JP2007078594A - Angle measuring device for minute plane - Google Patents

Angle measuring device for minute plane Download PDF

Info

Publication number
JP2007078594A
JP2007078594A JP2005269229A JP2005269229A JP2007078594A JP 2007078594 A JP2007078594 A JP 2007078594A JP 2005269229 A JP2005269229 A JP 2005269229A JP 2005269229 A JP2005269229 A JP 2005269229A JP 2007078594 A JP2007078594 A JP 2007078594A
Authority
JP
Japan
Prior art keywords
angle
sample
measurement
light
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005269229A
Other languages
Japanese (ja)
Inventor
Tomohito Takagi
智史 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005269229A priority Critical patent/JP2007078594A/en
Publication of JP2007078594A publication Critical patent/JP2007078594A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high precision angle measuring device for planes of several tens of micrometer (corresponding to a domain of micro Vickers test) by measuring angles of minute plane of samples using optical system installing two beam splitters in the middle of an ocular lens and an objective lens of an optical microscope. <P>SOLUTION: The angle measuring device for minute plane is characterized making incidence of reference light passing through the optical axis of optical systems and the measuring light reflected at minute planes of samples to an imaging element to measure the angle of minute plane of samples from difference between the positions of reference light and measuring light in the imaging element, in a measuring device for measuring the angle of minute planes of samples placed on a sample table. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、数十μm程度の微小平面の角度を精密に測定する角度測定装置に関し、特にビッカース硬さ試験機、マイクロビッカース硬さ試験機、ナノインデンテーション装置など、四角または三角錐型ダイヤモンド圧子を用いる硬さ試験機用圧子の検証のために利用される微小平面の角度測定装置に関するものである。   The present invention relates to an angle measuring apparatus for precisely measuring the angle of a microplane of about several tens of μm, and in particular, a square or triangular pyramid diamond indenter such as a Vickers hardness tester, a micro Vickers hardness tester, a nanoindentation device, etc. The present invention relates to a microplanar angle measuring apparatus used for verification of an indenter for a hardness tester using a slab.

従来、ビッカース硬さ圧子の角度を光学顕微鏡と回転テーブルを用いて測定する方法が発表されており(例えば、非特許文献1参照。)、この原理に基づいた測定機が企業から製品化されている。しかし、測定には数百μm程度の平面が必要であり、マイクロビッカースなどの押し込み深さの小さい硬さ試験には対応できない。なお、マイクロビッカースは硬さ試験の中では最も産業界でのニーズが高い。
また、ビッカース硬さ圧子の角度を顕微干渉計を用いて測定する製品について紹介されている(例えば、非特許文献2参照。)。しかしながら、干渉縞を用いて面の法線方向を検出するので、対象となる平面が小さくなるほど測定精度が低下する。
樋田並照、ビッカース硬さ標準の精度向上に関する研究、計量研究所報告、26,4 (1977) A. Liguori, et al., Galindent: The Reference Metrological System for the Verification of the Geometrical Characteristics of Rockwell and Vickers Diamond Indenters, VDI-Berichte, 1685(2002)
Conventionally, a method for measuring the angle of a Vickers hardness indenter using an optical microscope and a rotary table has been announced (for example, see Non-Patent Document 1), and measuring machines based on this principle have been commercialized by companies. Yes. However, a plane of about several hundred μm is required for the measurement, and it cannot cope with a hardness test with a small indentation depth such as micro Vickers. Micro Vickers has the highest industrial needs among hardness tests.
In addition, a product that measures the angle of a Vickers hardness indenter using a microscopic interferometer has been introduced (for example, see Non-Patent Document 2). However, since the normal direction of the surface is detected using the interference fringes, the measurement accuracy decreases as the target plane becomes smaller.
Namada Hamada, Research on Accuracy Improvement of Vickers Hardness Standard, Report of Metrology Institute, 26, 4 (1977) A. Liguori, et al., Galindent: The Reference Metrological System for the Verification of the Geometrical Characteristics of Rockwell and Vickers Diamond Indenters, VDI-Berichte, 1685 (2002)

硬さ試験は産業界で広く使われている材料試験法であるが、正しい測定値を得るためには試験機を正しく校正された状態で使用することが不可欠である。特に、使用する圧子の形状は硬さ値に直接影響する重要な因子であるが、微小な三次元形状を正確に測定・検証することは容易でない。近年、被測定物の微小化・薄膜化にともない、圧子進入量の小さいマイクロビッカース試験やナノインデンテーション試験の需要が高まっており、圧子の検証も先端近傍のごく狭い領域で行うことが求められている。
しかしながら、今日用いられている方法は、数百μm程度の比較的大きな測定面を必要とする物や、観察倍率を上げると十分な角度の測定精度が得られない物がほとんどである。
Hardness testing is a material testing method widely used in industry, but it is essential to use the testing machine in a correctly calibrated state in order to obtain correct measurement values. In particular, the shape of the indenter used is an important factor that directly affects the hardness value, but it is not easy to accurately measure and verify a minute three-dimensional shape. In recent years, the demand for micro Vickers tests and nano-indentation tests with small indenter penetration has increased with the miniaturization and thinning of objects to be measured, and indenter verification is also required to be performed in a very narrow area near the tip. ing.
However, most of the methods used today require a relatively large measurement surface of about several hundreds of μm, and the measurement accuracy at a sufficient angle cannot be obtained when the observation magnification is increased.

本発明は、試料の微小平面の角度を光学顕微鏡の接眼レンズ及び対物レンズの中間に2個のビームスプリッタを設置した光学系を用いて測定することにより、数十μm程度 (マイクロビッカース試験の領域に対応) の測定面に対し、高い精度で角度測定が行える装置を提供することを目的とする。また、この技術を応用することによりAFM等でも使用可能な微小角度ゲージの校正も可能である。   In the present invention, the angle of a micro plane of a sample is measured by using an optical system in which two beam splitters are installed between an eyepiece and an objective lens of an optical microscope. It is an object of the present invention to provide an apparatus capable of measuring an angle with high accuracy with respect to a measurement surface. Further, by applying this technique, it is possible to calibrate a small angle gauge that can be used in AFM or the like.

上記目的を達成するため本発明の微小平面の角度測定装置は、試料テーブルに裁置される試料の微小平面の角度を光学系を用いて測定する装置において、光学系の光軸を通る参照光と試料の微小平面で反射した測定光とを撮像素子に入射させ、撮像素子における参照光と測定光の位置のずれから試料の微小平面の角度を測定するようにしたことを特徴としている。
また、本発明の微小平面の角度測定装置は、二軸回転ステージで構成される試料テーブルに試料の基準面が光学系の光軸と直交するように試料を裁置し、試料テーブル側から順に、対物レンズ、ハーフミラー、対物レンズ側ビームスプリッタ、接眼レンズ側ビームスプリッタ、及び接眼レンズを光軸上に設けて光学系を構成し、対物レンズ側ビームスプリッタに光源からの光を入射させ、ハーフミラーを透過した光を対物レンズを介して試料の測定面に照射し、測定面で反射された測定光とハーフミラーで反射された参照光とを接眼レンズ側ビームスプリッタを介して測定用撮像素子に入射させるようにしたことを特徴としている。
また、本発明の微小平面の角度測定装置は、試料の測定面の1辺が数十μmであることを特徴とする。
また、本発明の微小平面の角度測定装置は、試料が硬さ試験用の圧子であることを特徴とする。
In order to achieve the above object, a microplanar angle measuring device of the present invention is a device for measuring the microplanar angle of a sample placed on a sample table using an optical system, and a reference light passing through the optical axis of the optical system. And measurement light reflected by the minute plane of the sample are incident on the image sensor, and the angle of the minute plane of the sample is measured from the deviation of the position of the reference light and measurement light in the image sensor.
In addition, the microplanar angle measuring device of the present invention places the sample on the sample table constituted by a biaxial rotating stage so that the reference plane of the sample is orthogonal to the optical axis of the optical system, and sequentially from the sample table side. The objective lens, half mirror, objective lens side beam splitter, eyepiece side beam splitter, and eyepiece lens are provided on the optical axis to form an optical system, and light from the light source is incident on the objective lens side beam splitter. The image sensor for measurement passes through the eyepiece side beam splitter and irradiates the measurement surface of the sample through the objective lens with the light transmitted through the mirror, and reflects the measurement light reflected by the measurement surface and the reference light reflected by the half mirror. It is characterized in that it is made incident on.
In addition, the minute plane angle measuring apparatus of the present invention is characterized in that one side of the measurement surface of the sample is several tens of μm.
In addition, the microplanar angle measuring apparatus of the present invention is characterized in that the sample is an indenter for a hardness test.

本発明は、以下のような優れた効果を奏する。
(1)近年、産業界で用いられる様々な計測に国家標準へのトレーサビリティが求められている。硬さに関しても計量法校正事業者認定制度 (JCSS) の枠組みの中でトレーサビリティ体系の構築が進められているが、例えば、マイクロビッカース試験に関しては、微小な三次元形状を有する圧子の校正技術がなかったため整備が立ち後れており、本発明がブレークスルーの役割を果たすことが期待される。産業界では(株)東京ダイヤモンド工具製造所が圧子の製作、(財)日本軸受検査協会が圧子の校正事業を行うことで既に協力体制・役割分担ができており、本発明の技術移転を円滑に進めることが可能であると考えられる。
(2)AFM用角度ゲージへの応用という観点では、現状ではAFMのxyz三軸を標準サンプルにより校正することにより角度の校正を間接的に行っているが、現状では標準サンプルの不確かさが大きいため (特にz方向) 満足できる角度の校正が行えない状況である。数十μmという大きさは、光学顕微鏡でも観察可能であり、かつAFMの測定範囲にも含まれる大きさなので、そのようなサイズの角度ゲージに対してより精度の高い校正値を付与することができれば、AFMの角度校正の不確かさが大幅に低減することが期待される。
The present invention has the following excellent effects.
(1) In recent years, traceability to national standards is required for various measurements used in industry. Concerning hardness, the traceability system is being developed within the framework of the Measurement Law Calibration Company Certification System (JCSS) .For example, for micro-Vickers testing, calibration technology for indenters with minute three-dimensional shapes is used. Since there was no maintenance, the maintenance is delayed and the present invention is expected to play a role of breakthrough. In the industry, Tokyo Diamond Tool Manufacturing Co., Ltd. has already produced an indenter, and the Japan Bearing Inspection Association has performed an indenter calibration business. It is considered possible to proceed.
(2) From the viewpoint of application to an AFM angle gauge, the angle is calibrated indirectly by calibrating the three axes of the AFM with the standard sample at present, but the uncertainty of the standard sample is large at present. Therefore (especially in the z direction), a satisfactory angle calibration cannot be performed. The size of several tens of μm can be observed with an optical microscope and is also included in the measurement range of the AFM. Therefore, a calibration value with higher accuracy can be given to an angle gauge of such a size. If possible, it is expected that the uncertainty of AFM angle calibration will be greatly reduced.

本発明に係る微小平面の角度測定装置を実施するための最良の形態を実施例に基づいて図面を参照して以下に説明する。   The best mode for carrying out the microplanar angle measuring apparatus according to the present invention will be described below with reference to the drawings based on the embodiments.

図1乃至図4は、本発明の微小平面の角度測定装置を説明するためのものであって、図1は本装置の概略を示す正面図、図2は本装置における参照光の経路を示す正面図、図3は本装置における測定光の経路(角度誤差がある場合)を示す正面図、また、図4は図1のA−A視図である。
図1において、測定される試料はマイクロビッカース試験に用いられる硬さ試験用の圧子1であって、圧子1の先端部は正四角錐の形状をしており、該正四角錐の4つの面2、2、2,2が順次測定される面である。測定される面2の1辺の長さは数十μmである。
圧子1の正四角錐の面2の角度は、圧子の中心軸に対し68°と規格で決められている。本明細書においては、規格で決められた誤差のない正四角錐の面を便宜上「基準面」という。
なお、試料としてはマイクロビッカース試験に用いられる硬さ試験用の圧子に限らず測定面の1辺の長さが数μm以上のものであればよく、望ましくは測定面の1辺の長さが10μm以上あればよい。また、圧子の角度は、ビッカース試験の場合68°であるが、ビッカース試験以外の場合は別の角度であることはいうまでもない。
1 to 4 are diagrams for explaining a microplanar angle measuring apparatus according to the present invention. FIG. 1 is a front view showing the outline of the apparatus, and FIG. 2 shows a path of reference light in the apparatus. FIG. 3 is a front view showing a path of measurement light (when there is an angle error) in this apparatus, and FIG. 4 is a view taken along line AA of FIG.
In FIG. 1, a sample to be measured is an indenter 1 for hardness test used in a micro Vickers test, and the tip of the indenter 1 has a shape of a regular quadrangular pyramid, and four surfaces 2 of the regular quadrangular pyramid, 2, 2 and 2 are surfaces to be measured sequentially. The length of one side of the surface 2 to be measured is several tens of μm.
The angle of the surface 2 of the regular quadrangular pyramid of the indenter 1 is determined by the standard as 68 ° with respect to the central axis of the indenter. In the present specification, a regular quadrangular pyramid surface having no error determined by the standard is referred to as a “reference surface” for convenience.
The sample is not limited to the indenter for hardness test used in the micro Vickers test, and any length of one side of the measurement surface may be several μm or more, and desirably the length of one side of the measurement surface is What is necessary is just 10 micrometers or more. Further, the angle of the indenter is 68 ° in the case of the Vickers test, but it goes without saying that it is a different angle in cases other than the Vickers test.

圧子1は、直交する2面を持つくの字型の試料テーブル3の一面4(垂直面)にロータリーエンコーダ6を介して支持されている。試料テーブル4の他面5(水平面)はx軸(図1の紙面に平行かつ上下方向に延びる軸)回りに回転自在なロータリーエンコーダ7に固定され、試料テーブル3全体がx軸回りに回転自在となっている。このように、試料テーブル4は二軸回転ステージで構成されている。
後述する光学系の光軸をZ軸(図1乃至3においては、紙面に平行且つ水平な軸)とすると、圧子1は、その正四角錐の基準面がZ軸と直交するようにロータリーエンコーダ6、7を制御することによりセットされる。
The indenter 1 is supported via a rotary encoder 6 on one surface 4 (vertical surface) of the dog-shaped sample table 3 having two orthogonal surfaces. The other surface 5 (horizontal plane) of the sample table 4 is fixed to a rotary encoder 7 that is rotatable about an x axis (an axis extending in the vertical direction parallel to the paper surface of FIG. 1), and the entire sample table 3 is rotatable about the x axis. It has become. As described above, the sample table 4 is composed of a biaxial rotating stage.
When an optical axis of an optical system to be described later is a Z-axis (in FIG. 1 to FIG. 3, an axis parallel and horizontal to the paper surface), the indenter 1 has a rotary encoder 6 so that the reference plane of the regular pyramid is orthogonal to the Z-axis. , 7 is controlled.

図4では、角度誤差のない圧子を一点鎖線で、角度誤差のある圧子1を実線で示しており、図1乃至図3におけるマイクロビッカース試験用の圧子1の中心軸は左から右に向かって光学系の光軸であるZ軸を基準にして紙面手前方向に22゜傾けた状態で配置されていることがわかる。すなわち、基準面が光学系の光軸であるZ軸に対して直交するように圧子1の中心軸をZ軸に対して22°傾けた角度で配置しており、実線で示す測定しようとする圧子1の正四角錐の面2に角度誤差がある場合は、該角度誤差のある面2は光学系の光軸Zに対して直交しないため、面2で反射された光は光軸Zに対して一定角度を有するものとなる。   In FIG. 4, an indenter without an angle error is indicated by a one-dot chain line, and an indenter 1 with an angle error is indicated by a solid line, and the central axis of the indenter 1 for micro Vickers test in FIGS. 1 to 3 is from left to right. It can be seen that the optical system is disposed in a state tilted by 22 ° toward the front side of the drawing with respect to the Z axis, which is the optical axis of the optical system. That is, the central axis of the indenter 1 is arranged at an angle of 22 ° with respect to the Z axis so that the reference plane is orthogonal to the Z axis, which is the optical axis of the optical system, and measurement is indicated by a solid line. When there is an angle error in the surface 2 of the regular quadrangular pyramid of the indenter 1, the surface 2 with the angle error is not orthogonal to the optical axis Z of the optical system, so that the light reflected by the surface 2 is relative to the optical axis Z. Have a certain angle.

圧子1に対向して光学顕微鏡の対物レンズ8が配置され、対物レンズ8の後方には光学顕微鏡の接眼レンズ9が配置されている。
対物レンズ8と接眼レンズ9の間には、光学系の光軸Z上に対物レンズ8側に位置するビームスプリッタ10及び接眼レンズ9側に位置するビームスプリッタ11が設けられる。対物レンズ8側に位置するビームスプリッタ10の対物レンズ8側に隣接してハーフミラー12が設けられ、対物レンズ8側に位置するビームスプリッタ10には図示のようにレーザー光源13のレーザー光14が導入されるようになっている。また、接眼レンズ9側に位置するビームスプリッタ11で反射された反射光を導入する位置には測定用撮像素子15が設置されている。
さらに、接眼レンズ9の後方には観察用撮像素子16が配置されている。
An objective lens 8 of the optical microscope is arranged facing the indenter 1, and an eyepiece 9 of the optical microscope is arranged behind the objective lens 8.
Between the objective lens 8 and the eyepiece lens 9, a beam splitter 10 positioned on the objective lens 8 side and a beam splitter 11 positioned on the eyepiece lens 9 side are provided on the optical axis Z of the optical system. A half mirror 12 is provided adjacent to the objective lens 8 side of the beam splitter 10 located on the objective lens 8 side, and the laser beam 14 of the laser light source 13 is shown on the beam splitter 10 located on the objective lens 8 side as shown in the figure. It has been introduced. In addition, a measurement imaging device 15 is installed at a position where the reflected light reflected by the beam splitter 11 located on the eyepiece 9 side is introduced.
Further, an imaging device 16 for observation is arranged behind the eyepiece 9.

レーザー光源13から出射されたレーザー光14は、ビームスプリッタ10に入射され、その反射光17の半分は図3に示すようにハーフミラー12を透過し対物レンズ8を介して圧子1の先端部の正四角錐の測定面2に照射される。
一方、ハーフミラー12で反射された光19は、図2に示すようにビームスプリッタ10を透過して接眼レンズ9側に位置するビームスプリッタ11に入射し、反射された光20が測定用撮像素子15に入射する。
なお、本明細書においては、ハーフミラー12で反射され、測定用撮像素子15に入射する光を参照光20という。
The laser light 14 emitted from the laser light source 13 enters the beam splitter 10, and half of the reflected light 17 passes through the half mirror 12 as shown in FIG. 3 and passes through the objective lens 8 and reaches the tip of the indenter 1. The measurement surface 2 of the regular quadrangular pyramid is irradiated.
On the other hand, the light 19 reflected by the half mirror 12 passes through the beam splitter 10 and enters the beam splitter 11 located on the eyepiece lens 9 side as shown in FIG. 15 is incident.
In the present specification, light reflected by the half mirror 12 and incident on the measurement image sensor 15 is referred to as reference light 20.

他方、図3に示すように、圧子1の先端部の正四角錐の測定面2で反射された光18は、対物レンズ8を介してビームスプリッタ11に入射し、そこで二方向に分けられ、透過した一方の光21は接眼レンズ9により結像され、観察用撮像素子16において測定面2上に照射されているレーザー光の位置を示すものとなる。
ビームスプリッタ11で反射したもう一方の光22は非結合光学系 (無限遠光学系) として測定用撮像素子15に入射する。
なお、本明細書においては、測定面2で反射され、測定用撮像素子15に入射する光を測定光22という。
測定用撮像素子15ではレーザー光源13から直接入射する参照光20と、測定面で反射された測定光22とのふたつのスポット23、24が観察されるので、その位置のずれから測定面の法線方向を検出する。すなわち、測定用撮像素子15上のふたつのスポット23、24を一致させるようにロータリーエンコーダ7により圧子1の向きを調整し、その際の調整角度から圧子1の測定面2の法線方向を検出することができる。
On the other hand, as shown in FIG. 3, the light 18 reflected by the measuring surface 2 of the regular quadrangular pyramid at the tip of the indenter 1 is incident on the beam splitter 11 through the objective lens 8, where it is divided into two directions and transmitted. The one light 21 is imaged by the eyepiece 9 and indicates the position of the laser light irradiated on the measurement surface 2 in the imaging device 16 for observation.
The other light 22 reflected by the beam splitter 11 enters the measurement image sensor 15 as a non-coupled optical system (infinity optical system).
In the present specification, the light reflected by the measurement surface 2 and incident on the measurement image sensor 15 is referred to as measurement light 22.
Since two spots 23 and 24 of the reference light 20 directly incident from the laser light source 13 and the measurement light 22 reflected by the measurement surface are observed in the measurement image pickup device 15, the method of the measurement surface is determined from the positional deviation. Detect line direction. That is, the direction of the indenter 1 is adjusted by the rotary encoder 7 so that the two spots 23 and 24 on the measurement image pickup device 15 coincide with each other, and the normal direction of the measurement surface 2 of the indenter 1 is detected from the adjustment angle at that time. can do.

このように、図1に示す装置を用いて測定面の角度を測定するには、測定面にレーザー光を照射することのできる大きさの面があればよい。例えば、マイクロビッカース試験の圧子の四角錐の測定面の1辺の長さは数十μmであるから、図1に示す装置により十分に測定可能である。   As described above, in order to measure the angle of the measurement surface using the apparatus shown in FIG. 1, it is sufficient that the measurement surface has a surface that can be irradiated with laser light. For example, since the length of one side of the measurement surface of the quadrangular pyramid of the indenter of the micro Vickers test is several tens of μm, it can be sufficiently measured by the apparatus shown in FIG.

産業上の利用の可能性Industrial applicability

本発明は、硬さ試験機の校正事業 (JCSS)、圧子製作時の製品検査に利用できる。
また、圧子の校正結果はトレーサビリティが必要な硬さ試験を行うすべての事業所に必要な物であり、このような事業者すべてに間接的に影響する。
The present invention can be used for calibration of a hardness tester (JCSS) and product inspection during indenter production.
The indenter calibration results are necessary for all offices that conduct hardness tests that require traceability, and indirectly affect all such companies.

本発明の実施の形態に係る微小平面の角度測定装置を説明するための概略正面図である。It is a schematic front view for demonstrating the angle measuring apparatus of a micro plane which concerns on embodiment of this invention. 本発明の実施の形態に係る微小平面の角度測定装置おける参照光の経路示す正面図である。It is a front view which shows the path | route of the reference light in the micro plane angle measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る微小平面の角度測定装置おける測定光の経路示す正面図である。It is a front view which shows the path | route of the measurement light in the micro plane angle measuring apparatus which concerns on embodiment of this invention. 図1のA−A視図である。It is an AA view of FIG.

符号の説明Explanation of symbols

1 圧子
2 正四角錐の4つの面(測定面)
3 試料テーブル
4 試料テーブルの垂直面
5 試料テーブルの水平面
6 ロータリーエンコーダ
7 ロータリーエンコーダ
8 対物レンズ
9 接眼レンズ
10 ビームスプリッタ
11 ビームスプリッタ
12 ハーフミラー
13 レーザー光源
14 レーザー光
15 測定用撮像素子
16 観察用撮像素子
17 ビームスプリッタ10における反射光
18 測定面2で反射された光
19 ハーフミラー12で反射された光
20 参照光
21 観察用撮像素子16に入射する光
22 測定光
23、24 測定用撮像素子上のふたつのスポット
1 Indenter 2 Four faces of regular square pyramid (measurement face)
3 Sample Table 4 Vertical Surface of Sample Table 5 Horizontal Surface of Sample Table 6 Rotary Encoder 7 Rotary Encoder 8 Objective Lens 9 Eyepiece 10 Beam Splitter 11 Beam Splitter 12 Half Mirror 13 Laser Light Source 14 Laser Light 15 Imaging Device 16 for Observation Imaging Element 17 Reflected light at beam splitter 10 18 Light reflected by measurement surface 2 19 Light reflected by half mirror 12 20 Reference light 21 Light incident on image sensor 16 for observation 22 Measurement light 23, 24 On image sensor for measurement Two spots

Claims (4)

試料テーブルに裁置される試料の微小平面の角度を光学系を用いて測定する装置において、光学系の光軸を通る参照光と試料の微小平面で反射した測定光とを撮像素子に入射させ、撮像素子における参照光と測定光の位置のずれから試料の微小平面の角度を測定するようにしたことを特徴とする微小平面の角度測定装置。   In an apparatus that measures the angle of a minute plane of a sample placed on a sample table using an optical system, reference light passing through the optical axis of the optical system and measurement light reflected by the minute plane of the sample are incident on an image sensor. An apparatus for measuring the angle of a micro-plane, wherein the angle of the micro-plane of the sample is measured from the difference between the positions of the reference light and the measurement light in the image sensor. 二軸回転ステージで構成される試料テーブルに試料の基準面が光学系の光軸と直交するように試料を裁置し、試料テーブル側から順に、対物レンズ、ハーフミラー、対物レンズ側ビームスプリッタ、接眼レンズ側ビームスプリッタ、及び接眼レンズを光軸上に設けて光学系を構成し、対物レンズ側ビームスプリッタに光源からの光を入射させ、ハーフミラーを透過した光を対物レンズを介して試料の測定面に照射し、測定面で反射された測定光とハーフミラーで反射された参照光とを接眼レンズ側ビームスプリッタを介して測定用撮像素子に入射させるようにしたことを特徴とする請求項1記載の微小平面の角度測定装置。   The sample is placed on a sample table composed of a biaxial rotating stage so that the reference plane of the sample is orthogonal to the optical axis of the optical system, and in order from the sample table side, an objective lens, a half mirror, an objective lens side beam splitter, An optical system is configured by providing an eyepiece-side beam splitter and an eyepiece on the optical axis. Light from the light source is incident on the objective-lens side beam splitter, and the light transmitted through the half mirror is passed through the objective lens. The measurement light irradiated on the measurement surface, and the reference light reflected by the half mirror and the reference light reflected by the half mirror are made incident on the measurement image sensor via the eyepiece side beam splitter. 1. A microplanar angle measuring apparatus according to 1. 試料の測定面の1辺が数十μmであることを特徴とする請求項1又は請求項2記載の微小平面の角度測定装置。   3. The microplanar angle measuring device according to claim 1 or 2, wherein one side of the measurement surface of the sample is several tens of micrometers. 試料が硬さ試験用の圧子であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の微小平面の角度測定装置。






The microplanar angle measuring apparatus according to any one of claims 1 to 3, wherein the sample is an indenter for a hardness test.






JP2005269229A 2005-09-15 2005-09-15 Angle measuring device for minute plane Pending JP2007078594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005269229A JP2007078594A (en) 2005-09-15 2005-09-15 Angle measuring device for minute plane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005269229A JP2007078594A (en) 2005-09-15 2005-09-15 Angle measuring device for minute plane

Publications (1)

Publication Number Publication Date
JP2007078594A true JP2007078594A (en) 2007-03-29

Family

ID=37939070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005269229A Pending JP2007078594A (en) 2005-09-15 2005-09-15 Angle measuring device for minute plane

Country Status (1)

Country Link
JP (1) JP2007078594A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308405A (en) * 2012-03-13 2013-09-18 沈阳天星试验仪器有限公司 Portable digital display hardness measuring device
WO2013135164A1 (en) * 2012-03-13 2013-09-19 沈阳天星试验仪器有限公司 Indentation depth measurement device for portable digital display hardness tester
CN106052596A (en) * 2016-06-03 2016-10-26 北京理工大学 High-precision photoelectric auto-collimator based on far exit pupil and small diameter ratio design
CN112731340A (en) * 2019-10-14 2021-04-30 上海禾赛科技股份有限公司 Angle measuring method, reflector system and laser radar
CN112834373A (en) * 2020-12-31 2021-05-25 湘潭大学 Method and system for determining inclination angle of pressure head of indentation testing device
WO2021145471A1 (en) * 2020-01-14 2021-07-22 엘지전자 주식회사 Lens measuring apparatus
CN114252028A (en) * 2022-01-12 2022-03-29 内蒙古工业大学 Compact four-light-spot two-dimensional corner detection device combined with laser triangulation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308405A (en) * 2012-03-13 2013-09-18 沈阳天星试验仪器有限公司 Portable digital display hardness measuring device
WO2013135164A1 (en) * 2012-03-13 2013-09-19 沈阳天星试验仪器有限公司 Indentation depth measurement device for portable digital display hardness tester
CN106052596A (en) * 2016-06-03 2016-10-26 北京理工大学 High-precision photoelectric auto-collimator based on far exit pupil and small diameter ratio design
CN112731340A (en) * 2019-10-14 2021-04-30 上海禾赛科技股份有限公司 Angle measuring method, reflector system and laser radar
WO2021145471A1 (en) * 2020-01-14 2021-07-22 엘지전자 주식회사 Lens measuring apparatus
CN112834373A (en) * 2020-12-31 2021-05-25 湘潭大学 Method and system for determining inclination angle of pressure head of indentation testing device
CN112834373B (en) * 2020-12-31 2022-09-02 湘潭大学 Method and system for determining inclination angle of pressure head of indentation testing device
CN114252028A (en) * 2022-01-12 2022-03-29 内蒙古工业大学 Compact four-light-spot two-dimensional corner detection device combined with laser triangulation method

Similar Documents

Publication Publication Date Title
Nouira et al. Characterization of the main error sources of chromatic confocal probes for dimensional measurement
JP2007078594A (en) Angle measuring device for minute plane
US8345260B2 (en) Method of detecting a movement of a measuring probe and measuring instrument
JP2013171042A (en) Non-contact determination device of edge shape of thin disk-like object
CN104848802B (en) Normal tracking mode differential confocal non-spherical measuring method and system
US10371511B2 (en) Device and method for geometrically measuring an object
US10481020B2 (en) Optical method and arrangement for measuring residual stresses, in particular in coated objects
KR20140048824A (en) Calibration apparatus, calibration method, and measurement apparatus
TWI405057B (en) Dynamic path detection method and device for five - axis machine
TWI287616B (en) Measuring error method for high precision and nano-scale rotation axis and the apparatus thereof
JP4427632B2 (en) High-precision 3D shape measuring device
JP2016211933A (en) Surface shape measurement device, surface shape measurement method, processing device, and optical element processed by the same
JP5880957B2 (en) A device that detects surface changes using laser light
CN205581024U (en) Optical element surface defect detecting device of transmission type synthetic aperture digital holographic art
KR20190017986A (en) Edge registration for interferometer
JP2009294079A (en) Method and device for measuring thickness and refractive index of sample piece
JP4922905B2 (en) Method and apparatus for measuring position variation of rotation center line
JP6482061B2 (en) Mask stage and stage apparatus
JP2004279075A (en) Lens eccentricity measuring method and measuring device
TWI262291B (en) Method and equipment for detecting inclination angle and setting original by means of astigmatism
JP2001227929A (en) Angle measuring method and apparatus
CN205562427U (en) Optical element surface defect detecting device of reflection -type synthetic aperture digital holographic art
JP2012002607A (en) Conical surface measuring device
Ehrig et al. Artefacts with rough surfaces for verification of optical microsensors
JP5439224B2 (en) Reference device and inspection method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070314

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091026

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100309

Free format text: JAPANESE INTERMEDIATE CODE: A02