CN104241409A - 一种在GaAs衬底上生长GaInNAs薄膜的方法 - Google Patents

一种在GaAs衬底上生长GaInNAs薄膜的方法 Download PDF

Info

Publication number
CN104241409A
CN104241409A CN201410421893.7A CN201410421893A CN104241409A CN 104241409 A CN104241409 A CN 104241409A CN 201410421893 A CN201410421893 A CN 201410421893A CN 104241409 A CN104241409 A CN 104241409A
Authority
CN
China
Prior art keywords
gaas
gainnas
growth
temperature
gaas substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410421893.7A
Other languages
English (en)
Inventor
李国强
李景灵
高芳亮
温雷
张曙光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201410421893.7A priority Critical patent/CN104241409A/zh
Publication of CN104241409A publication Critical patent/CN104241409A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种在GaAs衬底上生长GaInNAs薄膜的方法,包括以下步骤:(1)清洗GaAs衬底;(2)对GaAs衬底进行除气预处理;(3)对GaAs衬底进行脱氧化膜处理;(4)生长GaAs浸润层;(5)生长InGaAs/GaAsN超晶格层;(6)生长GaInNAs外延层薄膜。本发明得到的GaInNAs薄膜晶体质量好,表面平整,对半导体器件的制备,尤其是太阳电池领域,有着积极的促进意义。

Description

一种在GaAs衬底上生长GaInNAs薄膜的方法
技术领域
本发明涉及半导体叠层太阳电池材料的技术领域,特别涉及一种在GaAs衬底上生长GaInNAs薄膜的方法。
背景技术
随着太阳能光伏发电产业和市场的迅速发展,以及在空间飞行器能源系统需求的牵引下,光伏技术不断取得重要突破:晶体硅、非晶硅、多晶硅太阳电池,III-V族化合物半导体电池,II-VI族化合物半导体电池等,越来越多的太阳电池技术日趋成熟,同时,相应的光电转换效率不断提高,使今天的光伏技术在空间和地面都得到了越来越广泛的应用。基于GaAs的III-V族化合物半导体电池技术的迅速发展是最引人瞩目、里程碑式的突破;并且GaAs基系太阳电池效率高、抗辐照性能好、耐高温、可靠性好,符合空间环境对太阳电池的要求,因此,GaAs基系太阳电池在空间科学领域正逐步取代硅系列太阳电池,成为空间太阳能发电系统的主电源。目前,基于GaAs衬底的GaAs高效多结叠层太阳电池已经获得>41%的光电转换效率。由于GaAs材料的能带为1.42eV,而单结GaAs太阳电池只能吸收某一特定波长的太阳光,因此其光电转换效率受到限制。为了提高太阳能电池对太阳光的利用率,需要采用多结叠层太阳能电池结构,对太阳光谱进行“分割”。
在此之上,要获得更高光电转换效率,多结叠层太阳电池的能带匹配是关键。目前常规三结GaAs系太阳电池方面,主要是GaInP/InGaAs/Ge(1.84/1.4/0.67)结构太阳电池,该体系以晶格匹配为首要考虑原则,限制了材料体系的选择,电池的转换效率提升空间非常有限。为了解决带隙失配严重制约三结叠层电池性能的问题,最新技术尝试采用GaAs为衬底的晶格匹配,且底电池带宽变为1eV的较理想能带匹配体系,这样转换效率会有所提高。除三结叠层电池外,通过理论计算,带宽为1eV的材料也可作为四结叠层太阳电池的第三结电池,这样能带匹配更为理想(1.8/1.4/1.0/0.67eV),光的转换效率会更高。而目前应用最多的带宽为1eV的材料为In0.3Ga0.7As,但是,由于In0.3Ga0.7As与GaAs晶格失配较大(晶格失配度为2.15%)会降低薄膜外延质量,晶格失配所带来的穿透位错、应力,会使外延材料体内产生大量的位错、缺陷以及表面起伏,从而恶化器件的性能,造成太阳能电池光电转换效率低。为降低缺陷密度,生长In0.3Ga0.7As需要引入生长工艺较复杂的缓冲层环节,无疑增加了不少时间和经济成本,不利于当前太阳电池发展的趋势,因此新的1eV材料有待进一步开发。研究发现,稀N半导体化合物,即在传统的III-V族半导体化合物中,并入少量的N,形成多元半导体化合物,这种材料体系具有独特的能带特性。其中,GaInNAs这种稀N半导体化合物,对于太阳电池,更是有着诱人的研究前景,因为该材料体系不仅可大范围调节带宽(理论上的带宽可达到1eV),而且当含量比为In/N=2.8时,GaInNAs晶体材料恰与GaAs衬底晶格完全匹配。这样的能隙及晶格常数特点,是太阳电池第三结最为理想的材料。但是GaInNAs薄膜的获得是十分困难的:首先,N在GaAs中的并入存在一个极限值,约为2%,而要实现GaInNAs材料带宽为1eV,则N的含量必须达到3%左右,可见要实现N在材料中的有效并入是十分困难的;其次,要使GaInNAs与GaAs晶格匹配,则材料中In/N=2.8,要精确控制这种比例难度也是很大的;最后,N的并入后,材料也十分容易发生相分离,尤其是In原子,容易在表面析出,同时相分离容易发生,导致晶体质量的严重退化。因此高晶体质量的GaInNAs的外延生长一直是研究的重点,尤其是在太阳电池领域。而根据目前外延生长技术,尤其是低温MBE技术的发展,能带为1eV的材料GaInNAs已经具备了生长的可行性。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的在于提供一种在GaAs衬底上生长GaInNAs薄膜的方法,得到的长GaInNAs薄膜表面平整、晶体质量好。
本发明的目的通过以下技术方案实现:
一种在GaAs衬底上生长GaInNAs薄膜的方法,包括以下步骤:
(1)清洗GaAs衬底;
(2)对GaAs衬底进行除气预处理;
(3)对GaAs衬底进行脱氧化膜处理;
(4)生长GaAs浸润层:GaAs衬底温度为500℃~580℃,Ga源温度为900℃~950℃,As源的温度为250~300℃,反应室压力3×10-8~5×10-8Torr,V-III束流比为20~30,生长速率为1.0~2.0ML/s,生长GaAs浸润层;
(5)生长InGaAs/GaAsN超晶格层:GaAs衬底温度为500℃~580℃,Ga源温度为900℃~950℃,As源的温度为250~300℃,In源温度为680~720℃,反应室压力2×10-6~5×10-6Torr,V-III束流比为20~30,InGaAs生长速率为1~2ML/s,GaAsN生长速率为0.5~1.2ML/s,产生射频N等离子体的电源功率为200~250W,N2流量为0.15~0.3sccm,生长3~5周期的InGaAs/GaAsN超晶格;
(6)生长GaInNAs外延层薄膜:GaAs衬底温度在450~550℃,Ga源温度为900℃~950℃,As源的温度为250~300℃,In源温度为680℃~720℃,反应室压力2~5×10-6Torr、在不计入N的情况下V-III束流比为20~35、产生射频N等离子体的电源功率为200~250W,N2流量为0.15~0.3sccm、生长速度1.0~1.6ML/s,生长GaInNAs外延层薄膜。
步骤(1)所述清洗GaAs衬底,具体为:
超声去除GaAs衬底表面粘污颗粒;经过三氯乙烯、丙酮、甲醇洗涤,去除表面有机物;将GaAs衬底放在H2SO4:H2O2:H2O为3:1:1的溶液中腐蚀1~2分钟;经HCl清洗去除表面氧化物和有机物;去离子水漂洗;清洗后的GaAs衬底用经过过滤的干燥氮气吹干。
步骤所述(2)对GaAs衬底进行除气预处理,具体为:
将清洗完毕后的GaAs衬底送入分子束外延进样室预除气半小时;再送入传递室300~400℃除气1~1.5小时,完成除气后送入生长室。
步骤(3)所述对GaAs衬底进行脱氧化膜处理,具体为:
在砷束流保护下,GaAs衬底温度为600~650℃,高温烘烤10~15分钟。
所述GaAs浸润层的厚度为100~150nm。
所述InGaAs/GaAsN超晶格层中,InGaAs厚度为2~3nm,GaAsN厚度为1~1.5nm。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明的在GaAs衬底上生长GaInNAs薄膜的方法,先在GaAs衬底上生长GaAs浸润层,再生长InGaAs/GaAsN超晶格层,然后生长GaInNAs外延层薄膜,工艺实现简单可行,有利于实际的生产应用。本发明利用InGaAs/GaAsN超晶格,得到应力补偿的过渡层,一方面可不改变GaInNAs外延层的晶格常数,另一方面在GaAsN上生长GaInNAs层可有效引导该层中N原子的并入,解决了在GaAs上直接外延生长GaInNAs难以实现N并入的难点。
(2)本发明的制备方法,应用MBE技术,制备得到的生长在GaAs衬底上的GaInNAs薄膜,具有很高的晶体质量,在技术领域上是一个新的突破,能对半导体器件领域,尤其是太阳电池领域,有着积极的促进意义。
(3)本发明的制备方法得到的生长在GaAs衬底上的GaInNAs薄膜,实现了表面平整,对后续的器件制作,包括其他结电池的外延生长,打下了良好的基础。
附图说明
图1为本发明的实施例1制备的生长在GaAs衬底上的GaInNAs薄膜的结构示意图。
图2为本发明的实施例1制备的生长在GaAs衬底上的GaInNAs薄膜的XRD摇摆曲线。
图3为本发明的实施例1制备的生长在GaAs衬底上的GaInNAs薄膜的单晶XRC图。
图4为本发明的实施例1制备的生长在GaAs衬底上的GaInNAs薄膜原子力显微镜图。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
本实施例的生长在GaAs衬底上的GaInNAs薄膜的制备方法,包括以下步骤:
(1)清洗GaAs衬底,具体为:
采用(001)晶向的n-GaAs衬底;超声去除GaAs衬底表面粘污颗粒;经过三氯乙烯、丙酮、甲醇洗涤,去除表面有机物;将GaAs衬底放在50℃的H2SO4:H2O2:H2O(3:1:1)溶液中腐蚀1分钟;经HCl清洗去除表面氧化物和有机物;去离子水漂洗;清洗后的GaAs衬底用经过过滤的干燥氮气吹干。
(2)对GaAs衬底进行除气预处理,具体为:
将清洗完毕后的GaAs衬底送入分子束外延进样室预除气半小时;再送入传递室300℃除气1.5小时,完成除气后送入生长室;
(3)对GaAs衬底进行脱氧化膜处理,具体为:在砷束流保护下,将GaAs衬底温度升至600℃,高温烘烤15分钟。
(4)生长GaAs浸润层:GaAs衬底温度为580℃,Ga源温度为900℃,As源的温度为250℃,反应室压力3×10-8Torr,V-III束流比为20,生长速率为1.0ML/s,生长厚度为100nm的GaAs浸润层;本步骤对腐蚀后的衬底表面起着重要的平整作用。
(5)生长三周期InGaAs/GaAsN超晶格层:GaAs衬底温度为580℃,Ga源温度为900℃,As源的温度为250℃,In源温度为680℃,反应室压力2×10-6Torr,V-III束流比为20,InGaAs生长速率为1ML/s,生长厚度为2nm;产生射频N等离子体的电源功率为200W,N2流量为0.15sccm,GaAsN生长速率为0.5ML/s,生长厚度为1nm。每周期的工艺条件均一致。
(6)生长GaInNAs外延层薄膜:GaAs衬底温度在450℃,Ga源温度为900℃,As源的温度为250℃,In源温度为680℃,反应室压力为2.0×10-6Torr、在不计入N的情况下V-III束流比为20、产生射频N等离子体的电源功率为200W,N2流量为0.15sccm、生长速度1.0ML/s,生长厚度为300nm的GaInNAs外延层薄膜。
如图1所示,本实施例制备的生长在GaAs衬底上的GaInNAs薄膜,包括生长在GaAs衬底11上的GaAs浸润层12、生长在GaAs浸润层12上的三周期InGaAs/GaAsN超晶格层13和GaInNAs层14。
图2为本实施例制备的生长在GaAs衬底上的GaInNAs薄膜的衬底XRC谱图,由图2可知,GaInNAs外延层薄膜除了衬底峰外,还存在着明显的侧峰,这个侧峰正是GaInNAs薄膜衍射峰,说明本发明的制备方法能成功外延生长GaInNAs。
图3为本实施例制备的生长在GaAs衬底上的GaInNAs薄膜的单晶XRC。由图3可知,GaInNAs外延层薄膜的半峰宽仅为63弧秒。说明本发明制备方法能所制备出的薄膜的晶体质量好。
图4为本实施例制备的生长在GaAs衬底上的GaInNAs薄膜的原子力显微镜图。由图4可知,GaInNAs外延层薄膜表面达到了原子级平整,平整度为0.8nm。
本发明的GaAs浸润层、三周期InGaAs/GaAsN和GaInNAs外延层薄膜均采用分子束外延生长,实现了晶体质量的大幅提高。此外又能提高薄膜表面的平整度,提高薄膜的表面性能。
实施例2
本实施例的生长在GaAs衬底上的GaInNAs薄膜的制备方法,包括以下步骤:
(1)清洗GaAs衬底,具体为:
采用(001)晶向的n-GaAs衬底;超声去除GaAs衬底表面粘污颗粒;经过三氯乙烯、丙酮、甲醇洗涤,去除表面有机物;将GaAs衬底放在60℃的H2SO4:H2O2:H2O(3:1:1)溶液中腐蚀2分钟;经HCl清洗去除表面氧化物和有机物;去离子水漂洗;清洗后的GaAs衬底用经过过滤的干燥氮气吹干。
(2)对GaAs衬底进行除气预处理,具体为:
将清洗完毕后的GaAs衬底送入分子束外延进样室预除气半小时;再送入传递室400℃除气1小时,完成除气后送入生长室;
(3)对GaAs衬底进行脱氧化膜处理,具体为:在砷束流保护下,将GaAs衬底温度升至650℃,高温烘烤10分钟。
(4)生长GaAs浸润层:GaAs衬底温度为580℃之间,Ga源温度为950℃,As源的温度为300℃,反应室压力为5×10-8Torr,V-III束流比为30,生长速率为2.0ML/s,生长厚度为150nm的GaAs浸润层;本步骤对衬底表面的平整起着重要作用。
(5)生长五周期InGaAs/GaAsN超晶格层:GaAs衬底温度为580℃,Ga源温度为950℃,As源的温度为300℃,In源温度720℃,反应室压力5×10-6Torr,V-III束流比为30,InGaAs生长速率为2ML/s,生长厚度为3nm;产生射频N等离子体的电源功率为250W,N2流量为0.3sccm,GaAsN生长速率为1.2ML/s,生长厚度为1.5nm。每周期的超晶格层工艺条件均一致。
(6)生长GaInNAs外延层薄膜:GaAs衬底温度在550℃,Ga源温度为950℃,As源的温度为300℃,In源温度为720℃,反应室压力5.0×10-6Torr、在不计入N的情况下V-III束流比为35、产生射频N等离子体的电源功率为250W,N2流量为0.3sccm、生长速度1.6ML/s,生长厚度为1.0μm的GaInNAs外延层薄膜。
本实施例制备的生长在GaAs衬底上的GaInNAs薄膜,包括生长在GaAs衬底上的GaAs浸润层、生长在GaAs浸润层上五周期InGaAs/GaAsN超晶格层及GaInNAs外延层薄膜。
本实施例制备得到的生长在GaAs衬底上的GaInNAs薄膜测试结果与实施例1类似,在此不再赘述
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种在GaAs衬底上生长GaInNAs薄膜的方法,其特征在于,包括以下步骤:
(1)清洗GaAs衬底;
(2)对GaAs衬底进行除气预处理;
(3)对GaAs衬底进行脱氧化膜处理;
(4)生长GaAs浸润层:GaAs衬底温度为500℃~580℃,Ga源温度为900℃~950℃,As源的温度为250~300℃,反应室压力3×10-8~5×10-8Torr,V-III束流比为20~30,生长速率为1.0~2.0ML/s,生长GaAs浸润层;
(5)生长InGaAs/GaAsN超晶格层:GaAs衬底温度为500℃~580℃,Ga源温度为900℃~950℃,As源的温度为250~300℃,In源温度为680~720℃,反应室压力2×10-6~5×10-6Torr,V-III束流比为20~30,InGaAs生长速率为1~2ML/s,GaAsN生长速率为0.5~1.2ML/s,产生射频N等离子体的电源功率为200~250W,N2流量为0.15~0.3sccm,生长3~5周期的InGaAs/GaAsN超晶格;
(6)生长GaInNAs外延层薄膜:GaAs衬底温度在450~550℃,Ga源温度为900℃~950℃,As源的温度为250~300℃,In源温度为680℃~720℃,反应室压力2~5×10-6Torr、在不计入N的情况下V-III束流比为20~35、产生射频N等离子体的电源功率为200~250W,N2流量为0.15~0.3sccm、生长速度1.0~1.6ML/s,生长GaInNAs外延层薄膜。
2.根据权利要求1所述的在GaAs衬底上生长GaInNAs薄膜的方法,其特征在于,步骤(1)所述清洗GaAs衬底,具体为:
超声去除GaAs衬底表面粘污颗粒;经过三氯乙烯、丙酮、甲醇洗涤,去除表面有机物;将GaAs衬底放在H2SO4:H2O2:H2O为3:1:1的溶液中腐蚀1~2分钟;经HCl清洗去除表面氧化物和有机物;去离子水漂洗;清洗后的GaAs衬底用经过过滤的干燥氮气吹干。
3.根据权利要求1所述的在GaAs衬底上生长GaInNAs薄膜的方法,其特征在于,步骤所述(2)对GaAs衬底进行除气预处理,具体为:
将清洗完毕后的GaAs衬底送入分子束外延进样室预除气半小时;再送入传递室300~400℃除气1~1.5小时,完成除气后送入生长室。
4.根据权利要求1所述的在GaAs衬底上生长GaInNAs薄膜的方法,其特征在于,步骤(3)所述对GaAs衬底进行脱氧化膜处理,具体为:
在砷束流保护下,GaAs衬底温度为600~650℃,高温烘烤10~15分钟。
5.根据权利要求1所述的在GaAs衬底上生长GaInNAs薄膜的方法,其特征在于,所述GaAs浸润层的厚度为100~150nm。
6.根据权利要求1所述的在GaAs衬底上生长GaInNAs薄膜的方法,其特征在于,所述InGaAs/GaAsN超晶格层中,InGaAs厚度为2~3nm,GaAsN厚度为1~1.5nm。
CN201410421893.7A 2014-08-25 2014-08-25 一种在GaAs衬底上生长GaInNAs薄膜的方法 Pending CN104241409A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410421893.7A CN104241409A (zh) 2014-08-25 2014-08-25 一种在GaAs衬底上生长GaInNAs薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410421893.7A CN104241409A (zh) 2014-08-25 2014-08-25 一种在GaAs衬底上生长GaInNAs薄膜的方法

Publications (1)

Publication Number Publication Date
CN104241409A true CN104241409A (zh) 2014-12-24

Family

ID=52229156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410421893.7A Pending CN104241409A (zh) 2014-08-25 2014-08-25 一种在GaAs衬底上生长GaInNAs薄膜的方法

Country Status (1)

Country Link
CN (1) CN104241409A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405757A (zh) * 2015-12-18 2016-03-16 中国科学院兰州化学物理研究所 一种提高GaAsN外延薄膜中N的并入量并降低间隙缺陷产生的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
TW200725919A (en) * 2005-12-30 2007-07-01 Ind Tech Res Inst Solar cell with superlattice structure and fabricating method thereof
US20100180936A1 (en) * 2009-01-19 2010-07-22 Samsung Electronics Co., Ltd. Multijunction solar cell
CN103325863A (zh) * 2013-06-07 2013-09-25 华南理工大学 生长在GaAs衬底上的InGaAs薄膜及其制备方法
CN103943700A (zh) * 2014-04-18 2014-07-23 华南理工大学 一种生长在GaAs衬底上的InGaAsN薄膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
TW200725919A (en) * 2005-12-30 2007-07-01 Ind Tech Res Inst Solar cell with superlattice structure and fabricating method thereof
US20100180936A1 (en) * 2009-01-19 2010-07-22 Samsung Electronics Co., Ltd. Multijunction solar cell
CN103325863A (zh) * 2013-06-07 2013-09-25 华南理工大学 生长在GaAs衬底上的InGaAs薄膜及其制备方法
CN103943700A (zh) * 2014-04-18 2014-07-23 华南理工大学 一种生长在GaAs衬底上的InGaAsN薄膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李景灵: "GaAs基GaInNAs太阳电池研究进展", 《半导体光电》 *
陆大成,段树坤: "《金属有机化合物气相外延基础及应用 》", 31 May 2009, article "第7篇 半导体低维结构和量子器件", pages: 52-53 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105405757A (zh) * 2015-12-18 2016-03-16 中国科学院兰州化学物理研究所 一种提高GaAsN外延薄膜中N的并入量并降低间隙缺陷产生的方法

Similar Documents

Publication Publication Date Title
CN101859813B (zh) 四结GaInP/GaAs/InGaAs/Ge太阳电池的制作方法
CN102222734B (zh) 一种倒置太阳能电池制作方法
CN101950774A (zh) 四结GaInP/GaAs/InGaAsP/InGaAs太阳电池的制作方法
CN102560634A (zh) 在GaAs衬底上生长InGaAs薄膜的方法
CN102157577B (zh) 纳米硅/单晶硅异质结径向纳米线太阳电池及制备方法
WO2017084491A1 (zh) 双结薄膜太阳能电池组件及其制作方法
CN103325863A (zh) 生长在GaAs衬底上的InGaAs薄膜及其制备方法
Huang et al. Flexible four-junction inverted metamorphic AlGaInP/AlGaAs/In0. 17Ga0. 83As/In0. 47Ga0. 53As solar cell
CN103943700B (zh) 一种生长在GaAs衬底上的InGaAsN薄膜及其制备方法
CN101859814B (zh) 在硅衬底上生长InGaP/GaAs/Ge三结太阳能电池的方法
CN104659158A (zh) 倒装多结太阳能电池及其制作方法
CN104766896B (zh) 一种具有梯度结构的铜铟镓硒薄膜太阳能电池及其制备方法
CN104282795B (zh) GaInP/GaAs/InGaAs/Ge太阳能电池的制备方法
García et al. Ge virtual substrates for high efficiency III-V solar cells: applications, potential and challenges
CN203826398U (zh) 一种生长在GaAs衬底上的InGaAsN薄膜
CN101771097A (zh) 一种带隙可调控的硅基异质结太阳电池
CN104157725B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN104241409A (zh) 一种在GaAs衬底上生长GaInNAs薄膜的方法
CN203288608U (zh) 生长在GaAs衬底上的InGaAs薄膜
CN106409958A (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
CN104993005A (zh) 一种基于外延正向失配生长的多结GaAs薄膜太阳能电池
WO2017084492A1 (zh) 双结薄膜太阳能电池组件及其制作方法
CN102779890A (zh) 一种倒置三结太阳能电池及其制造方法
WO2013004188A1 (zh) 太阳能电池,系统,及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141224