流源電路,包含i 個電流源;以及開關裝置,包含η個開關構件 和Un,電路特徵在於:η個開關構件分別連接 到i個電流源中的j個電流源;第Μ個信號線SM連接到 第N個開關構件UN,開關構件UN連接到第FKN)電流源 、第F2(N)電流源、第F3(N)電流源,…和第Fj(N)電流源 ,它們滿足函數Fk(x)(k=l〜j,x=l〜η)。 本發明是一種半導體積體電路,它包含:m個信號線 Sl5S2,…和Sm;電流源電路,包含i個電流源(^,(:2,...和 C i ;以及開關裝置’包含η個開關構件U 1,U 2,...和U n, 電路特徵在於:η個開關構件分別連接到i個電流源中的 j個電流源;第Μ信號線SM連接到第N開關構件Un,開 關構件UN是連接到第F4N)電流源、第F2(N)電流源、第 F3 (N)電流源,...和第Fj(N)電流源,它們滿足函數 -13- 1299578 第92104826^#f押讀案〃…一一, 中文說明書修正頁4國|4年]2月松 L; (9)In other words, for the light-emitting device using the current input method, it is necessary to reduce the influence of the characteristic fluctuation between the respective transistors constituting the drive circuit for inputting the signal current to the pixel. This means that it is necessary to reduce the influence of characteristic fluctuations on both the transistor constituting the driving circuit and the transistor constituting the pixel. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is therefore an object of the present invention to provide a semiconductor integrated circuit and a method of driving such a semiconductor integrated circuit, which reduces current of a current source circuit The effect of fluctuations in transistor characteristics between sources until the transistor characteristics do not affect the circuit. Another object of the present invention is to provide a light-emitting device which includes a drive--10-(6)(6)1299578 dynamic circuit portion and a pixel portion, wherein the drive circuit portion contains the semiconductor integrated circuit. In particular, 'an object of the present invention is to provide an active matrix light-emitting device which includes the semiconductor integrated circuit as a signal line driving circuit in a driving circuit portion, which includes a plurality of pixels arranged in a matrix pattern, which is in each pixel It contains a switching element and a light-emitting element. Another object of the present invention is to provide a light-emitting device in which a semiconductor portion of a pixel portion and a driver circuit portion is composed of a polycrystalline silicon oxide transistor united to form a pixel portion and a driver circuit portion on the same substrate. The current source circuit consists of one or more current sources. One current source has one or more transistors. A current source that supplies a constant current is called a constant current source. The semiconductor integrated circuit of the present invention is characterized by having a signal line 'a current source circuit for outputting a current to be input to the signal line, and a means for switching the current source circuit each time a given time is passed, the current source Connected to a signal line (hereinafter referred to simply as a switching device. The switching device includes a plurality of circuits having a switching function, and is therefore also referred to as a switching circuit). The switching device switch of the present invention is connected to the current source ' of the signal line and thereby switches the current input to the signal line at a given time interval' even if the current output from the current source circuit fluctuates. Therefore, the amount of current flowing into the light-emitting device, i.e., the brightness, appears to be uniform over time, and the unevenness of the display can be solved. Thus, a light-emitting device that is not affected by fluctuations in the characteristics of the transistor is provided. [Embodiment] Embodiment Mode -11 - (7) 1299578 The main points of the semiconductor integrated circuit of the present invention, such as a signal line driver circuit, will be described with reference to FIG. For ease of understanding, Figure 6 focuses on the three current sources C(i), C(i+l) and C(i + 2) of the current source circuit, and the signal line S(m) supplying the pixel current. As shown in Fig. 6, current sources C(i), c(i+i) and C(i + 2) are connected to the signal line S(m) by a switching device. The invention is characterized in that the switching means draws current I(i), current 1 (丨+1) and current 1 from three current sources C(i), C(i+l) and C(i + 2). + 2) Select a current 'to be input to signal line 3 (111)' and switch from one current to another each time a given time elapses. The switching device will be described below. Figure 7 shows the structure of the switching device. Current sources C(i), C(i+l), and C(i + 2) have characteristics of flowing currents I(i), I(i + l), and I(i + 2), respectively. Current sources C(i), C(i+1), and C(i + 2) are placed such that they can be connected to signal line S(m) by a switch. A signal is input to the switch, and according to the signal, the switch connects the signal line S(m) to one of the current sources C(i), C(i+l) and C(i + 2). When the switch establishes a connection with current source C(i), current I(i) flows into signal line S(m). When the switch establishes a connection with the current source C (i + 1), the current Hi + l) flows into the signal line S (m). When the switch is connected to the current source C(i + 2), the current I(i + 2) flows into the signal line S(m). In short, the current to flow into the signal line S(m) is switched between l(i), I(i+l) and I(i + 2). For ease of understanding, the examples of Figures 6 and 7 focus on one signal line and three current sources. However, as shown in the following embodiments, an actual signal line driving circuit has a plurality of signal lines and a plurality of current sources. The switch as the -12-(8) (8) 1299578 switching device in Fig. 7 has one terminal, but actually, the switching function is provided by an analog switch or other circuits as shown in the following embodiments. The period of the switch at this given time period is very short. Therefore, even if there is a characteristic difference between the current sources, that is, the current supplied by the current source fluctuates, the displayed image appears to be uniform to the human eye. With the above switching device, the present invention obtains a semiconductor integrated circuit including a current source circuit which is not affected by the characteristics of the transistor. This makes it possible to provide a light-emitting device which supplies a desired signal current to the light-emitting element and is capable of displaying a uniform image. The present invention is a semiconductor integrated circuit comprising: m signal line current source circuits including i current sources; and a switching device comprising n switching members and Un, the circuit characterized by: η The switching members are respectively connected to j current sources among the i current sources; the second signal line SM is connected to the Nth switching member UN, the switching member UN is connected to the FKN) current source, and the F2 (N) current source , the F3 (N) current source, ... and the Fj (N) current source, which satisfy the function Fk (x) (k = l ~ j, x = l ~ η). The present invention is a semiconductor integrated circuit comprising: m signal lines S15S2, ... and Sm; a current source circuit comprising i current sources (^, (: 2, ... and C i ; and switching means 'included The n switching members U 1, U 2, ..., and U n are characterized in that: n switching members are respectively connected to j current sources among the i current sources; the second signal line SM is connected to the Nth switching member Un, the switching member UN is connected to the F4N) current source, the F2 (N) current source, the F3 (N) current source, ... and the Fj (N) current source, which satisfy the function-13 - 1299578 92104826^#f 押读案〃...一一, Chinese manual revision page 4 countries|4 years]February Song L; (9)
Fk(x)(k=l〜j,x=l〜η);並且第(M-1)信號線SM·!連接到第 (N-1)開關構件UN·!,開關構件Un.,連接到第FKN-1)電 流源、第F2(N-1)電流源、第F3(N-1)電流源,···,和第 Fj(N-l)個電流源,它們滿足函數Fk(x)。 在本發明中,相鄰的開關構件可以共用一個電流源° 採用上述函數,例如當i = 3時,這表示爲電流源滿足 F3(N) = F2(N+l) = Fl(N + 2)。換言之,相鄰的開關構件可以 共用第N電流源、第(N+1)電流源、和第(N + 2)電流源。爲 了給出另一個實例,當 i = 5 時,電流源滿足 F5(N) = F4(N+l) = F3(N + 2) = F2(N + 3) = Fl(N + 4);且相鄰開關 構件可以共用第N,第(N+1),第(N + 2),第(N + 3)和第 (N + 4)電流源。 如上所述,本發明允許開關構件共用電流源。這消除 了在一個信號線和它的相鄰信號線之間的邊界,並使均勻 的電流在所有信號線中流動。結果,在顯示幕的任何部分 中均沒有形成邊界,有可能提供一種在顯示影像中沒有條 紋又發光均勻的發光裝置。 本發明解決了用於半導體積體電路的元件間特性的波 動問題。當其特性波動受到控制時的元件是除多晶矽電晶 體之外的電晶體,例如是單晶矽電晶體’也可以提供同樣 的效果。 實施例1 在這個實施例中,本發明的半導體積體電路應用於驅 .14- (10) (10)1299578 動電路部分的信號線驅動電路,具體描述信號線驅動電路 的電流源電路的結構和驅動方法。 本發明的一個具體的實例在圖1中指出。在這個實施 例中給出的描述相關於η通道電晶體組成的電流源。一個 電晶體可以是η通道極性,也可以是ρ通道極性,通常電 晶體的極性是由像素的極性確定的。當電流從一個像素流 向電流源電路時,極性希望是η型。當電流從電流源電路 流入像素時,極性希望是ρ型。這是因爲便於固定電晶體 的源電位。 圖1指出的是電晶體Tr(i)到Tr(i + 5),開關裝置和信 號線S(m)到S(m + 5)。電晶體Tr(i)到Tr(i + 5)分別組成了 電流源C(i)到C(i + 5)。電晶體Tr(i)到Tr(i + 5)的閘極是連 接到電流控制線,它們的源電極連接到 Vss。電流値由加 在電流控制線上的電壓控制。 爲簡單起見,此處電晶體Tr(i)到Tr(i + 5)的閘極連接 到同一個電流控制線。然而,電晶體可以連接到不同的電 流控制線,藉由把不同位準的電壓加到電流控制線,具有 不同的電流値。在這種情況下,不同的電晶體把電流輸出 到不同的目的地,加到電流控制線上的電壓必須根據目的 地的開關而開關。 如果電晶體Tr(i)到Tr(i + 5)有相同的特性,電流I(i) 到I(i + 5)互相相等。然而,在理論上,在電晶體Tr(i)到 Tr(i + 5)中的特性波動大,因此電流I(i)到I(i + 5)是變化的 。本發明的開關裝置從電流I(i)到I(i + 5)中選擇將被輸入 -15- (11) (11)1299578 到信號線的電流,每次經過給定的時間從一個電流開關到 另一個電流。對應地,在發光元件中流動的電流也以給定 時間間隔開關。結果,對人眼來說,發光在整個時間裏是 平均的,減少了亮度不均勻。 圖2指出有類比開關(也稱傳輸閘)的開關裝置的結構 。在圖2中,與圖1中相同的那些元件採用相同的符號標 記。電路這樣設計,使得電晶體^^(。到Tr(i + 5)的汲極連 接到信號線S ( m)到S (m + 5 )。然而,一條信號線可以連接 到三個電流源。使用開關函數,從三個電流源中選擇一個 用於一個信號線。 例如,當選擇端子1的信號被輸入到開關裝置,信號 線S(m+1)連接到電流源C(i)時,那麽信號線S(m + 2)連接 到電流源C (i + 1 ),隨後的信號線和電流源以類似方式連接 。其次,選擇端子2的信號被輸入到開關裝置以連接信號 線S(m+1)到電流源C(i+1),連接信號線S(m + 2)到電流源 C (i + 2 ),隨後的信號線和電流源以類似方式連接。再次’ 選擇端子3的信號被輸入到開關裝置以連接信號線s(m+ 1 ) 到電流源C (i + 2 ) ’並連接柄號線S ( m + 2 )到電流源C (i + 3 ) ,隨後的信號線和電流源以類似方式連接。因此’三個電 流源的電流交替輸入到一個信號線’避免了不均勻的#頁7^ 〇 使用表述本發明的函數槪括這種連接’當卜3 ’並且 a = -1,b = 0和c=l(a,b和c是整數,且a#b#c)時,設置電流 源,使得滿足 Fl(N) = N + a,F2(N) = N + b,和 F3(N) = N + c。 -16- (12) 1299578 圖3指出一個具體的實例,其中類比開關用於有開關 函數的開關裝置。在圖3中,與圖2相同的那些元件採用 相同的符號標記,電流源C(i)到C(i + 5)分別有電晶體Tr(i) 到Tr(i + 5卜 在圖3中用A⑴到A(l + 2)和A(l)b到A(l + 2)b標記的 是連接到多個類比開關的引線。類比開關分成幾組,一組 類比開關連接到一個信號線(開關構件)。在圖3中,開關 構件U(n)到U(n + 5)每個有三個類比開關並分別連接到信 號線S(m)到S(m + 5)。開關構件一起形成開關裝置。 在電流源C(i+1)中,電晶體Tr(i+1)的汲極連接到開 關構件U(n+1)的類比開關之一、開關構件U(n)的類比開 關之一和開關構件U(n + 2)的類比開關之一。簡而言之, 電晶體的汲極連接到從三個開關構件的每個中選出的一個 類比開關。其餘的電流源 C(i),C(i + 2),C(i + 3),C(i + 4)和 C(i + 5),類似地連接到它們對應的類比開關。 當信號輸入到線A(l)和A(l)b時,將被連接的類比開 關被選中並變爲導通。然後電流從與選中的類比開關相接 的電流源流動到信號線,例如,從電流源C(i+ 1 )到信號線 S(m + 2” 類似地,電流從電流源 C(i+1)5 C(i + 3),C(i + 4), C(i + 5)和 C(i + 6)分別流動到信號線 S(m),S(m + 2),S(m + 3), S(m + 4)和S(m+5)。追稱爲選擇(1)。 其次,信號被輸入到線A(l + 1)和A(l+l)b,而且將被 連接的一個類比開關被選中並變爲導通。因而電流從與選 中的類比開關相接的電流源流動到信號線,例如,從電流 -17- (13) (13)1299578 源 C(i+1)到信號線 s(m+l)。類似地,電流從電流源 C(i+l),C(i + 3),C(i + 4),C(i + 5)和 C(i + 6)分別流動到信號線 3〇+1),3(〇1 + 3),8〇 + 4),3(111 + 5)和3(111 + 6)。雖然圖3中未 指出,電流源C(i + 6)是電流源C(i + 5)的右邊的電流源。這 稱爲選擇(2)。 其次,信號輸入到線A(l + 2)和A(l + 2)b,而且將被連 接的一個類比開關被選中並變爲導通。因而電流從與選中 的類比開關相接的電流源流動到信號線,例如,從電流源 C(i+1)到信號線 S(m)。類似地,電流從電流源 C(i+l),C(i + 3),C(i + 4),C(i + 5)和 C(i + 6)分別流動到信號線 S(m-l),S(m+l),S(m + 2),S(m + 3)和 S(m + 4)。雖然圖 3 未指 出,信號線S(m-l)是信號線S(m)的左邊的信號線。這稱 爲選擇(3)。 選擇(1)到(3)以給定時間間隔重複。用這種方式,即 使當從電流源C(i)到C(i + 5)輸入到信號線S(m)到S(m + 5) 的電流存在波動,顯示的影像表面上是均勻的。 本發明的信號線驅動電路中的開關周期將參照圖4的 時序圖進行描述。圖4中F 1到F 3分別表示第一到第三圖 框周期,發光裝置顯示一個影像需要一圖框周期。通常一 圖框周期設爲大約1 /60秒,以避免人眼察覺的閃爍。圖4 的A(l)到A(l + 2)和A(l)b到A(l + 2)b表示輸入到線A(l)到 A (1 + 2 )和A (1) b到A (1 + 2) b的信號的電位。 其間輸入到A(l)的信號電位是高(H)且輸入到A(l)b 的信號電位是低(L)的一個開關周期在第一圖框周期F 1置 -18- (14) 1299578 位。在這個開關周期裏,連接到線A(l)和A(l)b的類比開 關變爲導通,電流從與非導通的類比開關相接的電晶體輸 入到信號線。對應地,每個開關構件中僅一個類比開關變 爲導通。 其間輸入到 A(l+1)的信號電位是高(H)且輸入到 A(l+l)b的信號電位是低(L)的一個開關周期在第二圖框周 期F2置位。在這個開關周期裏,連接到線 A(l+1)和 A(l + l)b的類比開關變爲導通,電流從與非導通的類比開 關相接的電晶體輸入到信號線。 其間輸入到 A(l + 2)的信號電位是高(H)且輸入到 A(l + 2)b的信號電位是低(L)的一個開關周期在第三圖框周 期F3置位。在這個開關周期裏,連接到線 A(l + 2)和 A(l + 2)b的類比開關變爲導通,電流從與非導通的類比開 關相接的電晶體輸入到信號線。 圖框周期F 1到F3重複,允許開關裝置依序開關流入 信號線S(m)到S(m + 5)的電流。 在這個實施例中的描述相關於一種結構,其中連接到 具有η型電晶體的電流源的電源線是Vss,電流從像素流 到VSS。然而,加上所述電晶體的極性根據像素極性而設 定。對應地,如果電路結構是電流流向像素,那麽電源線 是Vdd,電流源的電晶體給定爲p型導電性。 下面描述是電流源有DA變換函數的情況。例如,當 輸入3位元數位視頻信號時,這個電流源成爲輸出具有8 個灰度級的類比値電流的電流源電路。 -19- (15) (15)1299578 圖5指出這種電流源電路的一個具體的電路結構。如 圖5所示,每個電流源有三個電晶體Trl(i),Tr*2(i)和Fk(x) (k=l~j, x=l~η); and the (M-1)th signal line SM·! is connected to the (N-1)th switch member UN·!, the switch member Un., the connection To the FKN-1) current source, the F2 (N-1) current source, the F3 (N-1) current source, ···, and the Fj(Nl) current source, which satisfy the function Fk(x) . In the present invention, adjacent switching members can share a current source. The above function is used. For example, when i = 3, this means that the current source satisfies F3(N) = F2(N+l) = Fl(N + 2 ). In other words, the adjacent switching members can share the Nth current source, the (N+1)th current source, and the (N + 2)th current source. To give another example, when i = 5, the current source satisfies F5(N) = F4(N+l) = F3(N + 2) = F2(N + 3) = Fl(N + 4); The adjacent switch members may share the Nth, (N+1)th, (N + 2)th, (N + 3)th, and (N + 4)th current sources. As described above, the present invention allows the switching members to share a current source. This eliminates the boundary between a signal line and its adjacent signal lines and allows a uniform current to flow in all signal lines. As a result, no boundary is formed in any portion of the display screen, and it is possible to provide a light-emitting device which has no streaks in the display image and emits light uniformly. The present invention solves the problem of fluctuations in characteristics between elements used in a semiconductor integrated circuit. When the characteristic fluctuation is controlled, the element is a transistor other than the polycrystalline silicon crystal, for example, a single crystal germanium transistor can also provide the same effect. Embodiment 1 In this embodiment, a semiconductor integrated circuit of the present invention is applied to a signal line driving circuit of a driving circuit portion of a 14-(10) (10) 1299578, and specifically describes a structure of a current source circuit of a signal line driving circuit. And drive method. A specific example of the invention is indicated in Figure 1. The description given in this embodiment is related to the current source of the n-channel transistor composition. A transistor can be either η channel polarity or ρ channel polarity. Usually the polarity of the transistor is determined by the polarity of the pixel. When current flows from one pixel to the current source circuit, the polarity is desirably n-type. When current flows from the current source circuit into the pixel, the polarity is desirably p-type. This is because it is convenient to fix the source potential of the transistor. Figure 1 shows the transistors Tr(i) to Tr(i + 5), the switching means and the signal lines S(m) to S(m + 5). The transistors Tr(i) to Tr(i + 5) constitute the current sources C(i) to C(i + 5), respectively. The gates of the transistors Tr(i) to Tr(i + 5) are connected to the current control line, and their source electrodes are connected to Vss. The current 控制 is controlled by the voltage applied to the current control line. For the sake of simplicity, the gates of the transistors Tr(i) to Tr(i + 5) are connected to the same current control line. However, the transistors can be connected to different current control lines, with different currents being applied by applying different levels of voltage to the current control lines. In this case, different transistors output current to different destinations, and the voltage applied to the current control line must be switched according to the switch of the destination. If the transistors Tr(i) to Tr(i + 5) have the same characteristics, the currents I(i) to I(i + 5) are equal to each other. However, in theory, the characteristic fluctuations in the transistors Tr(i) to Tr(i + 5) are large, and therefore the currents I(i) to I(i + 5) are varied. The switching device of the present invention selects a current from the current I(i) to I(i + 5) to be input to -15-(11) (11)1299578 to the signal line, each time a given time passes from a current switch To another current. Correspondingly, the current flowing in the light-emitting element is also switched at a given time interval. As a result, for the human eye, the luminescence is average over the entire time, reducing the unevenness in brightness. Figure 2 shows the structure of a switching device with an analog switch (also called a transfer gate). In Fig. 2, the same components as those in Fig. 1 are denoted by the same reference numerals. The circuit is designed such that the gate of the transistor ^^ (to + Tr(i + 5) is connected to the signal line S (m) to S (m + 5). However, one signal line can be connected to three current sources. Using the switching function, one of the three current sources is selected for one signal line. For example, when the signal for selecting terminal 1 is input to the switching device, and the signal line S(m+1) is connected to the current source C(i), Then the signal line S(m + 2) is connected to the current source C (i + 1 ), and the subsequent signal line and current source are connected in a similar manner. Second, the signal of the selection terminal 2 is input to the switching device to connect the signal line S ( m+1) to the current source C(i+1), connect the signal line S(m + 2) to the current source C (i + 2 ), and the subsequent signal line and current source are connected in a similar manner. Again 'select terminal 3 The signal is input to the switching device to connect the signal line s(m+ 1 ) to the current source C (i + 2 ) ' and to connect the shank line S ( m + 2 ) to the current source C (i + 3 ), the subsequent signal The line and the current source are connected in a similar manner. Therefore, the 'currents of the three current sources are alternately input to one signal line' to avoid unevenness. The function includes this connection 'When 3' and a = -1, b = 0 and c = l (a, b and c are integers, and a#b#c), set the current source so that Fl is satisfied ( N) = N + a, F2(N) = N + b, and F3(N) = N + c. -16- (12) 1299578 Figure 3 shows a specific example where the analog switch is used for switching functions. Switching device. In Figure 3, the same components as in Figure 2 are labeled with the same symbols, and current sources C(i) through C(i + 5) have transistors Tr(i) through Tr (i + 5 Marked by A(1) to A(l + 2) and A(l)b to A(l + 2)b in Figure 3 are the leads connected to multiple analog switches. The analog switches are divided into groups, and a set of analog switches are connected to A signal line (switching member). In Fig. 3, the switching members U(n) to U(n + 5) each have three analog switches and are respectively connected to the signal lines S(m) to S(m + 5). The switching members together form a switching device. In the current source C(i+1), the drain of the transistor Tr(i+1) is connected to one of the analog switches of the switching member U(n+1), and the switching member U(n One of the analog switches and one of the analog switches of the switch member U(n + 2). In short, the bungee of the transistor Receives an analog switch selected from each of the three switching components. The remaining current sources C(i), C(i + 2), C(i + 3), C(i + 4), and C(i + 5), similarly connected to their corresponding analog switches. When the signal is input to lines A(l) and A(l)b, the connected analog switch is selected and becomes conductive. The current then flows from the current source connected to the selected analog switch to the signal line, for example, from current source C(i+1) to signal line S(m+2), similarly, current from current source C(i+1) ) 5 C(i + 3), C(i + 4), C(i + 5) and C(i + 6) flow to the signal line S(m), S(m + 2), S(m + respectively) 3), S(m + 4) and S(m+5). The pursuit is called selection (1). Second, the signal is input to lines A(l + 1) and A(l+l)b, and will be An analog switch connected is selected and becomes conductive. The current flows from the current source connected to the selected analog switch to the signal line, for example, from current -17- (13) (13) 1299578 source C (i +1) to signal line s (m + l). Similarly, current from current source C (i + l), C (i + 3), C (i + 4), C (i + 5) and C ( i + 6) flows to the signal lines 3〇+1), 3(〇1 + 3), 8〇+ 4), 3(111 + 5) and 3(111 + 6) respectively. Although not shown in Figure 3, The current source C(i + 6) is the current source to the right of the current source C(i + 5). This is called selection (2). Second, the signal is input to lines A(l + 2) and A(l + 2). b, and an analog switch to be connected is selected and becomes conductive. The current source connected to the analog switch flows to the signal line, for example, from the current source C(i+1) to the signal line S(m). Similarly, the current flows from the current source C(i+l), C(i + 3), C(i + 4), C(i + 5) and C(i + 6) flow to the signal line S(ml), S(m+l), S(m + 2), S( m + 3) and S (m + 4). Although not shown in Fig. 3, the signal line S (ml) is the signal line to the left of the signal line S (m). This is called selection (3). Select (1) to (3) Repeat at a given time interval. In this way, even when the current input from the current source C(i) to C(i + 5) to the signal line S(m) to S(m + 5) fluctuates The displayed image is uniform on the surface. The switching period in the signal line driving circuit of the present invention will be described with reference to the timing chart of Fig. 4. In Fig. 4, F1 to F3 represent the first to third frame periods, respectively. The illumination device requires a frame period to display an image. Usually, the frame period is set to about 1 / 60 seconds to avoid flickering by the human eye. A(l) to A(l + 2) and A(l of Fig. 4) b to A(l + 2)b represents the potential of the signal input to lines A(l) to A(1 + 2) and A(1) b to A(1 + 2) b. Input to A(l) The signal potential is high (H) and the signal potential input to A(l)b is low (L). One switching period is set to -18-(14) 1299578 bits in the first frame period F 1 . During this switching cycle, the analog switch connected to lines A(l) and A(l)b becomes conductive, and current is input from the transistor connected to the non-conducting analog switch to the signal line. Correspondingly, only one analog switch in each switching member becomes conductive. The signal potential input to A(l+1) is high (H) and the switching potential of the signal potential input to A(l+l)b is low (L) is set at the second frame period F2. During this switching cycle, the analog switch connected to lines A(l+1) and A(l + l)b becomes conductive, and current is input from the transistor connected to the non-conducting analog switch to the signal line. The signal potential input to A(l + 2) is high (H) and the switching potential of the signal potential input to A(l + 2)b is low (L) is set at the third frame period F3. During this switching cycle, the analog switch connected to lines A(l + 2) and A(l + 2)b becomes conductive, and current is input from the transistor connected to the non-conducting analog switch to the signal line. The frame period F 1 to F3 is repeated, allowing the switching device to sequentially switch the current flowing into the signal line S(m) to S(m + 5). The description in this embodiment is related to a structure in which a power supply line connected to a current source having an n-type transistor is Vss, and current flows from the pixel to VSS. However, the polarity of the transistor is added in accordance with the polarity of the pixel. Correspondingly, if the circuit structure is current flowing to the pixel, then the power line is Vdd and the transistor of the current source is given p-type conductivity. The following description is the case where the current source has a DA conversion function. For example, when a 3-bit digital video signal is input, this current source becomes a current source circuit that outputs an analog 値 current having 8 gray levels. -19- (15) (15) 1299578 Figure 5 shows a specific circuit structure of this current source circuit. As shown in Figure 5, each current source has three transistors Tr1(i), Tr*2(i) and
Tr3(i)。三個電晶體Trl(i),Tr2(i)和Tr3(i)的W(閘寬度)/ L(閘長度)比取爲1:2:4。因而,用同樣的閘電壓加到電晶 體Trl(i),Tr2(i)和Tr3(i)上,在電晶體中流動的電流比率 爲1 : 2 : 4。簡而言之,從一個電流源供給的電流比率是 1 ·· 2 : 4,電流量可以控制在23 = 8級。對應地,電流源電路 可以由一 3位元數位視頻信號輸出8個灰度級的類比値電 電晶體Trl(i),Tf2(i)和Tr3(i)變爲導通還是關閉,是 藉由控制加在它們閘上的電壓控制的。這個方法可以控制 從電流源C(i)到C(i + 5)輸出的電流的電流値。然而,來自 電流源C(i)到C(i + 5)和信號線S(m)到S(m + 5)的電流的組 合由開關裝置改變。因此,加到每個電流源C(i)到C(i+ 5) 的電晶體Trl(i),Tr2(i)和Tr3(i)的電壓,必須根據組合開 關進行開關。 藉由給電流源一個上述DA變換函數,一個影像可以 高精度灰度級顯示。位元數可以置到適合個別的情況,電 晶體根據置位元數設計。 在採用本發明的上述信號線驅動電路的發光裝置裏, 視覺上減小了像素顯示不均勻性,發光裝置可以顯示沒有 不均勻性的一致影像。如果本發明應用到外部電路,當信 號藉由外部電路輸入到信號線時,本發明可以提供一致的 影像而沒有顯示不均勻性。 -20- (16) (16)1299578 而且’如果其信號線驅動電路的半導體元件是多晶矽 電晶體,本發明可能減小發光裝置的大小和重量。這是因 爲多晶矽電晶體可以用於其像素部分的半導體元件,對應 地像素部分和包括信號線驅動電路的週邊電路部分也可以 在同一基底上集成形成。當像素部分和週邊電路部分集成 形成在同一基底上,外部電路是不必要的。由於可以避免 外部電路連接到信號線的複雜製程和不成功的連接,本發 明改善了發光裝置的可靠性。 實施例2 本發明中,只要一個信號線連接到2個或多個電流源 ,電流源的數目(電流源的列)或電流源的位置(電流源列 數)可以是非對稱的。本實施例作爲實例,指出在開關裝 置的開關構件、信號線和電流源之間的連接與實施例1不 同的連接結構。 圖8指出一種結構,其中電流源C (i)到C (i + 5 )藉由開 關裝置連接到信號線S(m)到S(m + 5)。本發明的開關裝置 有開關從電流源發送的電流的函數。爲了避免複雜的製圖 ,在圖8中示意性圖解說明開關函數以僅給出3個端子和 開關。 例如,信號線S(m + 2)能夠連接到電流源C(i + 2),C(i + 3) 和C (i + 4)中的任何一個。簡而言之,一個信號線可以連接 到最近的電流源和最近的電流源右邊的2個相鄰的電流源 。這個原則用於連接其餘信號線S(m),S(m+1),S(m + 3), -21 - (17) (17)1299578 s (m + 4)和S ( m + 5 )到電流源。 採用表述本發明的函數槪括這種連接,當i = 3和a = -2,1) = -1和c = 0(a,b和c是整數,且a#b#c)時,電流源置位 到滿足 Fl(N) = N + a,F2(N) = N + b,和 F.3(N) = N + c。 根據本發明的信號線和電流源之間的連接關係’連接 信號線與最近的電流源即最近列中的電流源不總是必要的 ,但是信號線也可以連接到較遠的電流源。圖9不出的連 接結構給出其一個實例。 在圖9中,電流源C(i)到C(i + 6)是藉由開關裝置連接 到信號線S(m)到S(m + 6)。這個開關裝置也有3個端子和 開關。 例如,信號線S(m + 2)可以連接到電流源C(i),C(i + 2) 和C ( i + 4 )中任何一個。簡而言之’ 一個信號線可以連接到 最近的電流源並連接到最近電流源每邊的第二個電流源。 這個原則用於連接其餘信號線 S(m),S(m+1),S(m + 3), S(m + 4),S(m+5)和 S(m + 6)到電流源。 採用表述本發明的函數槪括這種連接,當i = 3和a = -2, b = 0和 c= -2 (a,b和c是整數’且a#b#c)時,電流源設 置爲滿足 F 1 (N) = N + a,F2(N) = N + b,和 F3(N) = N + c。 根據本發明的信號線和電流源之間的連接關係,連接 到一個信號線的電流源數不限定爲3。圖1 〇示出一個開 關構件連接5個電流源的實例。 在圖10中,電流源C(i)到C(i + 6)藉由開關裝置連接 到信號線S ( m)到S (m + 6)。這個開關裝置中的開關構件有 -22- (18) (18)1299578 5個端子和開關。 例如,信號線S(m + 2)可以連接到電流源c(i),c(i+l), C(i + 2), C(i + 3)和 C(i + 4)中任何一個。簡而言之,一個信 號線可以連接到最近的電流源,和每側的2個相鄰電流源 。這個原則用於連接其餘信號線S(m),S(m+1),S(m + 3), S(m + 4)和S(m + 5)到電流源。 採用表述本發明的函數槪括這種連接,當i = 5和& =- 2,b = -l,c = 0,d=l 和 e = 2(a,b,c,d 和 e 是整數,且 a#b#c#d;^e) 時,電流源設置到滿足Fl(N) = N + a,F2(N) = N + b, F3(N) =N + c,F4(N) = N + d 和 F5(N) = N + e。 如圖1 〇那樣,當可以連到一個信號線的電流源數目 更大時,顯示的影像看起來更均勻,且更減少不均勻性。 在這個實施例中,流入信號線的電流可以由實施例1 中描述的方法開關,實施例1採用類比開關開關電流源。 這個實施例也可以採用有DA變換函數的電流源(細節見 實施例1)。簡而言之,這個實施例可以與實施例1中的 開關裝置和電流源組合。 如上所述,本發明的信號線和電流源之間的連接關係 ,只要一個信號線是連接到2個或更多個電流源,允許電 流源數目和位置不對稱,並且流入信號線的電流可被開關 實施例3 本實施例描述一個實例,其中本發明的發光裝置,藉 -23- (19) (19)1299578 由劃分一個圖框周期(與輸入的視頻信號的同步時序相關 的一個單位圖框周期)爲子圖框周期,以灰度級顯示影像( 這種顯示方法稱爲時間比率灰度級驅動顯示)。 首先解釋時間比率灰度級驅動顯示。在採用數位視頻 信號(數位驅動)的時間比率灰度級驅動法中,寫周期T a 和顯示周期(也稱爲發光周期)Ts在一圖框周期裏交替重複 ,以顯不一幅影像。 例如,當一幅影像是由η位元數位視頻信號顯不時’ 一個圖框周期至少有η個寫周期和η個顯示周期。η個寫 周期分別與η位元視頻信號有關,η個顯示周期同樣與η 位元視頻信號有關。 如圖1 1Α所示,寫周期Tam(m是一個在1到η範圍 裏的任意數)後面跟隨與同一位元數有關的顯示周期,在 這種情況是顯示周期T s m。一個寫周期T a和一個顯示周 期Ts組成一個子圖框周期Sf。由與第m位相關的寫周期 T a m和顯示周期T s m組成的子圖框周期是S F m。顯示周 期Tsl到Tsn的長度這樣設置,以便滿足Tsl:Ts2:...:Tsn =20:21 ' . . : 2(η·1}。 在每個子圖框周期中,根據數位視頻信號的位元,決 定發光裝置是否發光。爲了控制灰度級數,控制其中發光 裝置發射光的一圖框周期中顯示周期總長度。 爲了改進顯示影像的質量,具有長的顯示周期的子圖 框周期可被劃分成幾個周期。具體的劃分方法,見日本專 利申請號:2 0 0 0 _ 2 6 7 1 6 4。 -24- (20) (20)1299578 在這個實施例中,在子圖框周期的顯示周期中,期望 對從電流源流到信號線的電流進行開關。如果開關是在寫 周期裏進行的,輸入電流,即關於發光元件是否發光的資 訊,可能傳輸不成功。藉由在如此短的周期裏間或開關, 發光元件的亮度的波動進一步減小,顯示的均勻性進一步 改善。 圖1 1 B給出使用3位元信號的具體的實例。在圖1 1 B 中,一個圖框周期有子圖框周期SF1,SF2和SF3。子圖框 周期SF1,SF2和SF3分別有寫周期Tal5Ta2和Ta3和顯示 周期Tsl,Ts2和Ts3。其中信號線與電流源之間的連線進 行開關的周期(此後簡稱爲開關周期)1,2和3分別提供在 顯示周期Tsl,Ts2和Ts3裏。從電流源輸入到信號線的電 流在開關周期1到3內進行開關。用這種方法,開關可以 在短周期裏間或動作,顯示影像看起來更均勻。 在圖1 1 B中的開關周期1到3每個都剛好放在寫周期 之前。然而,只要開關周期在顯示周期內,它可以在任何 時圖框置定。 圖1 1 C是輸入到類比開關的時序圖。在第一圖框中, A1在SF1裏是導通,A2在SF2裏是導通,和A3在SF3 裏是導通。在第二圖框中,A2在SF1裏是導通,A3在 SF2裏是導通,和A1在SF3裏是導通。雖然在圖11C中 沒有指出,第三圖框也是類似的,A3在S F 1裏是導通, A1在SF2裏是導通,和A2在SF3裏是導通。 如果在子圖框周期SF1到SF3裏,A1到A3的導通 -25- (21) 1299578 態是固定的(從第一到第三圖框中,如果A1在SF1裏是導 通,A2在SF2裏是導通,和A3在SF3裏是導通),那 麽波動不可能被充分均勻。對應地,如圖1 1 C所給出,期 望它們的導通態從一個子圖框周期到另一個子圖框周期改 變,從一個圖框周期到另一個圖框周期改變。 本實施例只是一個實例,哪個信號在哪個子圖框周期 輸入,可以置定以適合個別情況。對於輸入信號的具體方 法,見圖4。 在本實施例中,較佳使用實施例1的電流源電路,它 有DA變換函數,以提高灰度級數。本實施例可以與實施 例1和2相組合。 實施例4 本實施例參照圖1 2描述本發明的發光裝置的結構。 本發明的發光裝置包括在基底40 1上多個像素排列成 矩陣的像素部分402,並且包括在像素部分402週邊的信 號線驅動電路1 203,第一掃描線驅動電路4〇4和第二掃 描線驅動電路405。雖然,圖12(A)中提供信號線驅動電 路1 203和二個掃描線驅動電路404和405,但本發明不 限於此,可以依照像素結構任意設計。信號藉由fpcm〇6 ,從外側饋給信號線驅動電路1 203,第一掃描線驅動電 路4 04和第二掃描線驅動電路405。 用圖12(B)描述第一掃描線驅動電路404和第二掃描 線驅動電路4 0 5的結構和操作。第一掃描線驅動電路4 0 4 -26- (22) (22)1299578 和第二掃描線驅動電路4〇5每個都包括移位暫存器407 和緩衝器4 0 8。操作簡單地描述爲··移位暫存器4 〇 7根據 時脈信號(G-CLK),起始脈衝(S-SP)和反相時脈信號(0-C L K b )依序輸出取樣脈衝;其後,在緩衝器4 0 8中放大的 取樣脈衝輸入到掃描線;每個掃描線置位到被選擇態;信 號電流Idata在被選擇信號線的控制下依次寫入像素。 注意’結構可以迫樣,使得位準移位元電路安排在移 位暫存器4 0 7和緩衝器4 0 8之間。佈置位準移位元電路使 電壓幅度能夠增加。 下面將要描述信號線驅動電路1 2 0 3的結構。注意, 本實施例可以與實施例1,2和3任意組合。 本發明的信號線驅動電路中提供的電流源,可以不排 列成一條直線,可被行動和排列。而且,兩個信號線驅動 電路可以對像素部分對稱。就是說,只要電流源藉由開關 裝置連接到信號線,本發明不限制電流源的排列。 實施例5 在本實施例中,用於執行1位元數位分級顯示情況的 信號線驅動電路1 203的詳細結構和操作將參照圖1 3加以 描述。 圖13(A)是用於執行1位元數位分級顯示情況的信號 線驅動電路1 203的示意圖。信號線驅動電路1 203包括移 位暫存器1 2 1 1,第一閂鎖電路1 2 1 2,第二閂鎖電路1 2 1 3 和恒流電路1 2 1 4。移位暫存器1 2 1 1,第一閂鎖電路1 2 1 2 -27- (23) (23)1299578 和第二閂鎖電路1 2 1 3,用作圖1指出的用於視頻信號的 開關。 此外,恒流電路1214由多個電流源組成。圖13(B) 指出移位暫存器1 2 1 1,第一閂鎖電路1 2 1 2和第二閂鎖電 路1 2 1 3的具體電路。 操作簡單描述如下。移位暫存器1 2 1 1由例如多個觸 發電路(FF)構成的。時脈信號(S-CLK),起始脈衝(S-SP) 和反相時脈信號(S-CLKb)在輸入其中,根據這些信號的時 序依序輸出取樣脈衝。 從移位暫存器1 2 1 1輸出的取樣脈衝被輸入到第一閂 鎖電路1 2 1 2。數位視頻信號已被輸入到第一閂鎖電路 1 2 1 2,視頻信號根據取樣脈衝的輸入時序保持在每列中。 在第一閂鎖電路1 2 1 2中,當視頻信號在每列中的保 持操作完成到最後一列時,在水平返回期間,閂鎖脈衝輸 入到第二閂鎖電路1 2 1 3,保持在第一閂鎖電路1 2 1 2中的 視頻信號分批傳輸到第二閂鎖電路1 2 1 3。結果,保持在 第二閂鎖電路1 2 1 3中的一行視頻信號同時輸入到視頻開 關。進行視頻開關的通-斷操作,以控制到像素的信號的 輸入,因而顯示灰度。 當保持在第二閂鎖電路1 2 1 3中的視頻信號提供給恒 流電路1 2 1 4時,取樣脈衝又在移位暫存器1 2 11中輸出。 此後,操作叠代反復,處理一圖框視頻信號。 此外,實施例5可以與實施例1,2,3和4中的描述的 本發明任意組合。 -28- (24) (24)1299578 實施例6 ί吏本發明的發光裝置的電子設備包括,例如視頻視 頻/照相機’數位相機,護目型顯示器(頭戴顯示器),導航 系統’音頻再生裝置(如汽車音響和音響部件),筆記本個 人電腦’遊戲機,行動資訊端點(例如行動電腦,行動電 話’便攜遊戲機,和電子書籍),具有記錄媒體的影像再 生裝置(具體地,用於再生記錄媒體如數位通用光碟(dvd) ’包括能顯示影像的顯示器的裝置)。特別是,在行動資 訊端點的情況下,由於意識到視角角度的重要,端點優先 使用發光裝置。圖1 5給出了一些實用的實例。 圖15(A)指出一種發光裝置,它包含外殼2001,支撐 基座2002,顯示部分2003,揚聲器部分2004,視頻輸入 端2005等。本發明的發光裝置可以應用於顯示部分2003 。此外,圖15(A)指出的發光裝置是用本發明完成的。由 於發光裝置是自發光型裝置,它不需要背景光,因此可以 得到一個比液晶顯示器還薄的顯示部分。注意,發光裝置 包括所有資訊顯示裝置,例如個人電腦電視廣播發射機接 收機和廣告顯示器。 圖1 5 (B )指出一種數位靜物照相機,它包含主體2 i 〇 1 ,顯示部分2 1 0 2,影像接收部分2 1 0 3,操作鍵2 1 0 4,外 連埠2 1 0 5,快門2 1 0 6等。本發明的發光裝置可以應用於 顯示部分2102。此外,在圖15(B)中指出的數位靜物照相 機是用本發明完成的。 圖1 5 ( C )給出一種筆§3本個人電腦,它包含主體2 2 0 1 -29- (25) (25)1299578 ,外殼2202,顯示部分2203,鍵盤2204,外連埠2205, 指標式滑鼠2206等。本發明的發光裝置可以應用於顯示 部分2203。此外,在圖15(C)中指出的發光裝置是用本發 明完成的。 圖1 5(D)指出一種行動電腦,它包含主體23 0 1,顯示 部分2 3 0 2,開關2 3 0 3,操作鍵2 3 0 4,紅外埠2 3 0 5等。 本發明的發光裝置可以應用於顯示部分23 03。此外,圖 15(D)給出的行動電腦是用本發明完成的。 圖15(E)給出一種具有記錄媒體(具體地,DVD再生 裝置)的可攜式影像再生裝置,它包含主體2401,外殼 24 02,顯示部分A2403,顯示部分B2404,記錄媒體(例 如DVD)讀入部分2405,操作鍵2406,揚聲器部分2407 等。顯示部分A 2403主要顯示影像資訊,顯示部分B 24 04主要顯示字元資訊。本發明的發光裝置可以應用於 顯示部分A 2403和顯示部分B 24 04。注意,家用遊戲機 等包括在具有記錄媒體的影像再生裝置中。此外,圖 15(E)指出的DVD再生裝置是用本發明完成的。 圖15(F)指出一種護目型顯示器(頭戴顯示器),它包 含主體2501,顯示部分2502,鏡臂部分2503等。本發明 的發光裝置可以應用於顯示部分25〇2。圖15(F)指出的護 目型顯示器是用本發明完成的。 圖15(G)指出一種視頻視頻照相機,它包含主體260 1 ,顯示部分2602,外殼2603,外連埠2604,遙控接收部 分2605,影像接收部分2606,電池2607,音頻輸入部分 -30- (26) (26)1299578 2 60 8,操作鍵2609,目鏡部分2610等等。本發明的發光 裝置可以應用於顯示部分2602。圖15(G)指出的視頻視頻 照相機是用本發明完成的。 此處,圖15(H)給出一種行動電話,它包括主體270 1 ,外殼2702,顯示部分2703,音頻輸入部分2704,音頻 輸出部分2705,操作鍵2706,外連埠2707,天線2708 等。本發明的發光裝置可以應用於顯示部分2703。注意 ,藉由在黑色背景上顯示白色字元,行動電話的電流消耗 可以減小。此外,圖15(H)指出的行動電話是用本發明完 成的。 將來,當發光材料的發光強度增加時,發光裝置將能 夠應用於藉由展開和投影包含從透鏡等輸出的影像資訊的 光的正面型和背面型投影儀。 事例繼續在增加,其中上述電子設備顯示藉由電子通 信線路,如互連網和CATY (有線電視)播送的資訊。特 別是,增加的是那些顯示電影資訊的事例。由於發光材料 的回應速度很高,發光裝置較佳地用於動晝圖象顯示。 由於發光裝置在發光部分消耗功率,希望這樣顯示資 訊使得發光部分盡可能減小。因此,在發光裝置用於行動 資訊端點的顯示部分,特別是行動電話,音頻錄音重放設 備等發光裝置主要顯示字元資訊的情況下,較佳用非發光 部分作爲背景,在發光部分中形成字元資訊。 如上所述,本發明的應用範圍是非常寬的,所以本發 明可以應用於所有領域的電子設備。根據本實施例的電子 -31 - (27) (27)1299578 設備可以使用根據實施例1到5的任何之一的信號線驅動 電路結構。 本發明可以提供一種半導體積體電路和驅動半導體積 體電路的方法,其中電流源電路中電晶體間的特性波動的 影響減小,直到電晶體特性不影響電路。本發明的半導體 積體電路可以用於驅動電路部分以提供帶有像素部分的發 光裝置。特別是,本發明的半導體積體電路可以應用於驅 動電路部分的信號線驅動電路以提供一種主動矩陣發光裝 置,其中像素這樣排列使得形成矩陣圖案,每個像素有開 關元件和發光元件。本發明也可以提供一種發光裝置,其 中像素部分和驅動電路部分的元件是多晶矽薄膜電晶體以 在同一基底上集成形成像素部分和驅動電路部分。 圖式簡單說明 下列圖式中: 圖1是指出本發明的一種半導體積體電路結構的示意 圖。 圖2是指出本發明的一種半導體積體電路結構的示意 圖。 圖3是指出本發明的一種半導體積體電路結構的示意 圖4是本發明的信號線驅動方法的時序圖。 圖5是指出本發明的一種半導體積體電路結構的示意 圖。 -32- (28) 1299578 圖6是指出本發明的一種半導體積體電路結構的示意 圖。 圖7是指出本發明的一種半導體積體電路的開關裝置 的結構示意圖。 圖8是指出本發明的一種半導體積體電路結構的示意 圖。 圖9是指出本發明的一種半導體積體電路結構的示意 圖。 圖1 0是指出本發明的一種半導體積體電路結構的示 意圖。 圖U A到圖1 1 c是本發明的信號線驅動方法的時序 圖1 2 A和1 2B是指出本發明的發光裝置的結構示意 圖。 圖13 A和13B是指出本發明的一種半導體積體電路 結構的示意圖。 圖是發光裝置一個像素的電路圖。 圖1SA到15H是指出應用本發明的發光裝置的電子 設備示意圖。 主要元件對照表 1401 信號線 1 402 第一掃描線 1 403 第二掃描線 -33- (29) 1299578 1 404 第三掃描線 1 40 5 電流線 1406-1409 電晶體 1410 電容器元件 1411 發光元件 1412 電流源電路 4 0 1 基底Tr3(i). The ratio of W (gate width) / L (gate length) of the three transistors Tr1(i), Tr2(i) and Tr3(i) is 1:2:4. Thus, the same gate voltage is applied to the transistors Tr1(i), Tr2(i) and Tr3(i), and the ratio of the current flowing in the transistor is 1:2:4. In short, the ratio of current supplied from a current source is 1 ·· 2 : 4, and the amount of current can be controlled at 23 = 8. Correspondingly, the current source circuit can be outputted by a 3-bit digital video signal with 8 gray levels of analog 値electric crystals Tr1(i), Tf2(i) and Tr3(i) turned on or off, by control The voltage applied to their gates is controlled. This method controls the current 电流 of the current output from current source C(i) to C(i + 5). However, the combination of currents from the current sources C(i) to C(i + 5) and the signal lines S(m) to S(m + 5) is changed by the switching means. Therefore, the voltages of the transistors Tr1(i), Tr2(i) and Tr3(i) applied to each of the current sources C(i) to C(i+5) must be switched in accordance with the combination switch. By giving the current source a DA conversion function as described above, an image can be displayed with high precision gray scale. The number of bits can be set to suit individual conditions, and the transistor is designed based on the number of set bits. In the light-emitting device using the above-described signal line driver circuit of the present invention, pixel display unevenness is visually reduced, and the light-emitting device can display a uniform image without unevenness. If the present invention is applied to an external circuit, the present invention can provide a uniform image without displaying unevenness when a signal is input to a signal line by an external circuit. -20-(16) (16) 1299578 and 'If the semiconductor element of its signal line driver circuit is a polysilicon transistor, the present invention may reduce the size and weight of the light-emitting device. This is because the polycrystalline germanium transistor can be used for the semiconductor element of the pixel portion thereof, and the corresponding pixel portion and the peripheral circuit portion including the signal line driver circuit can also be integrally formed on the same substrate. When the pixel portion and the peripheral circuit portion are integrated on the same substrate, an external circuit is unnecessary. The present invention improves the reliability of the illuminating device because the complicated process of connecting the external circuit to the signal line and the unsuccessful connection can be avoided. Embodiment 2 In the present invention, as long as one signal line is connected to two or more current sources, the number of current sources (column of current sources) or the position of current sources (number of current source columns) may be asymmetric. This embodiment shows, as an example, a connection structure between the switching member of the switching device, the signal line, and the current source, which is different from that of Embodiment 1. Fig. 8 indicates a structure in which current sources C (i) to C (i + 5 ) are connected to signal lines S(m) to S(m + 5) by switching means. The switching device of the present invention has a function of the current that the switch transmits from the current source. In order to avoid complicated graphics, the switching function is schematically illustrated in Figure 8 to give only three terminals and switches. For example, the signal line S(m + 2) can be connected to any of the current sources C(i + 2), C(i + 3) and C (i + 4). In short, a signal line can be connected to the nearest current source and two adjacent current sources to the right of the nearest current source. This principle is used to connect the remaining signal lines S(m), S(m+1), S(m + 3), -21 - (17) (17) 1299578 s (m + 4) and S ( m + 5 ) To the current source. The function using the expression of the present invention includes such a connection, when i = 3 and a = -2, 1) = -1 and c = 0 (a, b and c are integers, and a#b#c), current The source is set to satisfy Fl(N) = N + a, F2(N) = N + b, and F.3(N) = N + c. The connection relationship between the signal line and the current source according to the present invention 'connecting the signal line to the nearest current source, i.e., the current source in the nearest column, is not always necessary, but the signal line can also be connected to a farther current source. An example of the connection structure shown in Fig. 9 is given. In Fig. 9, current sources C(i) to C(i + 6) are connected to signal lines S(m) to S(m + 6) by switching means. This switch unit also has 3 terminals and switches. For example, the signal line S(m + 2) can be connected to any of the current sources C(i), C(i + 2) and C(i + 4). In short, a signal line can be connected to the nearest current source and connected to the second current source on each side of the nearest current source. This principle is used to connect the remaining signal lines S(m), S(m+1), S(m + 3), S(m + 4), S(m+5) and S(m + 6) to the current source. . The function using the expression of the present invention includes such a connection, when i = 3 and a = -2, b = 0 and c = -2 (a, b and c are integer ' and a#b#c), the current source Set to satisfy F 1 (N) = N + a, F2(N) = N + b, and F3(N) = N + c. According to the connection relationship between the signal line and the current source of the present invention, the number of current sources connected to one signal line is not limited to three. Figure 1 shows an example of a switching element connecting five current sources. In Fig. 10, current sources C(i) to C(i + 6) are connected to signal lines S (m) to S (m + 6) by switching means. The switch components in this switchgear have -22- (18) (18) 1299578 5 terminals and switches. For example, the signal line S(m + 2) can be connected to any of the current sources c(i), c(i+l), C(i + 2), C(i + 3) and C(i + 4) . In short, a signal line can be connected to the nearest current source and two adjacent current sources on each side. This principle is used to connect the remaining signal lines S(m), S(m+1), S(m + 3), S(m + 4) and S(m + 5) to the current source. The function using the expression of the present invention includes such a connection, when i = 5 and & = - 2, b = -l, c = 0, d = l and e = 2 (a, b, c, d and e are Integer, and a#b#c#d;^e), the current source is set to satisfy Fl(N) = N + a, F2(N) = N + b, F3(N) = N + c, F4( N) = N + d and F5(N) = N + e. As shown in Figure 1, when the number of current sources that can be connected to one signal line is larger, the displayed image looks more uniform and reduces unevenness. In this embodiment, the current flowing into the signal line can be switched by the method described in Embodiment 1, and the embodiment 1 uses an analog switch to switch the current source. This embodiment can also employ a current source having a DA conversion function (see Example 1 for details). In short, this embodiment can be combined with the switching device and current source of Embodiment 1. As described above, the connection relationship between the signal line and the current source of the present invention, as long as one signal line is connected to two or more current sources, allows the number and position of the current source to be asymmetrical, and the current flowing into the signal line can be Switched Embodiment 3 This embodiment describes an example in which the light-emitting device of the present invention is divided by a frame period (a unit diagram related to the synchronization timing of the input video signal) by -23-(19) (19) 1299578. The frame period is a sub-frame period, and the image is displayed in gray scale (this display method is called time ratio gray scale drive display). First explain the time ratio gray scale drive display. In the time ratio gray scale driving method using a digital video signal (digital driving), the writing period T a and the display period (also referred to as an illumination period) Ts are alternately repeated in a frame period to display an image. For example, when an image is displayed by an n-bit digital video signal, a frame period has at least n write cycles and n display cycles. The n write cycles are associated with the n-bit video signal, respectively, and the n display periods are also associated with the n-bit video signal. As shown in Fig. 1 ,, the write period Tam (m is an arbitrary number in the range of 1 to η) is followed by a display period associated with the same number of bits, in this case the display period T s m . A write cycle T a and a display cycle Ts constitute a sub-frame period Sf. The sub-frame period consisting of the write period T a m associated with the mth bit and the display period T s m is S F m. The lengths of the display periods Ts1 to Tsn are set such that Tsl:Ts2:...:Tsn=20:21 ' . . : 2(η·1} is satisfied. In each sub-frame period, according to the bits of the digital video signal In order to control the number of gray levels, the total length of the display period in a frame period in which the light emitting device emits light is controlled. In order to improve the quality of the displayed image, the sub-frame period with a long display period may be It is divided into several cycles. For the specific division method, see Japanese Patent Application No.: 2 0 0 _ 2 6 7 1 6 4. -24- (20) (20) 1299578 In this embodiment, in the sub-frame During the display period of the cycle, it is desirable to switch the current flowing from the current source to the signal line. If the switch is performed during the write cycle, the input current, that is, information about whether the light-emitting element emits light, may not be transmitted successfully. During a short period of time or switch, the fluctuation of the brightness of the illuminating element is further reduced, and the uniformity of the display is further improved. Fig. 1 1 B shows a specific example using a 3-bit signal. In Fig. 1 1 B, a figure Sub-frame Periods SF1, SF2 and SF3. The sub-frame periods SF1, SF2 and SF3 have write periods Tal5Ta2 and Ta3 and display periods Tsl, Ts2 and Ts3, respectively, in which the connection between the signal line and the current source is switched (hereinafter referred to as short For the switching period) 1, 2 and 3 are provided in the display periods Tsl, Ts2 and Ts3 respectively. The current input from the current source to the signal line is switched during the switching period 1 to 3. In this way, the switch can be in a short period In the middle or action, the display image looks more uniform. The switching periods 1 to 3 in Figure 1 1 B are each just before the write cycle. However, as long as the switching period is within the display period, it can be at any time. Figure 1 1 C is the timing diagram of the input to the analog switch. In the first frame, A1 is turned on in SF1, A2 is turned on in SF2, and A3 is turned on in SF3. In the box, A2 is on in SF1, A3 is on in SF2, and A1 is on in SF3. Although not shown in Figure 11C, the third frame is similar, A3 is on in SF 1, A1 It is turned on in SF2, and A2 is turned on in SF3. If in subpicture In the period SF1 to SF3, the conduction of A1 to A3-25- (21) 1299578 is fixed (from the first to the third frame, if A1 is conductive in SF1, A2 is conductive in SF2, and A3 It is turned on in SF3), then the fluctuations cannot be sufficiently uniform. Correspondingly, as shown in Figure 1 C, it is expected that their conduction state changes from one sub-frame period to another sub-frame period, from a graph The frame period changes to another frame period. This embodiment is only an example, which signal is input in which sub-frame period, and can be set to suit individual cases. See Figure 4 for specific methods of inputting signals. In the present embodiment, the current source circuit of Embodiment 1 is preferably used, which has a DA conversion function to increase the number of gray levels. This embodiment can be combined with Embodiments 1 and 2. Embodiment 4 This embodiment describes the structure of a light-emitting device of the present invention with reference to FIG. The light-emitting device of the present invention includes a pixel portion 402 in which a plurality of pixels are arranged in a matrix on the substrate 40 1 , and includes a signal line drive circuit 1 203 around the pixel portion 402, a first scan line drive circuit 4〇4 and a second scan Line drive circuit 405. Although the signal line driving circuit 1 203 and the two scanning line driving circuits 404 and 405 are provided in Fig. 12(A), the present invention is not limited thereto and may be arbitrarily designed in accordance with the pixel structure. The signal is fed from the outside to the signal line drive circuit 1 203, the first scan line drive circuit 04 and the second scan line drive circuit 405 by fpcm 〇6. The structure and operation of the first scanning line driving circuit 404 and the second scanning line driving circuit 405 are described using Fig. 12(B). The first scanning line driving circuit 4 0 4 -26- (22) (22) 1299578 and the second scanning line driving circuit 4〇5 each include a shift register 407 and a buffer 408. The operation is simply described as · shift register 4 〇7 according to the clock signal (G-CLK), the start pulse (S-SP) and the inverted clock signal (0-CLK b) sequentially output the sampling pulse Thereafter, the sampling pulses amplified in the buffer 408 are input to the scanning lines; each scanning line is set to the selected state; the signal current Idata is sequentially written to the pixels under the control of the selected signal lines. Note that the structure can be forced such that the level shifting element circuit is arranged between the shift register 407 and the buffer 408. Arranging the level shifting element circuit allows the voltage amplitude to be increased. The structure of the signal line driver circuit 1 2 0 3 will be described below. Note that this embodiment can be arbitrarily combined with Embodiments 1, 2 and 3. The current sources provided in the signal line driver circuit of the present invention may not be arranged in a straight line and may be moved and arranged. Moreover, the two signal line driver circuits can be symmetrical to the pixel portion. That is, as long as the current source is connected to the signal line by the switching device, the present invention does not limit the arrangement of the current source. [Embodiment 5] In the present embodiment, the detailed structure and operation of the signal line drive circuit 1 203 for performing the 1-bit digital-level hierarchical display will be described with reference to FIG. Fig. 13(A) is a diagram showing a signal line driving circuit 1203 for performing a 1-bit digital bit gradation display. The signal line drive circuit 1 203 includes a shift register 1 2 1 1, a first latch circuit 1 2 1 2, a second latch circuit 1 2 1 3 and a constant current circuit 1 2 1 4 . Shift register 1 2 1 1, first latch circuit 1 2 1 2 -27- (23) (23) 1299578 and second latch circuit 1 2 1 3, used as the video signal indicated in Figure 1 Switch. Further, the constant current circuit 1214 is composed of a plurality of current sources. Fig. 13(B) shows a specific circuit of the shift register 1 2 1 1, the first latch circuit 1 2 1 2 and the second latch circuit 1 2 1 3 . The operation is briefly described as follows. The shift register 1 2 1 1 is constituted by, for example, a plurality of trigger circuits (FF). The clock signal (S-CLK), the start pulse (S-SP) and the inverted clock signal (S-CLKb) are input thereto, and the sampling pulses are sequentially output according to the timing of these signals. The sampling pulse output from the shift register 1 2 1 1 is input to the first latch circuit 1 2 1 2 . The digital video signal has been input to the first latch circuit 1 2 1 2, and the video signal is held in each column according to the input timing of the sampling pulse. In the first latch circuit 1 2 1 2, when the hold operation of the video signal in each column is completed to the last column, during the horizontal return, the latch pulse is input to the second latch circuit 1 2 1 3, remaining at The video signals in the first latch circuit 1 2 1 2 are transferred in batches to the second latch circuit 1 2 1 3 . As a result, a line of video signals held in the second latch circuit 1 2 1 3 is simultaneously input to the video switch. An on-off operation of the video switch is performed to control the input of the signal to the pixel, thereby displaying the gradation. When the video signal held in the second latch circuit 1 2 1 3 is supplied to the constant current circuit 1 2 1 4, the sampling pulse is output again in the shift register 1 2 11 . Thereafter, the operation iteration is repeated to process a frame video signal. Further, Embodiment 5 can be arbitrarily combined with the invention described in Embodiments 1, 2, 3 and 4. -28- (24) (24) 1299578 Embodiment 6 The electronic device of the light-emitting device of the present invention includes, for example, a video video/camera 'digital camera, a eye-protection type display (head mounted display), a navigation system 'audio reproduction device' (such as car audio and audio components), notebook PC 'game consoles, mobile information endpoints (such as mobile computers, mobile phones 'portable game consoles, and electronic books), image reproduction devices with recording media (specifically, for A reproduction recording medium such as a digital versatile disc (dvd) 'includes a display capable of displaying an image). In particular, in the case of a mobile communication endpoint, the endpoint preferentially uses the lighting device due to the importance of the perspective of the viewing angle. Figure 15 shows some practical examples. Fig. 15(A) indicates a light-emitting device comprising a housing 2001, a support base 2002, a display portion 2003, a speaker portion 2004, a video input terminal 2005 and the like. The light-emitting device of the present invention can be applied to the display portion 2003. Further, the light-emitting device indicated in Fig. 15(A) is completed by the present invention. Since the illuminating device is a self-illuminating device, it does not require background light, so that a display portion thinner than the liquid crystal display can be obtained. Note that the lighting device includes all information display devices such as a personal computer television broadcast transmitter receiver and an advertising display. Figure 1 5 (B) indicates a digital still camera that includes a main body 2 i 〇 1 , a display portion 2 1 0 2 , an image receiving portion 2 1 0 3 , an operation button 2 1 0 4 , an external connection 埠 2 1 0 5, Shutter 2 1 0 6 and so on. The light-emitting device of the present invention can be applied to the display portion 2102. Further, the digital still camera indicated in Fig. 15 (B) is completed by the present invention. Figure 1 5 (C) shows a pen § 3 personal computer, which contains the main body 2 2 0 1 -29- (25) (25) 1299578, the outer casing 2202, the display part 2203, the keyboard 2204, the external connection 205 2205, indicators Mouse 2206 and so on. The light-emitting device of the present invention can be applied to the display portion 2203. Further, the light-emitting device indicated in Fig. 15 (C) is completed by the present invention. Figure 15 (D) indicates a mobile computer that includes a main body 23 0 1 , a display portion 2 3 0 2 , a switch 2 3 0 3 , an operation button 2 3 0 4 , an infrared 埠 2 3 0 5 , and the like. The light-emitting device of the present invention can be applied to the display portion 23 03. Further, the mobile computer shown in Fig. 15(D) is completed by the present invention. Figure 15 (E) shows a portable image reproducing apparatus having a recording medium (specifically, a DVD reproducing apparatus), which includes a main body 2401, a casing 242, a display portion A2403, a display portion B2404, and a recording medium (e.g., a DVD). The reading portion 2405, the operation key 2406, the speaker portion 2407, and the like. The display part A 2403 mainly displays image information, and the display part B 24 04 mainly displays character information. The light-emitting device of the present invention can be applied to the display portion A 2403 and the display portion B 24 04. Note that a home game machine or the like is included in an image reproducing apparatus having a recording medium. Further, the DVD reproducing apparatus indicated in Fig. 15(E) is completed by the present invention. Fig. 15(F) indicates a eye-protection type display (head mounted display) which includes a main body 2501, a display portion 2502, a mirror arm portion 2503, and the like. The light-emitting device of the present invention can be applied to the display portion 25〇2. The eye-catching type display indicated in Fig. 15(F) is completed by the present invention. Figure 15 (G) indicates a video video camera including a main body 260 1 , a display portion 2602 , a casing 2603 , an external connection 2604 , a remote control receiving portion 2605 , an image receiving portion 2606 , a battery 2607 , and an audio input portion -30 - (26 (26) 1299578 2 60 8, operation key 2609, eyepiece part 2610, and the like. The light-emitting device of the present invention can be applied to the display portion 2602. The video video camera indicated in Fig. 15(G) is completed by the present invention. Here, Fig. 15(H) shows a mobile phone which includes a main body 270 1 , a casing 2702, a display portion 2703, an audio input portion 2704, an audio output portion 2705, an operation key 2706, an external port 2707, an antenna 2708, and the like. The light-emitting device of the present invention can be applied to the display portion 2703. Note that by displaying white characters on a black background, the current consumption of the mobile phone can be reduced. Further, the mobile telephone indicated in Fig. 15 (H) is completed by the present invention. In the future, when the luminous intensity of the luminescent material is increased, the illuminating device can be applied to a front type and a back type projector which expand and project light containing image information output from a lens or the like. Cases continue to increase, with the above-mentioned electronic devices displaying information broadcast via electronic communication lines such as the Internet and CATY. In particular, what is added is an example of displaying movie information. Since the response speed of the luminescent material is high, the illuminating device is preferably used for dynamic image display. Since the light-emitting device consumes power in the light-emitting portion, it is desirable to display the information such that the light-emitting portion is as small as possible. Therefore, in the case where the illuminating device is used for the display portion of the action information endpoint, particularly in the case where the illuminating device such as a mobile phone, an audio recording and reproducing device or the like mainly displays character information, it is preferable to use the non-light emitting portion as the background in the illuminating portion. Form character information. As described above, the application range of the present invention is very wide, so the present invention can be applied to electronic devices in all fields. The electronic -31 - (27) (27) 1299578 device according to the present embodiment can use the signal line drive circuit structure according to any one of Embodiments 1 to 5. The present invention can provide a semiconductor integrated circuit and a method of driving a semiconductor integrated circuit in which the influence of characteristic fluctuations between transistors in the current source circuit is reduced until the transistor characteristics do not affect the circuit. The semiconductor integrated circuit of the present invention can be used to drive a circuit portion to provide a light-emitting device with a pixel portion. In particular, the semiconductor integrated circuit of the present invention can be applied to a signal line driving circuit of a driving circuit portion to provide an active matrix light-emitting device in which pixels are arranged such that a matrix pattern is formed, each pixel having a switching element and a light-emitting element. The present invention can also provide a light-emitting device in which an element of a pixel portion and a driver circuit portion is a polysilicon thin film transistor to integrally form a pixel portion and a driver circuit portion on the same substrate. BRIEF DESCRIPTION OF THE DRAWINGS In the following drawings: Fig. 1 is a schematic view showing the structure of a semiconductor integrated circuit of the present invention. Figure 2 is a schematic view showing the structure of a semiconductor integrated circuit of the present invention. Fig. 3 is a schematic view showing a structure of a semiconductor integrated circuit of the present invention. Fig. 4 is a timing chart showing a signal line driving method of the present invention. Figure 5 is a schematic view showing the structure of a semiconductor integrated circuit of the present invention. -32- (28) 1299578 Fig. 6 is a view showing the structure of a semiconductor integrated circuit of the present invention. Fig. 7 is a view showing the configuration of a switching device of a semiconductor integrated circuit of the present invention. Figure 8 is a schematic view showing the structure of a semiconductor integrated circuit of the present invention. Figure 9 is a schematic view showing the structure of a semiconductor integrated circuit of the present invention. Figure 10 is a diagram showing the structure of a semiconductor integrated circuit of the present invention. Fig. U A to Fig. 1 1 c are timings of the signal line driving method of the present invention. Figs. 1 2 A and 1 2B are schematic structural views showing the light-emitting device of the present invention. Figures 13A and 13B are views showing the structure of a semiconductor integrated circuit of the present invention. The figure is a circuit diagram of one pixel of a light-emitting device. 1A to 15H are schematic views showing an electronic device to which a light-emitting device of the present invention is applied. Main component comparison table 1401 Signal line 1 402 First scan line 1 403 Second scan line -33- (29) 1299578 1 404 Third scan line 1 40 5 Current line 1406-1409 Transistor 1410 Capacitor element 1411 Light-emitting element 1412 Current Source circuit 4 0 1 substrate
402 像素部分 4 0 4 第一掃描線驅動電路 405 第二掃描線驅動電路 407 移位暫存器 408 緩衝器 1 2 0 3 信號線驅動電路 1211 移位暫存器 1212 第一閂鎖電路402 pixel portion 4 0 4 first scan line driver circuit 405 second scan line driver circuit 407 shift register 408 buffer 1 2 0 3 signal line driver circuit 1211 shift register 1212 first latch circuit
1213 第二閂鎖電路 1214 恒流電路 2001 外殼 2002 支撐基座 2 0 0 3 顯示部分 2004 揚聲器部分 200 5 視頻輸入端 2 10 1 主體 2102 顯示部分 -34 - (30) (30)1299578 2103 影像接收部分 2104 操作鍵 2 105 外連埠 2106 快門 2201 主體 2202 外殼 2203 顯示部分 2204 鍵盤 2205 外連埠 2206 指標式滑鼠 2301 主體 2302 顯示部分 2303 開關 2304 操作鍵 2305 紅外埠 2401 主體 2402 外殻1213 Second latch circuit 1214 Constant current circuit 2001 Housing 2002 Support base 2 0 0 3 Display portion 2004 Speaker portion 200 5 Video input terminal 2 10 1 Body 2102 Display portion -34 - (30) (30) 1299578 2103 Image reception Part 2104 Operation keys 2 105 External connection 106 2106 Shutter 2201 Main body 2202 Enclosure 2203 Display part 2204 Keyboard 2205 External connection 206 2206 Index type mouse 2301 Main body 2302 Display part 2303 Switch 2304 Operation key 2305 Infrared 埠 2401 Main body 2402 Enclosure
2403 顯示部分A2403 Display part A
2404 顯示部分B 2405 記錄介質(例如DVD)讀入部分 2406 操作鍵 2407 揚聲器部分 2501 主體 2502 顯不部分 -35- (31)1299578 2503 鏡臂部分 2601 主體 2602 顯示部分 2603 外殻 2604 外連埠 2605 遙控接收部分 2606 影像接收部分 2607 電池 2608 音頻輸入部分 2609 操作鍵 2610 目鏡部分 2701 主體 2702 外殻 2703 顯示部分 2704 音頻輸入部分 2705 音頻輸出部分 2706 操作鍵 2707 外連埠 2708 天線2404 Display section B 2405 Recording medium (for example, DVD) Reading section 2406 Operation key 2407 Speaker section 2501 Main body 2502 Display part -35- (31) 1299578 2503 Mirror arm section 2601 Main body 2602 Display section 2603 Case 2604 External connection 埠 2605 Remote control receiving portion 2606 Image receiving portion 2607 Battery 2608 Audio input portion 2609 Operation key 2610 Eyepiece portion 2701 Main body 2702 Case 2703 Display portion 2704 Audio input portion 2705 Audio output portion 2706 Operation key 2707 External connection 708 2708 Antenna