TWI285436B - Solar cell with superlattice structure and fabricating method thereof - Google Patents

Solar cell with superlattice structure and fabricating method thereof Download PDF

Info

Publication number
TWI285436B
TWI285436B TW094147747A TW94147747A TWI285436B TW I285436 B TWI285436 B TW I285436B TW 094147747 A TW094147747 A TW 094147747A TW 94147747 A TW94147747 A TW 94147747A TW I285436 B TWI285436 B TW I285436B
Authority
TW
Taiwan
Prior art keywords
superlattice structure
solar cell
cell
gallium
forming
Prior art date
Application number
TW094147747A
Other languages
English (en)
Other versions
TW200725919A (en
Inventor
Chih-Hung Chiou
Pei-Hsuan Wu
Shang-Fu Chen
I-Liang Chen
Jung-Tsung Hsu
Original Assignee
Ind Tech Res Inst
Atomic Energy Council
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst, Atomic Energy Council filed Critical Ind Tech Res Inst
Priority to TW094147747A priority Critical patent/TWI285436B/zh
Priority to US11/476,091 priority patent/US8143513B2/en
Publication of TW200725919A publication Critical patent/TW200725919A/zh
Application granted granted Critical
Publication of TWI285436B publication Critical patent/TWI285436B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Description

1285436 九、發明說明: 【發明所屬之技術領域】 b本發明係種太陽電池,_是_種具有超晶格結構之 太陽電池及其製造方法。 【先前技術】 目前商品化之太陽電池(S〇lar cell)的主要材料方面大致可區 分為石夕半導體紋陽電池及m_v族化合物轉齡太陽電池兩 大頦。就矽半導體系太陽電池而言,由於矽材料為間接能隙,對 光的吸收性不好且所能達到的轉換效率不高,目前轉換效率最高 約可達24%左右;而ni-V族化合物半導體系太陽電池方面,由於 ιπ-ν無化合物半導體之能隙(energyband卿)為直接能隙,能量轉 換效率鬲,具有輻射耐力強等方面的特性,且又可高溫操作與適 合薄膜化等優點,因此品質較目前的矽半導體系太陽電池佔優 勢’所以許多研究報告都指出,m_v族化合物半導體材料是較適 合用來發展高效能太陽電池的材料。 傳統的III-V族化合物太陽電池,若就其製造過程來看,常 用之蟲晶製程基板有砷化鎵(GaAs)基板和鍺(Ge)基板兩種,由於 後者的晶格常數與GaAs很接近,不但容易與各種常用之ni-V族 材料產生達到較佳匹配,本身又可於〇.67eV處製作出一個接面 (junction) ’吸收長波段之光線,提高太陽電池之效率,因此& 基板已成為市之主流。 若就III-V族化合物太陽電池元件之結構來分類,可分為單 1285436 一接面(血扯-細比⑽與多接面(multi_juncti〇n)太陽電池兩種。單 .一接面太陽電池因為只能吸收單一能隙以上之光譜,其轉換效率 ^之理論録高只輯到26〜29%,這是料導财、太陽電池無法進 _ 一步提南效率之主因。而多接面太陽電池常利用具有不同能隙之 ’ 半導體來堆41組合’使產生頻譜響應(spectral response)的範圍涵蓋 太陽光譜之紫外光、可見光及紅外光料不量的區域,因此 鲁可以達到提高轉換效率之目的;而多接面太陽電池若經適當之結 構設計,其轉換效率之理論值最高可達5〇%以上。 因此,在太陽電池的元件結構上也逐步演進,先以多接面結 構取代單一接面,並逐漸提高juncti〇n的數目,近來也開始成長 量子阱(quantum well)結構,以取代純粹之厚膜_k)結構,也因而 逐漸传到更咼效率的太知電池。這些jjl-v族化合物太陽電池的結 構與製作方法,都已被主張於許多專利之中,例如U.s pat Ν〇·4404421,4128733,4451691,5944913,6281426,6372980, ® 3993506,6437233 等。 而目别有幾十種不同的材料可被運用來堆疊多接面太陽電 池’不過由於堆疊時必須考慮晶格匹配(Latticeniatching)之問題, 並非任意材料都適合堆疊在一起,當堆疊材料間之晶格常數 (Lattice constant)差異太大時,所產生之應力將會損及結晶之品 質’產生晶格缺陷(Crystalline defect),進而降低電池之轉換效率。 h今’商業上所製造最具效能的多重接面太陽電池為三接面組 成:GaInP(l.85eV) / GaAs(h40eV) / Ge(0.67eV),即鱗化鎵銦/坤化 1285436 鎵/錯三接面太陽電池,其理論上可獲得4〇%之轉換效率。在傳統 之二接面太陽電池結構中,若能任意增加原本的GaAs材料 (1.40eV)之銦⑽含量,使其成為GaInAs化合物,其能隙將可調降 至恰好落於1.85eV和0.67eV之正中間(l26eV),而使整體元件效 率得到最佳化;然而,實際上為了減少中間層與Ge基板晶格常數 的差異’其In含量必須被侷限在p/。以内,因而使其能隙無法達 到1.25eV,相對的減少陽光中紅外光區域的吸收,使傳統三接面 太陽電池的效能無法達最佳化。 為了進一步提昇其效率,近年美國Sandia國家實驗室提出
GaInP(1.85eV) / GaAs(1.40eV) / InGaNAs(l.OeV) / Ge(d67eV)之四 接面結構,於石t化鎵(GaAs)和鍺(Ge)接面之間添加氮化鎵銦砷 (InGaNAs) ’由於InGaNAs其能隙可控制於i 〇ev,因此可補償 1.40eV至(X67eV間之吸收損失,理論上可大幅提高轉換效率至 40%以上。然而,實際上由於材料之品質常隨著氮讲) 含量之增加而急速劣化,使此層之載子生命週期(canier lifetime) 偏低’因此欲得到高品質的inGaNAs (10eV)磊晶材料仍十分困 難,導致此一結構到目前為止依然無法被實用化。 然而,常用之III-V族半導體材料中,雖然其晶格常數可匹 配於GaAs和Ge基板上的很多,如神化紹鎵(A1GaAs)、碎化鎵 銦(GaInAs)、氮化鎵銦砷(GalnAsN)、磷化鎵銦(GalnP)、氮化鎵 砷(GaAsN)···等材料’但是每一種都必須經過精密的組成調配才 行,而非任意組成皆能完全匹配,因此能運用的範圍很小,使 1285436 得磊晶成長時材料的選擇受到限制。 • 在匕外4知材料中由於晶格不易匹配的關係,太陽電池結 ^巾各層㈣產生應力,使絲晶絲中無法成錄厚的蟲晶 •膜,導致太陽電池結構中的光吸收區域體積受限,因而常影響 太陽電池的效率。 曰 而近年來常德用GaInAsN材料來當i.QeV波段的吸光材 #料,但是此-材料之結晶品質不佳,造成載子擴散距離短、移 動速率慢、生命脑、缺濃度高等缺點,導致整體太陽 電池之效率無法有效提高。 在 U.S.Pat.No.4688068、6147296 及 6372980 專利中,雖主 張於多接面結構中使用量子解結構,但是其量子胖結構中之應 力(strain)仍無法完全補{f(c〇mpensate),因此亦或者讓結晶生長 之臨界厚度偏低,或容易因晶格不匹配而產生晶格缺陷,此皆 > 最後會影響到太陽電池之轉換效率。 【發明内容】 鑒於以上的問題,本發明的主要目的在於提供一種具有超晶 。、、。構之太陽電池及其製法,藉以解決先前技術所揭露之結晶品 貝不佳、晶格不匹配而產生晶格缺陷或應力及蟲晶成長中無法成 長較厚的磊晶膜影響到太陽電池之轉換效率的問題。 ♦、為了解決上述問題,本發明提出一種具有超晶格結構之太陽 電池及其製造方法,包括在使用m_v族化合物半導體製成之三接 1285436 面太%電池中’於其中間電池的基射極(|3ase_emitter)間,利用應力 補償技術,製作超晶格結構。 本發明之一種製造具有超晶格結構之太陽電池之方法,包括: 先提供基板(substrate);在基板上形成底部電池bottom cell)後,在 底部電池上形成穿隧接面(加1111^1111此〇11);之後,在穿隧接面上形 成为面電%(back surface field)、基極(base)、超晶格結構、射極 (emitter)以及透光層(GalnP window),以形成具有超晶格結構的中 間電池;然後,在中間電池上形成另一穿隧接面;在另一穿隧接 面上形成頂部電池(top cell),·在頂部電池上形成抗反射層 (anti-reflection);以及,在底部電池及頂部電池上各形成p/n摻雜 的接觸(contact)。 依照本發明之較佳實施例,其中超晶格結構例如為氮化鎵砷 /石申化鎵銦超晶格結構、氮化鎵珅/坤化鎵録超晶格結構或氮化錄砷 /砷化鎵銦銻超晶格結構。 依照本發明之較佳實施例,其中底部電池例如為鍺底部電池 (Ge bottom cell) 〇 依照本發明之較佳實施例,其中背面電場例如為磷化鎵銦背 面電場(GalnP back surface field) 〇 依照本發明之較佳實施例,其中基極例如為砷化鎵基極 (GaAsbase) ’而射極例如為神化鎵射極(GaAsemittei^。 依照本發明之錄實_,其巾透光層例如麵化鎵鋼透光 層(GalnP window) 〇 1285436 依恥本發明之較佳實施例,其中頂部電池例如為磷化鎵銦頂 部電池(GaInPtopcelD。 本發明除了可以晶格間的應力補償效應,以減少材料的 結晶缺陷並增加其生賊界厚度,更職化斜和較鎵姻兩種 材料之能隙向下推展至丨麟附伏·近,讀高丨.㈣附近 之吸光區域,而翻提高太陽電池效率的目的。 有關本發日⑽概與實作,統合®轉最佳實施例詳細說 明如下。 【實施方式】 、以下舉出具體實施例以詳細說明本發明之内容,並以圖示作 為輔助說明。綱巾提及之符義參關式符號。 本發明提出-種具有超晶格結構之太陽電池,包括於三接面 太陽電池的中間電池基射極間,具有超晶格結構。
上述之超晶格結構例如為氮化鎵坤/坤化鎵銦 (GaAsN/GaI肉超晶储構售神魏轉制備 超晶格結構或氮化神坤化鎵錮録(GaAsN/GainSbAs)超晶格结 構。 " 上述之一接面太陽電池,當例如為碟化嫁鋼/坤化録/錯 (GaInP/GaAs/Ge)三接面太陽電鱗,中間電池為坤化嫁中間電 池’而_池祕極為p型或n型的坤化鎵,射極即為與基極 電性相反的p型或η型的砷化鎵。 本發明所利用之原理如下所述· 11 1285436 第1圖為本發明之實施例的m_v族化合物半導體晶格常數_ 能隙圖,由第i圖看來,若要增加L4eVfiJ 〇jeV之間的長波段 吸光效果’而且晶格常數接近Ge者,可選用的材料除了氣化録姻 .tdnGaNAs)^^,^^^^^(GaAsN) .,t^l^(GaInAs)^ 珅化鎵爾GaSbAs) ’料獨使用GaAsN、或時, -旦能隙下降_界厚度制外,都將與錯(Ge)基板產生失配問 題’使材料缺陷大幅增加’因而造成太陽效率的降低。為了解決 上述問題’本發明使用GaAsN/GaInAs、GaAsN/GaSbAs或
GaAsN/GalnSbAs超晶格結構,利用應力補償作用,讓晶格容易匹 配於Ge,降低材料缺陷,大幅增加臨界厚度,以提高太陽電池整 體效率。 本發明提出一種具有超晶格結構之太陽電池及其製造方 法,係於二接面太陽電池的中間電池元件的基射極 層中,利用應力補償技術添加適當厚度的GaAsN/Ga][nAs、 GaAsN/GaSbAs或GaAsN/GalnSbAs超晶格結構,以提昇其效率。 本發明主要是利用能隙較GaAs為低的GaAsN和GaInAs吸收長 波段區’再利用GaAsN所產生的張應力(tensile strain)與GaInAs 所產生的壓應力(compressive strain)間的應力補償作用,製作成超 晶格結構,不但讓晶格容易匹配於Ge,降低材料缺陷,大幅增加 臨界厚度,因而提高整體效率;此外,在臨界厚度範圍内,GaAsN 和GaInAs中之N與In的各別含量可以適當調整,讓兩者的能隙 值遠低於1.40eV,使吸收波段可拉長至長波段區,如此可增加太 12 1285436 陽光紅外光區域的魏’進而得到高效柄太陽電池。 第2圖為本發日狀製造具_晶觀構之场電池之方法實 施例結構示賴。如第2騎示,先在職供的基板上形成底部 電池200,接著在底部祕场成f _面21(),織在穿隨 接面加形成背面電場22!、基極223、超晶格結構奶、射極瓜 以及透光層229 ’以形成具有超晶袼結構225的中間電池22〇,之 後在中間電池220上形成另-穿隨接面23〇,在穿随接面細上 形成頂部電池240,在頂部電池24〇上形成抗反射層細,以及在 底部電池200上形成p/n摻雜的接觸26〇,與頂部電池24〇上形成 與接觸260電性相反的p/n摻雜的接觸27〇。 上述之在所提供的基板上形成底部電池的步驟,例如在磊晶 一開始時,先在基板上通入氫化砷(AsH3)氣體,並利用分子擴散 現象’以形成錯底部電池(Ge bottom cell)。 上述之背面電場例如為磷化鎵銦背面電場(GaInp back surface field)。 上述之基極例如為砷化鎵基極(GaAsbase),而射極例如為與 基極笔性相反之石申化録射極(GaAs emitter)。 上述之透光層例如為磷化鎵銦透光層(GalnPwind〇w)。 上述之頂部電池例如為鱗化鎵銦頂部電池(GaInp t〇p ceu)。 上述之氮化鎵砷/砷化鎵銦超晶格結構(GaAsN/GaInAs superlattice),當例如由 GaAsi xNx( 〇% < X $ 5% )/ 〇% < X S 30%)所疊加組成時,在使用m_v族化合物半導體製成之三接 13 1285436 面太陽電池晶片中,於中間電池裡,先使用結構(正_本_負結 構)’再利用應力補償(s仕ain_c〇mpensate)技術,製作GaAsN/GalnAs superlattice,除了可以利用其應力補償效應,減少材料缺陷,將 GaAsN和GalnAs兩種材料之能隙向下推展至1〇eV附近,並可 增加其臨界厚度,以提高1〇eV附近之吸光區域,而達到提高太 陽電池效率的目的。 本發明所提出的具有超晶格結構之太陽電池及其製造方法,至 少具有以下優點: 1.-般三接面太陽電池巾,巾間電池主要以Ga⑽As為主,而 本發明增加例如GaAsN/GalnAs _晶格結構,在利用應力補償 技術所製造出來的超晶格結構中,〇讀與〇她中_與銦 (In)各別的組成比例已經適當調整,可以有效降低晶格常數與& 基板不匹_程度,雖朗部之局部地區仍殘留應力,但是盆中 的GaAsN將受到張應力細sile strain),而則受到壓應力 (_P簡ive strain) ’因體之為零,故而本發明不但可 降低材料内部之缺陷之外,結晶所可以生長之臨界厚度也可有效 增加。 2. 由於GaNAs、GaInAs與GaSbAs在能隙圖中都是屬於較 的能隙材料,將之朝於多接面太陽電池的結構上,可增加1讀 -0磨間之吸光區域,耻本發啊使太陽電池整體效率提昇。 3. 以本發騎則之恤臟心雜格結 14 1285436 擴散距離長、密度(—Si—及響應頻譜圖的效 定本發 技較,實施例揭露如上’然其並非用以限 内,當可作铸者,在不雌核私精神和範圍 本說明查舰此本發日狀翻保護範圍須視 /、Ϊ4專利!!_界定者為準。 【圖式簡單說明】 能隙圖 第!圖為本發明之實施例的族化合物半導體晶 I ;以及 第圖為本杳明之製造具有超晶格結幕ϋυ 施例結構示意圖。 【主要元件符號說明】 200底部電池 210穿隧接面 220中間電池 221背面電場 223基極 225超晶格結構 227射極 229透光層 230穿隧接面 240頂部電池 1285436 250抗反射層 260接觸 270接觸

Claims (1)

1285436 十、申請專利範圍: 1· 一種具有超晶格結構之太陽電池,包括於一個三接面太陽電池 的中間電池基射極(base-emitter)間具有一超晶格結構 (superlattice structure) 〇 2.如申請專利範圍第1項所述之具有超晶格結構之太陽電池,其 中該超晶格結構包括為氮化鎵砷/石申化鎵銦(GaAsN/GalnAs)超 晶格結構、氮化鎵砷/神化鎵銻(GaAsN/GaSbAs)超晶格結構或 氮化鎵砷/神化鎵銦銻(GaAsN/GalnSbAs)超晶格結構。 3·如申請專利範圍第1項所述之具有超晶格結構之太陽電池,其 中該三接面太陽電池包括為磷化鎵銦/砷化鎵/鍺 (GalnP/GaAs/Ge)三接面太陽電池。 4· 一種製造具有超晶格結構之太陽電池之方法,包括: 提供一基板(substrate); 在該基板上形成一底部電池(bottom cell); 在该底部電地上形成一穿隧接面(tunnei juncti〇n); 在该牙隧接面上形成一背面電場(back surface field)、一基極 (base)、一超晶格結構、一射極(emitter)以及一透光層(Gainp window) ’以形成具有該超晶格結構的一中間電池; 在該中間電池上形成另一穿隧接面; 在另5亥牙隧接面上形成一頂部電池(t〇p ce]j); 在该了員部電池上形成一抗反射層(anti_reHecti〇n);以及 在該底部電池及該頂部電池上形成p/n摻雜的接觸 17 I285436 (contact) 〇 5·如申請專利範圍第4項所述之製造具有超晶格結構之太陽電 方去其中忒起aa格結構包括為氮化鎵神/珅化鎵銦超晶 格結構、氮化鎵珅/石申化鎵銻超晶格結構或氣化録石申/石申化錄銦 録超晶格結構。 6·如申請專利範圍第4項所述之製造具有超晶格結構之太陽電 池之方法’其巾形成該超晶格結構的方法包括應力補償技術 (strain-compensate technology) 〇 7.如申請專利範圍第4項所述之製造具有超晶格結構之太陽電 池之方法,其中該底部電池包括為鍺底部電池(Ge b 〇論ceU)。 8·如申請專娜圍第4賴述之製造具有超晶格結構之太陽電 池之方法,其中該背面電場包括為磷化鎵銦背面電場(Gain? back surface field) 〇 9·如申請專利範圍第4項所述之製造具有超晶格結構之太陽電 池之方法’其中該基極包括為珅化鎵基極。 10.如申請專利範圍第4項所述之製造具有超晶格結構之太陽電 池之方法,其中該射極包括為砷化鎵射極(GaAsemitter)。 11·如申請專利範圍第4項所述之製造具有超晶格結構之太陽電 池之方法’其中该透光層包括為碟化嫁銦透光層(Gajnp window) 〇 12·如申請專利範圍第4項所述之製造具有超晶格結構之太陽電 池之方法,其中該頂部電池包括為麟化鎵銦頂部電池(GaInp 18 1285436 top cell)
TW094147747A 2005-12-30 2005-12-30 Solar cell with superlattice structure and fabricating method thereof TWI285436B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW094147747A TWI285436B (en) 2005-12-30 2005-12-30 Solar cell with superlattice structure and fabricating method thereof
US11/476,091 US8143513B2 (en) 2005-12-30 2006-06-28 Solar cell with superlattice structure and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094147747A TWI285436B (en) 2005-12-30 2005-12-30 Solar cell with superlattice structure and fabricating method thereof

Publications (2)

Publication Number Publication Date
TW200725919A TW200725919A (en) 2007-07-01
TWI285436B true TWI285436B (en) 2007-08-11

Family

ID=38223109

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094147747A TWI285436B (en) 2005-12-30 2005-12-30 Solar cell with superlattice structure and fabricating method thereof

Country Status (2)

Country Link
US (1) US8143513B2 (zh)
TW (1) TWI285436B (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162768A1 (en) 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US8067687B2 (en) 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US8772628B2 (en) * 2004-12-30 2014-07-08 Alliance For Sustainable Energy, Llc High performance, high bandgap, lattice-mismatched, GaInP solar cells
US20080203411A1 (en) * 2007-02-27 2008-08-28 Hing Wah Chan Direct attachment of optically-active device to optical element
US7863066B2 (en) * 2007-02-16 2011-01-04 Mears Technologies, Inc. Method for making a multiple-wavelength opto-electronic device including a superlattice
US7880161B2 (en) 2007-02-16 2011-02-01 Mears Technologies, Inc. Multiple-wavelength opto-electronic device including a superlattice
US20080257405A1 (en) * 2007-04-18 2008-10-23 Emcore Corp. Multijunction solar cell with strained-balanced quantum well middle cell
WO2009116153A1 (ja) * 2008-03-19 2009-09-24 富士通株式会社 半導体発光素子及びその製造方法
US20090250098A1 (en) * 2008-04-07 2009-10-08 Eric Ting-Shan Pan Method for Solar-To-Electricity Conversion
KR20100084843A (ko) * 2009-01-19 2010-07-28 삼성전자주식회사 다중접합 태양전지
TWI387120B (zh) * 2009-02-17 2013-02-21 Nexpower Technology Corp 薄膜疊層太陽能電池及其製作方法
US20100263713A1 (en) * 2009-04-16 2010-10-21 Solfocus, Inc. Four Terminal Monolithic Multijunction Solar Cell
US20100269895A1 (en) 2009-04-27 2010-10-28 Katherine Louise Smith Multijunction photovoltaic structure with three-dimensional subcell
US20110073887A1 (en) * 2009-09-25 2011-03-31 Alliance For Sustainable Energy, Llc Optoelectronic devices having a direct-band-gap base and an indirect-band-gap emitter
TWI411116B (zh) * 2009-11-17 2013-10-01 Epistar Corp 一種高效率太陽能電池
TWI409959B (zh) * 2009-12-07 2013-09-21 Epistar Corp 太陽能電池元件及其裝置
TWI455338B (zh) * 2010-02-12 2014-10-01 Univ Nat Chiao Tung 超晶格結構的太陽能電池
GB2483276B (en) * 2010-09-02 2012-10-10 Jds Uniphase Corp Photovoltaic junction for a solar cell
EP2628183A4 (en) 2010-10-12 2014-04-02 Alliance Sustainable Energy III-V BAND WEAPONS IMPORTANT FOR OPTOELECTRONIC COMPONENTS OF HIGH EFFICIENCY
FR2973945B1 (fr) * 2011-04-11 2013-05-10 Centre Nat Rech Scient Heterostructure semi-conductrice et cellule photovoltaïque comprenant une telle heterostructure
JP5999887B2 (ja) * 2011-11-29 2016-09-28 シャープ株式会社 多接合型太陽電池
US9985158B2 (en) * 2012-06-13 2018-05-29 Massachusetts Institute Of Technology Visibly transparent, luminescent solar concentrator
US8569097B1 (en) 2012-07-06 2013-10-29 International Business Machines Corporation Flexible III-V solar cell structure
US9530911B2 (en) * 2013-03-14 2016-12-27 The Boeing Company Solar cell structures for improved current generation and collection
US9590131B2 (en) 2013-03-27 2017-03-07 Alliance For Sustainable Energy, Llc Systems and methods for advanced ultra-high-performance InP solar cells
CN103151414B (zh) * 2013-04-03 2016-04-27 中国科学院苏州纳米技术与纳米仿生研究所 正装三结级联太阳电池及其制备方法
CN104241409A (zh) * 2014-08-25 2014-12-24 华南理工大学 一种在GaAs衬底上生长GaInNAs薄膜的方法
US9680045B2 (en) * 2015-06-25 2017-06-13 International Business Machines Corporation III-V solar cell structure with multi-layer back surface field
JP6760756B2 (ja) * 2016-04-25 2020-09-23 日本電信電話株式会社 受光素子
CN111200030B (zh) * 2018-11-19 2022-08-16 紫石能源有限公司 太阳能电池与其制作方法
CN111129196B (zh) * 2019-12-25 2023-07-18 中国电子科技集团公司第十八研究所 一种锗基叠层太阳电池及制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993506A (en) 1975-09-25 1976-11-23 Varian Associates Photovoltaic cell employing lattice matched quaternary passivating layer
US4128733A (en) 1977-12-27 1978-12-05 Hughes Aircraft Company Multijunction gallium aluminum arsenide-gallium arsenide-germanium solar cell and process for fabricating same
US4451691A (en) 1982-02-26 1984-05-29 Chevron Research Company Three-terminal ternary III-V multicolor solar cells and process of fabrication
US4404421A (en) 1982-02-26 1983-09-13 Chevron Research Company Ternary III-V multicolor solar cells and process of fabrication
US4688068A (en) 1983-07-08 1987-08-18 The United States Of America As Represented By The Department Of Energy Quantum well multijunction photovoltaic cell
US6147296A (en) 1995-12-06 2000-11-14 University Of Houston Multi-quantum well tandem solar cell
US6281426B1 (en) 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US5944913A (en) 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6437233B1 (en) 2000-07-25 2002-08-20 Trw Inc. Solar cell having multi-quantum well layers transitioning from small to large band gaps and method of manufacture therefor
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US10069026B2 (en) * 2005-12-19 2018-09-04 The Boeing Company Reduced band gap absorber for solar cells

Also Published As

Publication number Publication date
US8143513B2 (en) 2012-03-27
TW200725919A (en) 2007-07-01
US20070151595A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
TWI285436B (en) Solar cell with superlattice structure and fabricating method thereof
CN112447868B (zh) 一种高质量四结空间太阳电池及其制备方法
US20140137930A1 (en) Multijunction solar cells
US20140077240A1 (en) Iv material photonic device on dbr
US20120103403A1 (en) Multi-junction solar cell with dilute nitride sub-cell having graded doping
CN105097977B (zh) 多结太阳能电池外延结构
US9324911B2 (en) Methods of fabricating dilute nitride semiconductor materials for use in photoactive devices and related structures
KR20120024806A (ko) 양자 점 구조물들을 이용한 반도체 구조물 및 소자들의 제조 방법들 및 관련된 구조물들
CN104300015B (zh) AlGaAs/GaInAs/Ge连续光谱太阳能电池
US20180331245A1 (en) Dual-junction thin film solar cell module, and preparation method thereof
CN105355670B (zh) 一种含dbr结构的五结太阳能电池
CN109755340A (zh) 一种正向晶格失配三结太阳电池
TWI611464B (zh) 半導體元件中應用不同沉積技術所形成之多重接面
TWI497569B (zh) Used in the integration of compound semiconductor components in silicon or germanium substrate crystal structure
CN101304051B (zh) 具渐变式超晶格结构的太阳电池
CN103258872A (zh) 高效三结太阳能电池及其制作方法
CN109524492A (zh) 一种提高多结太阳能电池少数载流子收集的方法
KR20120012719A (ko) Ⅲ-ⅴ족 화합물 반도체 양자점을 흡수층으로 이용한 태양전지 및 이의 제조방법
CN112117344A (zh) 一种太阳能电池以及制作方法
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN109742187A (zh) 一种多节太阳能电池制造方法
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN205385027U (zh) 一种含dbr结构的五结太阳能电池
CN104241416A (zh) 一种含量子阱结构的三结太阳能电池
CN114171615A (zh) 一种硅基多结太阳电池及其渐变缓冲层

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees