TWI275452B - Electropolishing assembly and methods for electropolishing conductive layers - Google Patents
Electropolishing assembly and methods for electropolishing conductive layers Download PDFInfo
- Publication number
- TWI275452B TWI275452B TW091133283A TW91133283A TWI275452B TW I275452 B TWI275452 B TW I275452B TW 091133283 A TW091133283 A TW 091133283A TW 91133283 A TW91133283 A TW 91133283A TW I275452 B TWI275452 B TW I275452B
- Authority
- TW
- Taiwan
- Prior art keywords
- wafer
- nozzle
- electrolyte liquid
- conductive member
- chuck
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 143
- 239000003792 electrolyte Substances 0.000 claims abstract description 227
- 235000012431 wafers Nutrition 0.000 claims description 383
- 239000007788 liquid Substances 0.000 claims description 253
- 229910052751 metal Inorganic materials 0.000 claims description 159
- 239000002184 metal Substances 0.000 claims description 159
- 238000005498 polishing Methods 0.000 claims description 113
- 230000003287 optical effect Effects 0.000 claims description 51
- 229910021645 metal ion Inorganic materials 0.000 claims description 41
- 239000004065 semiconductor Substances 0.000 claims description 41
- 230000008569 process Effects 0.000 claims description 36
- 238000005259 measurement Methods 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- 238000007747 plating Methods 0.000 claims description 11
- 238000005260 corrosion Methods 0.000 claims description 10
- 239000012212 insulator Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 230000002079 cooperative effect Effects 0.000 claims description 9
- 230000007797 corrosion Effects 0.000 claims description 9
- 239000004033 plastic Substances 0.000 claims description 8
- 229920003023 plastic Polymers 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 7
- 229910052697 platinum Inorganic materials 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 3
- 230000009972 noncorrosive effect Effects 0.000 claims description 3
- 238000009713 electroplating Methods 0.000 claims description 2
- 229910010293 ceramic material Inorganic materials 0.000 claims 2
- 239000010408 film Substances 0.000 claims 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000007654 immersion Methods 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 239000011810 insulating material Substances 0.000 claims 1
- 229920003051 synthetic elastomer Polymers 0.000 claims 1
- 239000005061 synthetic rubber Substances 0.000 claims 1
- 239000010409 thin film Substances 0.000 claims 1
- 239000012530 fluid Substances 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 20
- 239000000523 sample Substances 0.000 description 17
- 125000006850 spacer group Chemical group 0.000 description 17
- 238000007639 printing Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 14
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- -1 polytetrafluoroethylene Polymers 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- 239000010936 titanium Substances 0.000 description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 10
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 8
- 229910001431 copper ion Inorganic materials 0.000 description 8
- 229910052770 Uranium Inorganic materials 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 235000011007 phosphoric acid Nutrition 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000004800 polyvinyl chloride Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000007517 polishing process Methods 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 3
- 229920002449 FKM Polymers 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 238000011112 process operation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- 235000014036 Castanea Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- NMFHJNAPXOMSRX-PUPDPRJKSA-N [(1r)-3-(3,4-dimethoxyphenyl)-1-[3-(2-morpholin-4-ylethoxy)phenyl]propyl] (2s)-1-[(2s)-2-(3,4,5-trimethoxyphenyl)butanoyl]piperidine-2-carboxylate Chemical compound C([C@@H](OC(=O)[C@@H]1CCCCN1C(=O)[C@@H](CC)C=1C=C(OC)C(OC)=C(OC)C=1)C=1C=C(OCCN2CCOCC2)C=CC=1)CC1=CC=C(OC)C(OC)=C1 NMFHJNAPXOMSRX-PUPDPRJKSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67075—Apparatus for fluid treatment for etching for wet etching
- H01L21/6708—Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H3/00—Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F7/00—Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
- H01L21/2885—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6838—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68707—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/001—Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Weting (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
1275452 A7 ___B7__ 五、發明説明(彳) 發明所屬之技術領域 本發明一般而言係有關半導體處理裝置,更明確地, (請先閱讀背面之注意事項再填寫本頁) 係有關用以電解拋光半導體裝置上之導電層的電解拋光裝 置。 先前技術 半導體裝置係使用數種不同處理步驟而被製造或製作 於半導體晶圓上以產生電晶體及互連元件。爲了電連接半 導體晶圓相關的電晶體終端,故形成導電(例如,金屬) 溝槽、接觸孔(vias )等於電介質材料中而成爲半導體裝置 之部分。溝槽及接觸孔耦合電晶體之間、半導體裝置的內 部電路之間、及半導體裝置的外部電路之間的電信號及電 力。 經濟部智慧財產局員工消費合作社印製 在形成半導體互連元件時,半導體晶圓歷經(例如) 遮蔽、鈾刻、沈積製程以形成半導體裝置之理想的電子電 路。明確地,可能執行多重遮蔽及蝕刻步驟以形成凹陷區 域之一圖案於一電介質層中(在一半導體晶圓上),此等 凹陷區域係作用爲互連之溝槽及接觸孔。可接著執行一沈 積製程以沈積一金屬層於半導體晶圓上,藉以沈基金屬於 溝槽及接觸孔中,以及於半導體晶圓之非凹陷區域上。爲 了隔離互連(諸如成型的溝槽及接觸孔),故移除其沈積 於半導體晶圓之非凹陷區域上的金屬。1275452 A7 ___B7__ V. OBJECT DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates generally to semiconductor processing devices, and more specifically, (please read the notes on the back side and then fill out this page) An electropolishing device for a conductive layer on the device. Prior Art Semiconductor devices are fabricated or fabricated on semiconductor wafers using a number of different processing steps to produce transistors and interconnect components. In order to electrically connect the semiconductor wafer-related transistor terminals, conductive (e.g., metal) trenches, vias, are formed in the dielectric material to form part of the semiconductor device. Electrical signals and electrical power between the trench and the contact hole coupling transistor, between the internal circuits of the semiconductor device, and between the external circuits of the semiconductor device. Ministry of Economic Affairs, Intellectual Property Office, Staff Consumer Cooperative Printed In the formation of semiconductor interconnect components, semiconductor wafers are subjected to, for example, masking, uranium engraving, and deposition processes to form the desired electronic circuitry for semiconductor devices. Specifically, multiple masking and etching steps may be performed to form one of the recessed regions in a dielectric layer (on a semiconductor wafer) that acts as interconnecting trenches and contact holes. A deposition process can then be performed to deposit a metal layer on the semiconductor wafer, whereby the sink is in the trenches and contact holes, and on the non-recessed areas of the semiconductor wafer. In order to isolate the interconnects (such as shaped trenches and contact holes), the metal deposited on the non-recessed regions of the semiconductor wafer is removed.
在半導體晶圓上移除其沈積於電介質層之非凹陷區域 的金屬膜的習知方法習知包含(例如)化學機械拋光(CMP 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -5 - 1275452 A7 B7 五、發明説明(2) )。CMP方法被廣泛地使用於半導體工業中以拋光及使溝 槽及接觸孔中之金屬層平坦化與電介質層之非凹陷區域以 形成互連線。 於CMP製程中,一晶圓組成被置於一平台或網上的 CMP墊之上。晶圓組成包含一具有一或更多層及/或特徵( 諸如形成於電介質層中之互連元件)的基底。接著施加一 力以壓制晶圓組成於CMP墊之上。CMP墊與基底組成係彼 此相對地移動,當施力以拋光及平坦化晶圓之表面時。一 拋光溶液(通常稱爲拋光膏(slurry))通常含有一種拋光料 且會起化學反應以從晶圓更快速地移除不要的材料(例如 ,金屬層),相較於其他材料(例如,電介質材料)。 然而,CMP方法可能對於底下的半導體結構具有不利 的影響,因爲其相關之相對強的機械力。例如,當互連形 狀達到0.13微米以下時,可能存在極大差異於導電材料( 例如,典型金屬鑲嵌製程中所使用之銅及低k膜)的機械 性質之間,例如,低k電介質膜之楊氏模數可能較銅之楊 氏模數更低了超過10階的大小。因此,於一 CMP製程中施 加在電介質膜及銅上之相對強的機械力(除了別的以外) 可能造成半導體基底上之應力相關的缺陷,其包含分層( delamination)、凹狀扭曲(dishing)、腐蝕、膜隆起、刮 痕,等等。 因此需要新的製造技術。例如,可使用電拋光製程以 自一晶圓移除或蝕刻金屬層。通常,於一電拋光製程中, 欲拋光之晶圓的部分被浸入電解質液溶液中,並接著供電 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) •裝·Conventional methods for removing a metal film deposited on a non-recessed region of a dielectric layer on a semiconductor wafer include, for example, chemical mechanical polishing (CMP) paper size applicable to China National Standard (CNS) A4 specification (210X297 mm) ) -5 - 1275452 A7 B7 V. Description of invention (2)). CMP methods are widely used in the semiconductor industry to polish and planarize metal layers in trenches and contact holes with non-recessed regions of the dielectric layer to form interconnect lines. In the CMP process, a wafer composition is placed on a CMP pad on a platform or network. The wafer composition includes a substrate having one or more layers and/or features, such as interconnecting elements formed in a dielectric layer. A force is then applied to press the wafer onto the CMP pad. The CMP pad and substrate components move relative to each other when force is applied to polish and planarize the surface of the wafer. A polishing solution (commonly referred to as a slurry) typically contains a polishing compound and chemically reacts to remove unwanted material (eg, a metal layer) from the wafer more quickly than other materials (eg, Dielectric material). However, the CMP method may have an adverse effect on the underlying semiconductor structure because of its relatively strong mechanical forces. For example, when the interconnect shape reaches 0.13 microns or less, there may be a significant difference between the mechanical properties of a conductive material (eg, copper used in a typical damascene process and a low-k film), for example, a low-k dielectric film. The modulus may be lower than the Young's modulus of copper by more than 10 orders. Therefore, the relatively strong mechanical force exerted on the dielectric film and copper during a CMP process, among other things, may cause stress-related defects on the semiconductor substrate, including delamination and concave distortion (dishing) ), corrosion, film bulging, scratches, and so on. Therefore, new manufacturing technologies are needed. For example, an electropolishing process can be used to remove or etch a metal layer from a wafer. Usually, in an electropolishing process, the portion of the wafer to be polished is immersed in the electrolyte solution, and then the paper is supplied to the Chinese National Standard (CNS) Α4 specification (210X 297 mm) (please read the back) Please fill out this page again) • Install·
、1T 經濟部智慧財產局員工消費合作社印製 -6- 1275452 A7 _ B7_ _ 五、發明説明(3) 至晶圓。這些情況便導致銅被移除或拋光自晶圓。 (請先閲讀背面之注意事項再填寫本頁) 內容 於本發明之一型態中,提供一種用以電解拋光一晶圓 .上之導電膜之示範的裝置及方法。一種示範裝置包含一用 以固持晶圓之夾盤(chuck)、一用以旋轉晶圓夾盤之致動 器、一用以電解拋光晶圓之噴嘴、及一置於晶圓邊緣周圍 之屏蔽(shroud)。一種電解拋光晶圓上之導電膜的示範方 法包含以足夠速度旋轉一晶圓夾盤以致其入射於晶圓上之 電解質液在晶圓之表面上流動朝向晶圓之邊緣。 本發明配合後附圖形及申請專利範圍而考量以下詳細 敘述則最能被瞭解。 實施方式 經濟部智慧財產局員工消費合作社印製 爲了提供對本發明之更透徹的暸解,以下說明提出一 些特定細節,諸如特定材料、參數,等等。然而,應理解 其說明並不是對於本發明之範圍有所限制,而只是被提供 以獲得示範實施例之較佳描述。 I.示範性電解拋光裝置: 圖1A及1B顯不一種可被用以拋光晶圓1004之示範性 晶圓電解拋光裝置的橫斷面及頂視圖。廣泛而言,示範性 電解拋光裝置之操作係藉由導引電解質液體流朝向一晶圓 上之金屬膜,當供應一電荷至晶圓時。電荷及電解質液體 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1275452 A7 B7 五、發明説明(4) 造成金屬膜中之金屬離子溶解於電解質液體中。電解質液 體之電流密度及電解質液體中之金屬離子的濃度決定(至 少部分地)拋光之速率。因此,藉由控制電流密度、電解 質溶液濃度,等等,則電解拋光裝置可精確地拋光其配置 於半導體晶圓上之金屬層。 如圖1A中所示,電解拋光裝置可包含夾盤1002、致動 器1000、及拋光容器(receptacle) 1008。拋光容器1008可 形成以任何電絕緣且能抵抗對酸及腐蝕之材料,諸如聚四 氟乙烯(商業上稱爲TEFLON )、聚氯乙烯(PVC )、聚偏 氟乙烯(PVDF)、聚丙烯,等等。拋光容器1008最好是可 被形成自PVDF。然而,應理解其拋光容器1008可根據應 用而由不同材料所形成。 如圖1A中所示,電解質液體1038可透過噴嘴1010、 1012、及/或1014而流入拋光容器1008。更明確地,泵 1020將來自電解質液體貯存器1070加壓越過止回閥1024 而至流通過濾器1018。流通過濾器可包含液體大量流動控 制器(LMFCs),其可控制遞送至噴嘴1010、1012、及 1014之電解質液體1038的量及速率。此外,流通過濾器 1018可從電解質液體1038過瀘出污染物以減少污染物的量 ,這些污染物可能通過噴嘴1010、1012、或1014而進入拋 光容器1008而可能惡化電解拋光製程或者阻塞LMFCs (假 如有使用的話)。於本範例中,流通過濾器1 〇 1 8理想地移 除大於約0.05至約0.1微米之粒子。然而,應理解可根據 特定應用而使用不同的過濾系統。此外,雖然過濾污染物 本紙張尺度適用中國國家標準(CNS ) A4規格(2川X 297公釐) (請先閲讀背面之注意事項再填寫本頁) -裝· 訂 經濟部智慧財產局員工消費合作社印製 -8- 經濟部智慧財產局員工消費合作社印製 1275452 A7 B7五、發明説明(5) 是有利的,在某些應用中之晶圓拋光總成可能省略流通過 濾器101 8。 電解質液體1038可包含任何便利的電解拋光液體,諸 如磷酸,等等。電解質液體1038最好是包含正磷酸(H3P〇4 ),其具有介於約60重量百分比至約85重量百分比之間 的濃度,而更理想的是約76重量百分比。此外,電解質液 體1038最好是包含約10至40重量百分比之乙二醇,其剩 餘物包含水及H3P〇4酸,其具有約1%的鋁金屬(相對於酸 之重量)。然而,電解質液體1038之濃度及組成可根據特 定應用而改變。 泵1020可包含任何適當的液壓泵,諸如離心泵、隔膜 (diaphragm )栗、風箱(bellow )栗,等等。此外,栗 1020可抵抗酸、腐蝕、及污染。雖然僅顯示一個泵1020, 但應理解任何數目的泵1020均可被使用。例如,可使用分 離的泵於每一噴嘴1 01 0、1 01 2、及1 014。此外,於某些應 用中,電解質液體103 8可透過噴嘴1010、1012、及1014 以流入拋光容器1008而無須泵1020。例如,電解質液體 1038可被維持在某一壓力於電解質液體貯存器1〇70中。另 一方面,介於電解質液體貯存器1070與噴嘴1010、1012、 及1014之間的供應線可被維持於某一壓力。 LMFCs可包含任何便利的大量流動控制器,其更理想 的是能夠抵抗酸、腐蝕、及污染。此外,LMFCs以固定流 率遞送電解質液體1038至噴嘴1〇1〇、1〇12、及1014。此外 ,LMFCs可適當地遞送電解質液體丨〇38以其正比於噴嘴 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公慶) 一 —- -9 - (請先閱讀背面之注意事項再填寫本頁) 1275452 經濟部智慧財產局員工消費合作社印製 A7 _ B7五、發明説明(6) 1 〇 10、101 2、及1014之橫斷面面積的流率。例如,假如噴 嘴1012之直徑較噴嘴1014大,則LMFCs可較有利地以一 較大的流率遞送電解質液體1038至噴嘴1012。於本示範實 施例中,LMFCs最好是被構成而遞送電解質液體1038以一 介於每分鐘0.5公升與每分鐘40公升之間的流率,根據噴 嘴尺寸、噴嘴與晶圓間之距離,等等。 電解質液體貯存器1070可進一步包含一熱交換器1036 、冷卻器/加熱器1034、及一溫度感應器1032,以利控制電 解質液體貯存器1070內之電解質液體1038的溫度。再者, 一個以上電極1028可被包含於貯存器1070中且被耦合至電 源供應1030。施加電荷至電極1028便從電解質液體1038 移除金屬離子,藉以調整電解質液體1038之金屬離子濃度 。亦可施加一相反電荷至電極1028以增加金屬離子至電解 質液體1038。 示範性晶圓拋光器總成進一步包含配置於噴嘴1012及 1014內之電極。如以下將更詳細地描述,雖然本示範性實 施例包含具有兩個電極於其中之兩個噴嘴,但是可使用任 何數目的噴嘴及每個噴嘴之電極數,無論是小於或大於兩 個。通常,增加一噴嘴中之電極的表面面積便增加電流密 度以及涵蓋電解質液體1038流之輪廓的電解拋光率。 如圖1D及1E中所示,噴嘴1012及1014個別包含電 極1056及1060。電極1056及1060可包含任何導電金屬, 諸如銅、不銹鋼、鉅(Ta )、鈦(Ti) 、TaN、TiN、鉛、 鉑,等等。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公 (請先閲讀背面之注意事項再填寫本頁) -10- 1275452 A7 _ B7 五、發明説明(7) 於電解拋光製程期間,某些金屬離子(其遷移離開晶 圓1004上之金屬層)可能累積於電極1〇56及1〇6〇之上。 (請先閲讀背面之注意事項再填寫本頁) 如以下將更詳細地描述,金屬累積或電鍍可被移除於一除 電鍍製程中。例如,當電極1056及1060被正地充電而晶圓 1002被負地充電時,則晶圓1〇〇4被電鍍而非電解拋光。以 此及類似方式,可移除其鑛於電極1056及1060之上的金屬 ,亦即,除電鍍。另一方面,電極1056及1060可於任何適 當時刻被適當地置換。例如,電極1056及1060可在處理約 100個晶圓之後被置換。 於某些範例中,金屬層可包含銅。因此,於電解拋光 製程期間,某些來自被拋光金屬層之銅離子遷移至電鍍電 極1056及1060。然而,假如電極1056及1060包含銅,則 電極105 6及1060可能於除電鍍製程期間溶解而變形。因此 ,於某些範例中,希望其電極1056及1060包含能抵抗除電 鑛期間被溶解之材料。例如,電極1056及1060可包含鉑及 鉑合金。另一方面,電極1056及1060可包含以一鉑層適當 塗敷之鈦,例如,具有約50微米至約400微米之厚度。 經濟部智慧財產局員工消費合作社印製 於本示範性裝置中,晶圓夾盤1002適當地固持及定位 晶圓1004於拋光容器1008之中或之上。更明確地,晶圓 1004被適當地定位正對於噴嘴1010、1012、及1014且於屏 蔽1006中。屏蔽1006可選擇性地被包含於晶圓1004周圍 以避免飛濺等,如以下將更詳細地描述。 在晶圓1004被適當地定位於拋光容器1008中之後,電 極1056及1060便由電源供應1〇4〇充電。此外,晶圓1〇〇4 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇><297公釐) -11 - 1275452 A7 _B7 五、發明説明(8) (請先閱讀背面之注意事項再填寫本頁) 係由電源供應1040充電。另一方面,可使用一個以上的電 源供應以充電電極1056及1060及晶圓1004。當適當充電 而電解質液體1038流動於噴嘴1012及1014內的電極1056 及1060與晶圓1004的表面之間時,則形成一電流。更明確 地,電極1056及1060被充電以具有負電位,相較於晶圓 1004。回應於電極1056及1060上之此負電位,.金屬離子遷 移離開晶圓1004而進入電解質液體1038,因此電解拋光晶 圓1 004。然而,當電路之極性反轉時,則金屬離子遷移朝 向晶圓1004,因而電鍍晶圓1004。 經濟部智慧財產局員工消費合作社印製 此外,如圖1A及1C中所示,噴嘴1010包含注入噴嘴 1052及終止點檢測器1016。於電解拋光製程期間,注入噴 嘴1052可被構成以供應電解質液體1038,而終止點檢測器 1016可被構成以檢測晶圓1004上之金屬層的厚度。終止點 檢測器1016可包含各種感應器,諸如超音波感應器、光學 反射感應器、電磁感應器(諸如渦電流感應器),等等。 由注入噴嘴1052所供應之電解質液體1038可作用爲一介質 ,終止點檢測器1016係通過此介質而發射信號並測量金屬 膜厚度。使用電解質液體103 8爲單一介質以傳輸信號會增 加終止點檢測器1016所執行之測量的準確度,因爲電解質 液體1038提供單一的相。反之,假如注入噴嘴1052不提供 電解質液體1038,則來自終止點檢測器之發射及測量可透 過各種其他的介質,諸如空氣等,在通過其由噴嘴1012或 噴嘴1014所供應至晶圓1004的電解質液體1038之前。如 以下將描述,具有其可能隨時間而改變之電解質液體1〇38 本紙張尺度適用中國國家標準(CNS ) A4规格(210X 297公釐) -12- 1275452 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(9) 的更新或即時特性亦可增加終止點測量之準確度。再者, 雖然顯示一具有一終止點檢測器1016之噴嘴1010,但亦可 使用具有任何數目之終止點檢測器的任何數目噴嘴。 如圖1 A中進一步顯示,致動器1 〇 〇 〇可以z軸爲中心 旋轉晶圓夾盤1002及晶圓1004。再者,於某些應用中,致 動器1000可沿著X軸移動晶圓夾盤1002及晶圓1004,而 噴嘴1010、1012、及1014保持不動。於其他應用中,噴嘴 1010、1012、及1014可沿著X軸移動,而1002及晶圓1004 保持沿著X軸靜止。於又其他應用中,致動器1000可沿著 X軸移動晶圓夾盤1002及晶圓1004,而噴嘴1010、1012、 及1014亦沿著X軸移動。 此外,電鍍裝置可以其他方式被定向。例如,噴嘴 1010、1012、及1014可被定位於晶圓1004之上,以致其電 解質液體被向下導引朝向晶圓1004。此外,晶圓1004可被 定向爲垂直與噴嘴1010、1012、及1014,而噴嘴1010、 1012、及1014係導引電解質液體朝向晶圓1〇〇4。 有關示範性晶圓電解拋光裝置之討論,參見1999年七 月2日申請之美國專利編號6,395,1 52,名稱爲「METHODS AND APPARATUS FOR ELECTROPOLISHING METAL INTERCONNECTIONS 〇N SEMICONDUCTOR DEVICES」,其 係倂入於此以供參考。再者,有關示範性終止點檢測器之 額外討論,參見2000年五月12日申請之美國專利編號 6,447,688,名稱爲「METHODSANDAPPARATUSFOREND-POINT DETECTION」,其係倂入於此以供參考。 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -13- 1275452 經濟部智慧財產局員工消費合作社印製 A7 _ B7五、發明説明(以 Π.電解質液體飛濺保護 一示範性電解拋光方法包含旋轉晶圓1 0 0 4,當電解質 液體1038被導引至晶圓1004之表面時。晶圓1〇〇4被旋轉 以一速率,此速率足以產生其造成進入之電解質液體1038 流動橫越晶圓1004之表面而朝向晶圓1004之邊緣的離心力 。最好是,電解質液體1038流至晶圓1004之邊緣於其從表 面落下之前。藉由導引此流橫越晶圓1004之表面,則液體 可避免從晶圓表面落下而中斷電解質液體1038流或者形成 電解質液體之連續列於拋光容器1008中。然而,此製程可 能造成電解質液體飛濺於容器中而溢出裝置或者中斷電解 質液體流。因此,一示範性電解拋光裝置包含一屏蔽1006 ,其係置於晶圓1004周圍,以減少或避免其已由離心力作 用之液體飛濺於拋光容器1008中或溢出自拋光容器1008。 圖1A及1B顯示屏蔽1006,其被構成以圍繞晶圓1004 及晶圓夾盤1002。如圖1A中所示,噴嘴1012可供應一電 解質液體流至晶圓1004之表面。爲了更均勻地拋光晶圓 1004上之一金屬膜,晶圓1004可以一種方式被旋轉以造成 電解質液體1038流動橫越晶圓1004而至夾盤1〇〇2之暴露 部分,但不容許電解質液體從晶圓1004之表面落下進入拋 光容器1008。任何從晶圓1004落下並形成電解質液體之一 連續列於1004與拋光容器1008之間的電解質液體可能造成 其中形成該列之晶圓1004的過度拋光。額外的拋光可能導 致金屬層之不均勻且無法預測的拋光率。 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -14- 1275452 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(d 此外,任何從晶圓1004落下或者飛濺於拋光容器1008 中之電解質液體均可能攪亂噴嘴1 0 1 2所供應之電解質液體 流。電解質液體1038流之形狀或(更明確地)輪廓因而影 響電解抛光裝置之電流拾度及抛光率因而希望使得電解質 液體1 038沿著晶圓1004之表面而流動朝向晶圓1004之邊 緣且遠離其導引至晶圓1004之上的電解質液體丨038流。 晶圓1 004可被旋轉以一適當的旋轉速度,根據電解質 液體之黏稠度,其被使用以造成電解質液體流動跨越晶圓 1004而朝向晶圓1004之邊緣或流至夾盤1〇〇2之暴露部分 。旋轉速度應使得其電解質液體1038可流動跨越晶圓1004 而不會從晶圓1004之表面落下並形成一連續列,或干擾電 解質液體1038流。明確地,電解質液體之黏稠度越低,則 需要越高的離心加速。例如,對於85%之磷酸,離心加速 可被選爲高於約1.5公尺/秒2。於一示範方法中,300 mm 直徑之晶圓被旋轉於約100每分鐘旋轉數(rpm)至約 2,000 rpm以上之範圍內,而最好是,於約1,500至約2,000 rpm之範圍。 通常,噴嘴1012或1014將掃瞄晶圓1004之整個表面 以更均勻地拋光晶圓1004。晶圓1004可被旋轉以產生一恆 定的離心加速於進入之電解質液體1038上,當噴嘴1012正 掃瞄晶圓1004之不同部分時。例如,離心加速係直接正比 於其與晶圓中心之徑向距離以及旋轉速度之平方。因此, 晶圓1004所被旋轉之速度可被減少當噴嘴1012或1014正 拋光其接近晶圓1004之邊緣的晶圓1〇〇4部分時(亦即,大 I* (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -15 - 1275452 A7 B7 五、發明説明(^ 半徑),而增加當拋光其接近晶圓1004之中心的部分時( 亦即,小半徑)。 通常,當電解質液體係以上述方式被供應至晶圓1004 時,則電解質液體可能流動朝向晶圓1004之邊緣並越過晶 圓1004之邊緣而朝向拋光容器1008之壁。若無屏蔽1006 ,則電解質液體1038可能接觸拋光容器1008之壁以及拋光 容器1008中之飛濺,因而中斷電解質液體1 038流或溢出自 拋光容器1008。 如圖1A及1B中所示,屏蔽1006可被置於晶圓1004 及夾盤1002之周圍以減少或預防電解質液體1038飛濺於或 溢出自拋光容器1008。再者,屏蔽1006可於拋光製程期間 以X方向連同夾盤1002及致動器1000而移動。明確地,屏 蔽1006可藉由一種機械附加裝置、接合物,等而被裝附至 夾盤1002及/或致動器1000。另一方面,另一使屏蔽1006 之移動同步與夾盤1002及致動器1000之致動器可分別地驅 動屏蔽1006。屏蔽1006亦可與夾盤1002 —致地或不一致 地被旋轉。 屏蔽1006可被形成以任何適當的形狀,諸如圓形、多 邊形,等等。最好是屏蔽1006被形成以減少電解質液體 1038之飛濺(在其流自晶圓1004之後)並將電解質液體 1038包容於拋光容器1008中。介於夾盤1002與屏蔽1〇〇6 之間的間隙可爲(例如)約1 mm至約10 mm之範圍內,且 最好是約5 mm。此外,如圖1A中所示,屏蔽1006之側壁 的橫斷面可被形成爲L之形狀,以避免電解質液體飛濺於 本紙張尺度適用中國國家標準(CNS ) Α4規格(210 X 297公釐) 1 — ;------ί ^ —— (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -16- 1275452 A7 B7 五、發明説明(d 屏蔽1006或夾盤1002之上。然而,屏蔽1006之橫斷面可 具有各種其他的形狀。例如,屏蔽1006之側壁(亦即,L 形狀之垂直部分)可被形成爲其他諸如C形狀等其他形狀 。此外,屏蔽1006可爲漸變細或漸變粗以減少飛濺等。屏 蔽1006亦可進一步延伸於圖1所示的晶圓1004及夾盤 1002之上或之下。 屏蔽1006可由塑膠、陶器等、或者300系列中之諸如 鉅、鈦、不銹鋼等抗腐鈾金屬或合金所製。 然而,應理解所述之電解拋光的方法不需要其電解質 液體1038流過晶圓之邊緣而到達屏蔽1006。電解質液體 1038形成一與拋光容器1008之連續列及飛濺於拋光容器 1008之內或之外的問題可被減少或避免,而無須電解質液 體完全流經晶圓1004。例如,僅藉由旋轉晶圓1004以致其 電解質液體在從晶圓1004落下之前沿著晶圓1004表面之一 部分流動朝向晶圓1 004之邊緣即可減少或避免不當的效果 III.邊緣過拋光之減少 於另一型態中,描述一種用以減少位於或接近一晶圓 之邊緣上的過拋光之電解拋光方法及裝置。通常,位於或 接近一晶圓之邊緣上的部分被拋光得較晶圓之其他區域上 的金屬層之部分爲快速。一連接至一晶圓之邊緣的電極可 能增加其電流密度於接近晶圓之邊緣區的電解質液體內, 而導致增加的抛光率。一般而3,接近晶圓之邊緣的較局 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) •裝· 訂 經濟部智慧財產局員工消費合作社印製 -17- 1275452 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(“ 電流密度及拋光率可能藉由吸收電流密度之一部分而被減 小,其係以一置於或接近晶圓之邊緣的導電構件(諸如一 環狀物等等)而透過電解質液體吸收電流密度之一部分。 接近邊緣之電流密度亦可被調整,藉由充電導電構件以改 變其被吸收之電流量藉以控制電流密度至一較大程度。 參考圖7,顯示一種用以減少邊緣過拋光之示範性裝置 及方法。一電解質液體流7080係從噴嘴7054被供應至晶圓 7004。晶圓7004被旋轉以一足夠的旋轉速度來形成電解質 液體之一薄層7081,其可拋光晶圓7004上之一金屬層。通 常,假如一電極被連接至晶圓7004之邊緣,則位於或接近 晶圓7004之邊緣的金屬層係由電解質液體之薄層7081拋光 得較晶圓7004之其他區域上的金屬更快。因此,位於或接 近晶圓7004之邊緣的金屬層可能變得過拋光。 夾盤7002包含一導電構件7114,其可減少位於或接近 晶圓7004之邊緣的過拋光之量。例如,晶圓7004及導電構 件7114均可被連接至電源供應7110且被充電以致其電解質 液體之薄層708 1中的拋光電流之一部分由導電構件7114所 吸收。藉由吸收拋光電流之一部分,導電構件7114可減小 位於或接近晶圓7004之金屬層的拋光率並減少或避免過拋 光。 導電構件7114可包含一置於或接近晶圓7004之邊緣的 單一環狀物。另外,導電構件可包含其被配置於或接近晶 圓7004之邊緣的兩個以上區段。導電構件7114可包含金屬 或合金(諸如鉅、鈦、不銹鋼,等等)、以及其他適於接 (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -18- 1275452 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(^ 觸與電解質液體708 1之導電材料。 此外,晶圓7〇〇4可被置於晶圓夾盤7002與導電構件 7 114之間,如圖7中所示。例如,一機器人手臂等可將晶 圓7 004置於鄰近晶圓夾盤7002或介於晶圓夾盤7002與導 電構件7114之間。晶圓夾盤7002及導電構件7114可接著 被放置一起或接近以固持晶圓7004於其間。示範性總成可 接著包含額外的元件,諸如固持器或定位器,以對齊並固 持晶圓夾盤7002與導電構件7114 —起,以及對齊並固持絕 緣構件於導電構件7114與用以充電晶圓7〇〇4的接點之間。 應理解其圖7中所描述之示範性裝置亦可包含如圖1 中所示之那些其他特徵,但這些特徵已被省略以說明特定 的範例。例如,屏蔽1 006 (圖1 A、1 B )可被使用與示範性 裝置以及各種泵、噴嘴、過濾器,等等。 圖8A顯示用以減少接近一晶圓之邊緣的拋光率之另一 示範性電解拋光裝置。顯示一具有導電構件8114之夾盤 8002,其可減小爲於或接近晶圓8004之邊緣的過拋光量。 圖8A係類似於圖7,除了其導電構件8114以一間隔物元件 8118分離自晶圓8004。間隔物元件8118包含(例如)一 〇 型環。間隔物元件8118可進一步由一種電絕緣且進一步能 抵抗酸及腐蝕之材料所形成,諸如陶器、聚四氟乙烯(商 業上稱爲TEFLON)、聚氯乙烯(PVC)、聚偏氟乙烯( PVDF)、聚丙烯、矽橡膠、Viton橡膠,等等。導電構件 8114係耦合至電源供應8112,而一第二導電構件或電極( 諸如彈簧構件)8114係耦合至電源供應8110。如圖所示, , 洚-- (請先閱讀背面之注意事項再填寫本頁) 、τ 本紙張尺度適用中國國家標準(CNS ) Α4規格(210 Χ297公釐) -19- 1275452 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(^ 流經導電構件8114之電流可由電源供應8112所調整或控制 ,以控制爲於或接近晶圓8004之邊緣的金屬層之拋光率。 一般而言,當底部夾盤8114所吸收之電流量增加時,則位 於或接近晶圓8004之邊緣的金屬層之拋光率便減小。 電源供應8 11 2可爲一種直流電源供應、一種同步與主 拋光電源供應8110之交流電源供應,等等。一交流電源供 應亦可包含一正向脈衝電源供應、及一正向與反向電源供 應。再者,電源供應8112可操作以一恆定電流模式、一恆 定電壓模式、或者恆定電流及恆定電壓模式之一組合,其 中恆定電流模式適用於拋光時間之一部分期間而一恆定電 壓模式適用於拋光時間之其他部分期間。亦可使用一可變 電阻來取代電源供應8 11 2,藉以供應一可變電荷至導電構 件8114 (例如,參見圖9A)。此外,一可變電阻可被包含 於導電構件8114與彈簧構件8119之間。 導電構件8114可類似地包含金屬或合金,諸如鉅、鈦 、不銹鋼,等等、以及其他導電材料。此外,導電構件 8114可包含一或更多置於或接近晶圓8004之邊緣的區段。 因此,於此示範性電解拋光裝置中,透過彈簧構件 8119及導電構件8114而施加至晶圓8004之電荷可個別由 電源供應8110及8112所獨立地控制。如此容許其接近晶圓 8004之邊緣區的電流密度之較大程度控制,以控制及減少 邊緣區之過拋光。 圖8B顯示圖8A之導電構件8114及晶圓8004所示之 架構及連接的放大視圖。明確地,導電構件8114係由電源 (請先閲讀背面之注意事項再填寫本頁) 、言 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -20- 1275452 A7 ____ B7_ 五、發明説明(^ 供應8112所充電且藉由間隔物元件8118而隔離自晶圓 8002。晶圓8004係由電源供應8110個別地充電,此電源供 應8110係耦合至其置於晶圓8004之邊緣周圍的彈簧構件 8119。彈簧構件8119提供電荷至晶圓8004,其係較(例如 )置於晶圓8004之邊緣周圍的數個電極更均勻分佈的。一 絕緣構件8121可被置於導電構件8114與彈簧構件8119之 間,當電荷被施加至導電構件8114及彈簧構件8119時。彈 簧構件8119可被形成爲環狀形式的線圈彈簧(參見,例如 ,圖8C),然而,亦可形成其他的橫斷面輪廓,諸如橢圓 形橫斷面輪廓。此外,任何數目的線圏彈簧均可根據其應 用而被使用。彈簧構件可被形成自任何便利的導電材料, 諸如不銹鋼、彈簧鋼、鈦,等等。彈簧構件8119亦可由抗 腐鈾材料形成或者是塗敷以一種諸如鉑、TiN、TaN等抗腐 鈾材料。 形成於晶圓8004與電源供應之間的接觸點數目可藉由 改變彈簧構件8119中之線圈數而被改變。以此方式,其供 應至晶圓8004之電荷可被更均勻地分佈於晶圓8004之外邊 緣周圍。例如,對於一種200毫米晶圓,通常係施加一具 有約1至約10安培之電荷。構成彈簧構件8119以產生與 晶圓8004之約1000個接觸點會減少電荷到約1至約10毫 安培於每接觸點。 然而,應理解其晶圓8004亦可由一或更多電接點來充 電。此外,可有利地使用任何用以分佈電荷於晶圓8004周 圍之機構。 本紙張尺度適用中國國家標準(CNS ) A4規格(2!0X297公釐) (請先閲讀背面之注意事項再填寫本頁) -裝· 訂 經濟部智慧財產局員工消費合作社印製 -21 - 1275452 a7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(^ 當導電構件8114係藉由間隔物元件8118而分離自晶圓 8004時,則假如彈簧構件8 119被暴露至電解質液體的話便 可能導致短路。彈簧構件8119之短路可能減小其接近晶圓 8004之邊緣部分的拋光速率之均勻度。因此,於一範例中 ,間隔物元件8118係作用爲一密封以將彈簧構件8119隔離 自電解質液體。間隔物元件8 11 8可由抗腐鈾材料所形成, 諸如Viton (碳氟化合物)橡膠、矽氧烷橡膠,等等。此外 ,間隔物元件8118可根據其特定應用而具有各種形狀及架 構。 圖8C顯示一種配合其用於減小接近晶圓邊緣之拋光速 率的示範性電解拋光裝置之示範性晶圓夾盤固持器的分解 圖。示範性晶圓夾盤包含一主體(其具有一基礎區段8002 於主體之上部分)及一導電構件8114,其中晶圓8004被固 持於主體的基礎區段8002與導電構件8114之間。晶圓夾盤 可進一步包含一頂部固持器(未顯示)以將晶圓8004及總 成夾住或者固持在一起。除了第一導電構件8114以外,晶 圓夾盤包含一第二導電構件,諸如彈簧構件8119,以施加 電荷至晶圓8004。於某些範例中,晶圓夾盤可進一步包含 絕緣器構件8121及間隔物元件8118,其係配置於主體之下 部分中所包含的基礎區段8002與導電構件8114之間。然而 ,應理解(於某些範例中)彈簧構件8119及間隔物元件 8 11 8可被省略(例如,如圖7中所示者)。於其中省略彈 簧構件8119之情況下,可包含一電極等而當作第二導電構 件以施加一電荷至晶圓8004。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) — -22- (請先閱讀背面之注意事項再填寫本頁) •裝· 訂 經濟部智慧財產局員工消費合作社印製 1275452 A7 ___B7五、發明説明(^ 於本範例中,彈簧構件8119係配置於晶圓8004與間隔 物元件8118之間。當施加壓力以將導電構件8114及基礎區 段8002固持在一起時,則彈簧構件8119便配合以維持電接 觸至晶圓8004 (參見圖8B )。此外,間隔物元件8 11 8順 應於導電構件8114與晶圓8004之間以形成一密封,其避免 彈簧構件8119接觸電解質液體並提供電絕緣於彈簧構件 8 11 9與間隔物元件8 11 8之間(假如需要的話)。 半導體晶圓之形狀通常大致上爲圓形。因此,晶圓夾 盤之各組件被描述爲具有大致上圓形的形狀。然而,應理 解其晶圓夾盤之各組件可根據特定應用及/或晶圓形狀而包 含不同形狀。例如,半導體晶圓可具有截頭的形狀以利晶 圓夾盤之組件配合。 一種用以固持及施加電荷至一晶圓而適於上述裝置及 方法的晶圓夾盤總成之其他示範性架構可見於美國專利序 Ψ, 6,248,222 r METHODS AND APPARATUS FOR HOLDING AND POSITIONING SEMICONDUCTOR WORKPIECES DURING ELECTROPOLISHING AND/OR ELECTROPLATING OF THE WORKPIECES」其係公告於2001年七月19日且被倂入於此 以利參考其完整性。 圖9A顯示用於減小其接近晶圓邊緣之拋光速率的另一 示範性電解拋光裝置。明確地,晶圓夾盤9002包含導電構 件9114,其可減少位於或接近晶圓9004之邊緣的過拋光量 ,如上所述。圖9A係類似於圖8A,除了其導電構件9114 包含一絕緣環9 11 5及一形成於絕緣環9 11 5中的導電環 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -23- 經濟部智慧財產局員工消費合作社印製 1275452 A7 B7五、發明説明(2¾ 9 11 6。絕緣環9 11 5可包含非腐蝕性絕緣材料,諸如塑膠、 陶器,等等。導電環9116可包含金屬或合金,諸如鉑、钽 、鈦、不銹鋼,等等。導電環9116可透過可變電阻9112等 而被連接至電源供應9110。此外,間隔物元件9118 (例如 ,一 〇形環等)可被置於導電構件9114與晶圓9004之間以 避免電解質液體接觸其透過一或更多電極而被連接至電源 供應9110之晶圓9004的部分。此外,亦可包含一彈簧構件 等(未顯示)以更均勻地分配電荷至晶圓9004。 圖9A之示範性裝置容許較小量的導電材料被配合導電 構件9114使用。如此容許裝置變得更便宜、更輕、及於操 作期間消耗更少電力。此外,導電構件9114之較小的表面 積,相較於導電構件8114 (圖8A、8B)可容許晶圓8004 之邊緣區域中之電流密度的較大程度控制。此外,圖9A ( 及圖7)之架構可有利地配合那些圖7及8A至8C所示者 來使用。 圖9B顯示一種電解拋光裝置之另一範例的放大視圖。 此範例係類似於圖9A,除了其導電構件9114包含一形成於 導電構件9114之下部(即,晶圓9004之相反側)上的絕緣 構件9121。此外,晶圓總成之架構係使得其晶圓9004上之 金屬層9005係透過一導電的間隔物元件9118而被充電於接 近邊緣處。 因此,如圖9B中所示,當電解質液體9080被導引接 近晶圓9004之邊緣時,則電流之一部分L·流至金屬層9005 而電流之第二部分12流至導電構件9114。形成於導電構件 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -24 - 1275452 A7 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(2¾ 9114之下部分上的絕緣構件9121作用以減少電流12並增加 流至金屬層9 0 0 5之11。絕緣構件91 21及導電構件9114之 相對厚度可因而被調整以藉此調整電流L·及h。 IV.電解拋光一晶圓上之分段金屬層的方法 一形成於晶圓上之金屬層可能於一電解拋光製程期間 分段。例如,可能變爲晶圓表面上之一或更多不連續的金 屬區。當此情況發生時,則某些金屬層之片段可能會隔離 自其電極所在之晶圓的邊緣。於此等情況下,傳統的電解 拋光方法無法有效地拋光這些分段區,因爲電極無法供電 給分段的金屬層。於一種示範性方法中,藉由以足夠的旋 轉速度旋轉一具有導電構件配置於其金屬層之分段部分周 圍的晶圓,則可形成電解質液體之一薄層於分段部分上並 接觸與導電構件。電解質液體之薄層及導電環容許分段部 分被電解拋光。 如圖11A及11 B中所示,金屬層111 50 (例如)於拋光 製程期間變爲分段。金屬層11150之分段並未連接至或設 置於其中有一電極(未顯示)被連接至電源供應11110之 晶圓1 1004的邊緣。因爲金屬層11150之分段並非置於晶圓 1 1004之邊緣上或者藉由金屬而被連接至這些邊緣,所以電 流無法透過分段而被導通至晶圓1 1004之邊緣上的電極。 因此,傳統的拋光方法,諸如沈浸晶圓於一拋光液中等等 ,通常均無法拋光這些分段。 金屬層11150之分段,例如,可包含其在一銅層被拋 * 穿-- (請先閱讀背面之注意事項再填寫本頁), 1T Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing -6- 1275452 A7 _ B7_ _ V, invention description (3) to the wafer. These conditions cause the copper to be removed or polished from the wafer. (Please read the note on the back and then fill out this page.) Contents In one aspect of the invention, an exemplary apparatus and method for electrolytically polishing a conductive film on a wafer is provided. An exemplary device includes a chuck for holding a wafer, an actuator for rotating the wafer chuck, a nozzle for electrolytically polishing the wafer, and a shield placed around the edge of the wafer. (shroud). An exemplary method of electropolishing a conductive film on a wafer includes rotating a wafer chuck at a sufficient speed such that the electrolyte liquid incident on the wafer flows over the surface of the wafer toward the edge of the wafer. The following detailed description of the invention will be best understood from the following description of the drawings and claims. Embodiments Ministry of Economics Intellectual Property Office Staff Consumer Cooperative Print In order to provide a more thorough understanding of the present invention, the following description sets forth certain details, such as specific materials, parameters, and the like. However, it is to be understood that the description is not intended to limit the scope of the invention I. Exemplary Electro-Polishing Apparatus: Figures 1A and 1B show a cross-sectional and top view of an exemplary wafer electropolishing apparatus that can be used to polish wafer 1004. Broadly speaking, an exemplary electropolishing apparatus operates by directing a flow of electrolyte liquid toward a metal film on a wafer while supplying a charge to the wafer. Charge and electrolyte liquid This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) 1275452 A7 B7 V. Description of invention (4) Causes metal ions in the metal film to dissolve in the electrolyte liquid. The current density of the electrolyte liquid and the concentration of metal ions in the electrolyte liquid determine (at least in part) the rate of polishing. Therefore, by controlling the current density, the concentration of the electrolyte solution, and the like, the electropolishing apparatus can precisely polish the metal layer disposed on the semiconductor wafer. As shown in FIG. 1A, the electropolishing apparatus can include a chuck 1002, an actuator 1000, and a polishing receptacle 1008. Polishing vessel 1008 can be formed of any material that is electrically insulating and resistant to acids and corrosion, such as polytetrafluoroethylene (commercially known as TEFLON), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), polypropylene, and many more. Polishing vessel 1008 is preferably formed from PVDF. However, it should be understood that the polishing container 1008 can be formed of different materials depending on the application. As shown in FIG. 1A, electrolyte liquid 1038 can flow into polishing vessel 1008 through nozzles 1010, 1012, and/or 1014. More specifically, pump 1020 pressurizes electrolyte liquid reservoir 1070 past check valve 1024 to flow through filter 1018. The flow through filter can include liquid mass flow controllers (LMFCs) that control the amount and rate of electrolyte liquid 1038 delivered to nozzles 1010, 1012, and 1014. In addition, the flow through filter 1018 can circulate contaminants from the electrolyte liquid 1038 to reduce the amount of contaminants that may enter the polishing vessel 1008 through the nozzles 1010, 1012, or 1014, possibly degrading the electropolishing process or blocking the LMFCs ( If there is any use). In the present example, the flow through filter 1 〇 18 desirably removes particles greater than about 0.05 to about 0.1 microns. However, it should be understood that different filtration systems may be used depending on the particular application. In addition, although the standard size of the filter paper is applicable to the Chinese National Standard (CNS) A4 specification (2 Sichuan X 297 mm) (please read the note on the back and fill out this page) - Installed and subscribed to the Intellectual Property Office of the Ministry of Economic Affairs Co-operative Printing -8- Ministry of Economic Affairs Intellectual Property Office Employees Consumption Cooperative Printed 1275452 A7 B7 V. Invention Note (5) It is advantageous that the wafer polishing assembly may omit the flow filter 101 8 in some applications. Electrolyte liquid 1038 can comprise any convenient electropolishing liquid, such as phosphoric acid, and the like. Electrolyte liquid 1038 preferably comprises orthophosphoric acid (H3P〇4) having a concentration of between about 60 weight percent and about 85 weight percent, and more desirably about 76 weight percent. Further, electrolyte liquid 1038 preferably comprises from about 10 to 40 weight percent ethylene glycol, the remainder comprising water and H3P〇4 acid having about 1% aluminum metal (relative to the weight of the acid). However, the concentration and composition of the electrolyte liquid 1038 can vary depending on the particular application. Pump 1020 can comprise any suitable hydraulic pump, such as a centrifugal pump, a diaphragm, a bellow, and the like. In addition, the chestnut 1020 is resistant to acid, corrosion, and contamination. While only one pump 1020 is shown, it should be understood that any number of pumps 1020 can be used. For example, a separate pump can be used at each nozzle 1 01 0, 1 01 2, and 1 014. Additionally, in some applications, the electrolyte liquid 103 8 can pass through the nozzles 1010, 1012, and 1014 to flow into the polishing vessel 1008 without the need for the pump 1020. For example, the electrolyte liquid 1038 can be maintained at a certain pressure in the electrolyte liquid reservoir 1A70. On the other hand, the supply line between the electrolyte liquid reservoir 1070 and the nozzles 1010, 1012, and 1014 can be maintained at a certain pressure. LMFCs can include any convenient bulk flow controller that is more desirable to withstand acid, corrosion, and contamination. In addition, the LMFCs deliver the electrolyte liquid 1038 to the nozzles 1〇1〇, 1〇12, and 1014 at a fixed flow rate. In addition, the LMFCs can properly deliver the electrolyte liquid 丨〇38 in proportion to the nozzle paper size applicable to the Chinese National Standard (CNS) A4 specification (210X297 public celebration) one - -9 - (please read the back note first and then fill in This page) 1275452 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printed A7 _ B7 V. Invention description (6) 1 流10, 101 2, and 1014 cross-sectional area flow rate. For example, if the diameter of the nozzle 1012 is larger than the nozzle 1014, the LMFCs can advantageously deliver the electrolyte liquid 1038 to the nozzle 1012 at a greater flow rate. In the exemplary embodiment, the LMFCs are preferably configured to deliver an electrolyte liquid 1038 at a flow rate between 0.5 liters per minute and 40 liters per minute, depending on nozzle size, nozzle-to-wafer distance, and the like. . The electrolyte liquid reservoir 1070 can further include a heat exchanger 1036, a chiller/heater 1034, and a temperature sensor 1032 for controlling the temperature of the electrolyte liquid 1038 in the electrolyte liquid reservoir 1070. Further, more than one electrode 1028 can be included in the reservoir 1070 and coupled to the power supply 1030. The application of charge to the electrode 1028 removes metal ions from the electrolyte liquid 1038, thereby adjusting the metal ion concentration of the electrolyte liquid 1038. An opposite charge can also be applied to electrode 1028 to increase metal ions to electrolyte liquid 1038. The exemplary wafer polisher assembly further includes electrodes disposed within nozzles 1012 and 1014. As will be described in more detail below, while the exemplary embodiment includes two nozzles having two electrodes therein, any number of nozzles and the number of electrodes per nozzle, whether less than or greater than two, can be used. Generally, increasing the surface area of the electrode in a nozzle increases the current density and the rate of electropolishing that encompasses the profile of the flow of electrolyte liquid 1038. As shown in Figures 1D and 1E, nozzles 1012 and 1014 individually include electrodes 1056 and 1060. Electrodes 1056 and 1060 can comprise any conductive metal such as copper, stainless steel, giant (Ta), titanium (Ti), TaN, TiN, lead, platinum, and the like. This paper size applies to China National Standard (CNS) A4 specification (210X297 public (please read the back note first and then fill out this page) -10- 1275452 A7 _ B7 V. Invention description (7) During the electropolishing process, some Metal ions, which migrate away from the metal layer on wafer 1004, may accumulate on electrodes 1〇56 and 1〇6〇. (Please read the back note first and then fill out this page) As will be described in more detail below, Metal accumulation or plating can be removed in a stripping process. For example, when electrodes 1056 and 1060 are positively charged and wafer 1002 is negatively charged, wafer 1〇〇4 is electroplated rather than electrolytically polished. In this and similar manner, the metal mineralized on electrodes 1056 and 1060 can be removed, i.e., electroplated. On the other hand, electrodes 1056 and 1060 can be suitably replaced at any suitable time. For example, electrodes 1056 and 1060 It can be replaced after processing about 100 wafers. In some examples, the metal layer can comprise copper. Therefore, some copper ions from the polished metal layer migrate to the plated electrodes 1056 and 1060 during the electropolishing process. however If electrodes 1056 and 1060 contain copper, electrodes 1056 and 1060 may be deformed by dissolution during the plating process. Thus, in some instances, electrodes 1056 and 1060 are desirably comprised to resist materials that are dissolved during the removal of the ore. For example, electrodes 1056 and 1060 can comprise platinum and a platinum alloy. Alternatively, electrodes 1056 and 1060 can comprise titanium suitably coated with a layer of platinum, for example, having a thickness of from about 50 microns to about 400 microns. The bureau employee consortium is printed in the exemplary device, and the wafer chuck 1002 properly holds and positions the wafer 1004 in or on the polishing container 1008. More specifically, the wafer 1004 is properly positioned to face the nozzle 1010, 1012, and 1014 are in shield 1006. Shield 1006 can be selectively included around wafer 1004 to avoid splashing, etc., as will be described in more detail below. Wafer 1004 is suitably positioned in polishing container 1008 After that, the electrodes 1056 and 1060 are charged by the power supply 1〇4〇. In addition, the wafer size is 适用4. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (21〇><297 mm) -11 - 1275452 A7 _B7 V. Description of invention (8) (Please read the note on the back and fill out this page) Charged by the power supply 1040. Alternatively, more than one power supply can be used to charge electrodes 1056 and 1060 and wafer 1004. When properly charged and electrolyte liquid 1038 flows between electrodes 1056 and 1060 in nozzles 1012 and 1014 and the surface of wafer 1004, a current is formed. More specifically, electrodes 1056 and 1060 are charged to have a negative potential compared to wafer 1004. In response to this negative potential on electrodes 1056 and 1060, the metal ions migrate away from wafer 1004 into electrolyte liquid 1038, thus electropolishing the crystal 1004. However, when the polarity of the circuit is reversed, the metal ions migrate toward the wafer 1004, thus plating the wafer 1004. Ministry of Economic Affairs Intellectual Property Office Staff Consumer Cooperative Printing In addition, as shown in FIGS. 1A and 1C, the nozzle 1010 includes an injection nozzle 1052 and a termination point detector 1016. During the electropolishing process, the injection nozzle 1052 can be configured to supply the electrolyte liquid 1038, and the termination point detector 1016 can be configured to detect the thickness of the metal layer on the wafer 1004. Termination Point Detector 1016 can include various sensors, such as ultrasonic sensors, optical reflective sensors, electromagnetic sensors (such as eddy current sensors), and the like. The electrolyte liquid 1038 supplied from the injection nozzle 1052 functions as a medium through which the end point detector 1016 emits a signal and measures the thickness of the metal film. The use of electrolyte liquid 103 8 as a single medium to transmit signals increases the accuracy of the measurements performed by end point detector 1016 because electrolyte liquid 1038 provides a single phase. Conversely, if the injection nozzle 1052 does not provide the electrolyte liquid 1038, the emission and measurement from the termination point detector can be passed through various other media, such as air, etc., through the electrolyte supplied to the wafer 1004 by the nozzle 1012 or nozzle 1014. Before the liquid 1038. As will be described below, there are electrolyte liquids that may change with time. The paper scale applies to the Chinese National Standard (CNS) A4 specification (210X 297 mm) -12- 1275452 A7 B7 Ministry of Economic Affairs Intellectual Property Bureau Staff Consumption Cooperative Print 5, the updated or immediate characteristics of the invention description (9) can also increase the accuracy of the termination point measurement. Again, although a nozzle 1010 having a termination point detector 1016 is shown, any number of nozzles having any number of termination point detectors can be used. As further shown in FIG. 1A, the actuator 1 〇 〇 can rotate the wafer chuck 1002 and the wafer 1004 about the z-axis. Moreover, in some applications, actuator 1000 can move wafer chuck 1002 and wafer 1004 along the X-axis while nozzles 1010, 1012, and 1014 remain stationary. In other applications, nozzles 1010, 1012, and 1014 can be moved along the X axis while 1002 and wafer 1004 remain stationary along the X axis. In still other applications, the actuator 1000 can move the wafer chuck 1002 and wafer 1004 along the X axis, while the nozzles 1010, 1012, and 1014 also move along the X axis. Additionally, the plating apparatus can be oriented in other ways. For example, nozzles 1010, 1012, and 1014 can be positioned over wafer 1004 such that their electrolyte liquid is directed downward toward wafer 1004. Additionally, wafer 1004 can be oriented perpendicular to nozzles 1010, 1012, and 1014, while nozzles 1010, 1012, and 1014 direct electrolyte liquid toward wafer 1〇〇4. For a discussion of an exemplary wafer electropolishing apparatus, see U.S. Patent No. 6,395,152, filed on Jul. 2, 1999, entitled "METHODS AND APPARATUS FOR ELECTROPOLISHING METAL INTERCONNECTIONS 〇N SEMICONDUCTOR DEVICES", which is incorporated herein by reference. for reference. Further, for an additional discussion of the exemplary end point detectors, see U.S. Patent No. 6,447,688, filed on May 12, 2000, entitled "METHODSANDAPPARATUS FOREND-POINT DETECTION" which is incorporated herein by reference. (Please read the note on the back and fill out this page.) This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) -13- 1275452 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printed A7 _ B7 V. Invention Description (Electrolyte Liquid Splash Protection An exemplary electrolytic polishing method includes rotating a wafer 1 0 0 4 when the electrolyte liquid 1038 is directed to the surface of the wafer 1004. The wafer 1〇〇4 is rotated at a rate This rate is sufficient to cause centrifugal force that causes the incoming electrolyte liquid 1038 to flow across the surface of the wafer 1004 toward the edge of the wafer 1004. Preferably, the electrolyte liquid 1038 flows to the edge of the wafer 1004 before it falls from the surface. By directing this flow across the surface of the wafer 1004, the liquid can be prevented from falling off the wafer surface and interrupting the flow of the electrolyte liquid 1038 or forming a continuous array of electrolyte liquids in the polishing vessel 1008. However, this process may result in electrolytes. The liquid splashes into the container to overflow the device or interrupt the flow of electrolyte liquid. Thus, an exemplary electrolytic polishing device includes a shield 1006 that is tied Around the wafer 1004, to reduce or prevent liquid that has been subjected to centrifugal force from splashing in the polishing container 1008 or overflowing from the polishing container 1008. Figures 1A and 1B show a shield 1006 that is configured to surround the wafer 1004 and the wafer chuck 1002. As shown in Figure 1A, the nozzle 1012 can supply an electrolyte liquid to the surface of the wafer 1004. To more uniformly polish one of the metal films on the wafer 1004, the wafer 1004 can be rotated in a manner to cause electrolyte liquid 1038 flows across wafer 1004 to the exposed portion of chuck 1〇〇2, but does not allow electrolyte liquid to fall from the surface of wafer 1004 into polishing container 1008. Any drop from wafer 1004 and form one continuous column of electrolyte liquid The electrolyte liquid between 1004 and the polishing vessel 1008 may cause excessive polishing of the wafer 1004 in which the column is formed. Additional polishing may result in uneven and unpredictable polishing rates of the metal layer. Fill in this page again. This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) -14- 1275452 A7 B7 Ministry of Economic Affairs Intellectual Property Office employees Co., Ltd. Printing 5, invention description (d In addition, any electrolyte liquid falling from the wafer 1004 or splashing in the polishing container 1008 may disturb the flow of the electrolyte liquid supplied by the nozzle 1 0 12. The shape of the electrolyte liquid 1038 or The (more specifically) profile thus affects the current pick and polishing rate of the electropolishing apparatus and thus it is desirable to have the electrolyte liquid 1 038 flow along the surface of the wafer 1004 toward the edge of the wafer 1004 and away from it to the wafer 1004. The electrolyte liquid 丨 038 flows. Wafer 1 004 can be rotated at a suitable rotational speed, depending on the viscosity of the electrolyte liquid, which is used to cause electrolyte liquid to flow across wafer 1004 toward the edge of wafer 1004 or to the chuck 1〇〇2 Exposed part. The rotational speed should be such that its electrolyte liquid 1038 can flow across the wafer 1004 without falling from the surface of the wafer 1004 and forming a continuous array, or interfering with the flow of the electrolyte liquid 1038. Clearly, the lower the viscosity of the electrolyte liquid, the higher the centrifugal acceleration is required. For example, for 85% phosphoric acid, the centrifugal acceleration can be selected to be above about 1.5 meters per second. In an exemplary method, a 300 mm diameter wafer is rotated in the range of about 100 revolutions per minute (rpm) to more than about 2,000 rpm, and preferably in the range of from about 1,500 to about 2,000 rpm. Typically, nozzle 1012 or 1014 will scan the entire surface of wafer 1004 to more uniformly polish wafer 1004. Wafer 1004 can be rotated to produce a constant centrifugal acceleration on incoming electrolyte liquid 1038 as nozzle 1012 is scanning different portions of wafer 1004. For example, a centrifugal acceleration system is directly proportional to its radial distance from the center of the wafer and the square of the rotational speed. Therefore, the speed at which the wafer 1004 is rotated can be reduced when the nozzle 1012 or 1014 is polishing its portion of the wafer near the edge of the wafer 1004 (ie, large I* (please read the back of the note first) Matters refill this page) This paper scale applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -15 - 1275452 A7 B7 V. Invention description (^ radius), and increases when polishing it close to the center of the wafer 1004 In some cases (ie, a small radius). Typically, when the electrolyte solution system is supplied to the wafer 1004 in the manner described above, the electrolyte liquid may flow toward the edge of the wafer 1004 and across the edge of the wafer 1004 toward the polishing container 1008. If there is no shielding 1006, the electrolyte liquid 1038 may contact the wall of the polishing container 1008 and the splash in the polishing container 1008, thereby interrupting the flow of the electrolyte liquid 1 038 or overflowing from the polishing container 1008. As shown in Figures 1A and 1B, The shield 1006 can be placed around the wafer 1004 and the chuck 1002 to reduce or prevent the electrolyte liquid 1038 from splashing or spilling out of the polishing container 1008. Again, the shield 1006 can be used during the polishing process. The X direction is moved along with the chuck 1002 and the actuator 1000. Specifically, the shield 1006 can be attached to the chuck 1002 and/or the actuator 1000 by a mechanical attachment, joint, or the like. In another aspect, another movement that synchronizes the movement of the shield 1006 with the actuators of the chuck 1002 and the actuator 1000 can drive the shield 1006. The shield 1006 can also be rotated either inconsistently or inconsistently with the chuck 1002. It is formed in any suitable shape, such as a circle, a polygon, etc. Preferably, the shield 1006 is formed to reduce splashing of the electrolyte liquid 1038 (after it flows from the wafer 1004) and to contain the electrolyte liquid 1038 in the polishing container. 1008. The gap between the chuck 1002 and the shield 1〇〇6 may be, for example, in the range of about 1 mm to about 10 mm, and preferably about 5 mm. Further, as shown in FIG. 1A. The cross section of the side wall of the shield 1006 can be formed into the shape of L to prevent the electrolyte liquid from splashing on the paper scale. The Chinese National Standard (CNS) Α4 specification (210 X 297 mm) 1 — ;----- -ί ^ —— (Please read the notes on the back first) Fill in this page) Order Ministry of Economic Affairs Intellectual Property Bureau Staff Consumer Cooperative Printed - 16- 1275452 A7 B7 V. Invention Description (d Shield 1006 or chuck 1002. However, the cross section of shield 1006 can have various other shapes For example, the sidewall of the shield 1006 (i.e., the vertical portion of the L shape) may be formed into other shapes such as a C shape. In addition, the shield 1006 can be tapered or tapered to reduce splashing and the like. The shield 1006 can also extend further above or below the wafer 1004 and chuck 1002 shown in FIG. The shield 1006 can be made of plastic, ceramics, etc., or an anti-corrosive uranium metal or alloy such as giant, titanium, stainless steel, etc. in the 300 series. However, it should be understood that the method of electropolishing does not require its electrolyte liquid 1038 to flow through the edge of the wafer to reach the shield 1006. The problem of electrolyte liquid 1038 forming a continuous row with polishing vessel 1008 and splashing within or outside of polishing vessel 1008 can be reduced or avoided without the electrolyte liquid flowing completely through wafer 1004. For example, by simply rotating the wafer 1004 such that its electrolyte liquid flows along a portion of the surface of the wafer 1004 toward the edge of the wafer 1 004 before it falls from the wafer 1004, the undue effect can be reduced or avoided. III. Edge over-polishing Reduced to another type, an over-polishing electrolytic polishing method and apparatus for reducing over or near the edge of a wafer is described. Typically, portions located on or near the edge of a wafer are polished faster than portions of the metal layer on other regions of the wafer. An electrode connected to the edge of a wafer may increase its current density into the electrolyte liquid near the edge of the wafer, resulting in an increased polishing rate. Generally, 3, the paper size near the edge of the wafer is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the note on the back and fill out this page) • Install the Ministry of Economics intellectual property Bureau employee consumption cooperative printing -17-1275452 A7 B7 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing 5, invention description (" current density and polishing rate may be reduced by absorption of one part of the current density, which is a A conductive member (such as a ring or the like) placed at or near the edge of the wafer absorbs a portion of the current density through the electrolyte liquid. The current density near the edge can also be adjusted by charging the conductive member to change its absorption. The amount of current is used to control the current density to a greater extent. An exemplary apparatus and method for reducing edge over-polishing is shown with reference to Figure 7. An electrolyte liquid stream 7080 is supplied from the nozzle 7054 to the wafer 7004. 7004 is rotated at a sufficient rotational speed to form a thin layer 7081 of an electrolyte liquid that polishes one of the metal layers on wafer 7004. If an electrode is attached to the edge of wafer 7004, the metal layer at or near the edge of wafer 7004 is polished by thin layer 7081 of electrolyte liquid faster than the metal on other areas of wafer 7004. The metal layer near or near the edge of the wafer 7004 may become over-polished. The chuck 7002 includes a conductive member 7114 that reduces the amount of over-polishing at or near the edge of the wafer 7004. For example, the wafer 7004 and conductive members 7114 can be connected to power supply 7110 and charged such that one of the polishing currents in thin layer 708 1 of its electrolyte liquid is absorbed by conductive member 7114. By absorbing one portion of the polishing current, conductive member 7114 can be reduced at or The polishing rate of the metal layer near the wafer 7004 is reduced and over-polishing is avoided. The conductive member 7114 can include a single ring placed at or near the edge of the wafer 7004. Additionally, the conductive member can include its being disposed at or near Two or more sections of the edge of the wafer 7004. The conductive member 7114 may comprise a metal or alloy (such as giant, titanium, stainless steel, etc.), and other suitable (Please read the notes on the back and fill out this page.) This paper scale applies to China National Standard (CNS) A4 specification (210X 297 mm) -18- 1275452 A7 B7 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing 5, invention Description (^ Touching the conductive material of the electrolyte liquid 708 1. Further, the wafer 7〇〇4 can be placed between the wafer chuck 7002 and the conductive member 7114 as shown in Fig. 7. For example, a robot arm The wafer 7 004 can be placed adjacent to or between the wafer chuck 7002 and the conductive member 7114. Wafer chuck 7002 and conductive member 7114 can then be placed together or near to hold wafer 7004 therebetween. The exemplary assembly can then include additional components, such as a holder or locator, to align and hold the wafer chuck 7002 with the conductive member 7114, and align and hold the insulating member to the conductive member 7114 and to charge the wafer Between 7 and 4 joints. It should be understood that the exemplary apparatus depicted in Figure 7 may also include other features as shown in Figure 1, but such features have been omitted to illustrate a particular example. For example, shield 1 006 (Figs. 1A, 1 B) can be used with exemplary devices as well as various pumps, nozzles, filters, and the like. Figure 8A shows another exemplary electropolishing apparatus for reducing the polishing rate near the edge of a wafer. A chuck 8002 having a conductive member 8114 is shown that reduces the amount of over-polishing at or near the edge of the wafer 8004. Figure 8A is similar to Figure 7 except that its conductive member 8114 is separated from wafer 8004 by a spacer element 8118. Spacer element 8118 includes, for example, a 〇-shaped ring. The spacer element 8118 can be further formed from a material that is electrically insulating and further resistant to acids and corrosion, such as ceramics, polytetrafluoroethylene (commercially known as TEFLON), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF). ), polypropylene, silicone rubber, Viton rubber, and so on. Conductive member 8114 is coupled to power supply 8112 and a second conductive member or electrode (such as spring member) 8114 is coupled to power supply 8110. As shown in the figure, , 洚-- (please read the note on the back and fill out this page), τ This paper scale applies to China National Standard (CNS) Α4 specification (210 Χ 297 mm) -19- 1275452 A7 B7 Ministry of Economic Affairs Intellectual Property Bureau Staff Consumer Cooperative Printed 5, Invention Description (^ The current flowing through the conductive member 8114 can be adjusted or controlled by the power supply 8112 to control the polishing rate of the metal layer at or near the edge of the wafer 8004. That is, as the amount of current absorbed by the bottom chuck 8114 increases, the polishing rate of the metal layer at or near the edge of the wafer 8004 is reduced. The power supply 8 11 2 can be a DC power supply, a synchronous and main An AC power supply for polishing power supply 8110, etc. An AC power supply may also include a forward pulse power supply, and a forward and reverse power supply. Further, the power supply 8112 is operable in a constant current mode, a constant voltage mode, or a combination of constant current and constant voltage modes, wherein the constant current mode is suitable for one part of the polishing time and a constant voltage mode is suitable For other portions of the polishing time, a variable resistor may be used instead of the power supply 8 11 2 to supply a variable charge to the conductive member 8114 (see, for example, FIG. 9A). Further, a variable resistor may be used. Included between the electrically conductive member 8114 and the spring member 8119. The electrically conductive member 8114 can similarly comprise a metal or alloy, such as giant, titanium, stainless steel, etc., as well as other electrically conductive materials. Further, the electrically conductive member 8114 can comprise one or more At or near the edge of the wafer 8004. Thus, in this exemplary electropolishing apparatus, the charge applied to the wafer 8004 through the spring member 8119 and the conductive member 8114 can be independently independently of the power supplies 8110 and 8112. Control thus allows for greater control of the current density near the edge region of wafer 8004 to control and reduce over-polishing of the edge regions. Figure 8B shows the structure and connections of conductive member 8114 and wafer 8004 of Figure 8A. Magnified view. Clearly, the conductive member 8114 is powered by (please read the precautions on the back and fill out this page). Standard (CNS) A4 specification (210X297 mm) -20- 1275452 A7 ____ B7_ V. Description of the invention (^ Supply 8112 charged and isolated from wafer 8002 by spacer element 8118. Wafer 8004 is supplied by power supply 8110 Individually charged, the power supply 8110 is coupled to a spring member 8119 that is placed around the edge of the wafer 8004. The spring member 8119 provides charge to the wafer 8004, for example, placed around the edge of the wafer 8004. A plurality of electrodes are more evenly distributed. An insulating member 8121 can be placed between the conductive member 8114 and the spring member 8119 when charge is applied to the conductive member 8114 and the spring member 8119. The spring member 8119 can be formed as a coil spring in the form of a ring (see, for example, Fig. 8C), however, other cross-sectional profiles, such as an elliptical cross-sectional profile, can also be formed. In addition, any number of turns springs can be used depending on their application. The spring member can be formed from any convenient electrically conductive material such as stainless steel, spring steel, titanium, and the like. The spring member 8119 may also be formed of a corrosion resistant uranium material or coated with an anti-corrosion uranium material such as platinum, TiN, TaN or the like. The number of contact points formed between the wafer 8004 and the power supply can be varied by varying the number of coils in the spring member 8119. In this manner, the charge it supplies to wafer 8004 can be more evenly distributed around the periphery of wafer 8004. For example, for a 200 mm wafer, typically a charge of from about 1 to about 10 amps is applied. Forming spring member 8119 to create about 1000 contact points with wafer 8004 reduces charge to about 1 to about 10 milliamps per contact point. However, it should be understood that wafer 8004 can also be charged by one or more electrical contacts. Moreover, any mechanism for distributing charge around the wafer 8004 can be advantageously employed. This paper size is applicable to China National Standard (CNS) A4 specification (2!0X297 mm) (please read the note on the back and fill out this page) - Installed and subscribed to the Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing - 21 - 1275452 A7 B7 Ministry of Economic Affairs Intellectual Property Bureau Staff Consumer Cooperative Printed 5, Invention Description (^ When the conductive member 8114 is separated from the wafer 8004 by the spacer element 8118, if the spring member 8 119 is exposed to the electrolyte liquid A short circuit may result. Shorting of the spring member 8119 may reduce its uniformity of polishing rate near the edge portion of the wafer 8004. Thus, in one example, the spacer element 8118 acts as a seal to isolate the spring member 8119 from Electrolyte liquid. The spacer element 8 11 8 may be formed of a corrosion resistant uranium material, such as Viton (carbon fluorocarbon) rubber, siloxane rubber, etc. Further, the spacer element 8118 may have various shapes depending on its particular application and Figure 8C shows an exemplary wafer holder in conjunction with its exemplary electropolishing apparatus for reducing the polishing rate near the edge of the wafer. An exploded view of the holder. An exemplary wafer chuck includes a body having a base portion 8002 over the body and a conductive member 8114, wherein the wafer 8004 is held in the base portion 8002 of the body and electrically conductive The wafer chuck may further include a top holder (not shown) for clamping or holding the wafer 8004 and the assembly together. In addition to the first conductive member 8114, the wafer chuck includes a first A second conductive member, such as spring member 8119, applies an electrical charge to wafer 8004. In some examples, the wafer chuck can further include an insulator member 8121 and a spacer element 8118 disposed in the lower portion of the body. The included base section 8002 is between the conductive member 8114. However, it should be understood (in some examples) that the spring member 8119 and the spacer element 8 11 8 may be omitted (eg, as shown in Figure 7). In the case where the spring member 8119 is omitted, an electrode or the like may be included as the second conductive member to apply a charge to the wafer 8004. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X29). 7 mm) — -22- (Please read the notes on the back and fill out this page) • Installed and subscribed to the Intellectual Property Office of the Ministry of Economic Affairs, employee consumption cooperatives, printing 1275452 A7 ___B7 V. Invention description (^ In this example, the spring Member 8119 is disposed between wafer 8004 and spacer element 8118. When pressure is applied to hold conductive member 8114 and base segment 8002 together, spring member 8119 mates to maintain electrical contact to wafer 8004 (see Figure 8B). Further, spacer element 8 11 8 conforms to conductive member 8114 and wafer 8004 to form a seal that prevents spring member 8119 from contacting the electrolyte liquid and provides electrical insulation to spring member 8 11 9 and spacer element 8 11 8 (if needed). The shape of the semiconductor wafer is typically substantially circular. Thus, the components of the wafer chuck are described as having a generally circular shape. However, it should be understood that the components of the wafer chuck can be varied in shape depending on the particular application and/or wafer shape. For example, the semiconductor wafer can have a truncated shape to facilitate assembly of the components of the wafer chuck. Another exemplary architecture for a wafer chuck assembly for holding and applying charge to a wafer suitable for the apparatus and method described above can be found in U.S. Patent No. 6,248,222 r METHODS AND APPARATUS FOR HOLDING AND POSITIONING SEMICONDUCTOR WORKPIECES DURING ELECTROPOLISHING AND/OR ELECTROPLATING OF THE WORKPIECES is published on July 19, 2001 and is hereby incorporated by reference for its completeness. Figure 9A shows another exemplary electropolishing apparatus for reducing the polishing rate near its edge of the wafer. Specifically, wafer chuck 9002 includes a conductive member 9114 that reduces the amount of over-polishing at or near the edge of wafer 9004, as described above. 9A is similar to FIG. 8A except that the conductive member 9114 includes an insulating ring 915 and a conductive ring formed in the insulating ring 915. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210×297 mm). (Please read the note on the back and then fill out this page) -23- Ministry of Economic Affairs Intellectual Property Office Staff Consumer Cooperative Printed 1275452 A7 B7 V. Invention Description (23⁄4 9 11 6. Insulation ring 9 11 5 may contain non-corrosive insulation Materials such as plastic, ceramic, etc. The conductive ring 9116 may comprise a metal or alloy such as platinum, rhodium, titanium, stainless steel, etc. The conductive ring 9116 may be connected to the power supply 9110 via a variable resistor 9112 or the like. A spacer element 9118 (eg, a domed ring or the like) can be placed between the conductive member 9114 and the wafer 9004 to prevent the electrolyte liquid from contacting the wafer 9004 that is connected to the power supply 9110 through one or more electrodes. In addition, a spring member or the like (not shown) may also be included to more evenly distribute charge to the wafer 9004. The exemplary device of FIG. 9A allows a smaller amount of conductive material to be mated with the conductive member 9114. This allows the device to be cheaper, lighter, and consume less power during operation. Furthermore, the smaller surface area of the conductive member 9114 allows the wafer 8004 to be compared to the conductive member 8114 (Figs. 8A, 8B). The control of the current density in the edge region is controlled to a greater extent. Furthermore, the architecture of Figure 9A (and Figure 7) can be advantageously used in conjunction with those shown in Figures 7 and 8A through 8C. Figure 9B shows another embodiment of an electrolytic polishing device. An enlarged view of an example. This example is similar to FIG. 9A except that the conductive member 9114 includes an insulating member 9121 formed on the lower portion of the conductive member 9114 (ie, the opposite side of the wafer 9004). Further, the wafer assembly The architecture is such that the metal layer 9005 on the wafer 9004 is charged near the edge through a conductive spacer element 9118. Thus, as shown in Figure 9B, when the electrolyte liquid 9080 is directed close to the wafer 9004 At the edge, one portion of the current flows to the metal layer 9005 and the second portion 12 of the current flows to the conductive member 9114. The conductive member is formed on the conductive member (please read the back of the back sheet and fill in the page) Applicable to China National Standard (CNS) A4 Specification (210X297 mm) -24 - 1275452 A7 A7 B7 Ministry of Economic Affairs Intellectual Property Bureau Staff Consumer Cooperative Printed V. Invention Description (Insulation member 9121 on the lower part of 23⁄4 9114 acts to reduce current 12 and increasing the flow to the metal layer 9 0 0 5. The relative thickness of the insulating member 91 21 and the conductive member 9114 can thus be adjusted to thereby adjust the current L· and h. IV. Electropolishing a segment on a wafer Method of Metal Layer One metal layer formed on a wafer may be segmented during an electropolishing process. For example, it may become one or more discontinuous metal regions on the surface of the wafer. When this happens, fragments of certain metal layers may be isolated from the edge of the wafer where the electrodes are located. In such cases, conventional electropolishing methods do not effectively polish these segmented regions because the electrodes cannot supply power to the segmented metal layers. In an exemplary method, by rotating a wafer having a conductive member disposed around a segmented portion of a metal layer thereof at a sufficient rotational speed, a thin layer of the electrolyte liquid can be formed on the segmented portion and contacted with Conductive member. The thin layer of electrolyte liquid and the conductive ring allow the segmented portion to be electropolished. As shown in Figures 11A and 11B, the metal layer 111 50 becomes, for example, segmented during the polishing process. The segments of metal layer 11150 are not connected to or disposed in an edge of an electrode 1 (not shown) that is connected to wafer 1 1004 of power supply 11110. Because the segments of metal layer 11150 are not placed on the edge of wafer 1 1004 or are connected to the edges by metal, current cannot be conducted through the segments to the electrodes on the edge of wafer 1 1004. Therefore, conventional polishing methods, such as immersing the wafer in a polishing liquid, etc., generally do not polish these segments. The segmentation of the metal layer 11150, for example, may include it being thrown in a copper layer - (please read the back note first and then fill out this page)
本紙張尺度適用中國國家標準(CNS ) A4規格(210 X 297公釐) -25- 1275452 A7 B7 五、發明説明( (請先閲讀背面之注意事項再填寫本頁) 光除去後所餘留於一半導體裝置之非溝槽部分上的障蔽層 之暴露部分。再者,金屬層Π150之分段可爲(例如)邊 緣區中之不均勻拋光或過拋光的結果。 參考圖11B,顯示一種用以電解拋光晶圓1 1004上之金 屬層111 50分段的示範性電解拋光裝置。此系統包含夾盤 1 1002、致動器1 1000、固定噴嘴1 1054、及電源供應11110 。當1 1054供應一電解質液體1 1080流至晶圓1 1004時,致 動器1 1000可旋轉夾盤1 1002以致其電解質液體1 1080流過 晶圓1 1004之表面,如上所述,並形成一延伸於金屬層 11150之分段部分上的薄層11081。例如,晶圓夾盤11002 可以約100 rpm至約2000 rpm之範圍內的速率被旋轉,而 最好是約1500 rpm於一 300 mm直徑的晶圓。薄層11081提 供一跨越金屬層11150之分段的路徑以導通介於電解質液 體1 1080流與夾盤1 1002的導電構件11114之間的電流。此 電流容許裝置得以電解拋光其晶圓1 1004上之金屬層11150 的隔離分段。 經濟部智慧財產局員工消費合作社印製 此外,圖11B中所述之示範性裝置可爲諸如圖1A所示 之一較大電解拋光總成的一部分。例如,可包含一屏蔽 1006 (圖1)以避免飛濺、不均勻拋光、或電解質液體1〇3 8 之拋光流的中斷。此外,有關減少邊緣拋光之導電構件 11114的各種示範性實施例均可使用於圖11B之裝置。 圖12顯示另一種可用以電解拋光晶圓12004上之金屬 層的分段。圖12係類似於圖11,除了其致動器12180及 12182可沿著X方向移動噴嘴12054而致動器12000於一固 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -26- 1275452 A7 ----- B7_^__ 五、發明説明(^ 定位置旋轉夾盤12002。 (請先閱讀背面之注意事項再填寫本頁) 雖然圖11 B及1 2顯示其中任一夾盤或噴嘴沿著X方向 移動之系統,但應理解其夾盤及噴嘴可根據特定應用而被 移動於改變的方向。 v.金屬濃度測量及終點檢測控制 在大量製造環境中欲獲得更恆定而可接受拋光品質之 晶圓的一要素係控制其用以拋光晶圓之電解質液體供應中 的金屬濃度。當電解質液體供應中的金屬之濃度達到某一 値時,則電解質液體可能變得非常活性(即使無電流供應 時)。如此可能造成(例如)晶圓之化學蝕刻或腐鈾於後 電解拋光製程期間。因此,最好是於一製程運作期間監督 電解質液體中之金屬濃度,並視需要執行即時的調整。 經濟部智慧財產局員工消費合作社印製 此外,終止點檢測感應器通常使用其透過電解質液體 而測量之光學檢測器。因而測量係(至少部分地)根據電 解質液體之光學特性。然而,電解質液體之光學特性可能 根據電解質液體中所溶解之金屬濃度以及其他因素(諸如 電解質液體中之污染物粒子、氫氣泡形成等等)而隨時間 改變。因此,當電解質液體之光學特性於一製程運作期間 改變時,則來自終止點檢測器之測量可依此被調整以增加 終止點測量之準確度。 圖10A描繪一種示範系統,其可被使用以測量電解質 液體10038供應,諸如電解質液體貯存器1070 (圖1A)等 ,中之金屬濃度。示範系統包含纖維探針10102、纖維光學 本纸張尺度適用中國國家標準(CNS ) A4規格(210x297公釐) -27- 1275452 Α7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明説明(d 感應器10104、及反射器10100。纖維探針10102及反射器 10100可被沈浸入電解質液體10038中,而纖維探針10102 可被設置以一種相對於反射器10100之方式而容許其射出 自纖維探針1 〇 1 〇 2之光線由反射器1 0 1 〇 〇以最大光強度反射 回至纖維探針1 0 1 02。例如,纖維探針1 〇 1 02可被設置以垂 直於纖維探針10102之表面的方向射出光線,如圖l〇A中 所示。 此外,介於反射器10100與纖維探針10102之間的距離 Η可能影響電解質液體中之金屬濃度的測量。因此,距離Η 可被選擇以致其由光學感應器10104所接收之光的強度達 到最大値,當金屬濃度達到電解質液體10038供應中之最 小濃度時。應理解其他介於光學感應器10104與反射器 10100之間的路徑可被選擇,包含一根據其應用及理想路徑 長度之多重路徑及多重反射的路徑。纖維探針10102亦可 被置於液體貯存器之外,以一橫越電解質液體1038之一部 份的路徑。此外,可取代反射器10100以一種光學感應器 ,其被設置以檢測由光學感應器10104所接收之光強度。 通常,電解質液體之顏色係根據其被溶解於電解質液 體中之金屬離子的型式及濃度。例如,磷酸(Η3Ρ〇4 )中之 銅離子具有藍色。此外,通過電解質液體之光強度可能根 據電解質液體之顏色而衰減。通常,當電解質液體中之金 屬離子的濃度增加時,則光強度之衰減會增加。 有關圖10Α中所示之系統,介於電解質液體中的金屬 濃度與光強度的衰減之間的關係可被製成如下之表,針對 (請先閱讀背面之注意事項再填寫本頁) 裝· 、1Τ 本纸張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) -28- 1275452 A7 ____87 五、發明説明( 一特定金屬及本系統所使用之電解質液體: 金屬濃度(重量%) 光強度衰減 0__ Y1 0.2 Y2 0.4 Y3 0.6 Y4 0.8 Y5 1.0 Y6 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 此表中之資訊可被儲存於電腦10105中。使用表中的 資訊,電腦可自動地根據光學感應器10104所檢測之光強 度以計算電解質液體中之金屬濃度,藉由使用內插法、捨 入法、或其他近似方法。雖然已列入金屬濃度(重量% ) 之某些値於上述表中,但是可使用任何値,亦可使用任何 數目的値。 由纖維探針10102所射出之光的顏色可被選擇以增加 其由光學感應器10104所檢測之測量的敏感度。明確地, 由纖維探針10102所射出之光的顏色可能與電解質液體供 應中之金屬離子的顏色不同,以增加特定金屬離子之敏感 度。例如,對於磷酸供應中之銅離子,射出紅光較射出綠 光提供對於銅之較高的敏感度,而射出綠光較射出藍光提 供較高的敏感度。然而,對於電解質液體中之任何顏色的 金屬離子,白光均可被射出。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -29- 經濟部智慧財產局員工消費合作社印製 1275452 A7 _ B7__五、發明説明( 圖10A亦描繪上述示範系統之另一型態,其可被使用 以從電解質液體10038供應移除金屬離子。此系統進一步 包含兩個電極10028及10029、及電源供應10030。當光學 感應器10104測得其電解質液體10038供應中之金屬離子濃 度已達到第一預設値時,則電腦10105可指示電源供應 10030供應電壓至電極10028及10029以從電解質液體供應 移除金屬離子。當電壓被供應至電極10028及10029時,則 來自電解質液體10038供應之金屬離子開始鍍於電極10029 上。當光學感應器10104測得其金屬離子濃度已低於第二 預設値時,則電腦10105可指示電源供應10030停止供應電 壓至電極10028及10029以停止從電解質液體10038供應移 除金屬離子。以此方式,則電解質液體10038供應中之金 屬濃度可被維持於第一與第二預設値之間,例如,於一電 解拋光製程期間。 電解質液體10038中之金屬離子的濃度値亦可被使用 以協助終止點檢測器1016(圖1A、1B)。終止點檢測器 1016可被使用以決定晶圓1004上之金屬層的厚度。此資訊 可由電解拋光裝置使用以決定何時持續或中斷晶圓1004之 一特定區域上的電解拋光製程。其亦可被使用以決定適當 的拋光率。終止點檢測器101 6可包含各種感應器,諸如超 音波感應器、光學感應器、電磁感應器,等等。使用電解 質液體1038爲介質以傳輸信號並執行測量會增加測量之準 確度,因爲介質與電解質液體1038之介面(例如,空氣) 無須被考慮。然而,假如其可能影響感應器之電解質液體 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -30- 經濟部智慧財產局員工消費合作社印製 1275452 A7 B7五、發明説明( 1038的性質改變,則測量可能無法長時間準確。因此,終 止點檢測器測量可藉由考量電解質液體1038之改變性質而 被增進。 圖10B顯示用以監督電解質液體之光學特性的另一示 範系統,其可被使用(例如)以調整終止點檢測器測量。 圖10B係類似於圖10A,除了其包含一第二光學感應器 10204及光學纖維10202。光學感應器10104、纖維探針 10102及反射器10100操作以如參考圖10A所述之方式。第 二光學感應器10204及光學纖維10202亦操作類似於光學感 應器10104及纖維探針10102,然而,光學感應器10204及 光學纖維10202測量電解質液體之其他光學特性。例如, 於一電解拋光製程期間,氫氣泡經常形成於電極之上。氣 泡可能由於繞射及減少電解質液體中之測量光束的強度而 不利地影響終止點檢測器。強度之減少可能影響金屬離子 濃度之測量,但是,藉由使用對於不同特性敏感之多重檢 測器,則金屬離子濃度可被準確地決定。 在決定由於氣泡而影響之電解質液體的光學特性之範 例中,由光學纖維10202所射出之光的顏色可再次被選擇 以增加其由第二光學感應器1〇2〇4所亦檢測之測量的敏感 度。於此例中,由纖維探針10202所射出之光的顏色可被 選擇爲電解質液體供應中之金屬離子的相同顏色,以增加 對於氣泡之敏感度並減少對於金屬離子之敏感度。例如, 對於磷酸供應中之銅,射出藍光係提供對於氣袍之較高敏 感度以及對於銅離子之較低敏感度(相較於白光),而射 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -31 - 1275452 A7 B7 五、發明説明(2¾ 出白光係提供對於氣泡之較高敏感度以及對於銅離子之較 低敏感度(相較於紅光)。 绛-- (請先閱讀背面之注意事項再填寫本頁) 此外,來自纖維探針10102之紅光的強度將亦被減少 ,由於電解質液體中之任何氣泡,以致其銅離子濃度之測 量將會不準確。然而,第二光學感應器10204將指明其主 要由於氣泡而非銅離子濃度所致之強度減少的部分,因爲 纖維探針10202之敏感度被選擇爲對銅離子濃度不敏感。 紅光之強度的減少可因而藉由考量其由於第二光學感應器 10204所決定之氣泡的部分來決定。此外,終止點檢測器 1010 (圖1A)將能夠從電腦10105擷取電解質液體之光學 特性並執行晶圓1004 (圖1 A )上之金屬厚度的準確測量。 因此,第二光學感應器10204可增加終止點檢測器測量及 金屬離子濃度測量之準確度。 應理解其任何數目的感應器均可被使用以測量電解質 液體之各種性質。其各種性質(例如,光學性質等)可接 著被儲存並用以調整或決定終止點檢測器測量等。 經濟部智慧財產局員工消費合作社印製 VI.噴嘴架構 依據另一型態,一種用以電解拋光一金屬膜於一晶圓 上之示範方法及裝置包含使用具有不同拋光率之多重尺寸 的噴嘴。通常,大型噴嘴容許其形成於一晶圓上之金屬膜 (例如,銅)的較大拋光率,而小型噴嘴產生較小的拋光 率。大型噴嘴因而可被使用爲金屬層之粗糙拋光,接著藉 由使用小型噴嘴以更精確地控制電解拋光製程。多重噴嘴 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -32 - 1275452 A7 經濟部智慧財產局員工消費合作社印製 B7五、發明説明(2》 因而有利於更精確地拋光一晶圓之不同區。然而,因爲一 淸潔室中之有限空間,例如,所以具有多重噴嘴之裝置宜 爲小型的。一種具有多數噴嘴之示範裝置(其被裝配於一 旋轉噴嘴固持器上)因而容許使用多重噴嘴於一狹小空間 中。 圖13A、13B、13C、13D及13E顯示一種包含多重旋轉 噴嘴總成之示範電解拋光總成。圖1 3A至1 3E係類似於圖 1A至1E,除了加入具有多重噴嘴之旋轉噴嘴1012,其被置 於鄰近光學終止點檢測器1016、及漩渦電流厚度/終止點檢 測器1009。如圖1A中之箭號所示,旋轉噴嘴2012可旋轉 並設置不同尺寸及/或形狀的噴嘴1014以導引一電解質液體 1038流至晶圓1004。因此,泵1018僅導引電解質液體 1038至終止點檢測器1016之噴嘴1010及單一噴嘴1014, 而圖1A中,電解質液體1038被導引至其中所使用之各獨 立噴嘴。 終止點檢測器1009可操作以測量一形成於晶圓1004上 之金屬膜的厚度。檢測器1009可測量金屬膜之厚度於一電 解拋光製程之前、期間、及之後。於一種示範方法中,終 止點檢測器1009被使用以決定電解拋光前之整個晶圓1004 上的金屬膜之厚度,其係使用(例如)一漩渦電流終止點 檢測器。金屬膜厚度可接著被使用以控制晶圓1004上之各 個位置的局部拋光率,藉由控制電流密度及/或串流輪廓。 介於終止點檢測器1009與晶圓1004之間的距離係於(例如 )約5至約1000微米之範圍內。於整個晶圓上之膜厚度可 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -33- !275452 A7 ______B7 五、發明説明( 藉由旋轉晶圓1004並移動夾盤1002於水平方向而被決定, 而同時地容許終止點檢測器1009掃瞄晶圓1004之整個表面 。然而,應理解其另一方面終止點檢測器1 009亦可掃瞄一 固定晶圓1004。 旋轉噴嘴2012可接著旋轉以根據其正被拋光之晶圓 1004的部分、金屬膜厚度等等而選取一理想的噴嘴1014。 例如,於金屬層較厚之區域可使用較大的噴嘴,而於金屬 層薄的區域中可使用小噴嘴。包含各種尺寸及輪廓之數個 噴嘴(其可被快速及簡易地交換)於一簡單的小型電解拋 光總成中因而增進拋光之精確性。 參考圖14A,其顯示一種示範性多重旋轉噴嘴固持器 2012的橫斷面圖。旋轉噴嘴固持器2012固持噴嘴2014。驅 動機構2070透過驅動接點2068以旋轉該旋轉噴嘴固持器 2012以定位一新的噴嘴來導引電解質液體流。一 〇型環 2066 (例如)密封驅動接點2068。驅動機構2070可爲一步 進馬達、伺服馬達、氣動(壓縮的氣體或液體)驅動旋轉 機構,等等。旋轉噴嘴固持器2012中之噴嘴2014包含電極 2056,其可被電耦合至電源供應1040 (圖13A)之外部, 透過電流饋送道2062。旋轉噴嘴固持器2012係置於平板 2084上,其係藉由〇型環2072及螺栓2074而密封與容器 1008 °This paper scale applies to Chinese National Standard (CNS) A4 specification (210 X 297 mm) -25- 1275452 A7 B7 V. Invention description ((Please read the back note and then fill out this page) The exposed portion of the barrier layer on the non-trench portion of the semiconductor device. Further, the segmentation of the metal layer 150 can be, for example, the result of uneven polishing or over-polishing in the edge region. Referring to Figure 11B, a use is shown. An exemplary electropolishing apparatus for electropolishing a metal layer 111 50 on a wafer 1 1004. The system includes a chuck 1 1002, an actuator 1 1000, a fixed nozzle 1 1054, and a power supply 11110. When 1 1054 is supplied When an electrolyte liquid 1 1080 flows to the wafer 1 1004, the actuator 1 1000 can rotate the chuck 1 1002 such that its electrolyte liquid 1 1080 flows over the surface of the wafer 1 1004, as described above, and forms an extension over the metal layer. Thin layer 11081 on the segmented portion of 11150. For example, wafer chuck 11002 can be rotated at a rate ranging from about 100 rpm to about 2000 rpm, and preferably about 1500 rpm to a 300 mm diameter wafer. Thin layer 11081 provides a cross The segmented path of metal layer 11150 conducts a current between the electrolyte liquid 1 1080 stream and the conductive member 11114 of chuck 1 1002. This current allows the device to electrolytically polish the metal layer 11150 on wafer 1 1004. Sectional. Ministry of Economics Intellectual Property Office Staff Consumer Cooperative Printing In addition, the exemplary device illustrated in Figure 11B may be part of a larger electropolished assembly such as that shown in Figure 1A. For example, a shield 1006 may be included ( Figure 1) to avoid spattering, uneven polishing, or interruption of the polishing stream of electrolyte liquid 1 〇 38. Further, various exemplary embodiments of the reduced edge polishing conductive member 11114 can be used with the apparatus of Figure 11B. 12 shows another segment that can be used to electrolytically polish the metal layer on wafer 12004. Figure 12 is similar to Figure 11 except that actuators 12180 and 12182 can move nozzle 12054 in the X direction and actuator 12000 in one. The solid paper scale applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -26- 1275452 A7 ----- B7_^__ V. Invention description (^ Position rotary chuck 12002. (Please read the back first Precautions Fill out this page. Although Figures 11 B and 12 show a system in which any of the chucks or nozzles move in the X direction, it should be understood that the chucks and nozzles can be moved in a changing direction depending on the particular application. v. Metal Concentration Measurement and Endpoint Detection Control One element of a wafer that is to achieve a more constant and acceptable polishing quality in a large manufacturing environment controls the concentration of metal in the electrolyte liquid supply used to polish the wafer. When the concentration of the metal in the electrolyte liquid supply reaches a certain level, the electrolyte liquid may become very active (even when there is no current supply). This may result, for example, in chemical etching of the wafer or uranium during the post electropolishing process. Therefore, it is preferable to monitor the metal concentration in the electrolyte liquid during a process operation and perform an immediate adjustment as needed. Printed by the Consumer Intellectual Property Office of the Ministry of Economic Affairs. In addition, the end point detection sensor usually uses an optical detector that is measured by the electrolyte liquid. The measurement is thus (at least in part) dependent on the optical properties of the electrolyte liquid. However, the optical properties of the electrolyte liquid may vary with time depending on the concentration of the metal dissolved in the electrolyte liquid and other factors such as contaminant particles in the electrolyte liquid, hydrogen bubble formation, and the like. Thus, when the optical properties of the electrolyte liquid change during a process operation, the measurements from the termination point detector can be adjusted accordingly to increase the accuracy of the termination point measurement. Figure 10A depicts an exemplary system that can be used to measure the supply of electrolyte liquid 10038, such as the concentration of metal in electrolyte liquid reservoir 1070 (Figure 1A), and the like. The demonstration system consists of fiber probe 10102, fiber optics paper scale applicable to China National Standard (CNS) A4 specification (210x297 mm) -27- 1275452 Α7 Β7 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing 5, invention description (d The inductor 10104, and the reflector 10100. The fiber probe 10102 and the reflector 10100 can be immersed in the electrolyte liquid 10038, and the fiber probe 10102 can be disposed in a manner relative to the reflector 10100 to allow it to be emitted from the fiber probe. The light of the needle 1 〇1 〇2 is reflected back to the fiber probe 1 0 1 02 by the reflector 1 0 1 最大 at the maximum light intensity. For example, the fiber probe 1 〇1 02 can be set perpendicular to the fiber probe 10102 The direction of the surface emits light, as shown in Fig. A. In addition, the distance 反射 between the reflector 10100 and the fiber probe 10102 may affect the measurement of the concentration of the metal in the electrolyte liquid. Therefore, the distance Η can be The selection is such that the intensity of the light received by the optical sensor 10104 reaches a maximum 値 when the metal concentration reaches a minimum concentration in the supply of the electrolyte liquid 10038. It should be understood that other The path between the sensor 10104 and the reflector 10100 can be selected to include a multipath and multiple reflection path depending on its application and the desired path length. The fiber probe 10102 can also be placed outside of the liquid reservoir to A path that traverses a portion of the electrolyte liquid 1038. Additionally, the reflector 10100 can be replaced with an optical sensor that is configured to detect the intensity of light received by the optical sensor 10104. Typically, the color of the electrolyte liquid is based on The type and concentration of the metal ion dissolved in the electrolyte liquid. For example, the copper ion in the phosphoric acid (Η3Ρ〇4) has a blue color. Further, the light intensity through the electrolyte liquid may be attenuated according to the color of the electrolyte liquid. When the concentration of metal ions in the electrolyte liquid increases, the attenuation of the light intensity increases. With respect to the system shown in Fig. 10A, the relationship between the concentration of the metal in the electrolyte liquid and the attenuation of the light intensity can be made. The following table is for (please read the note on the back and fill out this page). ··1Τ This paper size applies to China. Standard (CNS) Α4 size (210Χ297 mm) -28- 1275452 A7 ____87 V. Description of the invention (A specific metal and electrolyte liquid used in the system: Metal concentration (% by weight) Light intensity attenuation 0__ Y1 0.2 Y2 0.4 Y3 0.6 Y4 0.8 Y5 1.0 Y6 (Please read the note on the back and fill out this page) The information printed in the table printed by the Intellectual Property Office of the Intellectual Property Office of the Ministry of Economic Affairs can be stored in the computer 10105. Using the information in the table, the computer can automatically The intensity of the light in the electrolyte liquid is calculated based on the intensity of the light detected by the optical sensor 10104 by using interpolation, rounding, or other approximation. Although some of the metal concentrations (% by weight) have been included in the above table, any crucible may be used, and any number of crucibles may be used. The color of the light emitted by fiber probe 10102 can be selected to increase the sensitivity of the measurements it detects by optical sensor 10104. Specifically, the color of the light emitted by the fiber probe 10102 may be different from the color of the metal ions in the electrolyte liquid supply to increase the sensitivity of the particular metal ion. For example, for copper ions in the phosphoric acid supply, the emission of red light provides a higher sensitivity to copper than the emission of green light, while the emission of green light provides a higher sensitivity than the emission of blue light. However, for any color of metal ions in the electrolyte liquid, white light can be emitted. This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) -29- Ministry of Economic Affairs Intellectual Property Office Staff Consumer Cooperative Printed 1275452 A7 _ B7__ V. Invention Description (Figure 10A also depicts another of the above demonstration systems A form that can be used to remove metal ions from the supply of electrolyte liquid 10038. The system further includes two electrodes 10028 and 10029, and a power supply 10030. When the optical sensor 10104 measures the metal ions in its supply of electrolyte liquid 10038 When the concentration has reached the first predetermined threshold, the computer 10105 can instruct the power supply 10030 to supply a voltage to the electrodes 10028 and 10029 to remove metal ions from the electrolyte liquid supply. When the voltage is supplied to the electrodes 10028 and 10029, the electrolyte liquid The metal ions supplied by 10038 are initially plated on the electrode 10029. When the optical sensor 10104 detects that the metal ion concentration has fallen below the second predetermined threshold, the computer 10105 can instruct the power supply 10030 to stop supplying the voltage to the electrodes 10028 and 10029. Stopping the removal of metal ions from the supply of electrolyte liquid 10038. In this manner, electrolyte liquid 10038 is supplied The metal concentration can be maintained between the first and second predetermined turns, for example, during an electropolishing process. The concentration of metal ions in the electrolyte liquid 10038 can also be used to assist in terminating the point detector 1016 (Fig. 1A, 1B) Endpoint detector 1016 can be used to determine the thickness of the metal layer on wafer 1004. This information can be used by the electropolishing apparatus to determine when to continue or interrupt the electropolishing process on a particular area of wafer 1004. It can also be used to determine the appropriate polishing rate. The termination point detector 101 can include various sensors, such as ultrasonic sensors, optical sensors, electromagnetic sensors, etc. The electrolyte liquid 1038 is used as a medium for transmission. Signaling and performing measurements increases the accuracy of the measurement because the interface between the medium and the electrolyte liquid 1038 (eg, air) need not be considered. However, if it may affect the electrolyte liquid of the sensor (please read the precautions on the back and fill in the form) Page) This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) -30- Ministry of Economic Affairs Intellectual Property Office staff Consumer Cooperatives Printed 1275452 A7 B7 V. INSTRUCTIONS (The nature of 1038 changes, the measurement may not be accurate for long periods of time. Therefore, the end point detector measurement can be improved by considering the changing properties of the electrolyte liquid 1038. Figure 10B shows Another exemplary system for supervising the optical properties of an electrolyte liquid can be used, for example, to adjust the end point detector measurement. Figure 10B is similar to Figure 10A except that it includes a second optical sensor 10204 and optical fiber 10202 . Optical sensor 10104, fiber probe 10102, and reflector 10100 operate in the manner described with reference to Figure 10A. The second optical sensor 10204 and optical fiber 10202 also operate similar to optical sensor 10104 and fiber probe 10102, however, optical sensor 10204 and optical fiber 10202 measure other optical characteristics of the electrolyte liquid. For example, during an electropolishing process, hydrogen bubbles are often formed on the electrodes. The bubble may adversely affect the termination point detector due to diffraction and reduced intensity of the measuring beam in the electrolyte liquid. The reduction in intensity may affect the measurement of metal ion concentration, but by using multiple detectors that are sensitive to different characteristics, the metal ion concentration can be accurately determined. In an example of determining the optical properties of the electrolyte liquid affected by the bubbles, the color of the light emitted by the optical fiber 10202 can be selected again to increase its measurement as also detected by the second optical sensor 1〇2〇4. Sensitivity. In this example, the color of the light emitted by fiber probe 10202 can be selected to be the same color of the metal ions in the electrolyte liquid supply to increase sensitivity to bubbles and reduce sensitivity to metal ions. For example, for copper in the phosphoric acid supply, the emission of blue light provides higher sensitivity to the robes and lower sensitivity to copper ions (compared to white light), while the paper size applies to the Chinese National Standard (CNS) A4. Specifications (210X297 mm) (Please read the note on the back and fill out this page) -31 - 1275452 A7 B7 V. INSTRUCTIONS (23⁄4 white light provides higher sensitivity to bubbles and lower sensitivity to copper ions) Degree (compared to red light). 绛-- (Please read the back note first and then fill out this page) In addition, the intensity of red light from fiber probe 10102 will also be reduced due to any bubbles in the electrolyte liquid, The measurement of its copper ion concentration will be inaccurate. However, the second optical sensor 10204 will indicate the portion of its strength that is mainly due to the bubble rather than the copper ion concentration, since the sensitivity of the fiber probe 10202 is selected as Insensitive to copper ion concentration. The reduction in intensity of red light can thus be determined by considering the portion of the bubble that is determined by the second optical sensor 10204. Point detector 1010 (Fig. 1A) will be able to extract the optical properties of the electrolyte liquid from computer 10105 and perform an accurate measurement of the thickness of the metal on wafer 1004 (Fig. 1 A). Thus, second optical sensor 10204 can increase the termination point Detector measurement and accuracy of metal ion concentration measurement. It should be understood that any number of inductors can be used to measure various properties of the electrolyte liquid. Various properties (eg, optical properties, etc.) can then be stored and used to adjust or Deciding to terminate the point detector measurement, etc. Printed by the Ministry of Economic Affairs, Intellectual Property Bureau, Staff Consumer Cooperative VI. Nozzle Architecture According to another type, an exemplary method and apparatus for electrolytically polishing a metal film on a wafer includes different uses. Multi-size nozzles with a polishing rate. Typically, large nozzles allow for a larger polishing rate of a metal film (eg, copper) formed on a wafer, while small nozzles produce a smaller polishing rate. Large nozzles can thus be used Rough polishing of the metal layer, followed by more precise control of the electropolishing process by using a small nozzle. Multi-nozzle paper The scale applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -32 - 1275452 A7 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printed B7 V. Invention Description (2) thus facilitates more precise polishing of a wafer However, because of the limited space in a clean room, for example, the device with multiple nozzles is preferably small. An exemplary device with a plurality of nozzles (which is mounted on a rotating nozzle holder) thus allows for multiple uses. The nozzles are in a narrow space. Figures 13A, 13B, 13C, 13D and 13E show an exemplary electropolishing assembly comprising a multi-rotating nozzle assembly. Figure 1 3A to 1 3E are similar to Figures 1A to 1E except that the addition has multiple A nozzle rotary nozzle 1012 is placed adjacent to the optical end point detector 1016 and the eddy current thickness/termination point detector 1009. As indicated by the arrows in Fig. 1A, the rotary nozzle 2012 can rotate and provide nozzles 1014 of different sizes and/or shapes to direct an electrolyte liquid 1038 to the wafer 1004. Thus, pump 1018 directs only electrolyte liquid 1038 to nozzle 1010 and single nozzle 1014 of end point detector 1016, while in Figure 1A, electrolyte liquid 1038 is directed to each of the individual nozzles used therein. The termination point detector 1009 is operable to measure the thickness of a metal film formed on the wafer 1004. Detector 1009 measures the thickness of the metal film before, during, and after an electropolishing process. In one exemplary method, a termination point detector 1009 is used to determine the thickness of the metal film over the entire wafer 1004 prior to electropolishing using, for example, a eddy current termination point detector. The metal film thickness can then be used to control the local polishing rate at various locations on the wafer 1004 by controlling the current density and/or the stream profile. The distance between the termination point detector 1009 and the wafer 1004 is, for example, in the range of from about 5 to about 1000 microns. The film thickness on the entire wafer can be applied to the Chinese National Standard (CNS) A4 specification (210X297 mm) on this paper scale (please read the note on the back and fill out this page) -33- !275452 A7 ______B7 V. Invention Description (Determining by rotating the wafer 1004 and moving the chuck 1002 in the horizontal direction, while allowing the termination point detector 1009 to scan the entire surface of the wafer 1004. However, it should be understood that the termination point detector 1 is on the other hand. 009 can also scan a fixed wafer 1004. The rotating nozzle 2012 can then be rotated to select an ideal nozzle 1014 based on the portion of the wafer 1004 being polished, the thickness of the metal film, etc., for example, thicker in the metal layer. Large nozzles can be used in the area, and small nozzles can be used in thin areas of the metal layer. Several nozzles of various sizes and contours (which can be exchanged quickly and easily) in a simple small electropolishing assembly The polishing accuracy is thus improved. Referring to Figure 14A, a cross-sectional view of an exemplary multiple rotary nozzle holder 2012 is shown. The rotary nozzle holder 2012 holds the nozzle 2014. The structure 2070 rotates the rotary nozzle holder 2012 to position the new nozzle to guide the flow of the electrolyte liquid. The 〇-type ring 2066 (for example) seals the drive contact 2068. The drive mechanism 2070 can be a stepper motor The servo motor, pneumatic (compressed gas or liquid) drives the rotating mechanism, etc. The nozzle 2014 in the rotating nozzle holder 2012 includes an electrode 2056 that can be electrically coupled to the outside of the power supply 1040 (Fig. 13A), through the current Feeding path 2062. The rotating nozzle holder 2012 is placed on the plate 2084, which is sealed with the container 1008 by a 〇-ring 2072 and a bolt 2074.
噴嘴固持器2012可由塑膠(諸如PVC、PVD、TEFLON 、聚丙烯等)所製或者被塗敷以一通常爲絕緣且非腐蝕之 材料。噴嘴2014可由鉬、鈦、鉑、不銹鋼,等等製造。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) •裝· 訂 經濟部智慧財產局員工消費合作社印製 -34- 1275452 A7 ___B7__ 五、發明説明(3) 圖14C顯不一種使用圖14A之裝置以從一晶圓1〇〇4電 解拋光金屬膜之示範性製程。於區塊1中,藉由(例如) 終止點檢測器1009 (其係移動於X方向當晶圓1004如上所 述而旋轉時)以決定金屬膜厚度輪廓。於區塊2中,金屬 膜可使用一大型噴嘴2014而被初始地拋光以高的拋光率。 在高的拋光率之後,旋轉噴嘴固持器2012可被旋轉以使用 小型噴嘴2014來執行較低的拋光率,於區塊3中。在區塊 1及或區塊2中之初始拋光以後,剩餘的金屬厚度輪廓可使 用終止點檢測器1009 (例如,漩渦電流終止點檢測器、光 學終止點檢測器,等等)而被決定於區塊4中。根據區塊4 中所決定之剩餘的金屬厚度輪廓,則可於區塊5中調整或 調諧拋光電流以使用較高速率拋光厚膜的位置、使用低速 率拋光薄膜的位置、及停止拋光於零膜厚度之位置。拋光 電流可藉由(例如)使用不同噴嘴2014及/或改變電源供應 所供應之電荷而被調諧。於區塊6中,厚度輪廓之測量( 即,區塊4 )被重複。假如金屬層之厚度到達預設値時,則 拋光製程可被停止。然而,假如金屬之厚度未到達預設値 ,則區塊5可被重複直到獲得理想的厚度。 應理解其各種修飾及改變均可被實施於參考圖14c所 述之製程。此外,各種其他製程可被使用以配合圖14A之 示範裝置。 參考圖14 B,其顯不另一不範性多重旋轉噴嘴總成。圖 14B中所示之旋轉噴嘴總成係類似於圖14A中所示者,除 了其驅動接點2068係由磁性耦合接點207 8及2082所取代 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) ' ~ -35- (請先閱讀背面之注意事項再填寫本頁) -裝_ 、11 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 1275452 A7 __ B7_五、發明説明( 。使用磁性耦合接點2078及2082之一優點在於其驅動接點 2078並無與旋轉噴嘴固持器2012之直接連接,及圖14A之 〇型環2066可被省略。如此減少洩漏電解質液體103 8至驅 動接點2068的發生機率。因而應理解其可使用各種耦合驅 動接點2068至旋轉噴嘴固持器2012之方法。 參考圖15,其顯示一種示範線性可移動多重噴嘴總成 。多重線性可移動噴嘴總成之操作係類似於圖13至13E之 旋轉噴嘴2012,除了其噴嘴係以線性方式移動而非旋轉方 式。多重線性可移動噴嘴總成包含噴嘴3054、噴嘴3222、 及噴嘴3226,其個別包含電極3056、3220、及3224。三個 噴嘴3054、3022、及3226可被構成以具有不同的輪廓(例 如,不同直徑),而因此可提供不同的拋光率。 噴嘴3054、3022、及3226可透過噴嘴固持器3180及 移動導引3182而移動於水平方向(即,X方向)。電極 3056、3220、及3224係透過電饋送道(未顯示)而進一步 連接與電源供應3110。電解質液體3080係透過噴嘴固持器 3180而被供應至噴嘴3054、3022、及3226。如參考圖14C 所述,不同尺寸的噴嘴3054、3022、及3226可於一電解拋 光製程期間被交替地使用以移除一配置於晶圓1〇〇4之上的 金屬膜。通常,可使用一大型噴嘴以使用較高拋光率拋光 金屬膜(當金屬膜較厚時),而使用一小型噴嘴以使用較 低拋光率拋光金屬膜(當金屬膜較薄或者希望移除少量金 屬時>。 圖16A至16E顯示一種包含多重旋轉噴嘴總成之示範 (請先閲讀背面之注意事項再填寫本頁) -裝·The nozzle holder 2012 can be made of plastic (such as PVC, PVD, TEFLON, polypropylene, etc.) or coated with a material that is generally insulating and non-corrosive. The nozzle 2014 may be made of molybdenum, titanium, platinum, stainless steel, or the like. This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) (please read the note on the back and fill out this page) • Installed and subscribed to the Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing -34- 1275452 A7 ___B7__ V. INSTRUCTION DESCRIPTION (3) Figure 14C shows an exemplary process for electropolishing a metal film from a wafer 1〇〇4 using the apparatus of Figure 14A. In block 1, the metal film thickness profile is determined by, for example, terminating the point detector 1009 (which moves in the X direction as the wafer 1004 rotates as described above). In block 2, the metal film can be initially polished to a high polishing rate using a large nozzle 2014. After a high polishing rate, the rotary nozzle holder 2012 can be rotated to perform a lower polishing rate using the small nozzles 2014, in block 3. After initial polishing in block 1 and or block 2, the remaining metal thickness profile can be determined using termination point detector 1009 (eg, eddy current termination point detector, optical termination point detector, etc.) In block 4. Depending on the remaining metal thickness profile determined in block 4, the polishing current can be adjusted or tuned in block 5 to polish the location of the thick film using a higher rate, the position of the film using the low rate polishing, and stop polishing to zero. The location of the film thickness. The polishing current can be tuned by, for example, using different nozzles 2014 and/or changing the charge supplied by the power supply. In block 6, the measurement of the thickness profile (i.e., block 4) is repeated. If the thickness of the metal layer reaches the preset threshold, the polishing process can be stopped. However, if the thickness of the metal does not reach the preset threshold, the block 5 can be repeated until the desired thickness is obtained. It should be understood that various modifications and changes can be made to the process described with reference to Figure 14c. In addition, various other processes can be used in conjunction with the exemplary apparatus of Figure 14A. Referring to Figure 14B, another differential multi-rotating nozzle assembly is shown. The rotary nozzle assembly shown in Fig. 14B is similar to that shown in Fig. 14A except that the drive contact 2068 is replaced by magnetic coupling contacts 207 8 and 2082. This paper size applies to the Chinese National Standard (CNS) A4 specification. (210X 297 mm) ' ~ -35- (Please read the note on the back and fill out this page) - Install _, 11 Ministry of Economic Affairs Intellectual Property Bureau Staff Consumer Cooperatives Printed Economy Ministry Intellectual Property Bureau Staff Consumer Cooperative Printed 1275452 A7 __ B7_ V. Description of the Invention (The use of magnetic coupling contacts 2078 and 2082 has the advantage that its drive contact 2078 has no direct connection to the rotary nozzle holder 2012, and the 〇-shaped ring 2066 of Figure 14A can be omitted This reduces the chance of leakage of the electrolyte liquid 103 8 to the drive contact 2068. It will thus be appreciated that various methods of coupling the drive contact 2068 to the rotary nozzle holder 2012 can be used. Referring to Figure 15, an exemplary linear movable multiple is shown. The nozzle assembly. The operation of the multiple linear movable nozzle assembly is similar to the rotary nozzle 2012 of Figures 13 to 13E except that the nozzles are moved in a linear manner rather than in a rotating manner. The heavy linear movable nozzle assembly includes a nozzle 3054, a nozzle 3222, and a nozzle 3226 that individually include electrodes 3056, 3220, and 3224. The three nozzles 3054, 3022, and 3226 can be configured to have different profiles (eg, different Diameter), and thus different polishing rates are provided. Nozzles 3054, 3022, and 3226 can be moved in a horizontal direction (ie, X direction) through nozzle holder 3180 and movement guide 3182. Electrodes 3056, 3220, and 3224 are The power supply 3110 is further connected through an electric feed path (not shown). The electrolyte liquid 3080 is supplied to the nozzles 3054, 3022, and 3226 through the nozzle holder 3180. As described with reference to FIG. 14C, nozzles 3054 of different sizes, 3022, and 3226 may be alternately used during an electropolishing process to remove a metal film disposed over the wafer 1〇〇4. Typically, a large nozzle may be used to polish the metal film using a higher polishing rate ( When the metal film is thick, a small nozzle is used to polish the metal film with a lower polishing rate (when the metal film is thin or when it is desired to remove a small amount of metal). Fig. 16A to 1 6E shows an example of a multi-rotating nozzle assembly (please read the notes on the back and then fill out this page).
、1T 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) - 36- 1275452 A7 __ B7 五、發明説明( (請先閲讀背面之注意事項再填寫本頁) 電解拋光總成。圖16A至16E係類似於圖13A至13E,除 了其加入安裝有旋轉噴嘴4012及4014之線性可移動基座 4180及移動導引4182。 明確地,旋轉多重噴嘴4014、光學終止點檢測器4016 、及漩渦厚度/終止點檢測器4060被安裝於線性可移動基座 4180之上。線性可移動基座構件可沿著移動導引4182而被 移動於水平方向(即,X方向)。此總成容許多重噴嘴被包 含於一狹小空間中。 多重噴嘴4014之結構及操作係類似於圖14A及14B中 所顯示者,然而,爲說明之目的已省略諸如旋轉驅動機構 、驅動接點、電流饋送通道、及電解質饋送通道。 VII.噴嘴自行淸潔程序 經濟部智慧財產局員工消費合作社印製 依據另一型態,描述一種用以自行淸潔電解拋光噴嘴 之示範程序。於一典型的電解拋光程序期間,電解質液體 中所溶解之金屬可能被鍍於噴嘴電極之上。鍍上之金屬可 能侷限噴嘴之開口或使其變形,因而改變電解質液體流之 形狀及/或方向。改變該流之形狀可能改變該流之電流密度 ,而因此改變電解拋光裝置之拋光率。噴嘴可藉由施加一 反向電壓至噴嘴而被除電鍍、或淸潔,其造成金屬離子溶 解回入電解質溶液中。例如,金屬可能被電鍍至另一噴嘴 、犧牲材料,等等。 參考圖1A至1E,來自一金屬層(其係從晶圓1〇〇4拋 光)之金屬變溶解於電解質液體1038中而可能導致溶解金 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -37- 1275452 A7 B7 五、發明説明(4 屬之一部分變成被電鑛於噴嘴電極1056及/或1060上。爲 了從電極1056及/或1060移除金屬,可施加一反向電壓至 噴嘴電極1056及/或1060。可使用任一直流或交流電源供 應以施加反向電壓。於一示範程序中,反向電壓被施加以 電鑛金屬堆積於一*可抛棄晶圓上。於又另一*範例中,反向 電壓被施加以電鍍金屬堆積於一區塊上。 A·使用直流電源供應以溶解金屬堆積於電解質液體中 參考圖1A,噴嘴1012上之金屬堆積可使用直流電源供 應而被拋光掉並溶解於電解質液體1038中。更明確地,引 線C可被連接至引線b,而引線B可被連接至引線a,以致 其噴嘴電極1056 (圖1B-1E)作用爲陽極而電極1060作用 爲陰極。電解質液體1038可透過噴嘴1012及1014而被供 應以形成一電路於電極1056與1060之間,其容許金屬堆積 於噴嘴1012上以被移除自噴嘴1012並溶解於電解質液體 1038中。溶解於電解質液體1038中之金屬的一部份可變爲 鍍於噴嘴1014上。 雖然似乎其製程僅從一噴嘴移動金屬並將其鍍於另一 噴嘴上,但是其移除自噴嘴1 〇 12之大部分金屬仍保持溶解 於電解質液體1038中。因而電解拋光製程之電解質液體 1038中的金屬濃度通常是很低的,例如,小於3重量%, 以致其電解拋光係藉由供電於噴嘴電極101 2及1014而非藉 由電解質液體1038之化學作用以驅動。因此,從噴嘴1 〇 12 所拋光之金屬量大於其被鍍於噴嘴1014上之金屬量。例如 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇><297公釐) (請先閲讀背面之注意事項再填寫本頁) -裝- 訂 經濟部智慧財產局員工消費合作社印製 -38 - 1275452 A7 _ B7 五、發明説明(4 (請先閲讀背面之注意事項再填寫本頁) ,對應於每一鍍於噴嘴1014上之金屬離子可能有10金屬 離子被移除自噴嘴1012,其導致大部分金屬離子溶解於電 解質液體1038中。 繼續參考圖1A,此製程可被反轉以致其噴嘴1014上之 金屬堆積係使用直流電源供應而被拋光掉並溶解於電解質 液體103 8中。更明確地,引線B可被連接至引線b而引線 C可被連接至引線a,以致其噴嘴電極1060 (圖1B-1E)作 用爲陽極而噴嘴電極1056作用爲陰極。電解質液體1038可 透過噴嘴1012及1014而被供應以形成一電路,其容許金屬 堆積於噴嘴1014上以被移除自噴嘴1014並溶解於電解質液 體1038中。溶解於電解質液體1038中之金屬的一部份可變 爲鍍於噴嘴101 2上。 經濟部智慧財產局員工消費合作社印製 藉由重複此製程,即,反轉裝置中所使用之每一噴嘴 的電壓,則噴嘴可被淸潔。於一示範性製程中,噴嘴係藉 由電解拋光接續的晶圓而被快速地淸潔,藉由首先除電鍍 噴嘴1012並電鍍噴嘴1014,接著除電鍍噴嘴1014並電鍍 噴嘴1012。兩個噴嘴被有效地淸潔,因爲(如以上所討論 )大部分金屬係溶解於電解質液體1038中而非被鍍於相對 的噴嘴中。 圖2及3顯示於一淸潔程序中之噴嘴1012及1014的兩 個示範架構。噴嘴1012及1014被置於彼此接近且電解質液 體被容許流經噴嘴101 2及1014並形成電解質液體之一膜或 路徑於其間。當噴嘴1012及1014被設置更接近在一起時( 如圖3中所示),則流動於噴嘴1012與1014之間的電解質 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -39- 1275452 A7 ____B7_ 五、發明説明( (請先閱讀背面之注意事項再填寫本頁) 液體1080之兩個膜或路徑可結合以形成單一路徑。此單一 路徑減少電路之長度,因而增加金屬堆積移除程序之效率 。當然應理解其示範方法亦可被使用以兩個以上噴嘴。 B·使用直流電源供應以電鍍金屬堆積於晶圓上 參考圖1A,噴嘴1012上之金屬堆積可使用直流電源供 應而被拋光掉並鍍於晶圓1004上,依據另一示範性製程。 更明確地,引線A可被連接至引線b而引線B可被連接至 引線a,以致其晶圓1004作用爲陰極而噴嘴電極.1056 (圖 1B-1E)作用爲陽極。電解質液體1038可透過噴嘴1012而 被供應至晶圓1004以形成一電路,其容許金屬堆積於噴嘴 1012上以被鍍於晶圓1004上。晶圓1004可於噴嘴1012上 之金屬堆積被移除後被拋棄。 經濟部智慧財產局員工消費合作社印製 類似地,參考圖1A,噴嘴1014上之金屬堆積可使用直 流電源供應而被拋光掉並鍍於晶圓1004上。更明確地,引 線A可被連接至引線b而引線C可被連接至引線a,以致 其晶圓1004作用爲陰極而噴嘴電極1060 (圖1B-1E)作用 爲陽極。電解質液體1038可透過噴嘴1014而被供應至晶圓 1004以形成一電路,其容許金屬堆積於噴嘴1014上以被鍍 於晶圓1004上。電解拋光裝置中之噴嘴1012或其他噴嘴可 與噴嘴1014平行地或串列地被淸潔。晶圓1004可於噴嘴 1012上之金屬堆積被移除後被拋棄。 C.使用直流電源供應以電鍍金屬堆積於一區塊上 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -40- 1275452 A7 __ B7 五、發明説明( (請先閱讀背面之注意事項再填寫本頁) 參考圖4,噴嘴1012上之金屬堆積1057可使用直流電 源供應而被拋光掉並鍍於區塊1082上,依據另一示範性製 程。更明確地,引線B可被連接至引線a而引線D可被連 接至引線b,以致其區塊1082作甩爲陰極而噴嘴電極1056 作用爲陽極。電解質液體1038 (圖1)可透過噴嘴1012而 被供應並容許其接觸區塊1082以形成一通過電解質液體 1038之電路,其容許金屬堆積於噴嘴1012上以被鍍於區塊 1082上。區塊1082可於噴嘴1012上之金屬堆積被移除後 被拋棄,或者於其他方便的時候。 經濟部智慧財產局員工消費合作社印製 類似地,參考圖4,噴嘴1014上之金屬堆積1057可使 用直流電源供應而被拋光掉並鍍於區塊1082上。更明確地 ,引線C可被連接至引線a而引線D可被連接至引線b, 以致其區塊1082作用爲陰極而噴嘴電極1060作用爲陽極。 電解質液體1038 (圖1)可透過噴嘴1014而被供應並容許 其接觸區塊1082以形成一電路,其容許金屬堆積於噴嘴 1014上以被鍍於區塊1082上。區塊1082可於噴嘴1014上 之金屬堆積被移除後被拋棄,或者於其他方便的時候。此 外,電極1056及1060可被串列地或平行地淸潔。 D.使用交流電源供應以移除金屬堆積 於另一示範噴嘴淸潔程序中,可配合任何上述架構使 用交流電源供應(而非直流電源供應)以移除金屬堆積自 噴嘴1012及1014。明確地,一交流電源供應被使用以溶解 金屬堆積於電解質液體中,電鍍金屬堆積於一將被拋棄之 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -41 - 1275452 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(3¾ 晶圓上,或電鍍金屬堆積於一區塊或其他犧牲材料上。 以一交流電源供應自噴嘴移除金屬堆積變爲更有效率 ,因爲電解質液體中之金屬濃度減少。因此,金屬濃度通 常於約0.1%至約5%重量之範圍內,而最好是小於0.5%重 量,於移除程序期間。 VIII.噴嘴形狀 於任何所述之示範實施例中,可有利地使用各種形狀 之噴嘴。不同型式之噴嘴(例如,不同尺寸、輪廓、橫斷 面形狀,等等)提供不同的拋光特性且可根據特定應用而 有利地被使用。例如,如圖1 B中所示,示範電解拋光裝置 可包含兩個不同尺寸之噴嘴1012及1014,其可被使用以電 解拋光晶圓1004之不同區段。 此外,圖5 A至5H顯示具有多種形狀及架構之各種示 範噴嘴。噴嘴之形狀(例如,通道及端部)可改變流自噴 嘴之電解質液體、電解質液體流中之電流密度,等等。圖 A至E顯示各種噴嘴架構及形狀,其包含絕緣器5054及電 極5056。圖5F至5H顯示不具絕緣器之噴嘴。數個噴嘴架 構具有彎曲電極5056接近其開口。彎曲電極避免電極之尖 銳點的電峰値,其有助於產生更均勻的電流密度於電解質 液體流中。圖5H描繪一種包含其置於接近噴嘴中心之電極 5056及桿5058的噴嘴,以增加電極之表面積並產生更均勻 的電流密度。 對於每一上述噴嘴,電極5056可包含一金屬或合金, (請先閲讀背面之注意事項再填寫本頁) -裝. 訂 本紙張尺度適用中國國家標準(CNS ) A4規格(210x297公釐) -42- 1275452 A7 B7 五、發明説明(d 諸如鉬、鈦、不銹鋼,等等。此外,絕緣器5054可包含塑 膠,諸如PVC、PVD、Teflon,等等,或陶器,諸如Al2〇3, Zr〇2,Si〇2,等等。因此,因爲金屬及合金通常較塑膠及陶 器更於形成爲各種形狀,所以具有彎曲或錐形形狀之電極 以及筆直形狀之絕緣器的噴嘴可較其他形狀更便宜地被製 造。再者,僅具有一電極5056之噴嘴(諸如那些圖5F、5G 及5H中所示者)可具有較簡單的設計及更大表面積。此外 ,如圖5H所示之噴嘴包含桿5058爲電極5056之部分,其 提供具有更大表面積之電極且可更均勻地分配其跨越流自 噴嘴之電解質液體1038 (圖1A)的電位。更均勻分配的電 位導致晶圓1004之更均勻的電解拋光。 圖6A及6B具有絕緣器6054、電極6056、及導電內結 構6086之另一示範噴嘴。內結構6086包含一金屬或合金, 諸如鉅、鈦、不銹鋼,等等。此外,內結構6086包含多數 通道,其可增加電極之表面積,且可更均勻地分配其跨越 噴嘴6056之電位。通道之尺寸可於約0.1 mm至約10 mm 之範圍內,根據噴嘴之直徑及特定應用。每一通道之尺寸 最好是可爲噴嘴直徑之約十分之一。 通道可被形成以各種橫斷面形狀,諸如那些圖6B至61 中所示者。例如,通道可爲方形、纖維狀、筆直槽、金屬 桿、波浪槽、矩形、蜂巢,等等。此外,雖然圖B至I顯 示特定的橫斷面形狀,但亦可形成任何橫斷面形狀之通道 ,諸如三角形、多角形、橢圓形,等等。 上述說明係用以解釋示範實施例而非用以限制。那些 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝·, 1T The paper size is applicable to China National Standard (CNS) Α4 specification (210Χ297 mm) - 36- 1275452 A7 __ B7 V. Invention description ((Please read the back note first and then fill in this page) Electropolishing assembly. 16A to 16E are similar to FIGS. 13A to 13E except that they incorporate a linear movable base 4180 and a moving guide 4182 mounted with rotary nozzles 4012 and 4014. Specifically, the rotary multiple nozzle 4014, the optical termination point detector 4016, and A vortex thickness/termination point detector 4060 is mounted over the linear moveable base 4180. The linear moveable base member can be moved in a horizontal direction (ie, the X direction) along the movement guide 4182. This assembly allows The multiple nozzles are contained in a small space. The structure and operation of the multiple nozzles 4014 are similar to those shown in Figures 14A and 14B, however, such as rotary drive mechanisms, drive contacts, current feed channels, etc. have been omitted for illustrative purposes. And electrolyte feeding channel. VII. Nozzle self-cleaning procedure Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing according to another type, describing a kind of self-cleaning An exemplary procedure for polishing a nozzle. During a typical electropolishing procedure, the metal dissolved in the electrolyte liquid may be plated over the nozzle electrode. The plated metal may limit or deform the nozzle opening, thereby changing the electrolyte liquid flow. Shape and/or orientation. Changing the shape of the stream may change the current density of the stream, thereby changing the polishing rate of the electropolishing device. The nozzle may be electroplated or cleaned by applying a reverse voltage to the nozzle. It causes the metal ions to dissolve back into the electrolyte solution. For example, the metal may be plated to another nozzle, sacrificial material, etc. Referring to Figures 1A to 1E, from a metal layer (which is polished from wafer 1〇〇4) The metal is dissolved in the electrolyte liquid 1038 and may cause the dissolved gold paper size to be applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -37- 1275452 A7 B7 V. Description of the invention (4 parts of the genus become the mine On nozzle electrodes 1056 and/or 1060. To remove metal from electrodes 1056 and/or 1060, a reverse voltage can be applied to nozzle electrodes 1056 and/or 106. 0. Any DC or AC power supply can be used to apply a reverse voltage. In an exemplary procedure, a reverse voltage is applied to deposit the ore metal onto a *disposable wafer. In yet another example, The reverse voltage is applied to deposit the plated metal on a block. A. Using a DC power supply to dissolve the metal in the electrolyte liquid. Referring to Figure 1A, the metal buildup on the nozzle 1012 can be polished and dissolved using a DC power supply. In the electrolyte liquid 1038. More specifically, the lead C can be connected to the lead b, and the lead B can be connected to the lead a such that its nozzle electrode 1056 (Figs. 1B-1E) acts as an anode and the electrode 1060 acts as a cathode. Electrolyte liquid 1038 can be supplied through nozzles 1012 and 1014 to form a circuit between electrodes 1056 and 1060 that allows metal to build up on nozzle 1012 to be removed from nozzle 1012 and dissolved in electrolyte liquid 1038. A portion of the metal dissolved in the electrolyte liquid 1038 can be plated onto the nozzle 1014. Although it appears that the process moves the metal from only one nozzle and plates it on the other nozzle, most of the metal removed from the nozzle 1 〇 12 remains dissolved in the electrolyte liquid 1038. Therefore, the concentration of the metal in the electrolytic liquid 1038 of the electropolishing process is usually very low, for example, less than 3% by weight, so that its electrolytic polishing is performed by supplying the nozzle electrodes 101 2 and 1014 instead of the chemical action of the electrolyte liquid 1038. Drive. Therefore, the amount of metal polished from the nozzle 1 〇 12 is greater than the amount of metal that is plated on the nozzle 1014. For example, the paper size applies to the Chinese National Standard (CNS) A4 specification (21〇><297 mm) (please read the note on the back and fill out this page) - Install - Book the Intellectual Property Office of the Ministry of Economic Affairs -38 - 1275452 A7 _ B7 V. Description of the invention (4 (please read the note on the back and then fill out this page). Corresponding to each metal ion plated on the nozzle 1014, there may be 10 metal ions removed from the nozzle. 1012, which causes most of the metal ions to dissolve in the electrolyte liquid 1038. With continued reference to Figure 1A, the process can be reversed such that the metal buildup on its nozzle 1014 is polished off and dissolved in the electrolyte liquid using a DC power supply. More specifically, lead B can be connected to lead b and lead C can be connected to lead a such that its nozzle electrode 1060 (Figs. 1B-1E) acts as an anode and nozzle electrode 1056 acts as a cathode. Electrolyte liquid 1038 can It is supplied through nozzles 1012 and 1014 to form a circuit that allows metal to be deposited on nozzle 1014 to be removed from nozzle 1014 and dissolved in electrolyte liquid 1038. Dissolved in electrolyte solution A portion of the metal in 1038 may be plated on the nozzle 101 2. The Ministry of Economic Affairs, the Intellectual Property Office, the employee consumption cooperative prints by repeating the process, that is, reversing the voltage of each nozzle used in the device. The nozzle can be cleaned. In an exemplary process, the nozzle is quickly cleaned by electropolishing the succeeding wafer by first removing the plating nozzle 1012 and plating the nozzle 1014, followed by the plating nozzle 1014 and plating the nozzle 1012. The two nozzles are effectively cleaned because (as discussed above) most of the metal is dissolved in the electrolyte liquid 1038 rather than being plated in the opposite nozzle. Figures 2 and 3 are shown in a cleaning procedure. Two exemplary configurations of nozzles 1012 and 1014. Nozzles 1012 and 1014 are placed in proximity to each other and electrolyte liquid is allowed to flow through nozzles 101 2 and 1014 and form a film or path of electrolyte liquid therebetween. When nozzles 1012 and 1014 are placed When closer together (as shown in Figure 3), the electrolyte flowing between nozzles 1012 and 1014 is of the Chinese National Standard (CNS) A4 specification (210X297 mm) -39-1275 452 A7 ____B7_ V. INSTRUCTIONS ((Please read the back note first and then fill out this page) The two films or paths of liquid 1080 can be combined to form a single path. This single path reduces the length of the circuit and thus increases the metal buildup removal The efficiency of the procedure. Of course, it should be understood that the exemplary method can also be used with more than two nozzles. B. Using a DC power supply to deposit metal on the wafer. Referring to Figure 1A, the metal buildup on the nozzle 1012 can be supplied using a DC power supply. It is polished off and plated onto wafer 1004 in accordance with another exemplary process. More specifically, lead A can be connected to lead b and lead B can be connected to lead a such that wafer 1004 acts as a cathode and nozzle electrode .1056 (Figs. 1B-1E) acts as an anode. Electrolyte liquid 1038 can be supplied to wafer 1004 through nozzle 1012 to form a circuit that allows metal to build up on nozzle 1012 to be plated onto wafer 1004. Wafer 1004 can be discarded after metal buildup on nozzle 1012 is removed. Printed by the Ministry of Economic Affairs, Intellectual Property Office, Staff Consumer Cooperative. Similarly, referring to Figure 1A, metal buildup on nozzle 1014 can be polished off and plated onto wafer 1004 using a DC power supply. More specifically, lead A can be connected to lead b and lead C can be connected to lead a such that its wafer 1004 acts as a cathode and nozzle electrode 1060 (Figs. 1B-1E) acts as an anode. Electrolyte liquid 1038 can be supplied to wafer 1004 through nozzle 1014 to form a circuit that allows metal to build up on nozzle 1014 to be plated onto wafer 1004. The nozzles 1012 or other nozzles in the electropolishing apparatus can be cleaned in parallel or in tandem with the nozzles 1014. Wafer 1004 can be discarded after the metal buildup on nozzle 1012 is removed. C. Use DC power supply to deposit electroplated metal on a block. This paper scale is applicable to China National Standard (CNS) A4 specification (210X297 mm) -40- 1275452 A7 __ B7 V. Invention description (Please read the back NOTE, refilling this page. Referring to Figure 4, the metal stack 1057 on the nozzle 1012 can be polished off and plated onto the block 1082 using a DC power supply, according to another exemplary process. More specifically, the lead B can be Connected to lead a and lead D can be connected to lead b such that block 1082 acts as a cathode and nozzle electrode 1056 acts as an anode. Electrolyte liquid 1038 (Fig. 1) can be supplied through nozzle 1012 and allows its contact area Block 1082 forms a circuit through electrolyte liquid 1038 that allows metal to build up on nozzle 1012 to be plated onto block 1082. Block 1082 can be discarded after metal buildup on nozzle 1012 is removed, or otherwise At the time of convenience. Ministry of Economic Affairs, Intellectual Property Bureau, Staff Consumer Cooperative, Printed Similarly, referring to Figure 4, the metal stack 1057 on the nozzle 1014 can be polished and plated using a DC power supply. More specifically, lead C can be connected to lead a and lead D can be connected to lead b such that block 1082 acts as a cathode and nozzle electrode 1060 acts as an anode. Electrolyte liquid 1038 (Fig. 1) is permeable Nozzle 1014 is supplied and allowed to contact block 1082 to form a circuit that allows metal to build up on nozzle 1014 to be plated onto block 1082. Block 1082 can be removed after metal buildup on nozzle 1014 is removed. Abandon, or at other convenient times. In addition, the electrodes 1056 and 1060 can be cleaned in series or in parallel. D. Use an AC power supply to remove metal deposits in another demonstration nozzle cleaning procedure, can be used with any The above architecture uses an AC power supply (rather than a DC power supply) to remove metal buildup from nozzles 1012 and 1014. Specifically, an AC power supply is used to dissolve the metal buildup in the electrolyte liquid, and the plating metal buildup will be discarded. The paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -41 - 1275452 A7 B7 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative prints V. Explain (33⁄4 on the wafer, or plating metal on a block or other sacrificial material. It is more efficient to remove metal deposits from the nozzle with an AC power supply because the metal concentration in the electrolyte liquid is reduced. Therefore, The metal concentration is generally in the range of from about 0.1% to about 5% by weight, and preferably less than 0.5% by weight, during the removal procedure. VIII. Nozzle Shape In any of the exemplary embodiments described, various Shaped nozzles. Different types of nozzles (e.g., different sizes, profiles, cross-sectional shapes, etc.) provide different polishing characteristics and can be advantageously used depending on the particular application. For example, as shown in FIG. 1B, an exemplary electropolishing apparatus can include two differently sized nozzles 1012 and 1014 that can be used to electrolyze different sections of wafer 1004. In addition, Figures 5A through 5H show various exemplary nozzles having a variety of shapes and configurations. The shape of the nozzle (e.g., the passage and the end) can change the electrolyte liquid flowing from the nozzle, the current density in the flow of the electrolyte liquid, and the like. Figures A through E show various nozzle configurations and shapes including an insulator 5054 and an electrode 5056. Figures 5F through 5H show nozzles without an insulator. Several nozzle frames have curved electrodes 5056 near their openings. The curved electrode avoids the electrical peak of the sharp point of the electrode, which helps to produce a more uniform current density in the electrolyte liquid stream. Figure 5H depicts a nozzle comprising an electrode 5056 and a rod 5058 disposed adjacent the center of the nozzle to increase the surface area of the electrode and produce a more uniform current density. For each of the above nozzles, the electrode 5056 may comprise a metal or an alloy, (please read the notes on the back and fill out this page) - Loading. The standard paper size applies to the Chinese National Standard (CNS) A4 specification (210x297 mm) - 42- 1275452 A7 B7 V. Description of the invention (d such as molybdenum, titanium, stainless steel, etc. Further, the insulator 5054 may comprise plastic such as PVC, PVD, Teflon, etc., or a pottery such as Al2〇3, Zr〇 2, Si〇2, etc. Therefore, since metals and alloys are generally formed into various shapes more than plastics and ceramics, nozzles having curved or tapered electrodes and straight-shaped insulators can be cheaper than other shapes. Further, a nozzle having only one electrode 5056, such as those shown in Figures 5F, 5G, and 5H, can have a simpler design and a larger surface area. Further, the nozzle shown in Figure 5H includes a rod. 5058 is part of electrode 5056 that provides an electrode having a larger surface area and can more evenly distribute its potential across electrolyte liquid 1038 (FIG. 1A) flowing from the nozzle. A more evenly distributed potential results in wafer 1004 More uniform electropolishing. Figures 6A and 6B have another exemplary nozzle of insulator 6054, electrode 6056, and electrically conductive inner structure 6086. Inner structure 6086 comprises a metal or alloy, such as giant, titanium, stainless steel, and the like. The inner structure 6086 includes a plurality of channels that increase the surface area of the electrode and more evenly distributes its potential across the nozzle 6056. The size of the channel can range from about 0.1 mm to about 10 mm, depending on the diameter of the nozzle and the particular application. Preferably, each channel is sized to about one tenth of the diameter of the nozzle. The channels can be formed in a variety of cross-sectional shapes, such as those shown in Figures 6B through 61. For example, the channels can be square, fiber Shape, straight groove, metal rod, wave groove, rectangle, honeycomb, etc. In addition, although Figures B to I show a specific cross-sectional shape, they can also form channels of any cross-sectional shape, such as triangles, polygons. , ellipses, etc. The above description is intended to explain exemplary embodiments and not to limit them. Those paper sizes apply to the Chinese National Standard (CNS) Α4 specification (210X 297 mm) ( Matters to read the back of the note and then fill in this page) installed ·
、1T 經濟部智慧財產局員工消費合作社印製 -43- 1275452 A7 __B7_ 五、發明説明( 熟悉此項技術者將瞭解其本發明範圍內之各種修飾及改變 均有可能。例如,不同的示範性電解拋光裝置(如屏蔽、 導電構件、各種噴嘴、終止點檢測器,等等)可被共同使 用於單一總成中或者可被分離地使用以加強習知的電解拋 光裝置。因此,本發明係由後附申請專利範圍所界定而不 應由此處之描述所限定。 圖式簡單說明 圖1A及1B個別爲一包含屏蔽之示範半導體處理裝置 的橫斷面圖及頂視圖; 圖1C、1D及1E係一半導體處理裝置之示範噴嘴的橫 斷面圖; 圖2係一半導體處理裝置之示範噴嘴的橫斷面圖; 圖3係一半導體處理裝置之示範噴嘴的橫斷面圖; 圖4係一半導體處理裝置之示範噴嘴及一區塊的橫斷 面圖; 圖5A至5H顯示各種示範噴嘴形狀及架構之橫斷面圖 , 圖6A及6B顯示一示範噴嘴結構之橫斷面及頂視圖; 圖6C至61顯示各種示範噴嘴結構之頂視圖; 圖7顯示一包含導電構件之示範半導體處理裝置的橫 斷面圖; 圖8A及8B顯示一包含導電構件之示範半導體處理裝 置的橫斷面圖; 本紙張尺度適用中國國家標準(CNS ) Α4規格(210><297公釐) (請先閱讀背面之注意事項再填寫本畜 〇 裝·1T Ministry of Economic Affairs Intellectual Property Office Employees Consumption Cooperative Printed -43- 1275452 A7 __B7_ V. Description of the Invention (Familiar with the art will understand that various modifications and changes within the scope of the invention are possible. For example, different demonstrations Electropolishing devices (such as shields, conductive members, various nozzles, termination point detectors, etc.) can be used together in a single assembly or can be used separately to enhance conventional electropolishing devices. Accordingly, the present invention is The invention is defined by the scope of the appended claims and should not be limited by the description herein. BRIEF DESCRIPTION OF THE DRAWINGS Figures 1A and 1B are a cross-sectional view and a top view, respectively, of an exemplary semiconductor processing apparatus including a shield; Figures 1C, 1D 1A is a cross-sectional view of an exemplary nozzle of a semiconductor processing apparatus; FIG. 2 is a cross-sectional view of an exemplary nozzle of a semiconductor processing apparatus; and FIG. 3 is a cross-sectional view of an exemplary nozzle of a semiconductor processing apparatus; A cross-sectional view of an exemplary nozzle and a block of a semiconductor processing apparatus; Figures 5A through 5H show cross-sectional views of various exemplary nozzle shapes and structures, Figs. 6A and 6B A cross-sectional view and a top view of an exemplary nozzle structure; Figures 6C through 61 show top views of various exemplary nozzle configurations; Figure 7 shows a cross-sectional view of an exemplary semiconductor processing apparatus including conductive members; Figures 8A and 8B show an Cross-sectional view of an exemplary semiconductor processing device for conductive members; This paper scale applies to China National Standard (CNS) Α4 specifications (210 >< 297 mm) (please read the notes on the back and fill in the animal equipment)
、1T 經濟部智慧財產局員工消費合作社印製 -44- 1275452 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(4;! 圖8C顯示一包含導電構件之示範晶圓夾盤總成的分解 圖; 圖9A及9B顯示包含導電構件之示範半導體處理裝置 的橫斷面圖; 圖10A及10B個別顯示包含一或兩個光學感應器之示 範半導體處理裝置的橫斷面圖; 圖11A及11B顯示一示範半導體處理裝置之頂視圖及 橫斷面圖; 圖12顯示一示範半導體處理裝置之橫斷面圖; 圖13A-13E顯示一具有多個旋轉總成之示範電解拋光 總成; 圖14A及14B顯示示範性多個旋轉噴嘴總成之橫斷面 圖; 圖14C顯示一用以電解拋光導電層於一晶圓上之示範 製程; 圖15顯示一具有示範性多個線性可移動噴嘴總成之電 解拋光室的橫斷面圖;及 圖16A-16E顯示一具有一線性可移動及多個旋轉噴嘴 之電解拋光裝置的示範圖。 主要元件對照表 1000致動器 1002夾盤 1004晶圓 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -45- 經濟部智慧財產局員工消費合作社印製 1275452 A7 B7五、發明説明(扁 1006屏蔽 1008拋光容器 10 0 9檢測器 1010,1012,1014 噴嘴 101 6終止點檢測器 10 1 8過濾器 1020 泵 1024止回閥 1 028電極 1030電源供應 1 032溫度感應器 1034冷卻器/加熱器 1036熱交換器 1038電解質液體 1040電源供應 1052噴嘴 1056,1060 電極 1070貯存器 2012旋轉噴嘴固持器 2014噴嘴 2056電極 2062電流饋送道 2066 〇型環 2068驅動接點 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -46- 經濟部智慧財產局員工消費合作社印製 1275452 A7 B7五、發明説明(4i 2070驅動機構 2072 〇型環 2074螺栓 2078, 2082磁性耦合接點 2084平板 3054 噴嘴 3056, 3220, 3224 電極 3 110電源供應 3180噴嘴固持器 3182移動導引 3222 噴嘴 3226 噴嘴 4012, 4014旋轉噴嘴 4016光學終止點檢測器 4060檢測器 4180基座 4182移動導引 5 0 5 4絕緣器 505 6電極 505 8 桿 6054絕緣器 605 6電極 6086內結構 7002夾盤 (請先閱讀背面之注意事項再填寫本頁) -裝·1T Ministry of Economic Affairs Intellectual Property Bureau Staff Consumer Cooperative Printed -44- 1275452 A7 B7 Ministry of Economic Affairs Intellectual Property Bureau Staff Consumer Cooperative Printed 5, Invention Description (4; Figure 8C shows a demonstration wafer chuck containing conductive members 9A and 9B are cross-sectional views showing an exemplary semiconductor processing apparatus including a conductive member; FIGS. 10A and 10B each showing a cross-sectional view of an exemplary semiconductor processing apparatus including one or two optical sensors; 11A and 11B show top and cross-sectional views of an exemplary semiconductor processing apparatus; Fig. 12 shows a cross-sectional view of an exemplary semiconductor processing apparatus; and Figs. 13A-13E show an exemplary electrolytic polishing assembly having a plurality of rotating assemblies. 14A and 14B show cross-sectional views of an exemplary plurality of rotating nozzle assemblies; FIG. 14C shows an exemplary process for electrolytically polishing a conductive layer on a wafer; FIG. 15 shows an exemplary plurality of linearities. A cross-sectional view of the electropolishing chamber of the moving nozzle assembly; and Figures 16A-16E show an exemplary diagram of an electropolishing apparatus having a linearly movable and rotatable nozzle. Piece table 1000 actuator 1002 chuck 1004 wafer (please read the back note first and then fill in this page) This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) -45- Ministry of Economics intellectual property Bureau employee consumption cooperative printing 1275452 A7 B7 V. Invention description (flat 1006 shielding 1008 polishing container 10 0 9 detector 1010, 1012, 1014 nozzle 101 6 termination point detector 10 1 8 filter 1020 pump 1024 check valve 1 028 Electrode 1030 power supply 1 032 temperature sensor 1034 cooler / heater 1036 heat exchanger 1038 electrolyte liquid 1040 power supply 1052 nozzle 1056, 1060 electrode 1070 reservoir 2012 rotating nozzle holder 2014 nozzle 2056 electrode 2062 current feed channel 2066 type Ring 2068 drive contacts (please read the note on the back and then fill out this page) This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) -46- Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printed 1275452 A7 B7 V. Invention description (4i 2070 drive mechanism 2072 〇 ring 2074 bolt 2078, 2082 magnetic coupling contact 2084 plate 3054 nozzle 3056, 32 20, 3224 Electrode 3 110 Power supply 3180 Nozzle holder 3182 Moving guide 3222 Nozzle 3226 Nozzle 4012, 4014 Rotary nozzle 4016 Optical end point detector 4060 Detector 4180 Base 4182 Moving guide 5 0 5 4 Insulator 505 6 Electrode 505 8 rod 6054 insulator 605 6 electrode 6086 structure 7002 chuck (please read the back of the note before filling this page) - loading ·
、1T 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) -47- 經濟部智慧財產局員工消費合作社印製 1275452 A7 B7五、發明説明(4i 7004晶圓 7054 噴嘴 7080電解質液體流 708 1薄層 7110電源供應 7114導電構件 8002夾盤 8004晶圓 8 110電源供應 8 11 2電源供應 8114導電構件 8118間隔物元件 8119彈簧構件 8121絕緣器構件 9002晶圓夾盤 9004晶圓 9005金屬層 9080電解質液體 9110電源供應 9 11 2可變電阻 9 114導電構件 9 11 5絕緣環 9116導電環 9118間隔物元件 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -48- 1275452 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(扁 9 1 2 1絕緣構件 10028,10029 電極 10030電源供應 10100反射器 10102纖維探針 10104纖維光學感應器 10105電腦 10202光學纖維 10204第二光學感應器 1 1000致動器 1 1002夾盤 11004晶圓 1 1054噴嘴 1 1080電解質液體 11081薄層 11110電源供應 11114導電構件 11150金屬層 12000致動器 12002夾盤 12054噴嘴 1 21 80, 1 21 82 致動器 (請先閱讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -49-, 1T This paper scale applies to China National Standard (CNS) Α 4 specifications (210Χ297 mm) -47- Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printed 1275452 A7 B7 V. Invention description (4i 7004 wafer 7054 nozzle 7080 electrolyte liquid flow 708 1 thin layer 7110 power supply 7114 conductive member 8002 chuck 8004 wafer 8 110 power supply 8 11 2 power supply 8114 conductive member 8118 spacer element 8119 spring member 8121 insulator member 9002 wafer chuck 9004 wafer 9005 metal layer 9080 Electrolyte Liquid 9110 Power Supply 9 11 2 Variable Resistor 9 114 Conductive Member 9 11 5 Insulation Ring 9116 Conductive Ring 9118 Spacer Element (Please read the back note first and then fill in this page) This paper scale applies to Chinese National Standard (CNS) A4 size (210X297 mm) -48- 1275452 A7 B7 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing 5, invention description (flat 9 1 2 1 insulation member 10028, 10029 electrode 10030 power supply 10100 reflector 10102 fiber probe 10104 fiber optic sensor 10105 computer 10202 optical fiber 10204 second optical sensor 1 1000 actuator 1 1002 chuck 110 04 Wafer 1 1054 Nozzle 1 1080 Electrolyte Liquid 11081 Thin Layer 11110 Power Supply 11114 Conductive Member 11150 Metal Layer 12000 Actuator 12002 Chuck 12054 Nozzle 1 21 80, 1 21 82 Actuator (please read the notes on the back first) Fill in this page) This paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -49-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33241701P | 2001-11-13 | 2001-11-13 | |
US37256702P | 2002-04-14 | 2002-04-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200300376A TW200300376A (en) | 2003-06-01 |
TWI275452B true TWI275452B (en) | 2007-03-11 |
Family
ID=26988208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW091133283A TWI275452B (en) | 2001-11-13 | 2002-11-13 | Electropolishing assembly and methods for electropolishing conductive layers |
Country Status (8)
Country | Link |
---|---|
US (1) | US20040238481A1 (en) |
EP (1) | EP1446514A4 (en) |
JP (5) | JP2005509746A (en) |
KR (1) | KR20050044404A (en) |
CN (1) | CN100497748C (en) |
CA (1) | CA2464423A1 (en) |
TW (1) | TWI275452B (en) |
WO (1) | WO2003042433A1 (en) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7205166B2 (en) * | 2002-06-28 | 2007-04-17 | Lam Research Corporation | Method and apparatus of arrayed, clustered or coupled eddy current sensor configuration for measuring conductive film properties |
KR101151456B1 (en) * | 2002-07-22 | 2012-06-04 | 에이씨엠 리서치, 인코포레이티드 | Adaptive electropolishing using thickness measurements and removal of barrier and sacrificial layers |
JP2005082843A (en) * | 2003-09-05 | 2005-03-31 | Ebara Corp | Electrolytic solution control method and control device |
JP2005120464A (en) * | 2003-09-26 | 2005-05-12 | Ebara Corp | Electrolytic processing apparatus and electrolytic processing method |
US7224456B1 (en) * | 2004-06-02 | 2007-05-29 | Advanced Micro Devices, Inc. | In-situ defect monitor and control system for immersion medium in immersion lithography |
WO2007035408A1 (en) * | 2005-09-19 | 2007-03-29 | Applied Materials, Inc. | Method for stabilized polishing process |
US7837850B2 (en) * | 2005-09-28 | 2010-11-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Electroplating systems and methods |
US20070181441A1 (en) * | 2005-10-14 | 2007-08-09 | Applied Materials, Inc. | Method and apparatus for electropolishing |
JP5012252B2 (en) | 2007-06-25 | 2012-08-29 | ヤマハ株式会社 | Magnetic data processing apparatus, method and program |
DE102007044091A1 (en) * | 2007-09-14 | 2009-03-19 | Extrude Hone Gmbh | Process and device for electrochemical machining |
US8496511B2 (en) * | 2010-07-15 | 2013-07-30 | 3M Innovative Properties Company | Cathodically-protected pad conditioner and method of use |
US9255339B2 (en) * | 2011-09-19 | 2016-02-09 | Fei Company | Localized, in-vacuum modification of small structures |
KR101300325B1 (en) * | 2011-12-21 | 2013-08-28 | 삼성전기주식회사 | Apparatus for plating substrate and control method thereof |
CN102601471B (en) * | 2012-03-28 | 2013-07-24 | 华南理工大学 | Finish machining method for space curve meshing gear mechanism |
CN103590092B (en) * | 2012-08-16 | 2017-05-10 | 盛美半导体设备(上海)有限公司 | Device and method used for electrochemical polishing/electroplating |
TWI529893B (en) * | 2012-09-01 | 2016-04-11 | 萬國半導體股份有限公司 | An assembly method of die with thick metal |
CN105210181B (en) * | 2013-05-09 | 2017-12-01 | 盛美半导体设备(上海)有限公司 | Plating and/or the device and method of electropolishing silicon chip |
CN105088328B (en) * | 2014-05-07 | 2018-11-06 | 盛美半导体设备(上海)有限公司 | Electrochemical polish liquid feed device |
TWI647343B (en) * | 2014-05-16 | 2019-01-11 | 盛美半導體設備(上海)有限公司 | Apparatus and method for electroplating or electropolishing bracts |
CN105312999A (en) * | 2014-07-29 | 2016-02-10 | 盛美半导体设备(上海)有限公司 | SFP (stress-free polish) equipment and technological cavity thereof |
CN105316755B (en) * | 2014-07-29 | 2019-06-25 | 盛美半导体设备(上海)有限公司 | Electrochemical polish equipment |
CN104241159B (en) * | 2014-09-19 | 2018-04-03 | 中海阳能源集团股份有限公司 | Solar power generation support liquid coating and measurement integrated device |
CN105448817B (en) * | 2014-09-29 | 2020-05-19 | 盛美半导体设备(上海)股份有限公司 | Method for electrochemically polishing metal interconnection wafer structure |
CN106567130A (en) * | 2015-10-10 | 2017-04-19 | 盛美半导体设备(上海)有限公司 | Method for improving roughness of wafers |
CN105780101B (en) * | 2016-01-27 | 2018-06-26 | 杨继芳 | A kind of Novel electrolytic polissoir |
CN105742213B (en) * | 2016-03-07 | 2019-03-12 | 京东方科技集团股份有限公司 | Wet-method etching equipment and wet etching method |
US11110661B2 (en) | 2016-11-15 | 2021-09-07 | Postprocess Technologies, Inc. | Self-modifying process for rotational support structure removal in 3D printed parts using calibrated resonant frequency |
CN106352782A (en) * | 2016-11-24 | 2017-01-25 | 中国航空工业集团公司金城南京机电液压工程研究中心 | High-temperature electrical vortex sensor and manufacturing method |
CN106625033B (en) * | 2016-12-09 | 2018-12-18 | 天津津航技术物理研究所 | A kind of method of determining Single point diamond turning o tool marks polishing removal behavior |
JP6431128B2 (en) * | 2017-05-15 | 2018-11-28 | エーシーエム リサーチ (シャンハイ) インコーポレーテッド | Apparatus and method for plating and / or polishing of wafers |
CN109423688B (en) * | 2017-08-31 | 2022-03-22 | 深圳市水佳鑫科技有限公司 | Electrochemical treatment fluid circulation system and equipment |
CN111250805A (en) * | 2020-03-20 | 2020-06-09 | 南京航空航天大学 | Flying type electrolytic milling leveling method for rough metal surface |
CN111230727B (en) * | 2020-03-28 | 2024-08-02 | 苏州赛森电子科技有限公司 | Silicon wafer single-side polishing device and single-side polishing method in vacuum coating process |
CN111958478B (en) * | 2020-07-27 | 2024-06-18 | 浙江工业大学 | Bearing roller ELID grinding device based on active control of oxide film state |
US20220282807A1 (en) * | 2021-03-04 | 2022-09-08 | Applied Materials, Inc. | Insulated fluid lines in chemical mechanical polishing |
CN114951858B (en) * | 2022-05-17 | 2024-05-10 | 哈尔滨工业大学 | Optical-electro-hydraulic coupling device for optical fiber laser and tube electrode electrolysis combination |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4304641A (en) * | 1980-11-24 | 1981-12-08 | International Business Machines Corporation | Rotary electroplating cell with controlled current distribution |
DE4121032A1 (en) * | 1991-06-26 | 1993-01-07 | Schmid Gmbh & Co Geb | DEVICE FOR TREATING PLATE-SHAPED OBJECTS, IN PARTICULAR BOARDS |
US5217586A (en) * | 1992-01-09 | 1993-06-08 | International Business Machines Corporation | Electrochemical tool for uniform metal removal during electropolishing |
US5421987A (en) * | 1993-08-30 | 1995-06-06 | Tzanavaras; George | Precision high rate electroplating cell and method |
US5567300A (en) * | 1994-09-02 | 1996-10-22 | Ibm Corporation | Electrochemical metal removal technique for planarization of surfaces |
US5843520A (en) * | 1997-01-13 | 1998-12-01 | Vanguard International Semiconductor Corporation | Substrate clamp design for minimizing substrate to clamp sticking during thermal processing of thermally flowable layers |
JPH10256450A (en) * | 1997-03-12 | 1998-09-25 | Mitsubishi Electric Corp | Device and method for machining lead frame |
KR100271759B1 (en) * | 1997-07-25 | 2000-12-01 | 윤종용 | Photoresist coating apparatus and method thereof |
US6447668B1 (en) * | 1998-07-09 | 2002-09-10 | Acm Research, Inc. | Methods and apparatus for end-point detection |
US6395152B1 (en) * | 1998-07-09 | 2002-05-28 | Acm Research, Inc. | Methods and apparatus for electropolishing metal interconnections on semiconductor devices |
JP3619021B2 (en) * | 1998-08-06 | 2005-02-09 | アルプス電気株式会社 | Thin-film magnetic head plating apparatus and thin-film magnetic head |
JP2000087295A (en) * | 1998-09-09 | 2000-03-28 | Matsushita Electronics Industry Corp | Electroplating method, electroplating device and production of semiconductor device |
US6120607A (en) * | 1998-12-03 | 2000-09-19 | Lsi Logic Corporation | Apparatus and method for blocking the deposition of oxide on a wafer |
US6582578B1 (en) * | 1999-04-08 | 2003-06-24 | Applied Materials, Inc. | Method and associated apparatus for tilting a substrate upon entry for metal deposition |
US6444101B1 (en) * | 1999-11-12 | 2002-09-03 | Applied Materials, Inc. | Conductive biasing member for metal layering |
-
2002
- 2002-11-13 EP EP02789648A patent/EP1446514A4/en not_active Withdrawn
- 2002-11-13 TW TW091133283A patent/TWI275452B/en active
- 2002-11-13 US US10/495,206 patent/US20040238481A1/en not_active Abandoned
- 2002-11-13 WO PCT/US2002/036567 patent/WO2003042433A1/en not_active Application Discontinuation
- 2002-11-13 KR KR1020047007132A patent/KR20050044404A/en not_active Application Discontinuation
- 2002-11-13 CA CA002464423A patent/CA2464423A1/en not_active Abandoned
- 2002-11-13 JP JP2003544243A patent/JP2005509746A/en active Pending
- 2002-11-13 CN CNB028225864A patent/CN100497748C/en not_active Expired - Lifetime
-
2006
- 2006-06-15 JP JP2006165966A patent/JP2006291361A/en active Pending
- 2006-07-11 JP JP2006190757A patent/JP2006316352A/en active Pending
- 2006-08-24 JP JP2006227781A patent/JP2007016320A/en active Pending
- 2006-10-17 JP JP2006282312A patent/JP2007051376A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2005509746A (en) | 2005-04-14 |
CN1585835A (en) | 2005-02-23 |
KR20050044404A (en) | 2005-05-12 |
EP1446514A4 (en) | 2007-11-28 |
JP2007051376A (en) | 2007-03-01 |
JP2006291361A (en) | 2006-10-26 |
US20040238481A1 (en) | 2004-12-02 |
EP1446514A1 (en) | 2004-08-18 |
CA2464423A1 (en) | 2003-05-22 |
CN100497748C (en) | 2009-06-10 |
WO2003042433A1 (en) | 2003-05-22 |
JP2007016320A (en) | 2007-01-25 |
JP2006316352A (en) | 2006-11-24 |
TW200300376A (en) | 2003-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI275452B (en) | Electropolishing assembly and methods for electropolishing conductive layers | |
TW523558B (en) | Method and apparatus for electrochemical mechanical deposition | |
KR100780257B1 (en) | Polishing method, polishing apparatus, plating method, and plating apparatus | |
TW494049B (en) | Method and apparatus for end-point detection | |
US7311811B2 (en) | Device providing electrical contact to the surface of a semiconductor workpiece during processing | |
TW541597B (en) | Method and apparatus for encapsulation of an edge of a substrate during an electro-chemical deposition process | |
US6613214B2 (en) | Electric contact element for electrochemical deposition system and method | |
EP0505548A1 (en) | Method and apparatus for spatially uniform electropolishing and electrolytic etching | |
WO2001086031A1 (en) | Anode assembly for plating and planarizing a conductive layer | |
KR20010014062A (en) | Electro-chemical deposition system and method of electroplating on substrates | |
US20070181432A1 (en) | Electrolytic processing apparatus and substrate processing apparatus and method | |
US20050077182A1 (en) | Volume measurement apparatus and method | |
JP2003342800A (en) | Polishing method, polishing apparatus and method of producing semiconductor device | |
US20070034525A1 (en) | Electrolytic processing method | |
JP5148206B2 (en) | Electrolytic processing method and electrolytic processing apparatus | |
US20050051432A1 (en) | Electrolytic processing apparatus and method | |
US7578920B2 (en) | Electrolytic processing method | |
TWI858405B (en) | Substrate electrochemical planarization apparatus and methods of planarizing substrates | |
US7563356B2 (en) | Composite processing apparatus and method | |
TW200529973A (en) | Real time process control for a polishing process | |
TW476992B (en) | Electroplating system having auxiliary electrode exterior to main reactor chamber for contact cleaning operations | |
TW202348354A (en) | Face-up wafer electrochemical planarization apparatus | |
TW202042298A (en) | Catalyst reference device | |
JP2004002910A (en) | Electrolytic working method and apparatus | |
JP2006013177A (en) | Apparatus and method for electrolytic processing |