TWI287616B - Measuring error method for high precision and nano-scale rotation axis and the apparatus thereof - Google Patents

Measuring error method for high precision and nano-scale rotation axis and the apparatus thereof Download PDF

Info

Publication number
TWI287616B
TWI287616B TW95125741A TW95125741A TWI287616B TW I287616 B TWI287616 B TW I287616B TW 95125741 A TW95125741 A TW 95125741A TW 95125741 A TW95125741 A TW 95125741A TW I287616 B TWI287616 B TW I287616B
Authority
TW
Taiwan
Prior art keywords
beam splitter
light
laser
cat
slide
Prior art date
Application number
TW95125741A
Other languages
Chinese (zh)
Other versions
TW200804757A (en
Inventor
Chien-Hong Liu
Wen-Yuh Jywe
De-Hua Fang
Liang-Wen Ji
Hsueh Liang Huang
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW95125741A priority Critical patent/TWI287616B/en
Application granted granted Critical
Publication of TWI287616B publication Critical patent/TWI287616B/en
Publication of TW200804757A publication Critical patent/TW200804757A/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

The invention is a kind of measuring error method for high precision and nano-scale rotation axis and the apparatus thereof. It includes a laser source, plural numbers of spectrometers, a cat-eyed reflective mirror, a reflective optical grating, plural numbers of polarized spectrometers, and glasses and optical sensor modules. The injected light beam is paralleled with exited beam using the cat-eyed reflective mirror. It can overcome the light discontinuity from angle prism. The invention can achieve a kind of propose of measuring error on the nano-scale rotation axis with high precision.

Description

U87616 · · · ,淬"月G曰修(更)正替換頁 九、發明說明: 一~---―1 【發明所屬之技術領域】 本發明係有關於一種旋轉軸誤差量測方法與裝置,尤其是指 -種應用於微型機台上,作為高精密加工時,該微型機台之旋轉 主軸的誤差量測方法與裝置,而且是高精度奈米級的旋轉軸誤差 量測。 【先前技術】 > 咼精搶加工之微型機台,如微型銑床、微型鑽床、微型雕刻 機等微型加卫母機i於現代高精密度工業及高科技產業之影響 曰倶a 疋這些產業得以蓬勃發展的主要動力之一。 微型加工母機的旋轉軸A具有多自由度的誤差,實際運動時 會產生六自由度的誤差,如圖一所示,該誤差包括三個線誤差 (x、y、z)與三個角誤差(俯仰(pitch)、搖擺及滾動 (Roll)誤差)。由於旋轉軸A是經由主軸M、軸承 '驅動器等許 ^多元件依序組裝而成,會因為此等諸多元件尺寸的誤差、各元件 間配合度等關係,而產生具有多自由度的誤差。眾所皆知,機赛 中之旋轉軸A的特性將影響整台機器的精度與加工產品的品質, 被加工之精密工件的加工尺寸皆需要考慮六個自由度的誤差,才 能確保加工品質及誤差是在容許之範圍内。 隨著技術的發展,現有旋轉軸A量測技術有以下幾種分類, 如下所述: 5 1287616 ^斗,/月,j曰修(更)正替換頁 、直接使用標準球(mastfer ball)/軸(axis)/棒 、 (cylinder),但不補償旋轉軸A之謨差: 此方法是最早的旋轉軸A量測技術,但會受限於標準棒/球 的加工精度,因此不適用於高精度量I測。在2000年12月Eric 的論文,其提供之技術可測得1 //ml解析度,然而在Ε· Gleason 文章,他提出以目前加工技術極杈,標準球之球度(out of roundness)為75 nm。以Air Spindle之極限精度可達到50 nm, 參 故此第一類方法,以目前的技術而言尚無法達成。 二、直接使用master ball/axis/cylinder,但有做補償旋 轉軸A之誤差,其補償旋轉軸A誤I差之方式為單探頭多次設定 (multi-steps): 採用單(多)探頭(Prode)Pxl、Pd、Pn、PY2、PZ1多次設定是誤 差分離的第一種方法(如圖二所示)i。上述旋轉軸A之誤差必須 再加以分離,分解才能得到所需之餐析精度。有關此論文之發表 Φ 皆以數學理論為主,部分以模擬為輔,樣本分析是建立之模式。 因此,皆未能有實際之用途,主要原因在於由量測時候架設多 次,每架設一次量取一次參考點(Reierence Point)S資料,量測 方式係依不同指定角度位置固定探頭P”r、P”2,因此,最困難之 I · 部份,就是角位置定位不易(有偏心閜題)。另外,還有待測標準 軸(Tested Spindle)T及旋轉差誤差之重複性(repeatability)、 及固定探頭Ρ”ι、P”2之重複性是此方法必須克服之處,如圖三、 6 1287616 ?卢"月"日細正替換頁 圖三A、圖三B所示。 另有一種旋轉軸A誤差量測方法與裝置,主要是利用一般雷 射光繞射與光干涉的原理及架構來組成,將標準棒内置—角隅菱 鏡在放於微型機台上(如微型銑床、微型鑽床、微型雕刻機等微 型加工母機)之主軸]^上,當主軸M有迴轉誤差時,會造成繞射 光的變化,進而影響到反射光打到光柵上,由光感測器上之位 置,再經由數學運算後而㈣其平移誤差值。此技術對於要求更 高精度且要達奈米級,受限於角隅菱鏡構造的問題,有3個接縫 處會形成信號的不易判讀導致系統誤差產生。 本發明人因從事多年有關於旋轉軸A誤差量測方法之研 究,發現目前現有旋轉軸八料量測方法雖有—定之功效,但常 因旋轉軸A誤差量測方法之諸多缺失的限制,而無法發揮最大之 效益,因而提供-種極具創新與實用價值之旋轉軸誤差量測方法 與裝置。 【發明内容】 因此,本發明之目的在於提供_種旋轉軸誤差量測方法與裝 置系統中的直度決差利用這光柵移動所產生的都卜勒效應及偏 振的現象,再加上f子訊號處理的光路組合,將干涉所產生的直 流飄移問題降到最低,以達到最佳的量測效果,可叫效達成高 精度奈米級旋轉軸誤差量測之積極目的。 根據本^明之上述目的,提出一旋轉轴誤差量測方法與裝 7 1287616 v 耗年7月,曰修(更)正替換頁 置,包含有:一雷射光源、複數個分光鏡、一貓眼反射鏡、一反 射式光栅、複數個極化分光鏡、複數個玻片及複數個光感測器組 成;貓眼反射器,植入於標準棒一端;該標準棒固定於微型機台 之旋轉軸;複數個分光鏡,包含有第一、二、三分光鏡,雷射光 源產生之雷射光束射向第一分光鏡將光反射至旋轉軸之貓眼反 射器,貓眼反射器再將光反射且穿過第一分光鏡;一反射式光 柵,該反射式光柵及貓眼反射器、第一分光鏡成一直線,穿過第 > 一分光鏡的雷射光束射入該反射式光柵;複數個極化分光鏡,包 含有第一、二及第三極化分光鏡;上述反射之光路在第一極化分 光鏡重合後,在這第一極化分光鏡接收分光射出之反射光,使兩 道正負一階反射光疊加形成一干涉光;複數個波片,包含有第 一、二波片;該波片其中第一玻片與第二極化分光鏡為一組相對 應;第二玻片與第三極化分光鏡為另組對應,兩組成90度分佈; 複數個光感測器,包含有第一、二、三及第四光感測器;其中第 ❿一、第二光感測器與第二極化分光鏡一組且成90度分佈;第三、 第四光感測器與第三極化分光鏡一組亦成90度分佈。 根據本發明之上述目的,提出一旋轉軸誤差量測方法與裝 置,實施步驟包含有:將含有貓眼反射器的標準棒固定於微型機 台之旋轉軸上;將雷射光源置於定位,使雷射光源射出一雷射光 束至第一分光鏡,將雷射光束反射至貓眼反射器來測量旋轉轴之 誤差;貓眼反射器再將該雷射光束予以反射產生一反射光並反 8 1287616 /泮,Μ日修(更)正替換頁 射,該反射光將穿過上述之第一分光鏡;穿過第一分光鏡之反射 光照射到反射式光柵,通過反射式光柵的反射光將會產生產生三 道繞射光;其中之正一階繞射光、負一階繞射光則分別射入兩邊 之第二分光鏡與第三分光鏡;射入之繞射光,將產生兩道光,一 道穿透,一道反射;反射之光路會在第一極化分光鏡重合,在這 第一極化分光鏡會產生干涉現象以產生另一道反射光及一道穿 透光,各自分別穿過第一、第二玻片後,再分別射入第二及第三 極化分光鏡;第二及第三極化分光鏡後方各放置第一、第二、第 三及第四光感測器等四個光感測器;利用這四個光感測器負責接 收處理干涉條紋的變化。 【實施方式】 請參照圖四與圖五,係本發明之旋轉轴誤差量測裝置之平面 及立體組成示意圖。本發明之旋轉軸誤差量測裝置,包含有雷射 光源(1)、貓眼反射器(2)、分光鏡、反射式光柵(4)、極化反光 • 透鏡(5)、波片(6)及光感測器(7)組成,其中: 雷射光源(1),為一般的氦氖(He-Ne)雷射,也可使用半導 體雷射或線偏振雷射光源皆可。 貓眼反射器(2),係植入於標準棒一端;該標準棒固定於微 型機台之旋轉軸(21)。該貓眼反射器(2)使入射光與出射光相互 平行(請參照圖七),其構造可以克服角隅菱鏡有接面照成光的 不連續問題。另外,標準棒的直徑約為微型銑床、鑽床、雕刻機 9 1287616 丫厂年"月〇日修(更)正替換頁 ^ 等加工母機之刀具大小。 、 複數個分光鏡(Beam Splitter,BS),包含有第一分光鏡 (31)、第二分光鏡(32)及第三分光鏡(33),可為圓形,方型或矩 形;該分光鏡會讓振動方向90度的光反射,振動方向0度的光 則可以直接穿透。光源通過分光鏡後會產生分光,且為垂直及水 平方向之分光效果;該分光鏡比圓板形分光鏡有較大的穿透與反 射的接觸面積。該分光鏡用來使雷射光分光,在此用來使反射光 # 分出二道光,一道光(與反射光平行)穿過透鏡打入位移感測器, 量測俯仰度、滾動度、搖偏度、所需的數值,另一道光直接打入 極化分光鏡(5),產生干涉進而測量值度誤差。其中第一分光鏡 (31)與雷射光源(1)、貓眼反射器(2)成90度角分佈設置。雷射 光源(1)產生之雷射光束射向第一分光鏡(31)將光反射至旋轉轴 (21)之貓眼反射器(2),貓眼反射器(2)再將光反射且穿過第一分 光鏡(31)照射至反射式光柵(4)。 β 一反射式光柵(4) ( Diffraction Grating),該反射式光柵 (4)及貓眼反射器(2)、第一分光鏡(31)成一直線,且可以如圖五 所示,於反射式光柵(4)之下另設有一反射鏡(41)將穿過第一分 光鏡(31)的雷射光束,作90度之轉折以直接反射至反射式光柵 (4),使光順利進入系統,同時可以有效縮減整個裝置之組成體 積;係藉由雷射光束入射後,該反射式光柵(4)會利用光的繞射 現象產生正、負一階繞射光及零階繞射光之三道光,並將其中之 1287616 ί押/月/}曰修(更)正替换頁 ^ 正、負一階繞射光反分別射至兩側的第二分光鏡(32)及第三分光 ^ 鏡(33)。射入第二分光鏡(32)與第三分光鏡(33)之正一階繞射 光、負一階繞射光,將產生兩道光’ 一道穿透’一道反射。反射 之光路會在極化分光鏡(5)之第一極化分光鏡(51)重合。 複數個極化分光鏡(5) ( Polarizing Beam Splitter,PBS), 包含有第一極化分光鏡(51)、第二極化分光鏡(52)及第三極化分 光鏡(53);其中上述反射之光路在第一極化分光鏡(51)重合後, 鲁 在這第一極化分光鏡(51)接收分光射出之反射光,使兩道正負一 階反射光疊加形成一干涉光。該第一極化分光鏡(51)產生干涉現 象,將產生另一道反射光及一道穿透光。極化分光鏡(5)用來使 雷射光分光,在此用來使入射光及反射光分出二道光,一道水平 偏振,一道垂直偏振,都會穿過1/4 λ玻片(6)以分別進入光強度 檢測器(7)。 複數個波片(6),包含有第一波片(61),第二波片(62);該 • 波片(6)為1/4 λ玻片,用來調整光的相位,改變雷射光振動方 向’通過二次會使雷射光振動方向轉90度,亦即讓兩組訊號有 90度的相位差而達到干涉訊號的要求。其中第一玻片(61)與第二 極化分光鏡(52)為一組相對應;第二玻片(62)與第三極化分光鏡 (53)為另組對應,兩組成9〇度分佈。 複數個光感測器(7),包含有第一光感測器(71)、第二光感 /則tm ( 72 )弟二光感測器(Μ )、第四光感測器(Μ )。光感測器(7 ) 脾,/月八日細正替換頁 1287616 可為光檢測器或位移感測器,可以感測光強度的變化,利用光強 度的變化來做後面的信號處理。其中第一光感測器(71)、第二光 感測器(72)與第二極化分光鏡(52) —組且成90度分佈;第三光 感測器(73)、第四光感測器(74)與第三極化分光鏡(53)—組亦成 90度分佈。光感測器(7)對光強度信號變化的接收,處理干涉條 紋。而第一光感測器(71)、第二光感測器(72)、第三光感測器 (73)、第四光感測器(74)所形成之四象限感測器,依據光點的變 化來量測,再經由類比/數位轉換卡(A/D卡)轉換求的其他自由度 誤差。 本發明之量測系統,整個雷射光之光路順序射向如圖八所 7J> 〇 根據光學理論,光強度正比於電場向量振幅的平方,而在討 論光強度分佈時,總是討論相對光強度,所以上述方程式中常數 疋不重要的,可以直接認為光強度等於電場相量振幅的平方,因 此由光感測器所接收到的干涉光強度訊號為電壓訊號,可以表示 如下公式的四組信號’前面4為常數項用τ表示,其信號表示如 圖九所示,係本發明之-較佳實施例之光柵χ軸移動與四個光感 測器訊號對應示意圖。 ^pdi = 4 + 4sin(2A^7) vpm =4-4sin^A^) =4+4cos^A^t) 12 1287616 r----- ,详,月>;)日修(£)正替換頁 ^ 4 — 4cos(2A^?) 若將以上訊號做適當的相減處理可以得到兩組相位角相差 的弦波訊號,可表示如下的另兩組公式: - VPDl - VPD2 = 8sin(2A^)) ~ ^PD3 ~~ ^PD4 ~ 8cos(2A^) 而且原本直流電壓訊號的部份也藉由這種處理方式得以消 除只留下交流電壓訊號的部分降低產生直流電壓訊號飄移的問 I 題。 將如上的兩組公式簡化,可以得到一圓方程式:U87616 · · · , quenching " month G 曰 repair (more) is replacing page IX, invention description: one ~--- 1 [Technical field of invention] The present invention relates to a method for measuring the error of a rotating shaft The device, in particular, is applied to a micro-machine table, and is used as a method and device for measuring the error of the rotating spindle of the micro-machine during high-precision machining, and is a high-precision nano-level rotational axis error measurement. [Prior Art] > The micro-machinery, such as micro-milling machines, micro-drilling machines, micro-engraving machines, etc., are used in the high-precision industrial and high-tech industries. One of the main driving forces for flourishing. The rotation axis A of the micro-machining machine has multiple degrees of freedom error, and six degrees of freedom error occurs in actual motion. As shown in Figure 1, the error includes three line errors (x, y, z) and three angular errors. (pitch, sway, and roll error). Since the rotary axis A is sequentially assembled via a plurality of components such as the spindle M and the bearing 'driver, there are errors in many degrees of freedom due to errors in the size of these components and the degree of fit between the components. It is well known that the characteristics of the rotary axis A in the machine will affect the accuracy of the entire machine and the quality of the processed product. The machining dimensions of the precision workpiece to be processed need to consider the error of six degrees of freedom to ensure the processing quality and The error is within the allowable range. With the development of technology, the existing rotary axis A measurement technology has the following classifications, as follows: 5 1287616 ^ bucket, / month, j曰 repair (more) is replacing the page, directly using the standard ball (mastfer ball) / Axis (axis) / rod, (cylinder), but does not compensate for the difference in the rotation axis A: This method is the earliest measurement method of the rotation axis A, but it is limited by the processing precision of the standard rod / ball, so it is not applicable High precision measurement I. In December 2000, Eric's paper provided a technique that measured 1 //ml resolution. However, in the article by G. Gleason, he proposed that the current processing technique is extremely flawed, and the out of roundness of the standard ball is 75 nm. The ultimate accuracy of the Air Spindle can reach 50 nm, and the first method of this method cannot be achieved with current technology. Second, the master ball/axis/cylinder is used directly, but there is an error to compensate the rotation axis A. The way to compensate for the error of the rotation axis A is the multi-steps of the single probe: using a single (multi) probe ( Prode) Pxl, Pd, Pn, PY2, PZ1 multiple settings are the first method of error separation (shown in Figure 2) i. The above error of the rotation axis A must be separated and decomposed to obtain the desired meal resolution accuracy. The publication of this paper Φ is based on mathematical theory, partly supplemented by simulation, and sample analysis is the model established. Therefore, there is no practical use. The main reason is that the probes are set up multiple times during the measurement, and the reference point (Reierence Point) S data is taken once per set. The measurement method is to fix the probe according to different specified angular positions. , P"2, therefore, the most difficult part of I, is that the angular position is not easy to locate (with eccentricity). In addition, there is the repeatability of the tested Spindle T and the rotation difference error, and the repeatability of the fixed probe ι “ι, P” 2, which must be overcome by this method, as shown in Figure 3 and 6. 1287616 ?Lu "Monthly" The day is replaced by the page shown in Figure 3A and Figure 3B. Another method and device for measuring the error of the rotating shaft A is mainly composed of the principle and structure of general laser light diffraction and optical interference, and the standard rod built-in horned mirror is placed on the micro machine (such as miniature Spindle, micro-drilling machine, micro-engraving machine and other micro-machining machine spindle] ^, when the spindle M has a rotation error, it will cause a change in the diffracted light, which in turn affects the reflected light hitting the grating, by the light sensor The position, then through the mathematical operation and (4) its translation error value. This technique is problematic in that it requires more precision and is up to the nanometer level, which is limited by the problem of the configuration of the horned mirror. There are three seams that form a signal that is difficult to interpret and causes systematic errors. The inventor of the present invention has been engaged in research on the measurement method of the rotation axis A error for many years, and found that the current rotary axis eight-material measurement method has a certain effect, but often due to many limitations of the rotation axis A error measurement method, However, it is impossible to maximize the benefits, thus providing a method and device for measuring the rotational axis error with great innovation and practical value. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for measuring a rotational axis error and a straightness decision in a device system using the Doppler effect and polarization generated by the grating movement, plus f sub The combination of the optical path processed by the signal minimizes the DC drift problem caused by the interference to achieve the best measurement effect, and can be called the effective purpose of achieving high-precision nano-level rotary axis error measurement. According to the above object of the present invention, a method for measuring the error of the rotating shaft and the 7 787616 v is used for 7 months, and the repairing (more) positive replacement page includes: a laser light source, a plurality of beamsplitters, and a cat eye. a mirror, a reflective grating, a plurality of polarizing beamsplitters, a plurality of slides and a plurality of light sensors; a cat's eye reflector implanted at one end of the standard rod; the standard rod is fixed to the rotating shaft of the micro machine a plurality of beamsplitters, including first, second, and third beamsplitters, the laser beam generated by the laser source is directed toward the first beam splitter to reflect light to the cat's eye reflector of the rotating shaft, and the cat's eye reflector reflects the light again Passing through the first beam splitter; a reflective grating, the reflective grating and the cat's eye reflector, the first beam splitter are in a straight line, passing through the beam of the beam of light into the reflective beam; the plurality of poles The splitting mirror comprises first, second and third polarization beam splitters; the reflected light path is superposed after the first polarization beam splitter, and the first polarized beam splitter receives the reflected light of the split light to make two paths Positive and negative first-order reflected light stack Forming an interference light; a plurality of wave plates including first and second wave plates; wherein the first slide corresponds to a second polarized beam splitter; the second slide and the third polarized light split The mirrors are corresponding to the other groups, and the two components are 90 degrees distributed; the plurality of light sensors include the first, second, third and fourth light sensors; wherein the first and second light sensors and the second pole The splitting mirrors are grouped and distributed at 90 degrees; the third, fourth, and third polarizing beamsplitters are also distributed at 90 degrees. According to the above object of the present invention, a method and a device for measuring the error of a rotating shaft are provided. The implementation steps include: fixing a standard rod containing a cat's eye reflector on a rotating shaft of a micro-machine base; placing the laser light source in positioning, so that The laser source emits a laser beam to the first beam splitter, and the laser beam is reflected to the cat's eye reflector to measure the error of the rotating shaft; the cat's eye reflector then reflects the laser beam to generate a reflected light and reverses 8 1287616 /泮, Μ日修 (more) is replacing the page shot, the reflected light will pass through the first beam splitter; the reflected light passing through the first beam splitter will illuminate the reflective grating, and the reflected light passing through the reflective grating will Producing three diffracted lights; wherein the first-order diffracted light and the negative first-order diffracted light are respectively incident on the two second splitter mirrors and the third splitter mirror; the incident diffracted light will generate two lights, one penetrates a reflection; the reflected light path will coincide in the first polarization beam splitter, in which the first polarization beam splitter will produce interference phenomenon to generate another reflected light and a penetrating light, each passing through the first, After the two slides, the second and third polarizing beamsplitters are respectively injected; and the first, second, third and fourth light sensors are placed behind the second and third polarizing beamsplitters. Sensors; these four photo sensors are used to receive changes in the processing interference fringes. [Embodiment] Please refer to FIG. 4 and FIG. 5, which are schematic diagrams showing the plane and three-dimensional composition of the rotating shaft error measuring device of the present invention. The rotating shaft error measuring device of the present invention comprises a laser light source (1), a cat's eye reflector (2), a beam splitter, a reflective grating (4), a polarized reflection lens (5), a wave plate (6) And a photo sensor (7), wherein: the laser source (1) is a general He-Ne laser, and a semiconductor laser or a linearly polarized laser source can also be used. The cat's eye reflector (2) is implanted at one end of a standard rod; the standard rod is fixed to the rotating shaft (21) of the micro machine. The cat's eye reflector (2) makes the incident light and the outgoing light parallel to each other (refer to Fig. 7), and the structure thereof can overcome the discontinuity problem in which the horned mirror has a junction surface to form light. In addition, the diameter of the standard rod is about the size of the tool for the machining machine, such as the micro-milling machine, the drilling machine, the engraving machine, the 9 1287616, the factory year " the monthly repair (more) replacement page ^. a plurality of beamsplitters (BS) including a first beam splitter (31), a second beam splitter (32), and a third beam splitter (33), which may be circular, square or rectangular; The mirror will reflect light with a vibration angle of 90 degrees, and the light with a vibration direction of 0 degrees can penetrate directly. When the light source passes through the beam splitter, it will generate splitting, and it is a splitting effect in the vertical and horizontal directions; the beam splitter has a larger penetration and reflection contact area than the circular plate beam splitter. The beam splitter is used to split the laser light, where it is used to split the reflected light into two lights, and a light (parallel to the reflected light) passes through the lens and enters the displacement sensor to measure the pitch, roll, and shake. The skewness, the required value, and the other light directly enter the polarizing beam splitter (5), causing interference and measuring the value error. The first beam splitter (31) is disposed at an angle of 90 degrees to the laser source (1) and the cat's eye reflector (2). The laser beam generated by the laser source (1) is directed toward the first beam splitter (31) to reflect the light to the cat's eye reflector (2) of the rotating shaft (21), and the cat's eye reflector (2) reflects and passes the light. The first beam splitter (31) is irradiated to the reflective grating (4). Β-reflective grating (4) (Diffraction Grating), the reflective grating (4) and the cat's eye reflector (2), the first beam splitter (31) are in line, and can be shown in Figure 5, in the reflective grating Under (4), a mirror (41) is provided to pass the laser beam passing through the first beam splitter (31) to a 90 degree turn to directly reflect the reflection grating (4), so that the light smoothly enters the system. At the same time, the composition volume of the whole device can be effectively reduced; after being incident by the laser beam, the reflective grating (4) can generate three rays of positive and negative first-order diffracted light and zero-order diffracted light by using a diffraction phenomenon of light. And the 1287616 ί / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / . The first-order diffracted light and the negative first-order diffracted light incident on the second dichroic mirror (32) and the third dichroic mirror (33) will produce two rays 'one penetration' and one reflection. The reflected light path coincides with the first polarization beam splitter (51) of the polarization beam splitter (5). a plurality of polarization spectroscopy (5) (Polyizing Beam Splitter (PBS), comprising a first polarization beam splitter (51), a second polarization beam splitter (52) and a third polarization beam splitter (53); After the first polarizing beam splitter (51) is superposed, the reflected light path is received by the first polarizing beam splitter (51) to receive the reflected light, so that the two positive and negative first-order reflected lights are superimposed to form an interference light. The first polarization beam splitter (51) produces an interference phenomenon that will produce another reflected light and a transmitted light. A polarizing beam splitter (5) is used to split the laser light, which is used to separate the incident light and the reflected light into two light beams, one horizontally polarized and one vertically polarized, which pass through the 1/4 λ slide (6). Enter the light intensity detector (7) separately. a plurality of wave plates (6) including a first wave plate (61) and a second wave plate (62); the wave plate (6) is a 1/4 λ slide plate for adjusting the phase of the light and changing the Ray The direction of the incident light vibration 'Turns the direction of the laser light by 90 degrees twice, that is, the two sets of signals have a phase difference of 90 degrees to achieve the interference signal requirement. The first slide (61) corresponds to the second polarized beam splitter (52); the second slide (62) and the third polarized beam splitter (53) correspond to another group, and the two components are 9〇. Degree distribution. a plurality of photo sensors (7) including a first photo sensor (71), a second light sensor/th tm (72) diphoto sensor (Μ), and a fourth photo sensor (Μ) ). Light sensor (7) Spleen, 8th day fine replacement page 1287616 can be a light detector or displacement sensor, can sense the change of light intensity, use the change of light intensity for the subsequent signal processing. The first photo sensor (71), the second photo sensor (72) and the second polarizing beam splitter (52) are grouped and distributed at 90 degrees; the third photo sensor (73), the fourth The photo sensor (74) and the third polarizing beam splitter (53) are also distributed at a 90 degree angle. The light sensor (7) receives the change in the light intensity signal and processes the interference pattern. The four-quadrant sensor formed by the first photo sensor (71), the second photo sensor (72), the third photo sensor (73), and the fourth photo sensor (74) is The change in the spot is measured, and the other degrees of freedom error is converted by the analog/digital conversion card (A/D card). In the measuring system of the present invention, the optical path of the entire laser light is sequentially directed to FIG. 8(7J). According to the optical theory, the light intensity is proportional to the square of the amplitude of the electric field vector, and when discussing the light intensity distribution, the relative light intensity is always discussed. Therefore, if the constant 疋 in the above equation is not important, the light intensity can be directly considered to be equal to the square of the amplitude of the electric field phasor. Therefore, the interference light intensity signal received by the photo sensor is a voltage signal, which can represent four sets of signals of the following formula. The first 4 is a constant term denoted by τ, and the signal is represented as shown in FIG. 9, which is a schematic diagram corresponding to the grating axis movement of the preferred embodiment of the present invention and the four photosensor signals. ^pdi = 4 + 4sin(2A^7) vpm =4-4sin^A^) =4+4cos^A^t) 12 1287616 r----- , detailed, month >;) 日修(£) Positive replacement page ^ 4 — 4cos(2A^?) If the above signals are properly subtracted, two sets of chord signals with phase angle differences can be obtained, which can represent the following two sets of formulas: - VPDl - VPD2 = 8sin( 2A^)) ~ ^PD3 ~~ ^PD4 ~ 8cos(2A^) and the part of the original DC voltage signal is also eliminated by this kind of processing, leaving only the part of the AC voltage signal to reduce the drift of the DC voltage signal. I. Simplify the two sets of equations above to get a circular equation:

其中當光束對準不良時,圓的直徑會變小,可以用此做為調 整鏡組及校準光束的參考,若直流訊號未去除乾淨,圓心將會偏 離原點,可以接示波器利用X軸和γ轴關係組成為Ussa j〇us 圖來檢測,圖十為Lissa j0US圖。另外若是與兩訊號的相位差 並非剛好,也會使圖形成為橢圓狀,不過這些差異都很小,也能 夠藉由光路與電路的調整來修正。 請參照圖四與圖八,其繪示依照本發明一較佳實施例的一種 旋轉軸誤差量測方法的實施系統及量測說明示意圖。本發明之旋 轉軸誤差量測方法的實施步驟如下: 步驟一 ·將含有貓眼反射器(2)的標準棒固定於微型機台之 13 1287616 0年修ί更)正替#頁 旋轉軸(21)上。When the beam is poorly aligned, the diameter of the circle will become smaller. This can be used as a reference for adjusting the lens group and the calibration beam. If the DC signal is not removed, the center of the circle will deviate from the origin, and the X-axis can be connected to the oscilloscope. The γ-axis relationship is composed by the Ussa j〇us diagram, and the figure 10 is the Lissa j0US diagram. In addition, if the phase difference with the two signals is not exactly, the pattern will be elliptical, but these differences are small, and can be corrected by the adjustment of the optical path and the circuit. Please refer to FIG. 4 and FIG. 8 , which are schematic diagrams showing an implementation system and a measurement description of a method for measuring the error of a rotating shaft according to a preferred embodiment of the present invention. The implementation steps of the method for measuring the error of the rotating shaft of the present invention are as follows: Step 1. Fixing the standard rod containing the cat's eye reflector (2) to the micro-machine stage 13 1287616 0 years repairing the yaw) )on.

步驟二:將雷射光源(1)置於定位且與第一分光鏡(31)成垂 直的交角(如Χ-Υ軸)相對應處。該第一分光鏡(31)與貓眼反射 器(2)亦成垂直的交角(如Υ-Χ軸)相對應。使雷射光源(1)從X 方向射出一雷射光束至第一分光鏡(31),該第一分光鏡(31)將雷 射光束反射至貓眼反射器(2)來測量旋轉軸(21)之誤差;貓眼反 射器(2)再將該雷射光束予以反射產生一反射光並反射,該反射 光將穿過上述之第一分光鏡(31)。 步驟三:穿過第一分光鏡(31)之反射光照射到反射式光栅 (4),此時通過反射式光柵(4)的反射光將會產生產生三道繞射 光,即:正一階繞射光、負一階繞射光及零階繞射光。Step 2: Place the laser light source (1) in a position corresponding to the vertical angle (such as the Χ-Υ axis) perpendicular to the first beam splitter (31). The first beam splitter (31) and the cat's eye reflector (2) also correspond to a perpendicular intersection angle (e.g., a Υ-Χ axis). The laser source (1) emits a laser beam from the X direction to the first beam splitter (31), and the first beam splitter (31) reflects the laser beam to the cat's eye reflector (2) to measure the axis of rotation (21) The error of the cat's eye reflector (2) is then reflected by the laser beam to produce a reflected light that is reflected and passed through the first beam splitter (31). Step 3: The reflected light passing through the first beam splitter (31) is irradiated to the reflective grating (4), and the reflected light passing through the reflective grating (4) will generate three diffracted lights, namely: positive first order Diffracted light, negative first-order diffracted light, and zero-order diffracted light.

步驟四:上述之正一階繞射光、負一階繞射光則分別射入兩 邊之另兩組分光鏡,即:第二分光鏡(32)與第三分光鏡(33)。射 入第二分光鏡(32)與第三分光鏡(33)之正一階繞射光、負一階繞 射光,將產生兩道光,一道穿透,一道反射。反射之光路會在第 一極化分光鏡(51)重合,在這第一極化分光鏡(51)會產生干涉現 象,然而也是產生另一道反射光及一道穿透光,各自分別穿過第 一玻片(61)、第二玻片(62)。該第一玻片(61)、第二玻片(62)為 1/4λ玻片。 步驟五:上述之穿透光分別穿過第一玻片(61)、第二玻片(62) 後,再分別射入第二極化分光鏡(52)及第三極化分光鏡(53)。 1287616 Γ-η ir%月8日修(更)正替換頁 步驟六:第二極化分光鏡(52)及第三極化分光鏡(53)後方各 放置四個光感測器,即··第一光感測器(71)、第二光感測器(72)、 第三光感測器(73)及第四光感測器(74);利用這四個光感測器負 責接收處理干涉條紋的變化。 其中··第一光感測器(71)、第二光感測器(72)為一組,第三 光感測器(73)及第四光感測器(74)為一組,2組相位差卯度。在 這之前旋轉前面的1/4 A之第一玻片⑽、第二玻片(62)即利用 1 2組光感測器相位差9G度’使系統中的直度誤差就利用這光拇移 動所產生的都卜勒效應及偏振的現象,再加上電子訊號處理四組 光感測器的光路組合,將干涉所產生的直流飄移問題降到最低, 以達到最佳的量測效果。另外,本發明同時利用1〇咖矩陣、】咖s 相量與複數形式來分析與說明偏振光的干涉疊加問題。 …上列詳細說明係針對本發明之—可行實施例之具體說明,惟 該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝 精神所為之等效實施或變更’均應包含於本案之專利範圍中】 、、綜上所述,本案不但在方法上確屬創新,並能較習用處理方 法心進上述多項功效,應已充分符合新穎性及進步性之法定發明 專和要件歧法提出巾請,懇請貴局核准本件發日月專利申於 案,以勵發明,至感德便。 。月 【圖式簡單說明】 圖一係旋轉平台的六個自由度誤差之立體示意圖; 15 1287616 --- 斤泮MG日修(更)正替換頁 1 ' — - - . _ 圖二係傳統的旋轉軸量測系統示意圖; 圖三係傳統的單探頭多次設定旋轉軸量測系統第一示意圖; 圖三A係傳統的單探頭多次設定旋轉軸量測系統第二示意 圖; 圖三B係傳統的單探頭多次設定旋轉軸量測系統第三示意 圖, 圖四係本發明之一較佳實施例的一種實施量測原理平面示 | 意圖, 圖五係本發明之一較佳實施例的一種實施量測立體組成示 意圖, 圖六係本發明之一較佳實施例的一種貓眼反射器實施立體 示意圖; \ 圖七係本發明之一較佳實施例的一種實施光路射向示意圖; 圖八係本發明之一較佳實施例的一種實施方法之流程示意 ▲ 圖;Step 4: The first-order diffracted light and the negative first-order diffracted light are respectively incident on the other two components of the two mirrors, namely, the second dichroic mirror (32) and the third dichroic mirror (33). The first-order diffracted light and the negative first-order diffracted light incident on the second dichroic mirror (32) and the third dichroic mirror (33) will generate two lights, one through and one reflection. The reflected light path will coincide with the first polarizing beam splitter (51), and the first polarizing beam splitter (51) will generate interference, but also generate another reflected light and a penetrating light, each passing through the first A slide (61) and a second slide (62). The first slide (61) and the second slide (62) are 1/4 λ slides. Step 5: The penetrating light passes through the first slide (61) and the second slide (62), respectively, and then enters the second polarized beam splitter (52) and the third polarized beam splitter (53). ). 1287616 Γ-η ir% 8th repair (more) replacement page Step 6: Place two light sensors behind the second polarized beam splitter (52) and the third polarized beam splitter (53), ie a first photo sensor (71), a second photo sensor (72), a third photo sensor (73), and a fourth photo sensor (74); responsible for using the four photo sensors Receives processing changes in interference fringes. The first photo sensor (71) and the second photo sensor (72) are a group, and the third photo sensor (73) and the fourth photo sensor (74) are a group, 2 Group phase difference 卯. Before this, the first 1/4 A of the first slide (10) and the second slide (62) are rotated by using 12 pairs of photosensors with a phase difference of 9 G degrees to make the straightness error in the system use the light thumb. The Doppler effect and polarization caused by the movement, together with the optical signal processing of the four sets of photosensors, minimizes the DC drift caused by the interference to achieve the best measurement results. In addition, the present invention simultaneously analyzes and explains the interference superposition problem of polarized light by using a 〇 矩阵 matrix, a coffee s phasor and a complex form. The detailed description of the above is a detailed description of the possible embodiments of the present invention, and the present invention is not intended to limit the scope of the invention, and equivalents or modifications may be included without departing from the spirit of the invention. In the scope of patents in this case], in summary, the case is not only innovative in terms of methods, but also able to incorporate the above-mentioned functions in comparison with the conventional processing methods, and should fully comply with the statutory inventions and requirements for novelty and progressiveness. If you ask for a lawsuit, please ask your office to approve the patent application for the date of the issue. . Month [Simple diagram of the diagram] Figure 1 is a three-dimensional diagram of the six degrees of freedom error of the rotating platform; 15 1287616 --- 泮 泮 MG daily repair (more) is replacing page 1 ' — - - . _ Figure 2 is traditional Schematic diagram of the rotating shaft measuring system; Figure 3 is the first schematic diagram of the conventional single-probe multiple setting rotating shaft measuring system; Figure 3A is the second schematic diagram of the conventional single-probe multiple setting rotating shaft measuring system; Figure 3B The third schematic diagram of a conventional single probe multiple setting rotary axis measuring system, FIG. 4 is a schematic diagram showing the implementation of a preferred embodiment of the present invention. FIG. 5 is a preferred embodiment of the present invention. FIG. 6 is a perspective view showing a configuration of a cat's eye reflector according to a preferred embodiment of the present invention; FIG. 7 is a schematic view showing a light path of a preferred embodiment of the present invention; A flow chart of an implementation method of a preferred embodiment of the present invention is shown in FIG.

I 圖九係本發明之一較佳實施例的一種實施方法之光柵X轴移 動與四個光感測器訊號對應示意圖; 圖十係本發明之一較佳實施例的一種實施方法之Li ssa jous 示意圖。 · 【主要元件符號說明】 1雷射光源 2貓眼反射器 16 1287616 月ο曰修(更)正聲壤頁 21旋轉軸 31第一分光鏡 32第二分光鏡 33第三分光鏡 4反射式光柵 41反射鏡 5極化分光鏡 • 51第一極化分光鏡 52第二極化分光鏡 53第三極化分光鏡 6玻片 61第一玻片 62第二玻片 7光感測器 • 71第一光感測器 72第二光感測器 73第三光感測器 74第四光感測器 P探頭 P”固定探頭 A旋轉軸 17 1287616 月/J曰修(更)正替換頁; τ待測旋轉軸 Μ主軸FIG. 9 is a schematic diagram of a grating X-axis movement and four photosensor signals corresponding to an implementation method according to a preferred embodiment of the present invention; FIG. 10 is a Li ssa embodiment of a preferred embodiment of the present invention. Jous schematic. · [Main component symbol description] 1 laser light source 2 cat's eye reflector 16 1287616 month ο曰 repair (more) positive sound page 21 rotation axis 31 first beam splitter 32 second beam splitter 33 third beam splitter 4 reflection grating 41 mirror 5 polarization beam splitter • 51 first polarization beam splitter 52 second polarization beam splitter 53 third polarization beam splitter 6 slide 61 first slide 62 second slide 7 light sensor • 71 First light sensor 72 second light sensor 73 third light sensor 74 fourth light sensor P probe P" fixed probe A rotating shaft 17 1287616 month / J 曰 repair (more) is replacing page; τ to be measured rotary axis Μ spindle

Point S 參考點 Reference XI、X2探頭 Y1、Y2探頭 PI、Ρ2探頭 Ζ1探頭Point S Reference Point Reference XI, X2 Probe Y1, Y2 Probe PI, Ρ2 Probe Ζ1 Probe

εχ X軸線誤差 F Υ軸線誤差 Z軸線誤差 δχ俯仰度誤差 s搖擺度誤差 °y §z滾動度誤差 18χ χ X-axis error F Υ Axis error Z-axis error δχ Pitch error s Swing error °y §z Rolling error 18

Claims (1)

1287616 h年"月β曰修(更)正替換頁 十、申請專利範圍: ' 1. 一種高精度奈米級旋轉軸誤差量測裝置,包括: 雷射光源; 貓眼反射器,植入於標準棒一端; 複數個分光鏡,包含有第一分光鏡、第二分光鏡及第三分光 鏡,雷射光源產生之雷射光束射向第一分光鏡將光反射至貓 眼反射器,貓眼反射器再將光反射且穿過第一分光鏡; • 反射式光柵,該反射式光柵及貓眼反射器、第一分光鏡成一 直線,穿過第一分光鏡的雷射光束射入該反射式光栅; 複數個極化分光鏡,包含有第一極化分光鏡、第二極化分光 鏡及第三極化分光鏡;上述反射之光路在第一極化分光鏡重 合後,在這第一極化分光鏡接收分光射出之反射光,使兩道 正負一階反射光疊加形成一干涉光; 複數個波片’包含有苐一波片、第二波片;該波片其中第一 ® 玻片與第二極化分光鏡為一組相對應;第二玻片與第三極化 分光鏡為另組對應; 複數個光感測器,包含有第一光感測器、第二光感測器、第 二光感測器及第四光感測器。 2 如申請專利範圍第1項所述之一種高精度奈米級旋轉軸誤 差量測裝置,其中該雷射光源為氦氖雷射光源,半導體雷射 光源或線偏振雷射光源其中之一種。 3 如申請專利範圍第1項所述之一種高精度奈米級旋轉軸誤 19 1287616 %年9月” 8修(更)正替換買 差量測裝置,其中該分光鏡為圓形,方型或矩形其中之一種。 4 如申請專利範圍第1項所述之一種高精度奈米級旋轉軸誤 差量測裝置,其中該波片為1/4人玻片。 5 如申請專利範圍第1項所述之一種高精度奈米級旋轉軸誤 差量測裝置,其中該反射式光柵與第一分光鏡設有反光鏡。 6 如申請專利範圍第1項所述之一種高精度奈米級旋轉軸誤 差量測裝置,其中該標準棒固定於微型機台之旋轉軸。 7 如申請專利範圍第1項所述之一種高精度奈米級旋轉軸誤 | 差量測裝置,其中該波片其中第一玻片與第二極化分光鏡為 一組相對應,第二玻片與第三極化分光鏡為另組對應,兩組 成90度分佈。 8 如申請專利範圍第1項所述之一種高精度奈米級旋轉軸誤 差量測裝置,其中該第一光感測器、第二光感測器與第二極 化分光鏡一組且成90度分佈。 9 如申請專利範圍第1項所述之一種高精度奈米級旋轉軸誤 差量測裝置,其中該第三光感測器、第四光感測器與第三極 化分光鏡一組亦成90度分佈。 • 10 一種高精度奈米級旋轉軸誤差量測方法,實施步驟為: 步驟一:將含有貓眼反射器的標準棒固定於微型機台之旋轉 軸上; 步驟二:將雷射光源置於定位且與第一分光鏡成垂直的交角 相對應處,該第一分光鏡與貓眼反射器亦成垂直的交角相對 應;使雷射光源射出一雷射光束至第一分光鏡,該第一分光 鏡將雷射光束反射至貓眼反射器來測量旋轉軸之誤差;貓眼 反射器再將該雷射光束予以反射產生一反射光並反射,該反 射光將穿過上述之第一分光鏡; 20 1287616 %年9阶修禮)正替換頁 步驟三:穿過第一分光鏡之反射光照射到反射式光柵,此時 通過反射式光柵的反射光將會產生產生正一階繞射光、負一 階繞射光及零階繞射光的三道繞射光; 步驟四:上述之正一階繞射光、負一階繞射光則分別射入兩 邊之第二分光鏡與第三分光鏡;射入第二分光鏡與第三分光 鏡之正一階繞射光、負一階繞射光,將產生兩道光,一道穿 透,一道反射;反射之光路會在第一極化分光鏡重合,在這 第一極化分光鏡會產生干涉現象以產生另一道反射光及一 道穿透光,各自分別穿過第一玻片、第二玻片; 步驟五:上述之穿透光分別穿過第一玻片、第二玻片後,再 分別射入第二極化分光鏡及第三極化分光鏡; 步驟六:第二極化分光鏡及第三極化分光鏡後方各放置第一 光感測器、第二光感測器、第三光感測器及第四光感測器等 四個光感測器;利用這四個光感測器負責接收處理干涉條紋 的變化。 11. 如申請專利範圍第10所述之一種高精度奈米級旋轉軸誤差 量測分法,其中該雷射光源為氦氖雷射光源,半導體雷射光 源或線偏振雷射光源其中之一種。 12. 如申請專利範圍第10所述之一種高精度奈米級旋轉軸誤差 量測分法,其中該分光鏡為圓形,方型或矩形其中之一種。 13·如申請專利範圍第10所述之一種高精度奈米級旋轉軸誤差 量測分法,其中該波片為1/4又玻片。 14.如申請專利範圍第10所述之一種高精度奈米級旋轉軸誤差 量測分法,其中該反射式光柵與第一分光鏡設有反光鏡。 21 12876161287616 h year " month beta repair (more) is replacing page ten, patent application scope: ' 1. A high-precision nano-level rotary axis error measurement device, including: laser light source; cat eye reflector, implanted in One end of the standard rod; a plurality of beamsplitters including a first beam splitter, a second beam splitter and a third beam splitter; the laser beam generated by the laser source is directed toward the first beam splitter to reflect light to the cat's eye reflector, cat's eye reflection The light is then reflected and passed through the first beam splitter; • a reflective grating that is in line with the cat's eye reflector and the first beam splitter, and the laser beam passing through the first beam splitter is incident on the reflective grating a plurality of polarization beam splitters comprising a first polarization beam splitter, a second polarization beam splitter and a third polarization beam splitter; the reflected light path after the first polarization beam splitter coincides, at the first pole The splitting mirror receives the reflected light of the splitting light, and superimposes the two positive and negative first-order reflected lights to form an interference light; the plurality of wave plates 'including the first wave plate and the second wave plate; the first plate of the wave plate And second polarization beam splitter Corresponding to a group; the second slide and the third polarized beam splitter are in another group; the plurality of light sensors comprise a first light sensor, a second light sensor, and a second light sensor And fourth light sensor. 2 A high-precision nano-scale rotary axis error measuring device according to claim 1, wherein the laser light source is one of a neon laser source, a semiconductor laser source or a linearly polarized laser source. 3 As described in the scope of patent application, a high-precision nano-scale rotary axis error 19 1287616% September September 8 repair (more) is replacing the differential measurement device, wherein the beam splitter is circular, square Or one of the rectangular shapes. 4 A high-precision nano-rotational axis error measuring device according to claim 1, wherein the wave plate is a quarter-slide. 5 The high-precision nano-level rotating shaft error measuring device, wherein the reflective grating and the first beam splitter are provided with a mirror. 6 A high-precision nano-level rotating shaft according to claim 1 The error measuring device, wherein the standard rod is fixed to the rotating shaft of the micro-machine base. 7 A high-precision nano-level rotating shaft error detecting device according to the first aspect of the patent application, wherein the wave plate is the first One slide corresponds to a second polarized beam splitter, and the second slide and the third polarized beam splitter are in another group, and the two are composed of a 90 degree distribution. 8 A type according to claim 1 High-precision nano-level rotary axis error measuring device, in which The first photo sensor, the second photo sensor and the second polarizing beam splitter are arranged in a group and distributed at 90 degrees. 9 A high-precision nano-level rotating shaft error amount as described in claim 1 The measuring device, wherein the third photo sensor, the fourth photo sensor and the third polarizing beam splitter are also distributed at 90 degrees. • 10 A high-precision nano-level rotating shaft error measuring method, implementation steps For: Step 1: Fix the standard rod containing the cat's eye reflector on the rotating shaft of the micro-machine base; Step 2: Place the laser light source in the position corresponding to the intersection angle of the first beam splitter, the first The beam splitter and the cat's eye reflector also correspond to a vertical intersection angle; the laser light source emits a laser beam to the first beam splitter, and the first beam splitter reflects the laser beam to the cat's eye reflector to measure the error of the rotating shaft; The cat's eye reflector then reflects the laser beam to generate a reflected light and reflects it, and the reflected light will pass through the first beam splitter; 20 1287616% 9th grade ceremony) is replacing the page Step 3: Pass through the first The reflected light of the beam splitter illuminates the reflection Grating, at this time, the reflected light passing through the reflective grating will generate three diffracted lights that generate positive first-order diffracted light, negative first-order diffracted light, and zero-order diffracted light; Step 4: The above-mentioned positive first-order diffracted light, negative The first-order diffracted light is respectively injected into the second beam splitter and the third beam splitter on both sides; the first-order diffracted light and the negative first-order diffracted light incident on the second beam splitter and the third beam splitter will generate two lights, one Penetration, a reflection; the reflected light path will coincide in the first polarization beam splitter, in which the first polarization beam splitter will produce interference phenomenon to generate another reflected light and a penetrating light, each passing through the first glass a second slide; step 5: the above-mentioned penetrating light passes through the first slide and the second slide, respectively, and then enters the second polarized beam splitter and the third polarized beam splitter respectively; Step 6: Four photo sensors, such as a first photo sensor, a second photo sensor, a third photo sensor, and a fourth photo sensor, are disposed behind the second polarizing beam splitter and the third polarizing beam splitter The four light sensors are used to receive changes in the processing interference fringes. 11. The high-precision nano-scale rotary axis error measurement method according to claim 10, wherein the laser light source is one of a neon laser source, a semiconductor laser source or a linearly polarized laser source. . 12. A high-precision nano-scale rotary axis error measurement method according to claim 10, wherein the beam splitter is one of a circular shape, a square shape or a rectangular shape. 13. A high-precision nano-scale rotary axis error measurement method according to claim 10, wherein the wave plate is 1/4 and a slide. 14. A high-precision nano-scale rotary axis error measurement method according to claim 10, wherein the reflective grating and the first beam splitter are provided with a mirror. 21 1287616 1厂年丨〖月6日修(t)正替換頁1 factory year 丨 〖月6日修(t) replacement page 圖一 1287616 ______ ίτ年丨I月6日修(更)正替換頁Figure 1 1287616 ______ ίτ年丨I month 6th repair (more) replacement page 1287616 『年(丨月〇日修(更)正替換頁I —-———-----------------1 I1287616 『Year (丨月〇修 (more) is replacing page I —-————-----------------1 I 12876161287616 1287616 丫得/ί月G日修(更)正替換頁1287616 Chad / ί月 G 日修 (more) is replacing page 1287616 · --- ]1啐~月以曰修(更)正替換頁 七、指定代表圖: (一) 本案指定代表圖為:第(四)圖。 (二) 本代表圖之元件符號簡單說明: 1雷射光源 2貓眼反射器 21旋轉軸 3分光鏡 31第一分光鏡 32第二分光鏡 | 33第三分光鏡 4反射式光柵 5極化分光鏡 51第一極化分光鏡 52第二極化分光鏡 53第三極化分光鏡 6玻片 61第一玻片 62第二玻片 | 7光感測器 71第一光感測器 72第二光感測器 73第三光感測器 74第四光感測器 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:1287616 · --- ]1啐~月曰修(more) replacement page VII. Designated representative map: (1) The representative representative of the case is: (4). (2) The symbol of the representative figure is briefly described as follows: 1 laser light source 2 cat's eye reflector 21 rotating shaft 3 beam splitter 31 first beam splitter 32 second beam splitter | 33 third beam splitter 4 reflective grating 5 polarization splitting Mirror 51 first polarization beam splitter 52 second polarization beam splitter 53 third polarization beam splitter 6 slide 61 first slide 62 second slide | 7 light sensor 71 first light sensor 72 Second light sensor 73 third light sensor 74 fourth light sensor 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention:
TW95125741A 2006-07-14 2006-07-14 Measuring error method for high precision and nano-scale rotation axis and the apparatus thereof TWI287616B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95125741A TWI287616B (en) 2006-07-14 2006-07-14 Measuring error method for high precision and nano-scale rotation axis and the apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95125741A TWI287616B (en) 2006-07-14 2006-07-14 Measuring error method for high precision and nano-scale rotation axis and the apparatus thereof

Publications (2)

Publication Number Publication Date
TWI287616B true TWI287616B (en) 2007-10-01
TW200804757A TW200804757A (en) 2008-01-16

Family

ID=39201716

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95125741A TWI287616B (en) 2006-07-14 2006-07-14 Measuring error method for high precision and nano-scale rotation axis and the apparatus thereof

Country Status (1)

Country Link
TW (1) TWI287616B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384196B (en) * 2008-08-11 2013-02-01 Univ Nat Formosa An apparatus for detecting the X-axis positioning error and the Y-axis positioning error by applying a single light source in the pick-and-place mechanism
TWI632344B (en) * 2017-04-17 2018-08-11 國立虎尾科技大學 An optical detecting apparatus for detecting a degree of freedom error of a shaft and a method thereof (2)
TWI633274B (en) * 2017-04-17 2018-08-21 國立虎尾科技大學 An optical detecting apparatus for detecting a degree of freedom error of a shaft and a method thereof (1)
CN111366107A (en) * 2020-03-16 2020-07-03 上海机电工程研究所 Five revolving stage axis measuring subassembly
CN114871848A (en) * 2022-06-17 2022-08-09 中国铁建重工集团股份有限公司 Closed type main shaft eccentric movement monitoring device and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI577963B (en) * 2015-12-02 2017-04-11 財團法人金屬工業研究發展中心 Optical measurement system, measurement method for errors of rotating platform, and two dimensional sine wave annulus grating
US9891428B2 (en) 2015-12-07 2018-02-13 Metal Industries Research & Development Centre Optical measurement system, measurement method for errors of rotating platform, and two dimensional sine wave annulus grating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384196B (en) * 2008-08-11 2013-02-01 Univ Nat Formosa An apparatus for detecting the X-axis positioning error and the Y-axis positioning error by applying a single light source in the pick-and-place mechanism
TWI632344B (en) * 2017-04-17 2018-08-11 國立虎尾科技大學 An optical detecting apparatus for detecting a degree of freedom error of a shaft and a method thereof (2)
TWI633274B (en) * 2017-04-17 2018-08-21 國立虎尾科技大學 An optical detecting apparatus for detecting a degree of freedom error of a shaft and a method thereof (1)
CN111366107A (en) * 2020-03-16 2020-07-03 上海机电工程研究所 Five revolving stage axis measuring subassembly
CN114871848A (en) * 2022-06-17 2022-08-09 中国铁建重工集团股份有限公司 Closed type main shaft eccentric movement monitoring device and method

Also Published As

Publication number Publication date
TW200804757A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
TWI287616B (en) Measuring error method for high precision and nano-scale rotation axis and the apparatus thereof
CN2884141Y (en) Laser, six freedom simultaneous measuring apparatus
Gao et al. A three-axis displacement sensor with nanometric resolution
TW380202B (en) Interferometer system for measuring the position and displacements of an object, and projection apparatus for repetitively projecting a mask pattern on a substrate
TWI345047B (en) Three dimensional shape measuring apparatus
TWI573174B (en) Lithography system and method for processing a target, such as a wafer
CN105758343B (en) The device and method of C axis centre of gyration calibration based on double standard balls
CN102017072A (en) Stage apparatus, patterning apparatus, exposure apparatus, stage drive apparatus, exposure method, and device fabrication method
Fan et al. Development of a roundness measuring system for microspheres
Yu et al. Two-channel six degrees of freedom grating-encoder for precision-positioning of sub-components in synthetic-aperture optics
CN107091608B (en) A kind of five degree of freedom measurement method of parameters based on primary standard of curved surface part
TWI405057B (en) Dynamic path detection method and device for five - axis machine
TWI285254B (en) High precision rotation revolving thermal deformation measurement system
TW201137306A (en) Optical calibrating and testing device for machine table
JP2007078594A (en) Angle measuring device for minute plane
Park et al. A new optical measurement system for determining the geometrical errors of rotary axis of a 5-axis miniaturized machine tool
TWI260394B (en) Error-measuring apparatus for nano-scale rotary axle
JP4198338B2 (en) Stage equipment
Quan et al. Design and Testing of a Compact Optical Angle Sensor for Pitch Deviation Measurement of a Scale Grating with a Small Angle of Diffraction
TWI247095B (en) Optical revolving spindle error measurement device
JP2018059733A (en) Three-dimentional shape measurement system
TWI262291B (en) Method and equipment for detecting inclination angle and setting original by means of astigmatism
JP4922905B2 (en) Method and apparatus for measuring position variation of rotation center line
CN110057288A (en) The scaling method of optics paraboloid of revolution standard array center distance
TW201025489A (en) Measurement system for alignment and level adjustment of embossing platform

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees