TW200300376A - Electropolishing assembly and methods for electropolishing conductive layers - Google Patents
Electropolishing assembly and methods for electropolishing conductive layers Download PDFInfo
- Publication number
- TW200300376A TW200300376A TW091133283A TW91133283A TW200300376A TW 200300376 A TW200300376 A TW 200300376A TW 091133283 A TW091133283 A TW 091133283A TW 91133283 A TW91133283 A TW 91133283A TW 200300376 A TW200300376 A TW 200300376A
- Authority
- TW
- Taiwan
- Prior art keywords
- wafer
- patent application
- scope
- nozzle
- electrolyte liquid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 137
- 239000003792 electrolyte Substances 0.000 claims abstract description 227
- 235000012431 wafers Nutrition 0.000 claims description 377
- 239000007788 liquid Substances 0.000 claims description 251
- 229910052751 metal Inorganic materials 0.000 claims description 156
- 239000002184 metal Substances 0.000 claims description 156
- 238000005498 polishing Methods 0.000 claims description 152
- 230000003287 optical effect Effects 0.000 claims description 53
- 229910021645 metal ion Inorganic materials 0.000 claims description 41
- 239000004065 semiconductor Substances 0.000 claims description 41
- 238000005259 measurement Methods 0.000 claims description 28
- 230000008569 process Effects 0.000 claims description 23
- 230000002079 cooperative effect Effects 0.000 claims description 21
- 238000007517 polishing process Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 16
- 238000007747 plating Methods 0.000 claims description 11
- 239000012212 insulator Substances 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 238000005260 corrosion Methods 0.000 claims description 9
- 230000007797 corrosion Effects 0.000 claims description 9
- 239000004033 plastic Substances 0.000 claims description 8
- 229920003023 plastic Polymers 0.000 claims description 8
- 230000002441 reversible effect Effects 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 239000013078 crystal Substances 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims description 3
- 230000009972 noncorrosive effect Effects 0.000 claims description 3
- 238000009713 electroplating Methods 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims 3
- 229910010293 ceramic material Inorganic materials 0.000 claims 2
- 238000012546 transfer Methods 0.000 claims 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims 1
- 238000013459 approach Methods 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000007654 immersion Methods 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- 229920003051 synthetic elastomer Polymers 0.000 claims 1
- 239000005061 synthetic rubber Substances 0.000 claims 1
- 239000012530 fluid Substances 0.000 abstract description 2
- 239000000835 fiber Substances 0.000 description 19
- 239000000523 sample Substances 0.000 description 17
- 125000006850 spacer group Chemical group 0.000 description 17
- 230000006870 function Effects 0.000 description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- -1 polytetrafluoroethylene Polymers 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- 239000010936 titanium Substances 0.000 description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 8
- 229910001431 copper ion Inorganic materials 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 239000010935 stainless steel Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 235000011007 phosphoric acid Nutrition 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 229910052770 Uranium Inorganic materials 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 239000003344 environmental pollutant Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 231100000719 pollutant Toxicity 0.000 description 4
- 239000004800 polyvinyl chloride Substances 0.000 description 4
- 229910052702 rhenium Inorganic materials 0.000 description 4
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 4
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 3
- 229920002449 FKM Polymers 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 235000014036 Castanea Nutrition 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- 241000264877 Hippospongia communis Species 0.000 description 1
- 241000668842 Lepidosaphes gloverii Species 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- NMFHJNAPXOMSRX-PUPDPRJKSA-N [(1r)-3-(3,4-dimethoxyphenyl)-1-[3-(2-morpholin-4-ylethoxy)phenyl]propyl] (2s)-1-[(2s)-2-(3,4,5-trimethoxyphenyl)butanoyl]piperidine-2-carboxylate Chemical compound C([C@@H](OC(=O)[C@@H]1CCCCN1C(=O)[C@@H](CC)C=1C=C(OC)C(OC)=C(OC)C=1)C=1C=C(OCCN2CCOCC2)C=CC=1)CC1=CC=C(OC)C(OC)=C1 NMFHJNAPXOMSRX-PUPDPRJKSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67075—Apparatus for fluid treatment for etching for wet etching
- H01L21/6708—Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H3/00—Electrochemical machining, i.e. removing metal by passing current between an electrode and a workpiece in the presence of an electrolyte
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F7/00—Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
- H01L21/2885—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6838—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68707—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/001—Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Weting (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
200300376 A7 _B7 五、發明説明(彳) 發明所屬之技術領域 本發明一般而言係有關半導體處理裝置,更明確地, (請先閱讀背面之注意事項再填寫本頁) 係有關用以電解拋光半導體裝置上之導電層的電解拋光裝 置。 先前技術 半導體裝置係使用數種不同處理步驟而被製造或製作 於半導體晶圓上以產生電晶體及互連元件。爲了電連接半 導體晶圓相關的電晶體終端,故形成導電(例如,金屬) 溝槽、接觸孔(vias)等於電介質材料中而成爲半導體裝置 之部分。溝槽及接觸孔耦合電晶體之間、半導體裝置的內 部電路之間、及半導體裝置的外部電路之間的電信號及電 力。 經濟部智慧財產局員工消費合作社印製 在形成半導體互連元件時,半導體晶圓歷經(例如) 遮蔽、蝕刻 '沈積製程以形成半導體裝置之理想的電子電 路。明確地,可能執行多重遮蔽及蝕刻步驟以形成凹陷區 域之一圖案於一電介質層中(在一半導體晶圓上),此等 凹陷區域係作用爲互連之溝槽及接觸孔。可接著執行一沈 積製程以沈積一金屬層於半導體晶圓上,藉以沈基金屬於 溝槽及接觸孔中,以及於半導體晶圓之非凹陷區域上。爲 了隔離互連(諸如成型的溝槽及接觸孔),故移除其沈積 於半導體晶圓之非凹陷區域上的金屬。200300376 A7 _B7 V. Description of the Invention (彳) Technical Field of the Invention The present invention generally relates to semiconductor processing devices. More specifically, (please read the precautions on the back before filling out this page). It is related to electrolytic polishing Electrolytic polishing device with conductive layer on the device. Prior art Semiconductor devices are manufactured or fabricated on semiconductor wafers using several different processing steps to produce transistors and interconnect components. In order to electrically connect the transistor terminals associated with the semiconductor wafer, conductive (eg, metal) trenches and vias are formed in the dielectric material and become part of the semiconductor device. The trench and the contact hole couple electrical signals and power between the transistors, between the internal circuits of the semiconductor device, and between the external circuits of the semiconductor device. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs When forming semiconductor interconnect components, semiconductor wafers undergo, for example, a masking, etching, and deposition process to form the ideal electronic circuit for semiconductor devices. Specifically, multiple masking and etching steps may be performed to form a pattern of one of the recessed areas in a dielectric layer (on a semiconductor wafer). These recessed areas serve as interconnecting trenches and contact holes. A deposition process can then be performed to deposit a metal layer on the semiconductor wafer, whereby the sinking fund belongs to the trenches and contact holes, and on the non-recessed areas of the semiconductor wafer. To isolate the interconnects (such as formed trenches and contact holes), the metal deposited on the non-recessed areas of the semiconductor wafer is removed.
在半導體晶圓上移除其沈積於電介質層之非凹陷區域 的金屬膜的習知方法習知包含(例如)化學機械拋光(CMP 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -5- 200300376 A7 B7 五、發明説明(2) )。CMP方法被廣泛地使用於半導體工業中以拋光及使溝 槽及接觸孔中之金屬層平坦化與電介質層之非凹陷區域以 形成互連線。 於CMP製程中,一晶圓組成被置於一平台或網上的 CMP墊之上。晶圓組成包含一具有一或更多層及/或特徵( 諸如形成於電介質層中之互連元件)的基底。接著施加一 力以壓制晶圓組成於CMP墊之上。CMP墊與基底組成係彼 此相對地移動,當施力以拋光及平坦化晶圓之表面時。一 拋光溶液(通常稱爲拋光膏(slurry))通常含有一種拋光料 且會起化學反應以從晶圓更快速地移除不要的材料(例如 ,金屬層),相較於其他材料(例如,電介質材料)。 然而,CMP方法可能對於底下的半導體結構具有不利 的影響,因爲其相關之相對強的機械力。例如,當互連形 狀達到0.13微米以下時,可能存在極大差異於導電材料( 例如,典型金屬鑲嵌製程中所使用之銅及低k膜)的機械 性質之間,例如,低k電介質膜之楊氏模數可能較銅之楊 氏模數更低了超過10階的大小。因此,於一 CMP製程中施 加在電介質膜及銅上之相對強的機械力(除了別的以外) 可能造成半導體基底上之應力相關的缺陷,其包含分層( delamination)、凹狀扭曲(dishing)、腐蝕、膜隆起、刮 痕,等等。 因此需要新的製造技術。例如,可使用電拋光製程以 自一晶圓移除或蝕刻金屬層。通常,於一電拋光製程中, 欲拋光之晶圓的部分被浸入電解質液溶液中,並接著供電 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) --01------辦衣-- (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -6- 200300376 A7 B7 五、發明説明(3) 至晶圓。這些情況便導致銅被移除或拋光自晶圓。 (請先閱讀背面之注意事項再填寫本頁) 內容 於本發明之一型態中,提供一種用以電解拋光一晶圓 .上之導電膜之示範的裝置及方法。一種示範裝置包含一用 以固持晶圓之夾盤(chuck )、一用以旋轉晶圓夾盤之致動 器、一用以電解拋光晶圓之噴嘴、及一置於晶圓邊緣周圍 之屏蔽(shroud )。一種電解拋光晶圓上之導電膜的示範方 法包含以足夠速度旋轉一晶圓夾盤以致其入射於晶圓上之 電解質液在晶圓之表面上流動朝向晶圓之邊緣。 本發明配合後附圖形及申請專利範圍而考量以下詳細 敘述則最能被暸解。 實施方式 經濟部智慧財產局員工消費合作社印製 爲了提供對本發明之更透徹的瞭解,以下說明提出一 些特定細節,諸如特定材料、參數,等等。然而,應理解 其說明並不是對於本發明之範圍有所限制,而只是被提供 以獲得示範實施例之較佳描述。 I.示範性電解拋光裝置: 圖1 A及1 B顯不一種可被用以拋光晶圓1 〇 〇 4之示範性 晶圓電解拋光裝置的橫斷面及頂視圖。廣泛而言,示範性 電解拋光裝置之操作係藉由導引電解質液體流朝向一晶圓 上之金屬膜,當供應一電荷至晶圓時。電荷及電解質液體 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐)~~ " 200300376 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(4) 造成金屬膜中之金屬離子溶解於電解質液體中。電解質液 體之電流密度及電解質液體中之金屬離子的濃度決定(至 少部分地)拋光之速率。因此,藉由控制電流密度、電解 質溶液濃度,等等,則電解拋光裝置可精確地拋光其配置 於半導體晶圓上之金屬層。 如圖1A中所示,電解拋光裝置可包含夾盤1002、致動 器1000、及拋光容器(receptacle) 1008。拋光容器1008可 形成以任何電絕緣且能抵抗對酸及腐蝕之材料,諸如聚四 氟乙烯(商業上稱爲TEFLON )、聚氯乙烯(PVC )、聚偏 氟乙烯(PVDF)、聚丙烯,等等。拋光容器1008最好是可 被形成自PVDF。然而,應理解其拋光容器1008可根據應 用而由不同材料所形成。 如圖1A中所示,電解質液體1 038可透過噴嘴1010、 1012、及/或1014而流入拋光容器1 008。更明確地,泵 1020將來自電解質液體貯存器1 070加壓越過止回閥1024 而至流通過濾器1018。流通過濾器可包含液體大量流動控 制器(LMFCs),其可控制遞送至噴嘴1010、1012、及 1014之電解質液體1 03 8的量及速率。此外,流通過濾器 1018可從電解質液體1 03 8過濾出污染物以減少污染物的量 ,這些污染物可能通過噴嘴1010、1012、或1014而進入拋 光容器1008而可能惡化電解拋光製程或者阻塞LMFCs (假 如有使用的話)。於本範例中,流通過濾器1018理想地移 除大於約0.05至約0.1微米之粒子。然而,應理解可根據 特定應用而使用不同的過濾系統。此外,雖然過濾污染物 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) IT---;------辦衣------、玎------^ (請先閱讀背面之注意事項再填寫本頁) -8 - 200300376 A7 B7 五、發明説明(5) 是有利的,在某些應用中之晶圓拋光總成可能省略流通過 濾器101 8。 (請先閲讀背面之注意事項再填寫本頁) 電解質液體1038可包含任何便利的電解拋光液體,諸 如磷酸,等等。電解質液體1 03 8最好是包含正磷酸(H3P〇4 ),其具有介於約60重量百分比至約85重量百分比之間 的濃度,而更理想的是約7 6重量百分比。此外,電解質液 體1 038最好是包含約10至40重量百分比之乙二醇,其剩 餘物包含水及H3P〇4酸,其具有約1 %的鋁金屬(相對於酸 之重量)。然而,電解質液體1 03 8之濃度及組成可根據特 定應用而改變。 泵1 020可包含任何適當的液壓泵,諸如離心泵、隔膜 (diaphragm)栗、風箱(bellow)栗,等等。此外,栗 1020可抵抗酸、腐蝕、及污染。雖然僅顯示一個泵1020, 經濟部智慧財產局員工消費合作社印製 但應理解任何數目的泵1 020均可被使用。例如,可使用分 離的泵於每一噴嘴1010、1012、及1 014。此外,於某些應 用中,電解質液體1 038可透過噴嘴1010、1012、及1014 以流入拋光容器1 008而無須泵1020。例如,電解質液體 1 038可被維持在某·一壓力於電解質液體貯存器1070中。另 一方面,介於電解質液體貯存器1070與噴嘴1010、1012、 及1014之間的供應線可被維持於某一壓力。 LMFCS可包含任何便利的大量流動控制器,其更理想 的是能夠抵抗酸、腐蝕、及污染。此外,LMFCs以固定流 率遞送電解質液體1 038至噴嘴1010、1012、及1014。此外 ,LMFCs可適當地遞送電解質液體1 038以其正比於噴嘴 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29*7公釐) -9 - 200300376 A7 B7 五、發明説明(6) (請先閱讀背面之注意事項再填寫本頁) 1 010、101 2、及1014之橫斷面面積的流率。例如,假如噴 嘴1012之直徑較噴嘴1014大,則LMFCs可較有利地以一 較大的流率遞送電解質液體1038至噴嘴1012。於本示範實 施例中,LMFCs最好是被構成而遞送電解質液體1038以一 介於每分鐘0.5公升與每分鐘40公升之間的流率,根據噴 嘴尺寸、噴嘴與晶圓間之距離,等等。 電解質液體貯存器1070可進一步包含一熱交換器1〇36 、冷卻器/加熱器1034、及一溫度感應器1032,以利控制電 解質液體貯存器1070內之電解質液體1 038的溫度。再者, 一個以上電極1028可被包含於貯存器1070中且被耦合至電 源供應1030。施加電荷至電極1028便從電解質液體1〇38 移除金屬離子,藉以調整電解質液體1 038之金屬離子濃度 。亦可施加一相反電荷至電極10 2 8以增加金屬離子至電解 質液體1038。 經濟部智慧財產局員工消費合作社印製 示範性晶圓拋光器總成進一步包含配置於噴嘴1012及 1014內之電極。如以下將更詳細地描述,雖然本示範性實 施例包含具有兩個電極於其中之兩個噴嘴,但是可使用任 何數目的噴嘴及每個噴嘴之電極數,無論是小於或大於兩 個。通常,增加一噴嘴中之電極的表面面積便增加電流密 度以及涵蓋電解質液體1038流之輪廓的電解拋光率。 如圖1D及1E中所示,噴嘴1012及1014個別包含電 極1056及1 060。電極1056及1060可包含任何導電金屬, 諸如銅、不銹鋼、鉅(Ta )、鈦(Ti) 、TaN、TiN、鉛、 鉑,等等。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -10- 200300376 經濟部智慧財產局R工消費合作社印製 A7 ___ B7五、發明説明(7) 於電解拋光製程期間,某些金屬離子(其遷移離開晶 圓1004上之金屬層)可能累積於電極1〇56及1〇6〇之上。 如以下將更詳細地描述,金屬累積或電鍍可被移除於一除 電鍍製程中。例如,當電極1056及1060被正地充電而晶圓 1 002被負地充電時,則晶圓1〇〇4被電鍍而非電解拋光。以 此及類似方式,可移除其鍍於電極1056及1060之上的金屬 ,亦即,除電鍍。另一方面,電極1 056及1060可於任何適 當時刻被適當地置換。例如,電極1056及1060可在處理約 100個晶圓之後被置換。 於某些範例中,金屬層可包含銅。因此,於電解拋光 製程期間,某些來自被拋光金屬層之銅離子遷移至電鍍電 極105 6及1060。然而,假如電極1〇56及1060包含銅,則 電極1 056及1 060可能於除電鍍製程期間溶解而變形。因此 ,於某些範例中,希望其電極1056及1060包含能抵抗除電 鍍期間被溶解之材料。例如,電極1056及1060可包含鉑及 鉑合金。另一方面,電極1056及1060可包含以一鉑層適當 塗敷之鈦,例如,具有約50微米至約400微米之厚度。 於本示範性裝置中,晶圓夾盤1 002適當地固持及定位 晶圓1004於拋光容器1008之中或之上。更明確地,晶圓 1004被適當地定位正對於噴嘴1010、1012、及1014且於屏 蔽1006中。屏蔽1006可選擇性地被包含於晶圓1004周圍 以避免飛濺等,如以下將更詳細地描述。 在晶圓1004被適當地定位於拋光容器1008中之後,電 極1 056及1 060便由電源供應1040充電。此外,晶圓1〇〇4 本纸張尺度適用中國國家標準(CNS ) A4規格(2]〇X 297公釐) ~ ' -11 - (請先閲讀背面之注意事項再填寫本頁) -裝· 訂 -線 200300376 經濟部智慧財產局員工消費合作社印製 A7 B7 ___五、發明説明(8) 係由電源供應1040充電。另一方面,可使用一個以上的電 源供應以充電電極1056及1060及晶圓1004。當適當充電 而電解質液體1 03 8流動於噴嘴1012及1014內的電極1056 及1060與晶圓1004的表面之間時,則形成一電流。更明確 地,電極1056及1060被充電以具有負電位,相較於晶圓 1 004。回應於電極1056及1060上之此負電位,金屬離子遷 移離開晶圓1004而進入電解質液體1038,因此電解拋光晶 圓1〇〇4。然而,當電路之極性反轉時,則金屬離子遷移朝 向晶圓1004,因而電鍍晶圓1004。 此外,如圖1A及1 C中所示,噴嘴1010包含注入噴嘴 1052及終止點檢測器1016。於電解拋光製程期間,注入噴 嘴1052可被構成以供應電解質液體1038,而終止點檢測器 1016可被構成以檢測晶圓1004上之金屬層的厚度。終止點 檢測器1016可包含各種感應器,諸如超音波感應器、光學 反射感應器、電磁感應器(諸如渦電流感應器),等等。 由注入噴嘴1 052所供應之電解質液體1038可作用爲一介質 ,終止點檢測器1016係通過此介質而發射信號並測量金屬 膜厚度。使用電解質液體1 03 8爲單一介質以傳輸信號會增 加終止點檢測器1016所執行之測量的準確度,因爲電解質 液體1038提供單一的相。反之,假如注入噴嘴1〇52不提供 電解質液體1 038,則來自終止點檢測器之發射及測量可透 過各種其他的介質,諸如空氣等,在通過其由噴嘴1012或 噴嘴1014所供應至晶圓1004的電解質液體1 03 8之前。如 以下將描述,具有其可能隨時間而改變之電解質液體1038 本紙張尺度適用中國國家標準( CNS ) A4規格(2丨0X 297公釐) ' ~' -12- (請先閲讀背面之注意事項再填寫本頁) -裝. 訂 線 200300376 A7 B7 五、發明説明(9) 的更新或即時特性亦可增加終止點測量之準確度。再者, 雖然顯示一具有一終止點檢測器1016之噴嘴1010,但亦可 使用具有任何數目之終止點檢測器的任何數目噴嘴。 如圖1 A中進一步顯示,致動器1 〇〇〇可以z軸爲中心 旋轉晶圓夾盤1002及晶圓1004。再者,於某些應用中,致 動器1000可沿著X軸移動晶圓夾盤1002及晶圓1004,而 噴嘴1010、1012、及1014保持不動。於其他應用中,噴嘴 1010、1012、及1014可沿著X軸移動,而1002及晶圓1004 保持沿著X軸靜止。於又其他應用中,致動器1000可沿著 X軸移動晶圓夾盤1002及晶圓1004,而噴嘴1010、1012、 及1 0 14亦沿著X軸移動。 此外,電鍍裝置可以其他方式被定向。例如,噴嘴 1010、1012、及1014可被定位於晶圓1004之上,以致其電 解質液體被向下導引朝向晶圓1004。此外,晶圓1004可被 定向爲垂直與噴嘴1010、1012、及1014,而噴嘴1010、 1012、及1014係導引電解質液體朝向晶圓1004。 有關示範性晶圓電解拋光裝置之討論,參見1999年七 月2日申請之美國專利編號6,395,1 52,名稱爲「METHODS AND APPARATUS FOR ELECTROPOLISHING METAL INTERCONNECTIONS 〇N SEMICONDUCTOR DEVICES」,其 係倂入於此以供參考。再者,有關示範性終止點檢測器之 額外討論,參見2000年五月1 2日申請之美國專利編號 6,447,688 ,名稱爲「METH〇DSANDAPPARATUSF〇REND-POINT DETECTION」,其係倂入於此以供參考。 本紙張尺度適用中國國家標準(CNS ) A4規格(2】〇X 297公釐) - , 绛-- (請先閲讀背面之注意事項再填寫本頁) 、τ 經濟部智慧財產局員工消費合作社印製 -13- 200300376 A7 ____ B7 五、發明説明(^ II.電解質液體飛濺保護 (請先閲讀背面之注意事項再填寫本頁) 一示範性電解拋光方法包含旋轉晶圓1 004,當電解質 液體1 03 8被導引至晶圓1004之表面時。晶圓1004被旋轉 以一速率,此速率足以產生其造成進入之電解質液體1〇38 流動橫越晶圓1004之表面而朝向晶圓1004之邊緣的離心力 。最好是,電解質液體1 03 8流至晶圓1004之、邊緣於其從表 面落下之前。藉由導引此流橫越晶圓1004之表面,則液體 可避免從晶圓表面落下而中斷電解質液體1038流或者形成 電解質液體之連續列於拋光容器1 008中。然而,此製程可 能造成電解質液體飛濺於容器中而溢出裝置或者中斷電解 質液體流。因此,一示範性電解拋光裝置包含一屏蔽1006 ,其係置於晶圓1004周圍,以減少或避免其已由離心力作 用之液體飛濺於拋光容器1008中或溢出自拋光容器1008。 經濟部智慧財產局員工消費合作社印製 圖1A及1B顯示屏蔽1006,其被構成以圍繞晶圓1004 及晶圓夾盤1 002。如圖1A中所示,噴嘴101 2可供應一電 解質液體流至晶圓1004之表面。爲了更均勻地拋光晶圓 1004上之一金屬膜,晶圓1004可以一種方式被旋轉以造成 電解質液體1038流動橫越晶圓1004而至夾盤1002之暴露 部分,但不容許電解質液體從晶圓1004之表面落下進入拋 光容器1〇〇8。任何從晶圓1004落下並形成電解質液體之一 連續列於1004與拋光容器1 008之間的電解質液體可能造成 其中形成該列之晶圓1004的過度拋光。額外的拋光可能導 致金屬層之不均勻且無法預測的拋光率。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) _ -14- 經濟部智慧財產局員工消費合作社印製 200300376 A7 ___B7 五、發明説明(j 此外,任何從晶圓1004落下或者飛濺於拋光容器ioos 中之電解質液體均可能攪亂噴嘴iOU所供應之電解質液體 流。電解質液體1 038流之形狀或(更明確地)輪廓因而影 響電解拋光裝置之電流密度及拋光率因而希望使得電解質 液體1038沿著晶圓1004之表面而流動朝向晶圓1〇〇4之邊 緣且遠離其導引至晶圓1004之上的電解質液體1〇38流。 晶圓1004可被旋轉以一適當的旋轉速度,根據電解質 液體之黏稠度,其被使用以造成電解質液體流動跨越晶圓 1004而朝向晶圓1004之邊緣或流至夾盤1002之暴露部分 。旋轉速度應使得其電解質液體1 038可流動跨越晶圓1004 而不會從晶圓1 004之表面落下並形成一連續列,或干擾電 解質液體1038流。明確地,電解質液體之黏稠度越低,則 需要越高的離心加速。例如,對於85%之磷酸,離心加速 可被選爲高於約1 · 5公尺/秒2。於一示範方法中,3 0 0 m m 直徑之晶圓被旋轉於約1 00每分鐘旋轉數(rpm )至約 2,000 rpm以上之範圍內,而最好是,於約1,500至約2,000 rpm之範圍。 通常,噴嘴1012或1014將掃瞄晶圓1004之整個表面 以更均勻地拋光晶圓1004。晶圓1004可被旋轉以產生一恆 定的離心加速於進入之電解質液體1038上,當噴嘴1012正 掃瞄晶圓1 004之不同部分時。例如,離心加速係直接正比 於其與晶圓中心之徑向距離以及旋轉速度之平方。因此, 晶圓1004所被旋轉之速度可被減少當噴嘴1012或1014正 拋光其接近晶圓1 004之邊緣的晶圓1 004部分時(亦即,大 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐' -15- I J ; 批衣 訂 線 (請先閲讀背面之注意事項再填寫本頁) 200300376 A7 B7 五、發明説明(^ 半徑),而增加當拋光其接近晶圓1004之中心的部分時( 亦即,小半徑)。 IT 2 裝-- (請先閱讀背面之注意事項再填寫本頁) 通常,當電解質液體係以上述方式被供應至晶圓1004 時,則電解質液體可能流動朝向晶圓1 004之邊緣並越過晶 圓1004之邊緣而朝向拋光容器1008之壁。若無屏蔽1006 ,則電解質液體1038可能接觸拋光容器1008之壁以及拋光 容器1008中之飛濺,因而中斷電解質液體1 038流或溢出自 拋光容器1008。 線 如圖1A及1B中所示,屏蔽1006可被置於晶圓1004 及夾盤1002之周圍以減少或預防電解質液體1038飛濺於或 溢出自拋光容器1008。再者,屏蔽1006可於拋光製程期間 以X方向連同夾盤1002及致動器1000而移動。明確地,屏 蔽1006可藉由一種機械附加裝置、接合物,等而被裝附至 夾盤1002及/或致動器1 000。另一方面,另一使屏蔽1〇〇6 之移動同步與夾盤1002及致動器1000之致動器可分別地驅 動屏蔽10Q6。屏蔽1006亦可與夾盤1002 —致地或不一致 地被旋轉。 經濟部智慧財產局員工消費合作社印製 屏蔽1006可被形成以任何適當的形狀,諸如圓形、多 邊形,等等。最好是屏蔽1006被形成以減少電解質液體 1 038之飛濺(在其流自晶圓1004之後)並將電解質液體 1 038包容於拋光容器1 008中。介於夾盤1002與屏蔽1006 之間的間隙可爲(例如)約1 mm至約1 0 mm之範圍內,且 最好是約5 mm。此外,如圖1A中所示,屏蔽1006之側壁 的橫斷面可被形成爲L之形狀,以避免電解質液體飛濺於 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -16- 200300376 A7 B7 五、發明説明(^ 屏蔽1006或夾盤1002之上。然而,屏蔽1〇〇6之橫斷面可 具有各種其他的形狀。例如,屏蔽1006之側壁(亦即,L 形狀之垂直部分)可被形成爲其他諸如C形狀等其他形狀 。此外,屏蔽1006可爲漸變細或漸變粗以減少飛濺等。屏 蔽1006亦可進一步延伸於圖1所示的晶圓1004及夾盤 1002之上或之下。 屏蔽1006可由塑膠、陶器等、或者300系列中之諸如 鉬、鈦、不銹鋼等抗腐鈾金屬或合金所製。 然而,應理解所述之電解拋光的方法不需要其電解質 液體1038流過晶圓之邊緣而到達屏蔽1006。電解質液體 1038形成一與拋光容器1 008之連續列及飛濺於拋光容器 1008之內或之外的問題可被減少或避免,而無須電解質液 體完全流經晶圓1004。例如,僅藉由旋轉晶圓1004以致其 電解質液體在從晶圓1004落下之前沿著晶圓1004表面之一 部分流動朝向晶圓1〇〇4之邊緣即可減少或避免不當的效果 III.邊緣過拋光之減少 於另一型態中,描述一種用以減少位於或接近一晶圓 之邊緣上的過拋光之電解拋光方法及裝置。通常,位於或 接近一晶圓之邊緣上的部分被拋光得較晶圓之其他區域上 的金屬層之部分爲快速。一連接至一晶圓之邊緣的電極可 能增加其電流密度於接近晶圓之邊緣區的電解質液體內, 而導致增加的拋光率。一般而言,接近晶圓之邊緣的較高 本紙張尺度適用中.國國家標準(CNS ) A4規格(210X297公釐) « · (請先閱讀背面之注意事項再填寫本頁) 、言 經濟部智慧財產局員工消賓合作拍矸嚷 •17- 200300376 經濟部智慧財產局員工涓費合作社印製 A7 _____B7____五、發明説明(^ 電流密度及拋光率可能藉由吸收電流密度之一部分而被減 小,其係以一置於或接近晶圓之邊緣的導電構件(諸如一 環狀物等等)而透過電解質液體吸收電流密度之一部分。 接近邊緣之電流密度亦可被調整,藉由充電導電構件以改 變其被吸收之電流量藉以控制電流密度至一較大程度。 參考圖7,顯示一種用以減少邊緣過拋光之示範性裝置 及方法。一電解質液體流7080係從噴嘴7054被供應至晶圓 7004。晶圓7004被旋轉以一足夠的旋轉速度來形成電解質 液體之一薄層708 1,其可拋光晶圓7004上之一金屬層。通 常,假如一電極被連接至晶圓7004之邊緣,則位於或接近 晶圓7004之邊緣的金屬層係由電解質液體之薄層708 1拋光 得較晶圓7004之其他區域上的金屬更快。因此,位於或接 近晶圓7004之邊緣的金屬層可能變得過拋光。 夾盤7002包含一導電構件7114,其可減少位於或接近 晶圓7004之邊緣的過拋光之量。例如,晶圓7004及導電構 件7114均可被連接至電源供應7110且被充電以致其電解質 液體之薄層7081中的拋光電流之一部分由導電構件7114所 吸收。藉由吸收拋光電流之一部分,導電構件7114可減小 位於或接近晶圓7004之金屬層的拋光率並減少或避免過拋 光。 導電構件7114可包含一置於或接近晶圓7004之邊緣的 單一環狀物。另外,導電構件可包含其被配置於或接近晶 圓7 004之邊緣的兩個以上區段。導電構件7114可包含金屬 或合金(諸如鉬、銶、不鏡鋼,等等)、以及其他適於接 本紙張尺度適用中國國家標準(CNS)A4規格(210X297公釐)~ "~~ -18 - (請先閲讀背面之注意事項再填寫本頁) .TI m - fc · -裝-Known methods for removing metal films deposited on non-recessed areas of a dielectric layer on a semiconductor wafer. Known methods include, for example, chemical mechanical polishing (CMP). This paper applies Chinese National Standard (CNS) A4 specifications (210X297 mm). ) -5- 200300376 A7 B7 V. Description of the invention (2)). The CMP method is widely used in the semiconductor industry to polish and planarize metal layers in trenches and contact holes and non-recessed areas of dielectric layers to form interconnect lines. In the CMP process, a wafer component is placed on a CMP pad on a platform or network. A wafer composition includes a substrate having one or more layers and / or features, such as interconnect elements formed in a dielectric layer. A force is then applied to suppress the wafer assembly onto the CMP pad. The CMP pad and substrate composition move relative to each other when a force is applied to polish and planarize the surface of the wafer. A polishing solution (commonly known as a slurry) usually contains a polishing compound and reacts chemically to remove unwanted materials (eg, metal layers) from the wafer more quickly than other materials (eg, Dielectric material). However, the CMP method may have an adverse effect on the underlying semiconductor structure because of the relatively strong mechanical forces associated with it. For example, when the interconnect shape reaches below 0.13 microns, there may be a large difference between the mechanical properties of conductive materials (such as copper and low-k films used in typical damascene processes), such as low-k dielectric films The Young's modulus may be lower than the Young's modulus of copper by more than 10 orders of magnitude. Therefore, the relatively strong mechanical force (among other things) applied to the dielectric film and copper during a CMP process may cause stress-related defects on the semiconductor substrate, including delamination and dishing. ), Corrosion, film bumps, scratches, and more. Therefore, new manufacturing technologies are needed. For example, an electropolishing process can be used to remove or etch a metal layer from a wafer. Generally, in an electro-polishing process, a portion of a wafer to be polished is immersed in an electrolyte solution, and then power is supplied. This paper is sized to the Chinese National Standard (CNS) A4 (210X297 mm) --01 ---- --Handling-(Please read the notes on the back before filling this page) Order printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs-6- 200300376 A7 B7 V. Description of the invention (3) To the wafer. These conditions result in copper being removed or polished from the wafer. (Please read the precautions on the back before filling this page) Content In one form of the present invention, a demonstration device and method for electrolytically polishing a conductive film on a wafer is provided. An exemplary device includes a chuck for holding a wafer, an actuator for rotating the wafer chuck, a nozzle for electrolytic polishing of the wafer, and a shield placed around the edge of the wafer. (Shroud). An exemplary method of electrolytically polishing a conductive film on a wafer includes rotating a wafer chuck at a sufficient speed so that the electrolyte liquid incident on the wafer flows on the surface of the wafer toward the edge of the wafer. The present invention is best understood by considering the following detailed description of the drawings and the scope of patent application after coordinating the present invention. Implementation Method Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs In order to provide a more thorough understanding of the present invention, the following description proposes certain specific details, such as specific materials, parameters, and so on. It should be understood, however, that the description is not intended to limit the scope of the invention, but is provided to provide a better description of the exemplary embodiments. I. Exemplary Electrolytic Polishing Device: Figures 1 A and 1 B show cross-sections and top views of an exemplary wafer electrolytic polishing device that can be used to polish wafers 1004. Broadly speaking, the operation of an exemplary electrolytic polishing apparatus is by directing a flow of electrolyte liquid toward a metal film on a wafer when a charge is supplied to the wafer. Charge and electrolyte liquid The paper size is in accordance with Chinese National Standard (CNS) A4 specification (210X297 mm) ~~ 200300376 Printed by A7 B7, Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (4) Metal ions are dissolved in the electrolyte liquid. The current density of the electrolyte liquid and the concentration of metal ions in the electrolyte liquid determine (at least in part) the rate of polishing. Therefore, by controlling the current density, the concentration of the electrolytic solution, etc., the electrolytic polishing device can accurately polish the metal layer disposed on the semiconductor wafer. As shown in FIG. 1A, the electrolytic polishing apparatus may include a chuck 1002, an actuator 1000, and a polishing container 1008. The polishing container 1008 can be formed with any material that is electrically insulating and resistant to acids and corrosion, such as polytetrafluoroethylene (commercially known as TEFLON), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), polypropylene, and many more. The polishing container 1008 is preferably formed from PVDF. However, it should be understood that the polishing container 1008 may be formed of different materials depending on the application. As shown in FIG. 1A, the electrolyte liquid 1 038 may flow into the polishing container 1 008 through the nozzles 1010, 1012, and / or 1014. More specifically, the pump 1020 pressurizes the electrolyte liquid reservoir 1 070 across the check valve 1024 to the flow-through filter 1018. Flow-through filters may include liquid bulk flow controllers (LMFCs) that control the amount and rate of electrolyte liquid 1 03 8 delivered to nozzles 1010, 1012, and 1014. In addition, the flow-through filter 1018 can filter out pollutants from the electrolyte liquid 1 03 8 to reduce the amount of the pollutants, which may enter the polishing container 1008 through the nozzles 1010, 1012, or 1014, which may deteriorate the electrolytic polishing process or block LMFCs. (If used). In this example, the flow-through filter 1018 desirably removes particles larger than about 0.05 to about 0.1 microns. It should be understood, however, that different filtration systems may be used depending on the particular application. In addition, although filtering pollutants, this paper size applies Chinese National Standard (CNS) A4 specifications (210X 297 mm) IT ---; ------ manufacturing clothes ------, 玎 ----- -^ (Please read the precautions on the back before filling out this page) -8-200300376 A7 B7 V. Description of the invention (5) is advantageous, in some applications the wafer polishing assembly may omit the flow filter 101 8 . (Please read the notes on the back before filling out this page) Electrolyte liquid 1038 may contain any convenient electrolytic polishing liquid, such as phosphoric acid, and so on. The electrolyte liquid 1 03 8 preferably contains orthophosphoric acid (H3P04), which has a concentration between about 60% by weight and about 85% by weight, and more preferably about 76% by weight. In addition, the electrolyte liquid 1 038 preferably contains about 10 to 40% by weight of ethylene glycol, and the remainder contains water and H3P04 acid, which has about 1% of aluminum metal (relative to the weight of the acid). However, the concentration and composition of the electrolyte liquid 1 03 8 may be changed according to a specific application. The pump 1 020 may include any suitable hydraulic pump, such as a centrifugal pump, a diaphragm pump, a bell pump, and the like. In addition, Chestnut 1020 is resistant to acid, corrosion, and pollution. Although only one pump 1020 is shown, printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, it should be understood that any number of pumps 1020 can be used. For example, a separate pump may be used for each of the nozzles 1010, 1012, and 1014. In addition, in some applications, the electrolyte liquid 1 038 can pass through the nozzles 1010, 1012, and 1014 to flow into the polishing container 1 008 without the need for a pump 1020. For example, the electrolyte liquid 1 038 may be maintained at a certain pressure in the electrolyte liquid reservoir 1070. On the other hand, the supply line between the electrolyte liquid reservoir 1070 and the nozzles 1010, 1012, and 1014 can be maintained at a certain pressure. The LMFCS can include any convenient mass flow controller, which is more ideally resistant to acids, corrosion, and contamination. In addition, LMFCs deliver electrolyte liquid 1 038 to nozzles 1010, 1012, and 1014 at a fixed flow rate. In addition, LMFCs can properly deliver electrolyte liquid 1 038, which is proportional to the nozzle. The paper size applies Chinese National Standard (CNS) A4 specifications (210X29 * 7 mm) -9-200300376 A7 B7 V. Description of the invention (6) (please (Please read the notes on the back before filling out this page) 1 010, 101 2, and 1014 cross-sectional area flow rates. For example, if the nozzle 1012 is larger in diameter than the nozzle 1014, the LMFCs may advantageously deliver the electrolyte liquid 1038 to the nozzle 1012 at a larger flow rate. In this exemplary embodiment, LMFCs are preferably configured to deliver electrolyte liquid 1038 at a flow rate between 0.5 liters per minute and 40 liters per minute, depending on the nozzle size, the distance between the nozzle and the wafer, and so on. . The electrolyte liquid reservoir 1070 may further include a heat exchanger 1036, a cooler / heater 1034, and a temperature sensor 1032 to facilitate controlling the temperature of the electrolyte liquid 1 038 in the electrolytic liquid reservoir 1070. Furthermore, more than one electrode 1028 may be contained in a reservoir 1070 and coupled to a power supply 1030. Applying a charge to the electrode 1028 removes metal ions from the electrolyte liquid 1038, thereby adjusting the metal ion concentration of the electrolyte liquid 1 038. An opposite charge may also be applied to the electrode 10 2 8 to add metal ions to the electrolytic liquid 1038. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economics The exemplary wafer polisher assembly further includes electrodes disposed in the nozzles 1012 and 1014. As will be described in more detail below, although this exemplary embodiment includes two nozzles having two electrodes therein, any number of nozzles and the number of electrodes per nozzle may be used, whether less than or greater than two. Generally, increasing the surface area of the electrode in a nozzle increases the current density and the rate of electrolytic polishing that covers the contour of the 1038 flow of electrolyte liquid. As shown in Figs. 1D and 1E, the nozzles 1012 and 1014 include electrodes 1056 and 1060, respectively. The electrodes 1056 and 1060 may include any conductive metal, such as copper, stainless steel, giant (Ta), titanium (Ti), TaN, TiN, lead, platinum, and the like. This paper size applies to Chinese National Standard (CNS) A4 specification (210X297 mm) -10- 200300376 Printed by R Industrial Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs A7 ___ B7 V. Invention Description (7) During the electrolytic polishing process, some Metal ions (which migrate away from the metal layer on the wafer 1004) may accumulate on the electrodes 1056 and 1060. As will be described in more detail below, metal accumulation or plating can be removed in a remove plating process. For example, when electrodes 1056 and 1060 are positively charged and wafer 1002 is negatively charged, wafer 1004 is electroplated instead of electrolytically polished. In this and similar manner, the metal which is plated on the electrodes 1056 and 1060 can be removed, that is, in addition to plating. On the other hand, the electrodes 1 056 and 1060 can be appropriately replaced at any appropriate time. For example, the electrodes 1056 and 1060 can be replaced after processing about 100 wafers. In some examples, the metal layer may include copper. Therefore, during the electrolytic polishing process, some copper ions from the polished metal layer migrate to the plated electrodes 1056 and 1060. However, if the electrodes 1056 and 1060 contain copper, the electrodes 1 056 and 1 060 may dissolve and deform during the plating process. Therefore, in some examples, it is desirable that the electrodes 1056 and 1060 include a material that is resistant to being dissolved during the electroless plating. For example, the electrodes 1056 and 1060 may include platinum and a platinum alloy. On the other hand, the electrodes 1056 and 1060 may include titanium suitably coated with a platinum layer, for example, having a thickness of about 50 micrometers to about 400 micrometers. In the present exemplary device, the wafer chuck 1002 holds and positions the wafer 1004 in or on the polishing container 1008 appropriately. More specifically, the wafer 1004 is appropriately positioned facing the nozzles 1010, 1012, and 1014 and in the shield 1006. The shield 1006 can be optionally included around the wafer 1004 to avoid spatters and the like, as will be described in more detail below. After the wafer 1004 is properly positioned in the polishing container 1008, the electrodes 1 056 and 1 060 are charged by the power supply 1040. In addition, the wafer size of this paper is applicable to the Chinese National Standard (CNS) A4 specification (2) × 297 mm. ~ '-11-(Please read the precautions on the back before filling this page)-Install · Order-line 200300376 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 ___ V. Description of the invention (8) Charged by the power supply 1040. On the other hand, more than one power supply may be used to charge the electrodes 1056 and 1060 and the wafer 1004. When the electrolyte liquid 1 03 8 is properly charged and flows between the electrodes 1056 and 1060 in the nozzles 1012 and 1014 and the surface of the wafer 1004, a current is formed. More specifically, electrodes 1056 and 1060 are charged to have a negative potential compared to wafer 1 004. In response to this negative potential on the electrodes 1056 and 1060, the metal ions migrate away from the wafer 1004 and enter the electrolyte liquid 1038, thus electrolytically polishing the wafer 1004. However, when the polarity of the circuit is reversed, metal ions migrate toward the wafer 1004, and thus the wafer 1004 is plated. Further, as shown in FIGS. 1A and 1C, the nozzle 1010 includes an injection nozzle 1052 and an end point detector 1016. During the electrolytic polishing process, the injection nozzle 1052 may be configured to supply the electrolyte liquid 1038, and the termination point detector 1016 may be configured to detect the thickness of the metal layer on the wafer 1004. The end point detector 1016 may include various sensors such as an ultrasonic sensor, an optical reflection sensor, an electromagnetic sensor (such as an eddy current sensor), and the like. The electrolyte liquid 1038 supplied by the injection nozzle 1 052 can function as a medium. The termination point detector 1016 transmits signals and measures the thickness of the metal film through the medium. Using the electrolyte liquid 1 03 8 as a single medium to transmit the signal increases the accuracy of the measurement performed by the end point detector 1016 because the electrolyte liquid 1038 provides a single phase. Conversely, if the injection nozzle 1052 does not provide the electrolyte liquid 1 038, the emission and measurement from the termination point detector can be transmitted through a variety of other media, such as air, to the wafer through the nozzle 1012 or the nozzle 1014 1004 electrolyte liquid before 1 03 8. As will be described below, it has 1038 electrolyte liquid which may change with time. This paper size is applicable to Chinese National Standard (CNS) A4 specification (2 丨 0X 297 mm) '~' -12- (Please read the precautions on the back first (Fill in this page again)-Binding. 200300376 A7 B7 V. The update or instant characteristics of the description of invention (9) can also increase the accuracy of the measurement of the end point. Furthermore, although a nozzle 1010 having an end point detector 1016 is shown, any number of nozzles having any number of end point detectors may be used. As further shown in FIG. 1A, the actuator 1000 can rotate the wafer chuck 1002 and the wafer 1004 with the z axis as the center. Furthermore, in some applications, the actuator 1000 can move the wafer chuck 1002 and the wafer 1004 along the X axis, while the nozzles 1010, 1012, and 1014 remain stationary. In other applications, the nozzles 1010, 1012, and 1014 can move along the X axis, while 1002 and wafer 1004 remain stationary along the X axis. In still other applications, the actuator 1000 can move the wafer chuck 1002 and the wafer 1004 along the X axis, and the nozzles 1010, 1012, and 1014 also move along the X axis. Furthermore, the electroplating device can be oriented in other ways. For example, the nozzles 1010, 1012, and 1014 may be positioned above the wafer 1004 so that their electrolyte liquid is directed downward toward the wafer 1004. In addition, the wafer 1004 may be oriented perpendicular to the nozzles 1010, 1012, and 1014, and the nozzles 1010, 1012, and 1014 direct the electrolyte liquid toward the wafer 1004. For a discussion of an exemplary wafer electrolytic polishing device, see US Patent No. 6,395,152, filed July 2, 1999, entitled "METHODS AND APPARATUS FOR ELECTROPOLISHING METAL INTERCONNECTIONS ON SEMICONDUCTOR DEVICES", which is hereby incorporated by reference for reference. Further, for additional discussion of an exemplary termination point detector, see US Patent No. 6,447,688, filed May 12, 2000, entitled "METH〇DSANDAPPARATUSFSFREND-POINT DETECTION", which is incorporated herein by reference reference. This paper size applies to Chinese National Standard (CNS) A4 specifications (2) 0X 297 mm--绛-(Please read the precautions on the back before filling out this page), τ Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs -13- 200300376 A7 ____ B7 V. Description of the invention (^ II. Electrolyte liquid splash protection (please read the precautions on the back before filling this page) An exemplary electrolytic polishing method includes rotating the wafer 1 004. When the electrolyte liquid 1 03 8 when being guided to the surface of wafer 1004. Wafer 1004 is rotated at a rate sufficient to cause it to cause the incoming electrolyte liquid 1038 to flow across the surface of wafer 1004 toward the edge of wafer 1004. Centrifugal force. Preferably, the electrolyte liquid 1 03 8 flows to the wafer 1004 and the edge before it falls from the surface. By directing this flow across the surface of the wafer 1004, the liquid can avoid falling from the wafer surface The interruption of the electrolyte liquid flow 1038 or the formation of the electrolyte liquid is continuously listed in the polishing container 1 008. However, this process may cause the electrolyte liquid to splash in the container and overflow the device or interrupt the electrolyte liquid. Therefore, an exemplary electrolytic polishing device includes a shield 1006 that is placed around the wafer 1004 to reduce or prevent liquid that has been subjected to centrifugal forces from splashing into the polishing container 1008 or overflowing from the polishing container 1008. Ministry of Economic Affairs Printed by Intellectual Property Bureau employee consumer cooperatives Figures 1A and 1B show a shield 1006 that is configured to surround wafer 1004 and wafer chuck 1 002. As shown in Figure 1A, nozzle 1012 can supply an electrolyte liquid to the crystal The surface of circle 1004. In order to more evenly polish a metal film on wafer 1004, wafer 1004 can be rotated in a manner to cause electrolyte liquid 1038 to flow across wafer 1004 to the exposed portion of chuck 1002, but it is not allowed The electrolyte liquid falls from the surface of the wafer 1004 into the polishing container 1008. Any electrolyte liquid falling from the wafer 1004 and forming one of the electrolyte liquids continuously listed between 1004 and the polishing container 1 008 may cause the formation of the column therein. Excessive polishing of wafer 1004. Additional polishing may result in uneven and unpredictable polishing rates of the metal layer. This paper size applies to Chinese national standards ( CNS) A4 specification (210X297mm) _ -14- Printed by the Employees ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 200300376 A7 ___B7 V. Description of the invention (j In addition, any electrolyte liquid that falls from the wafer 1004 or splashes in the polishing container ioos May disturb the flow of the electrolyte liquid supplied by the nozzle iOU. The shape or (more specifically) contour of the flow of the electrolyte liquid 1 038 thus affects the current density and polishing rate of the electrolytic polishing device. It is therefore desirable to make the electrolyte liquid 1038 along the surface of the wafer 1004 The flow of electrolyte liquid 1038, which is directed toward the edge of wafer 1004 and away from it, is directed above wafer 1004. The wafer 1004 can be rotated at an appropriate rotation speed, depending on the viscosity of the electrolyte liquid, which is used to cause the electrolyte liquid to flow across the wafer 1004 toward the edge of the wafer 1004 or to the exposed portion of the chuck 1002. The rotation speed should be such that its electrolyte liquid 1 038 can flow across wafer 1004 without falling off the surface of wafer 1 004 and forming a continuous row, or disturbing the flow of electrolyte liquid 1038. Specifically, the lower the viscosity of the electrolyte liquid, the higher the centrifugation acceleration is required. For example, for 85% phosphoric acid, centrifugal acceleration can be selected to be higher than about 1.5 m / s2. In an exemplary method, a 300 mm diameter wafer is rotated in a range of about 100 revolutions per minute (rpm) to about 2,000 rpm or more, and preferably, about 1,500 to about 2,000 rpm Range. Generally, the nozzles 1012 or 1014 will scan the entire surface of the wafer 1004 to polish the wafer 1004 more uniformly. The wafer 1004 can be rotated to produce a constant centrifugal acceleration on the incoming electrolyte liquid 1038 while the nozzle 1012 is scanning different parts of the wafer 1 004. For example, centrifugal acceleration is directly proportional to the radial distance from the wafer center and the square of the rotation speed. Therefore, the speed at which the wafer 1004 is rotated can be reduced when the nozzle 1012 or 1014 is polishing the portion of the wafer 1 004 that is close to the edge of the wafer 1 004 (that is, the large paper size applies the Chinese National Standard (CNS)). A4 specifications (210X 297 mm '-15- IJ; batch line (please read the precautions on the back before filling this page) 200300376 A7 B7 V. Description of the invention (^ radius), and increase when polishing it close to the wafer The center part of 1004 (ie, small radius). IT 2 pack-(Please read the notes on the back before filling this page) Generally, when the electrolyte system is supplied to wafer 1004 in the above manner, then The electrolyte liquid may flow towards the edge of wafer 1004 and across the edge of wafer 1004 toward the wall of polishing container 1008. Without shield 1006, electrolyte liquid 1038 may contact the wall of polishing container 1008 and the splash in polishing container 1008, As a result, the flow of the electrolyte liquid 1 038 or overflowing from the polishing container 1008 is interrupted. As shown in FIGS. 1A and 1B, the shield 1006 can be placed around the wafer 1004 and the chuck 1002 to reduce or prevent the electrolyte liquid 103 8 Splashed or spilled from the polishing container 1008. In addition, the shield 1006 can be moved in the X direction along with the chuck 1002 and the actuator 1000 during the polishing process. Specifically, the shield 1006 can be attached by a mechanical attachment device, joint , Etc. are attached to the chuck 1002 and / or the actuator 1000. On the other hand, another synchronizes the movement of the shield 1006 with the actuators of the chuck 1002 and the actuator 1000, respectively. Drive the shield 10Q6. The shield 1006 can also be rotated in the same or inconsistently with the chuck 1002. The shield 1006 can be formed in any suitable shape, such as circular, polygonal, etc. Shield 1006 is preferably formed to reduce the splash of electrolyte liquid 1 038 (after it flows from wafer 1004) and contain electrolyte liquid 1 038 in polishing container 1 008. Between chuck 1002 and shield 1006 The gap may be, for example, in the range of about 1 mm to about 10 mm, and preferably about 5 mm. In addition, as shown in FIG. 1A, the cross section of the side wall of the shield 1006 may be formed as L Shape to avoid electrolyte liquid splashing on This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -16- 200300376 A7 B7 V. Description of the invention (^ Shielded on 1006 or chuck 1002. However, the cross section of Shielded 106 can be There are various other shapes. For example, the side wall of the shield 1006 (ie, the vertical portion of the L shape) may be formed into other shapes such as a C shape. In addition, the shield 1006 can be thin or thick to reduce splashing. The shield 1006 may further extend above or below the wafer 1004 and the chuck 1002 shown in FIG. 1. The shield 1006 can be made of plastic, pottery, etc., or an anticorrosive uranium metal or alloy such as molybdenum, titanium, stainless steel, etc. in the 300 series. However, it should be understood that the described electrolytic polishing method does not require its electrolyte liquid 1038 to flow across the edge of the wafer to reach the shield 1006. The problem that the electrolyte liquid 1038 forms a continuous row with the polishing container 1 008 and splashes inside or outside the polishing container 1008 can be reduced or avoided without the electrolyte liquid having to completely flow through the wafer 1004. For example, by rotating the wafer 1004 so that its electrolyte liquid flows along a portion of the surface of the wafer 1004 toward the edge of the wafer 1004 before falling from the wafer 1004, the improper effect can be reduced or avoided III. Edge over Reduction in polishing In another form, an electrolytic polishing method and apparatus for reducing over-polishing located on or near the edge of a wafer is described. Generally, portions located on or near the edge of a wafer are polished faster than portions of the metal layer on other areas of the wafer. An electrode connected to the edge of a wafer may increase its current density in the electrolyte liquid near the edge region of the wafer, resulting in increased polishing rate. Generally speaking, the higher paper size near the edge of the wafer is applicable. National Standard (CNS) A4 (210X297 mm) «· (Please read the precautions on the back before filling this page), Ministry of Economic Affairs The Intellectual Property Bureau staff and guests cooperate with each other to take pictures. • 17- 200300376 Printed by the staff of the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by A7 _____B7____ V. Invention Description (^ Current density and polishing rate may be reduced by absorbing part of current density Small, it is a conductive member (such as a ring, etc.) placed on or near the edge of the wafer and absorbs a part of the current density through the electrolyte liquid. The current density near the edge can also be adjusted and conductive by charging The component controls the current density to a greater extent by changing the amount of current it is absorbed. Referring to FIG. 7, an exemplary device and method for reducing over-polishing of edges is shown. An electrolyte liquid flow 7080 is supplied from a nozzle 7054 to Wafer 7004. Wafer 7004 is rotated at a sufficient rotation speed to form a thin layer 708 1 of electrolyte liquid, which can polish a metal on wafer 7004 Generally, if an electrode is connected to the edge of wafer 7004, the metal layer at or near the edge of wafer 7004 is polished by a thin layer of electrolyte liquid 7081 more than the metal on other areas of wafer 7004. Fast. Therefore, the metal layer at or near the edge of wafer 7004 may become over-polished. The chuck 7002 includes a conductive member 7114 that reduces the amount of over-polishing at or near the edge of wafer 7004. For example, crystals Both the circle 7004 and the conductive member 7114 can be connected to the power supply 7110 and charged so that part of the polishing current in the thin layer 7081 of its electrolyte liquid is absorbed by the conductive member 7114. By absorbing part of the polishing current, the conductive member 7114 can Reduce the polishing rate of metal layers located at or near wafer 7004 and reduce or avoid over-polishing. The conductive member 7114 may include a single ring placed at or near the edge of wafer 7004. In addition, the conductive member may include its cover Two or more sections disposed at or near the edge of the wafer 7 004. The conductive member 7114 may include a metal or an alloy (such as molybdenum, rhenium, stainless steel, etc.), and Other paper sizes suitable for this paper apply Chinese National Standard (CNS) A4 specifications (210X297 mm) ~ " ~~ -18-(Please read the precautions on the back before filling this page). TI m-fc · -Pack -
、1T 線 經濟部智慧財產局員工消費合作社印製 200300376 A7 B7 五、發明説明(4 觸與電解質液體708 1之導電材料。 此外,晶圓7004可被置於晶圓夾盤7002與導電構件 7 114之間,如圖7中所示。例如,一機器人手臂等可將晶 圓7004置於鄰近晶圓夾盤7002或介於晶圓夾盤7002與導 電構件7114之間。晶圓夾盤7002及導電構件7114可接著 被放置一起或接近以固持晶圓7004於其間。示範性總成可 接著包含額外的元件,諸如固持器或定位器,以對齊並固 持晶圓夾盤7002與導電構件7114 —起,以及對齊並固持絕 緣構件於導電構件7114與用以充電晶圓7004的接點之間。 應理解其圖7中所描述之示範性裝置亦可包含如圖1 中所示之那些其他特徵,但這些特徵已被省略以說明特定 的範例。例如,屏蔽1 〇 〇 6 (圖1A、1 B )可被使用與示範性 裝置以及各種泵、噴嘴、過濾器,等等。 圖8A顯示用以減少接近一晶圓之邊緣的拋光率之另一 示範性電解拋光裝置。顯示一具有導電構件8114之夾盤 8002,其可減小爲於或接近晶圓8004之邊緣的過拋光量。 圖8A係類似於圖7,除了其導電構件8114以一間隔物元件 8118分離自晶圓8004。間隔物元件8118包含(例如)一 〇 型環。間隔物元件8118可進一步由一種電絕緣且進一步能 抵抗酸及腐鈾之材料所形成,諸如陶器、聚四氟乙烯(商 業上稱爲TEFLON)、聚氯乙烯(PVC)、聚偏氟乙烯( PVDF )、聚丙烯、矽橡膠、Viton橡膠,等等。導電構件 8114係耦合至電源供應8112,而一第二導電構件或電極( 諸如彈簧構件)8114係耦合至電源供應8110。如圖所示, 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) J---»------裝------訂------線 (請先閱讀背面之注意事項再填寫本頁) -19- 200300376 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(^ 流經導電構件8114之電流可由電源供應8112所調整或控制 ,以控制爲於或接近晶圓8004之邊緣的金屬層之拋光率。 一般而言,當底部夾盤8114所吸收之電流量增加時,則位 於或接近晶圓8004之邊緣的金屬層之拋光率便減小。 電源供應8 11 2可爲一種直流電源供應、一種同步與主 拋光電源供應8110之交流電源供應,等等。一交流電源供 應亦可包含一正向脈衝電源供應、及一正向與反向電源供 應。再者,電源供應8 11 2可操作以一恆定電流模式、一恆 定電壓模式、或者恆定電流及恆定電壓模式之一組合,其 中恆定電流模式適用於拋光時間之一部分期間而一恆定電 壓模式適用於拋光時間之其他部分期間。亦可使用一可變 電阻來取代電源供應8112,藉以供應一可變電荷至導電構 件8114 (例如,參見圖9A)。此外,一可變電阻可被包含 於導電構件8114與彈簧構件8119之間。 導電構件8 114可類似地包含金屬或合金,諸如鉅、鈦 、不銹鋼,等等、以及其他導電材料。此外,導電構件 8114可包含一或更多置於或接近晶圓8004之邊緣的區段。 因此,於此示範性電解拋光裝置中,透過彈簧構件 8119及導電構件8114而施加至晶圓8004之電荷可個別由 電源供應8110及8112所獨立地控制。如此容許其接近晶圓 8004之邊緣區的電流密度之較大程度控制,以控制及減少 邊緣區之過拋光。 圖8B顯示圖8A之導電構件8114及晶圓8004所示之 架構及連接的放大視圖。明確地,導電構件8114係由電源 本紙張尺度適用中.國國家標準(CNS ) A4規格(210X 297公釐) 1·.---„------批衣------1T------^ (請先閱讀背面之注意事項再填寫本頁) -20- 200300376 A7 B7 五、發明説明(^ 供應8 112所充電且藉由間隔物元件8 11 8而隔離自晶圓 8002。晶圓8004係由電源供應8110個別地充電,此電源供 應8110係耦合至其置於晶圓8004之邊緣周圍的彈簧構件 8119。彈簧構件8119提供電荷至晶圓8004,其係較(例如 )置於晶圓8004之邊緣周圍的數個電極更均勻分佈的。一 絕緣構件8121可被置於導電構件8114與彈簧構件8119之 間,呈電何被施加至導電構件8 114及彈賛構件8 11 9時。彈 簧構件8119可被形成爲環狀形式的線圈彈簧(參見,例如 ,圖8C),然而,亦可形成其他的橫斷面輪廓,諸如橢圓 形橫斷面輪廓。此外,任何數目的線圏彈簧均可根據其應 用而被使用。彈簧構件可被形成自任何便利的導電材料, δ者如不銹鋼、彈賛鋼、鈦,等等。彈賛構件8 119亦可由抗 腐蝕材料形成或者是塗敷以一種諸如鉑、TiN、TaN等抗腐 蝕材料。 形成於晶圓8004與電源供應之間的接觸點數目可藉由 改變彈簧構件8 11 9中之線圈數而被改變。以此方式,其供 應至晶圓8004之電荷可被更均勻地分佈於晶圓8004之外邊 緣周圍。例如,對於一種200毫米晶圓,通常係施加一具 有約1至約10安培之電荷。構成彈簧構件8119以產生與 晶圓8004之約1〇〇〇個接觸點會減少電荷到約1至約1〇毫 安培於每接觸點。 然而,應理解其晶圓8004亦可由一或更多電接點來充 電。此外,可有利地使用任何用以分佈電荷於晶圓8004周 圍之機構。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝· 線 經濟部智慧財產局員工消費合作社印製 -21 - 200300376 A7 B7 五、發明説明(^ 當導電構件8114係藉由間隔物元件811 8而分離自晶圓 8004時,則假如彈簧構件8119被暴露至電解質液體的話便 可能導致短路。彈簧構件8119之短路可能減小其接近晶圓 8004之邊緣部分的拋光速率之均勻度。因此,於一範例中 ,間隔物元件8118係作用爲一密封以將彈簧構件8119隔離 自電解質液體。間隔物元件8 Π 8可由抗腐蝕材料所形成, 諸如Viton (碳氟化合物)橡膠、矽氧烷橡膠,等等。此外 ,間隔物元件8 11 8可根據其特定應用而具有各種形狀及架 構。 圖8 C顯示一種配合其用於減小接近晶圓邊緣之拋光速 率的示範性電解拋光裝置之示範性晶圓夾盤固持器的分解 圖。示範性晶圓夾盤包含一主體(其具有一基礎區段8002 於主體之上部分)及一導電構件8114,其中晶圓8004被固 持於主體的基礎區段8002與導電構件8114之間。晶圓夾盤 可進一步包含一頂部固持器(未顯示)以將晶圓8004及總 成夾住或者固持在一起。除了第一導電構件8114以外,晶 圓夾盤包含一第二導電構件,諸如彈簧構件8119,以施加 電荷至晶圓8004。於某些範例中,晶圓夾盤可進一步包含 絕緣器構件8 1 2 1及間隔物元件8 11 8,其係配置於主體之下 部分中所包含的基礎區段8002與導電構件8114之間。然而 ,應理解(於某些範例中)彈簧構件8 11 9及間隔物元件 8 11 8可被省略(例如,如圖7中所示者)。於其中省略彈 簧構件8 1 1 9之情況下,可包含一電極等而當作第二導電構 件以施加一電荷至晶圓8004。 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ~ ' -22- (請先閲讀背面之注意事項再填寫本頁) -裝· 訂 經濟部智慧財產局員工消費合作社印製 200300376 經濟部智慧財產局員工消費合作社印製 ____B7_五、發明説明(4 於本範例中,彈簧構件8119係配置於晶圓8004與間隔 物元件8 11 8之間。當施加壓力以將導電構件8 11 4及基礎區 段8002固持在一起時,則彈簧構件8119便配合以維持電接 觸至晶圓8004 (參見圖8B )。此外,間隔物元件8118順 應於導電構件8114與晶圓8004之間以形成一密封,其避免 彈簧構件8 11 9接觸電解質液體並提供電絕緣於彈簧構件 8119與間隔物元件8118之間(假如需要的話)。 半導體晶圓之形狀通常大致上爲圓形。因此,晶圓夾 盤之各組件被描述爲具有大致上圓形的形狀。然而,應理 解其晶圓夾盤之各組件可根據特定應用及/或晶圓形狀而包 含不同形狀。例如,半導體晶圓可具有截頭的形狀以利晶 圓夾盤之組件配合。 一種用以固持及施加電荷至一晶圓而適於上述裝置及 方法的晶圓夾盤總成之其他示範性架構可見於美國專利序 號 6,248,222「METHODS AND APPARATUS FOR HOLDING AND POSITIONING SEMICONDUCTOR WORKPIECES DURING ELECTROPOLISHING AND/OR ELECTROPLATING OF THE WORKPIECES」其係公告於2001年七月19日且被倂入於此 以利參考其完整性。 圖9A顯示用於減小其接近晶圓邊緣之拋光速率的另一 示範性電解拋光裝置。明確地,晶圓夾盤9002包含導電構 件9114,其可減少位於或接近晶圓9004之邊緣的過拋光量 ,如上所述。圖9 A係類似於圖.8 A,除了其導電構件9114 包含一絕緣環9 11 5及一形成於絕緣環9 11 5中的導電環 本紙浪尺度適用中國國家標準( CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) -裝· 訂 線 -23- 經濟部智慧財產局員工消費合作社印製 200300376 A7 B7 五、發明説明(^ 9 11 6。絕緣環9 115可包含非腐鈾性絕緣材料,諸如塑膠、 陶器,等等。導電環9116可包含金屬或合金,諸如鉑、鉅 、鈦、不銹鋼,等等。導電環9116可透過可變電阻9112等 而被連接至電源供應9110。此外,間隔物元件9118 (例如 ,一 0形環等)可被置於導電構件9114與晶圓9004之間以 避免電解質液體接觸其透過一或更多電極而被連接至電源 供應9 110之晶圓9004的部分。此外,亦可包含一彈簧構件 等(未顯示)以更均句地分配電荷至晶圓9004。 圖9A之示範性裝置容許較小量的導電材料被配合導電 構件9 114使用。如此容許裝置變得更便宜、更輕、及於操 作期間消耗更少電力。此外,導電構件9 114之較小的表面 積,相較於導電構件8114 (圖8A、8B )可容許晶圓8004 之邊緣區域中之電流密度的較大程度控制。此外,圖9A ( 及圖7 )之架構可有利地配合那些圖7及8A至8C所示者 來使用。 圖9B顯示一種電解拋光裝置之另一範例的放大視圖。 此範例係類似於圖9 A,除了其導電構件9 11 4包含一形成於 導電構件9114之下部(即,晶圓9004之相反側)上的絕緣 構件9121。此外,晶圓總成之架構係使得其晶圓9004上之 金屬層9005係透過一導電的間隔物元件9118而被充電於接 近邊緣處。 因此,如圖9B中所示,當電解質液體9080被導引接 近晶圓9004之邊緣時,則電流之一部分L·流至金屬層9005 而電流之第二部分12流至導電構件91 14。形成於導電構件 i纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ~ 一 -24- I- ,0 裝 訂 線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 200300376 A7 B7 五、發明説明(2) 9114之下部分上的絕緣構件9121作用以減少電流h並增加 流至金屬層9005之。絕緣構件9121及導電構件9114之 相對厚度可因而被調整以藉此調整電流Ιι及12。 IV.電解拋光一晶圓上之分段金屬層的方法 一形成於晶圓上之金屬層可能於一電解拋光製程期間 分段。例如,可能變爲晶圓表面上之一或更多不連續的金 屬區。當此情況發生時,則某些金屬層之片段可能會隔離 自其電極所在之晶圓的邊緣。於此等情況下,傳統的電解 拋光方法無法有效地拋光這些分段區,因爲電極無法供電 給分段的金屬層。於一種示範性方法中,藉由以足夠的旋 轉速度旋轉一具有導電構件配置於其金屬層之分段部分周 圍的晶圓,則可形成電解質液體之一薄層於分段部分上並 接觸與導電構件。電解質液體之薄層及導電環容許分段部 分被電解拋光。 如圖11A及11B中所示,金屬層11150 (例如)於拋光 製程期間變爲分段。金屬層111 50之分段並未連接至或設 置於其中有一電極(未顯示)被連接至電源供應11110之 晶圓1 1004的邊緣。因爲金屬層11150之分段並非置於晶圓 1 1004之邊緣上或者藉由金屬而被連接至這些邊緣,所以電 流無法透過分段而被導通至晶圓1 1004之邊緣上的電極。 因此,傳統的拋光方法,諸如沈浸晶圓於一拋光液中等等 ,通常均無法拋光這些分段。 金屬層111 50之分段,例如,可包含其在一銅層被拋 本紙張尺度適用中國國家標準(CNS )A4規格(210X 297公釐) IΛ ,Μ 裝 訂 . 線 (請先閲讀背面之注意事項再填寫本頁) -25- 經濟部智慧財產局員工消費合作社印製 200300376 A7 B7 五、發明説明( 光除去後所餘留於一半導體裝置之非溝槽部分上的障蔽層 之暴露部分。再者,金屬層11150之分段可爲(例如)邊 緣區中之不均勻拋光或過拋光的結果。 參考圖11B,顯不一種用以電解抛光晶圓11004上之金 屬層111 50分段的示範性電解拋光裝置。此系統包含夾盤 1 1002、致動器1 1000、固定噴嘴1 1054、及電源供應11110 。當1 1054供應一電解質液體1 1080流至晶圓1 1004時,致 動器1 1000可旋轉夾盤1 1002以致其電解質液體1 1080流過 晶圓11004之表面,如上所述,並形成一延伸於金屬層 11150之分段部分上的薄層11081。例如,晶圓夾盤11002 可以約100 rpm至約2000 rpm之範圍內的速率被旋轉,而 最好是約1 500 rpm於一 300 mm直徑的晶圓。薄層11081提 供一跨越金屬層111 50之分段的路徑以導通介於電解質液 體1 1080流與夾盤1 1002的導電構件11114之間的電流。此 電流容許裝置得以電解拋光其晶圓1 1004上之金屬層11150 的隔離分段。 此外,圖11 B中所述之示範性裝置可爲諸如圖1 A所示 之一較大電解拋光總成的一部分。例如,可包含一屏蔽 1 006 (圖1)以避免飛濺、不均勻拋光、或電解質液體1〇38 之拋光流的中斷。此外,有關減少邊緣拋光之導電構件 11114的各種示範性實施例均可使用於圖11B之裝置。 圖12顯示另一種可用以電解拋光晶圓12004上之金屬 層的分段。圖12係類似於圖11,除了其致動器12180及 12182可沿著X方向移動噴嘴12054而致動器12000於一固 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) — ' -26- J--J------辦衣------、玎------^ (請先閲讀背面之注意事項再填寫本頁) 200300376 A7 B7 五、發明説明(g 定位置旋轉夾盤12002。 (請先閲讀背面之注意事項再填寫本頁) 雖然圖11B及12顯示其中任一夾盤或噴嘴沿著^^方向 移動之系統,但應理解其夾盤及噴嘴可根據特定應用而被 移動於改變的方向。 V·金屬濃度測量及終點檢測控制 在大量製造環境中欲獲得更恆定而可接受拋光品質之 晶圓的一要素係控制其用以拋光晶圓之電解質液體供應中 的金屬濃度。當電解質液體供應中的金屬之濃度達到某一 値時,則電解質液體可能變得非常活性(即使無電流供應 時)。如此可能造成(例如)晶圓之化學蝕刻或腐鈾於後 電解拋光製程期間。因此,最好是於一製程運作期間監督 電解質液體中之金屬濃度,並視需要執行即時的調整。 經濟部智慧財產局員工消費合作社印製 此外,終止點檢測感應器通常使用其透過電解質液體 而測量之光學檢測器。因而測量係(至少部分地)根據電 解質液體之光學特性。然而,電解質液體之光學特性可能 根據電解質液體中所溶解之金屬濃度以及其他因素(諸如 電解質液體中之污染物粒子、氫氣泡形成等等)而隨時間 改變。因此,當電解質液體之光學特性於一製程運作期間 改變時,則來自終止點檢測器之測量可依此被調整以增加 終止點測量之準確度。 圖1 0 A描繪一種示範系統,其可被使用以測量電解質 液體10038供應,諸如電解質液體貯存器1 070 (圖1A)等 ,中之金屬濃度。示範系統包含纖維探針10102、纖維光學 本紙張尺度適用中國國家標準(CNS ) A4^l格(210X297公釐) ^ -27- 200300376 經濟部智慧財產局員工消費合作社印製 A7 ___B7_五、發明説明( 感應器10104、及反射器10100。纖維探針10102及反射器 10100可被沈浸入電解質液體10038中,而纖維探針10102 可被設置以一種相對於反射器10 100之方式而容許其射出 自纖維探針10102之光線由反射器10100以最大光強度反射 回至纖維探針1 01 02。例如,纖維探針1 0 1 02可被設置以垂 直於纖維探針10102之表面的方向射出光線,如圖10A中 所示。 此外,介於反射器10100與纖維探針10102之間的距離 Η可能影響電解質液體中之金屬濃度的測量。因此,距離Η 可被選擇以致其由光學感應器10104所接收之光的強度達 到最大値,當金屬濃度達到電解質液體10038供應中之最 小濃度時。應理解其他介於光學感應器10104與反射器 10100之間的路徑可被選擇,包含一根據其應用及理想路徑 長度之多重路徑及多重反射的路徑。纖維探針10102亦可 被置於液體貯存器之外,以一橫越電解質液體1038之一部 份的路徑。此外,可取代反射器10100以一種光學感應器 ,其被設置以檢測由光學感應器10104所接收之光強度。 通常,電解質液體之顏色係根據其被溶解於電解質液 體中之金屬離子的型式及濃度。例如,磷酸(Η3Ρ〇4)中之 銅離子具有藍色。此外,通過電解質液體之光強度可能根 據電解質液體之顏色而衰減。通常,當電解質液體中之金 屬離子的濃度增加時,則光強度之衰減會增加。 有關圖10Α中所示之系統,介於電解質液體中的金屬 濃度與光強度的衰減之間的關係可被製成如下之表,針對 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ~ 1·--:------4衣------1T-----10 (請先閲讀背面之注意事項再填寫本頁) -28- 200300376 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(^ 一特定金屬及.本系統所使用之電解質液體: 金屬濃度(重量%) 光強度衰減 0 Υ1 0.2 Υ2 0.4 Υ3 0.6 Υ4 0.8 Υ5 1·0 Υ6 此表中之資訊可被儲存於電腦10105中。使用表中的 資訊,電腦可自動地根據光學感應器10104所檢測之光強 度以計算電解質液體中之金屬濃度,藉由使用內插法、捨 入法、或其他近似方法。雖然已列入金屬濃度(重量% ) 之某些値於上述表中,但是可使用任何値,亦可使用任何 數目的値。 由纖維探針10102所射出之光的顏色可被選擇以增加 其由光學感應器10104所檢測之測量的敏感度。明確地, 由纖維探針10102所射出之光的顏色可能與電解質液體供 應中之金屬離子的顏色不同,以增加特定金屬離子之敏感 度。例如,對於磷酸供應中之銅離子,射出紅光較射出綠 光提供對於銅之較高的敏感度,而射出綠光較射出藍光提 供較高的敏感度。然而,對於電解質液體中之任何顏色的 金屬離子,白光均可被射出。 本纸ί長尺度適用中.國國家樣準( CNS ) A4規格(210X297公釐) ~ -29- 1·--^------批衣------1T------^1 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工涓費合作社印製 200300376 A7 ___ B7 五、發明説明(d 圖1 0 A亦描繪上述示範系統之另一型態,其可被使用 以從電解質液體1 0038供應移除金屬離子。此系統進一步 包含兩個電極10028及10029、及電源供應1 0030。當光學 感應器10104測得其電解質液體1 0038供應中之金屬離子濃 度已達到第一預設値時,則電腦1 0 1 05可指示電源供應 10030供應電壓至電極10028及10029以從電解質液體供應 移除金屬離子。當電壓被供應至電極10028及10029時,貝[J 來自電解質液體10038供應之金屬離子開始鍍於電極10029 上。當光學感應器10104測得其金屬離子濃度已低於第二 預設値時,則電腦10105可指示電源供應10030停止供應電 壓至電極1 0028及10029以停止從電解質液體10038供應移 除金屬離子。以此方式,則電解質液體1 0038供應中之金 屬濃度可被維特於第一與第二預設値之間,例如,於一電 解拋光製程期間。 電解質液體10038中之金屬離子的濃度値亦可被使用 以協助終止點檢測器1016 (圖1 A、1B )。終止點檢測器 1016可被使用以決定晶圓1004上之金屬層的厚度。此資訊 可由電解拋光裝置使用以決定何時持續或中斷晶圓1004之 一特定區域上的電解拋光製程。其亦可被使用以決定適當 的拋光率。終止點檢測器1 〇 16可包含各種感應器,諸如超 音波感應器、光學感應器、電磁感應器,等等。使用電解 質液體1 03 8爲介質以傳輸信號並執行測量會增加測量之準 確度,因爲介質與電解質液體1 038之介面(例如,空氣) 無須被考慮。然而,假如其可能影響感應器之電解質液體 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) - ^ 批衣 I 訂 線 (請先閲讀背面之注意事項再填寫本頁) -30- 200300376 經濟部智慧財產局員工消費合作社印製 A7 _______ 五、發明説明( 1 038的性質改變,則測量可能無法長時間準確。因此,終 止點檢測器測量可藉由考量電解質液體1 038之改變性質而 被增進。 圖10B顯示用以監督電解質液體之光學特性的另一示 範系統,其可被使用(例如)以調整終止點檢測器測量。 圖10B係類似於圖10A,除了其包含一第二光學感應器 10204及光學纖維10202。光學感應器10104、纖維探針 10102及反射器10100操作以如參考圖10A所述之方式。第 二光學感應器10204及光學纖維10202亦操作類似於光學感 應器10104及纖維探針10102,然而,光學感應器10204及 光學纖維10202測量電解質液體之其他光學特性。例如, 於一電解拋光製程期間,氫氣泡經常形成於電極之上。氣 泡可能由於繞射及減少電解質液體中之測量光束的強度而 不利地影響終止點檢測器。強度之減少可能影響金屬離子 濃度之測量,但是,藉由使用對於不同特性敏感之多重檢 測器,則金屬離子濃度可被準確地決定。 在決定由於氣泡而影響之電解質液體的光學特性之範 例中,由光學纖維10202所射出之光的顏色可再次被選擇 以增加其由第二光學感應器10204所亦檢測之測量的敏感 度。於此例中,由纖維探針10202所射出之光的顏色可被 選擇爲電解質液體供應中之金屬離子的相同顏色,以增加 對於氣泡之敏感度並減少對於金屬離子之敏感度。例如, 對於磷酸供應中之銅,射出藍光係提供對於氣袍之較高敏 感度以及對於銅離子之較低敏感度(相較於白光),而射 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -裝·Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs of the 1T Line 200300376 A7 B7 V. Description of the Invention (4 Conductive material that touches electrolyte liquid 708 1. In addition, wafer 7004 can be placed on wafer chuck 7002 and conductive member 7 114, as shown in Fig. 7. For example, a robot arm or the like may place the wafer 7004 adjacent to the wafer chuck 7002 or between the wafer chuck 7002 and the conductive member 7114. The wafer chuck 7002 And the conductive member 7114 may then be placed together or near to hold the wafer 7004 therebetween. The exemplary assembly may then include additional components, such as holders or locators, to align and hold the wafer chuck 7002 and the conductive member 7114. Together, and align and hold the insulating member between the conductive member 7114 and the contact used to charge the wafer 7004. It should be understood that the exemplary device described in FIG. 7 may also include those shown in FIG. Features, but these features have been omitted to illustrate a specific example. For example, shield 1006 (Figures 1A, 1 B) can be used with exemplary devices and various pumps, nozzles, filters, etc. Figure 8A shows use Another exemplary electrolytic polishing device to reduce the polishing rate near the edge of a wafer. A chuck 8002 with a conductive member 8114 is shown, which can reduce the amount of over-polishing to or near the edge of the wafer 8004. Figure 8A is similar to FIG. 7 except that the conductive member 8114 is separated from the wafer 8004 by a spacer element 8118. The spacer element 8118 includes, for example, a O-ring. The spacer element 8118 may be further electrically insulated and further capable of Made of materials resistant to acids and uranium, such as pottery, polytetrafluoroethylene (commercially known as TEFLON), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), polypropylene, silicone rubber, Viton rubber, etc. Etc. The conductive member 8114 is coupled to the power supply 8112, and a second conductive member or electrode (such as a spring member) 8114 is coupled to the power supply 8110. As shown in the figure, this paper size applies to the Chinese National Standard (CNS) A4 specification (210X297mm) J --- »------ install ------ order ------ line (please read the precautions on the back before filling this page) -19- 200300376 Ministry of Economic Affairs Printed by the Intellectual Property Bureau Staff Consumer Cooperative A7 B7 5. Description of the invention (^ The current flowing through the conductive member 8114 can be adjusted or controlled by the power supply 8112 to control the polishing rate of the metal layer at or near the edge of the wafer 8004. Generally, when the bottom chuck 8114 is As the amount of absorbed current increases, the polishing rate of the metal layer located at or near the edge of wafer 8004 decreases. Power supply 8 11 2 can be a DC power supply, an AC power supply synchronized with the main polishing power supply 8110 ,and many more. An AC power supply can also include a forward pulse power supply, and a forward and reverse power supply. Furthermore, the power supply 8 11 2 is operable in a constant current mode, a constant voltage mode, or a combination of a constant current and a constant voltage mode, wherein the constant current mode is suitable for a part of the polishing time and a constant voltage mode is suitable for During the rest of the polishing time. A variable resistor can also be used in place of the power supply 8112 to supply a variable charge to the conductive member 8114 (see, for example, FIG. 9A). In addition, a variable resistor may be included between the conductive member 8114 and the spring member 8119. The conductive members 8 114 may similarly include metals or alloys, such as titanium, titanium, stainless steel, etc., and other conductive materials. In addition, the conductive member 8114 may include one or more sections placed on or near the edge of the wafer 8004. Therefore, in this exemplary electrolytic polishing apparatus, the charges applied to the wafer 8004 through the spring member 8119 and the conductive member 8114 can be individually controlled by the power supplies 8110 and 8112. This allows a greater degree of current density control near the edge region of wafer 8004 to control and reduce over-polishing of the edge region. FIG. 8B shows an enlarged view of the architecture and connections shown in conductive member 8114 and wafer 8004 of FIG. 8A. Specifically, the conductive member 8114 is applied by the power supply. This national paper standard (CNS) A4 specification (210X 297 mm) 1 · .--- „------ Approved clothing ------ 1T ------ ^ (Please read the precautions on the back before filling out this page) -20- 200300376 A7 B7 V. Description of the invention (^ Supply 8 112 is charged and isolated from the spacer element 8 11 8 Wafer 8002. Wafer 8004 is individually charged by a power supply 8110, which is coupled to a spring member 8119 that is placed around the edge of wafer 8004. The spring member 8119 provides charge to wafer 8004, which is For example, several electrodes placed around the edge of the wafer 8004 are more evenly distributed. An insulating member 8121 may be placed between the conductive member 8114 and the spring member 8119, so that electricity is applied to the conductive member 8 114 and the spring The member 8 11 9 o'clock. The spring member 8119 may be formed as a coil spring in a ring form (see, for example, FIG. 8C), however, other cross-sectional profiles such as an oval cross-sectional profile may be formed. In addition Any number of coil springs can be used depending on their application. The spring member can be Is formed from any convenient conductive material, such as stainless steel, elastic steel, titanium, etc. The elastic member 8 119 can also be formed of a corrosion-resistant material or coated with a corrosion-resistant material such as platinum, TiN, TaN, etc. The number of contact points formed between the wafer 8004 and the power supply can be changed by changing the number of coils in the spring member 8 11 9. In this way, the charge supplied to the wafer 8004 can be more uniformly distributed Around the outer edge of wafer 8004. For example, for a 200 mm wafer, a charge of about 1 to about 10 amps is typically applied. The spring member 8119 is constructed to create about 1,000 contacts with wafer 8004 Dots will reduce the charge to about 1 to about 10 milliamps per contact point. However, it should be understood that its wafer 8004 can also be charged by one or more electrical contacts. In addition, any device used to distribute charge can be advantageously used. Institutions around wafer 8004. This paper size applies to Chinese National Standard (CNS) A4 specifications (210X297 mm) (Please read the precautions on the back before filling out this page). • Consumer cooperation with the Intellectual Property Bureau of the Ministry of Economics Printed -21-200300376 A7 B7 V. Description of the Invention (^ When the conductive member 8114 is separated from the wafer 8004 by the spacer element 8118, the spring member 8119 may cause a short circuit if it is exposed to the electrolyte liquid. The short circuit of the spring member 8119 may reduce the uniformity of the polishing rate near the edge portion of the wafer 8004. Therefore, in one example, the spacer element 8118 functions as a seal to isolate the spring member 8119 from the electrolyte liquid. The spacer element 8 Π 8 may be formed of a corrosion-resistant material such as Viton (fluorocarbon) rubber, silicone rubber, and the like. In addition, the spacer elements 8 11 8 may have various shapes and structures according to their specific applications. FIG. 8C shows an exploded view of an exemplary wafer chuck holder with an exemplary electrolytic polishing apparatus for reducing the polishing rate near the edge of the wafer. The exemplary wafer chuck includes a body (which has a base section 8002 above the body) and a conductive member 8114, wherein the wafer 8004 is held between the body's base section 8002 and the conductive member 8114. The wafer chuck may further include a top holder (not shown) to clamp or hold the wafer 8004 and the assembly together. In addition to the first conductive member 8114, the wafer chuck includes a second conductive member, such as a spring member 8119, to apply a charge to the wafer 8004. In some examples, the wafer chuck may further include an insulator member 8 1 2 1 and a spacer member 8 11 8, which are disposed between the base section 8002 and the conductive member 8114 included in the lower part of the body. . However, it should be understood (in some examples) that the spring member 8 11 9 and the spacer element 8 11 8 may be omitted (for example, as shown in FIG. 7). In the case where the spring member 811 is omitted, an electrode or the like may be included as a second conductive member to apply a charge to the wafer 8004. This paper size applies Chinese National Standard (CNS) A4 specification (210X297 mm) ~ '-22- (Please read the notes on the back before filling this page)-Binding and printing 200300376 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs ____B7_ V. Description of the Invention (4 In this example, the spring member 8119 is arranged between the wafer 8004 and the spacer element 8 11 8. When pressure is applied to conduct electricity When the member 8 11 4 and the base section 8002 are held together, the spring member 8119 cooperates to maintain electrical contact to the wafer 8004 (see FIG. 8B). In addition, the spacer element 8118 conforms to the conductive member 8114 and the wafer 8004. To form a seal which prevents the spring member 8 11 9 from contacting the electrolyte liquid and provides electrical insulation between the spring member 8119 and the spacer element 8118 (if necessary). The shape of the semiconductor wafer is generally approximately circular. Therefore Each component of the wafer chuck is described as having a generally circular shape. However, it should be understood that each component of its wafer chuck may be packaged according to a specific application and / or wafer shape Different shapes. For example, a semiconductor wafer can have a truncated shape to facilitate the assembly of wafer chucks. A wafer chuck assembly suitable for the above-mentioned device and method for holding and applying a charge to a wafer Other exemplary architectures can be found in U.S. Patent No. 6,248,222 `` METHODS AND APPARATUS FOR HOLDING AND POSITIONING SEMICONDUCTOR WORKPIECES DURING ELECTROPOLISHING AND / OR ELECTROPLALATING OF THE WORKPIECES '', which was published on July 19, 2001 and incorporated herein by reference Figure 9A shows another exemplary electrolytic polishing device for reducing its polishing rate near the edge of the wafer. Specifically, the wafer chuck 9002 includes a conductive member 9114, which can reduce the The amount of overpolishing of the edges is as described above. Figure 9A is similar to Figure 8A, except that the conductive member 9114 includes an insulating ring 9 11 5 and a conductive ring formed in the insulating ring 9 11 5 China National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page)-Binding · Thread-23-Ministry of Economic Affairs Printed by the Intellectual Property Cooperative's Consumer Co-operative Society 200300376 A7 B7 V. Description of the invention (^ 9 11 6. The insulating ring 9 115 may contain non-corrosive uranium insulating materials such as plastic, pottery, etc. The conductive ring 9116 may contain metal or alloy , Such as platinum, giant, titanium, stainless steel, and so on. The conductive ring 9116 can be connected to the power supply 9110 through a variable resistor 9112 or the like. In addition, a spacer element 9118 (eg, an O-ring, etc.) may be placed between the conductive member 9114 and the wafer 9004 to prevent the electrolyte liquid from contacting it and being connected to the crystal of the power supply 9 110 through one or more electrodes. Circle 9004. In addition, a spring member or the like (not shown) may be included to more evenly distribute the charge to the wafer 9004. The exemplary device of FIG. 9A allows a smaller amount of conductive material to be used with the conductive member 9114. This allows the device to become cheaper, lighter, and consume less power during operation. In addition, the smaller surface area of the conductive member 9 114 allows a greater degree of control of the current density in the edge region of the wafer 8004 than the conductive member 8114 (FIGS. 8A, 8B). In addition, the architecture of Figure 9A (and Figure 7) can be advantageously used with those shown in Figures 7 and 8A to 8C. FIG. 9B shows an enlarged view of another example of an electrolytic polishing apparatus. This example is similar to FIG. 9A, except that the conductive member 9 11 4 includes an insulating member 9121 formed on the lower portion of the conductive member 9114 (that is, on the opposite side of the wafer 9004). In addition, the structure of the wafer assembly is such that the metal layer 9005 on the wafer 9004 is charged near the edge through a conductive spacer element 9118. Therefore, as shown in FIG. 9B, when the electrolyte liquid 9080 is guided close to the edge of the wafer 9004, a portion L · of the current flows to the metal layer 9005 and a second portion 12 of the current flows to the conductive member 9114. Formed on the conductive member i Paper size Applies Chinese National Standard (CNS) A4 specification (210X297 mm) ~ -24- I-, 0 Gutter (Please read the precautions on the back before filling this page) Intellectual Property of the Ministry of Economic Affairs Printed by the Bureau's Consumer Cooperatives 200300376 A7 B7 V. Description of the Invention (2) The insulating member 9121 on the lower part of 9114 acts to reduce the current h and increase the current flowing to the metal layer 9005. The relative thicknesses of the insulating member 9121 and the conductive member 9114 can thus be adjusted to thereby adjust the currents Im and 12. IV. Method of electrolytic polishing a segmented metal layer on a wafer A metal layer formed on a wafer may be segmented during an electrolytic polishing process. For example, it may become one or more discontinuous metal areas on the wafer surface. When this happens, fragments of some metal layers may be isolated from the edge of the wafer where their electrodes are located. In these cases, the conventional electrolytic polishing methods cannot effectively polish these segmented areas because the electrodes cannot supply power to the segmented metal layers. In an exemplary method, by rotating a wafer having a conductive member disposed around a segmented portion of its metal layer at a sufficient rotational speed, a thin layer of electrolyte liquid can be formed on the segmented portion and contacted with Conductive member. The thin layer of electrolyte liquid and the conductive ring allow the section to be electrolytically polished. As shown in FIGS. 11A and 11B, the metal layer 11150 (for example) becomes segmented during the polishing process. The segment of the metal layer 111 50 is not connected to or disposed on the edge of the wafer 1 1004 in which an electrode (not shown) is connected to the power supply 11110. Because the segments of metal layer 11150 are not placed on the edges of wafer 1 1004 or connected to these edges by metal, current cannot be conducted to the electrodes on the edges of wafer 1 1004 through the segments. Therefore, traditional polishing methods, such as immersing a wafer in a polishing solution, etc., usually cannot polish these segments. The segment of the metal layer 111 50 can include, for example, a copper layer that has been thrown away. The paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) IΛ, M binding. Thread (please read the note on the back first) Please fill in this page again for details) -25- Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 200300376 A7 B7 V. Description of the invention Furthermore, the segmentation of the metal layer 11150 may be, for example, the result of uneven polishing or over-polishing in the edge region. Referring to FIG. 11B, a method for electrolytically polishing the metal layer 111 50 segmentation on the wafer 11004 is shown. Exemplary electrolytic polishing device. This system includes chuck 1 1002, actuator 1 1000, fixed nozzle 1 1054, and power supply 11110. When 1 1054 supplies an electrolyte liquid 1 1080 to wafer 1 1004, the actuator 1 1000 can rotate the chuck 1 1002 so that its electrolyte liquid 1 1080 flows over the surface of the wafer 11004, as described above, and forms a thin layer 11081 extending on the segmented portion of the metal layer 11150. For example, a wafer chuck 11002 May The speed is rotated in the range of about 100 rpm to about 2000 rpm, and preferably about 1,500 rpm on a 300 mm diameter wafer. The thin layer 11081 provides a segmented path across the metal layer 111 50 to conduct the dielectric The current between the 1080 electrolyte flow and the conductive member 11114 of the chuck 1 1002. This current allows the device to electrolytically polish the isolated segment of the metal layer 11150 on its wafer 1 1004. In addition, as described in FIG. 11B An exemplary device may be part of a larger electrolytic polishing assembly such as that shown in Figure 1 A. For example, a shield 1 006 (Figure 1) may be included to avoid splashing, uneven polishing, or electrolyte liquid 1038. The interruption of the polishing flow. In addition, various exemplary embodiments of the conductive member 11114 for reducing edge polishing can be used in the device of FIG. 11B. FIG. Figure 12 is similar to Figure 11, except that the actuators 12180 and 12182 can move the nozzle 12054 along the X direction and the actuator 12000 applies the Chinese National Standard (CNS) A4 specification (210X297 mm) on a solid paper. — '-26- J --J ------ Handling clothes ------, 玎 ------ ^ (Please read the precautions on the back before filling this page) 200300376 A7 B7 V. Description of the invention (g fixed position Rotating chuck 12002. (Please read the precautions on the back before filling out this page) Although Figures 11B and 12 show a system in which any of the chucks or nozzles move in the ^^ direction, it should be understood that the chucks and nozzles Specific applications are being moved in the direction of change. V. Metal Concentration Measurement and Endpoint Detection Control One element of a wafer that wants to obtain a more constant and acceptable polishing quality in a large number of manufacturing environments is to control the metal concentration in the electrolyte liquid supply used to polish the wafer. When the concentration of metals in the electrolyte liquid supply reaches a certain level, the electrolyte liquid may become very active (even when no current is supplied). This may cause, for example, chemical etching of wafers or rotten uranium during post-electrolytic polishing processes. Therefore, it is best to monitor the metal concentration in the electrolyte liquid during the operation of a process and perform real-time adjustments as needed. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs In addition, the end point detection sensor usually uses an optical detector that measures through an electrolyte liquid. The measurement is therefore based (at least in part) on the optical properties of the electrolyte liquid. However, the optical characteristics of the electrolyte liquid may change over time depending on the concentration of metals dissolved in the electrolyte liquid and other factors such as pollutant particles in the electrolyte liquid, formation of hydrogen bubbles, and the like. Therefore, when the optical characteristics of the electrolyte liquid change during the operation of a process, the measurement from the termination point detector can be adjusted accordingly to increase the accuracy of the termination point measurement. FIG. 10A depicts an exemplary system that can be used to measure the concentration of metals in a supply of electrolyte liquid 10038, such as electrolyte liquid reservoir 1 070 (FIG. 1A), and the like. Demonstration system includes fiber probe 10102, fiber optics This paper is in accordance with Chinese National Standards (CNS) A4 ^ l (210X297 mm) ^ -27- 200300376 Printed by the Consumers ’Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs A7 ___B7_ V. Invention Explanation (Sensor 10104 and reflector 10100. The fiber probe 10102 and reflector 10100 can be immersed in the electrolyte liquid 10038, and the fiber probe 10102 can be arranged in a manner relative to the reflector 10 100 to allow it to be emitted The light from the fiber probe 10102 is reflected back to the fiber probe 1 01 02 by the reflector 10100 at the maximum light intensity. For example, the fiber probe 1 0 1 02 can be set to emit light in a direction perpendicular to the surface of the fiber probe 10102 As shown in FIG. 10A. In addition, the distance Η between the reflector 10100 and the fiber probe 10102 may affect the measurement of the metal concentration in the electrolyte liquid. Therefore, the distance Η may be selected so that it is controlled by the optical sensor 10104 The intensity of the received light reaches the maximum, when the metal concentration reaches the minimum concentration in the supply of the electrolyte liquid 10038. It should be understood that the other is between the optical sensor 1010 The path between 4 and reflector 10100 can be selected, including a multi-path and multi-reflected path according to its application and ideal path length. The fiber probe 10102 can also be placed outside the liquid reservoir with a cross Part of the path of the electrolyte liquid 1038. In addition, the reflector 10100 may be replaced with an optical sensor that is arranged to detect the intensity of the light received by the optical sensor 10104. Generally, the color of the electrolyte liquid is dissolved according to it Type and concentration of metal ions in the electrolyte liquid. For example, copper ions in phosphoric acid (Η3PO4) have a blue color. In addition, the light intensity through the electrolyte liquid may be attenuated according to the color of the electrolyte liquid. Generally, As the concentration of metal ions increases, the attenuation of light intensity increases. For the system shown in Figure 10A, the relationship between the concentration of metal in the electrolyte liquid and the attenuation of light intensity can be made as follows For this paper size, China National Standard (CNS) A4 specification (210X297 mm) is applicable ~ 1 ·-: ------ 4 clothing ------ 1T ----- 10 (please Read the precautions on the back before filling this page) -28- 200300376 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 5. Invention Description (^ A specific metal and electrolyte liquid used in this system: Metal concentration (weight %) Light intensity attenuation 0 Υ1 0.2 Υ2 0.4 Υ3 0.6 Υ4 0.8 Υ5 1 · 0 Υ6 The information in this table can be stored in the computer 10105. Using the information in the table, the computer can automatically calculate the metal concentration in the electrolyte liquid based on the light intensity detected by the optical sensor 10104, by using interpolation, rounding, or other approximate methods. Although some rhenium has been listed in the metal concentration (wt%) in the table above, any rhenium may be used, and any number of rhenium may be used. The color of the light emitted by the fiber probe 10102 can be selected to increase the sensitivity of its measurement detected by the optical sensor 10104. Specifically, the color of the light emitted by the fiber probe 10102 may be different from the color of the metal ions in the electrolyte liquid supply to increase the sensitivity of the specific metal ions. For example, for copper ions in the phosphoric acid supply, emitting red light provides higher sensitivity to copper than emitting green light, and emitting green light provides higher sensitivity than emitting blue light. However, for any color of metal ions in the electrolyte liquid, white light can be emitted. The long scale of this paper is applicable to the National Standard of China (CNS) A4 (210X297 mm) ~ -29- 1 ·-^ ------ batch ------ 1T ---- -^ 1 (Please read the notes on the back before filling out this page) Printed by the staff of the Intellectual Property Bureau of the Ministry of Economic Affairs, 2003200376 A7 ___ B7 V. Description of the invention (d Figure 10 A also depicts another of the above-mentioned demonstration system Type, which can be used to remove metal ions from the electrolyte liquid 1 0038 supply. This system further includes two electrodes 10028 and 10029, and a power supply 1 0030. When the optical sensor 10104 measures its electrolyte liquid 1 0038 supply When the metal ion concentration has reached the first preset threshold, the computer 1 0 105 can instruct the power supply 10030 to supply voltage to the electrodes 10028 and 10029 to remove metal ions from the electrolyte liquid supply. When the voltage is supplied to the electrodes 10028 and 10029 At that time, the metal ions supplied from the electrolyte liquid 10038 began to be plated on the electrode 10029. When the optical sensor 10104 measured that the metal ion concentration had fallen below the second preset threshold, the computer 10105 could instruct the power supply 10030 to stop Supply voltage to electrodes 1 0028 and 100 29 to stop the removal of metal ions from the supply of the electrolyte liquid 10038. In this way, the metal concentration in the supply of the electrolyte liquid 1 0038 can be maintained between the first and second preset levels, for example, during an electrolytic polishing process The concentration of metal ions in the electrolyte liquid 10038 can also be used to assist the termination point detector 1016 (Figure 1 A, 1B). The termination point detector 1016 can be used to determine the thickness of the metal layer on the wafer 1004. This information can be used by the electrolytic polishing device to determine when to continue or interrupt the electrolytic polishing process on a specific area of the wafer 1004. It can also be used to determine the appropriate polishing rate. The end point detector 1 016 may include various sensors , Such as ultrasonic sensors, optical sensors, electromagnetic sensors, etc. The use of electrolyte liquid 1 03 8 as a medium to transmit signals and perform measurements will increase the accuracy of the measurement, because the interface between the medium and the electrolyte liquid 1 038 (for example , Air) does not need to be considered. However, if it may affect the electrolyte liquid of the sensor, the paper size applies the Chinese national standard (CNS ) A4 size (210X 297mm)-^ Approved I line (please read the precautions on the back before filling this page) -30- 200300376 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 _______ 5. Description of the invention ( If the properties of 1 038 are changed, the measurement may not be accurate for a long time. Therefore, the measurement of the termination point detector can be improved by considering the changed properties of the electrolyte liquid 1 038. Figure 10B shows another exemplary system to monitor the optical characteristics of the electrolyte liquid, which can be used, for example, to adjust the end point detector measurement. 10B is similar to FIG. 10A, except that it includes a second optical sensor 10204 and an optical fiber 10202. The optical sensor 10104, fiber probe 10102, and reflector 10100 operate in a manner as described with reference to FIG. 10A. The second optical sensor 10204 and the optical fiber 10202 also operate similarly to the optical sensor 10104 and the fiber probe 10102, however, the optical sensor 10204 and the optical fiber 10202 measure other optical characteristics of the electrolyte liquid. For example, during an electrolytic polishing process, hydrogen bubbles are often formed on the electrodes. Air bubbles may adversely affect the end point detector by diffracting and reducing the intensity of the measuring beam in the electrolyte liquid. The decrease in intensity may affect the measurement of metal ion concentration, but by using multiple detectors that are sensitive to different characteristics, the metal ion concentration can be accurately determined. In an example of determining the optical characteristics of the electrolyte liquid affected by the air bubbles, the color of the light emitted by the optical fiber 10202 can be selected again to increase the sensitivity of the measurement also detected by the second optical sensor 10204. In this example, the color of the light emitted by the fiber probe 10202 can be selected to be the same color as the metal ions in the electrolyte liquid supply to increase the sensitivity to air bubbles and reduce the sensitivity to metal ions. For example, for copper in phosphoric acid supply, the emitted blue light provides higher sensitivity to air robes and lower sensitivity to copper ions (compared to white light), and the paper size applicable to the Chinese National Standard (CNS) A4 Specifications (210X297mm) (Please read the precautions on the back before filling this page)
、1T 線 -31 - 經濟部智慧財產局員工消費合作社印製 200300376 Μ ____ Β7 五、發明説明( 出白光係提供對於氣泡之較高敏感度以及對於銅離子之較 低敏感度(相較於紅光)。 此外,來自纖維探針10102之紅光的強度將亦被減少 ,由於電解質液體中之任何氣泡,以致其銅離子濃度之測 量將會不準確。然而,第二光學感應器10204將指明其主 要由於氣泡而非銅離子濃度所致之強度減少的部分,因爲 纖維探針10202之敏感度被選擇爲對銅離子濃度不敏感。 紅光之強度的減少可因而藉由考量其由於第二光學感應器 10204所決定之氣泡的部分來決定。此外,終止點檢測器 1 01 0 (圖1 A )將能夠從電腦1 0 1 05擷取電解質液體之光學 特性並執行晶圓1004 (圖1 A )上之金屬厚度的準確測量。 因此,第二光學感應器10204可增加終止點檢測器測量及 金屬離子濃度測量之準確度。 應理解其任何數目的感應器均可被使用以測量電解質 液體之各種性質。其各種性質(例如,光學性質等)可接 著被儲存並用以調整或決定終止點檢測器測量等。 VI.噴嘴架構 依據另一型態,一種用以電解拋光一金屬膜於一晶圓 上之示範方法及裝置包含使用具有不同拋光率之多重尺寸 的噴嘴。通常,大型噴嘴容許其形成於一晶圓上之金屬膜 (例如,銅)的較大拋光率,而小型噴嘴產生較小的拋光 率。大型噴嘴因而可被使用爲金屬層之粗糙拋光,接著藉 由使用小型噴嘴以更精確地控制電解拋光製程。多重噴嘴 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) ' -32- — η, ^ 裝 訂 . 線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局Μ工消費合作社印製 200300376 A7 _____ B7 五、發明説明( 因而有利於更精確地拋光一晶圓之不同區。然而,因爲一 淸潔室中之有限空間,例如,所以具有多重噴嘴之裝置宜 爲小型的。一種具有多數噴嘴之示範裝置(其被裝配於一 旋轉噴嘴固持器上)因而容許使用多重噴嘴於一狹小空間 〇 圖13A、13B、13C、13D及13E顯示一種包含多重旋轉 噴嘴總成之示範電解拋光總成。圖1 3 A至1 3E係類似於圖 1A至1E,除了加入具有多重噴嘴之旋轉噴嘴1012,其被置 於鄰近光學終止點檢測器1016、及漩渦電流厚度/終止點檢 測器1009。如圖1A中之箭號所示,旋轉噴嘴2012可旋轉 並設置不同尺寸及/或形狀的噴嘴1014以導引一電解質液體 1 038流至晶圓1004。因此,泵1018僅導引電解質液體 1 038至終止點檢測器1016之噴嘴1010及單一噴嘴1014, 而圖1A中,電解質液體1 03 8被導引至其中所使用之各獨 立噴嘴。 終止點檢測器1009可操作以測量一形成於晶圓1004上 之金屬膜的厚度。檢測器1009可測量金屬膜之厚度於一電 解拋光製程之前、期間、及之後。於一種示範方法中,終 止點檢測器1009被使用以決定電解拋光前之整個晶圓1〇〇4 上的金屬膜之厚度,其係使用(例如)一漩渦電流終止點 檢測器。金屬膜厚度可接著被使用以控制晶圓1004上之各 個位置的局部拋光率,藉由控制電流密度及/或串流輪廓。 介於終止點檢測器1 009與晶圓1004之間的距離係於(例如 )約5至約1 〇 〇 〇微米之範圍內。於整個晶圓上之膜厚度可 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ' ^ ' -33- I J ^ 批衣ITi (請先閲讀背面之注意事項再填寫本頁) 200300376 A7 B7 五、發明説明( 藉由旋轉晶圓1004並移動夾盤1002於水平方向而被決定, 而同時地容許終止點檢測器1009掃瞄晶圓1004之整個表面 。然而,應理解其另一方面終止點檢測器1 〇 〇 9亦可掃瞄一 固定晶圓1004。 旋轉噴嘴2012可接著旋轉以根據其正被拋光之晶圓 1004的部分、金屬膜厚度等等而選取一理想的噴嘴1014。 例如,於金屬層較厚之區域可使用較大的噴嘴,而於金屬 層薄的區域中可使用小噴嘴。包含各種尺寸及輪廓之數個 噴嘴(其可被快速及簡易地交換)於一簡單的小型電解拋 光總成中因而增進拋光之精確性。 參考圖14A,其顯示一種示範性多重旋轉噴嘴固持器 2012的橫斷面圖。旋轉噴嘴固持器2012固持噴嘴2014。驅 動機構2070透過驅動接點2068以旋轉該旋轉噴嘴固持器 2012以定位一新的噴嘴來導引電解質液體流。一 〇型環 2066 (例如)密封驅動接點2068。驅動機構2070可爲一步 進馬達、伺服馬達、氣動(壓縮的氣體或液體)驅動旋轉 機構,等等。旋轉噴嘴固持器2012中之噴嘴2014包含電極 2056,其可被電耦合至電源供應1040 (圖13A)之外部, 透過電流饋送道2062。旋轉噴嘴固持器2012係置於平板 2084上,其係藉由〇型環2072及螺栓2074而密封與容器 1 008。 噴嘴固持器2012可由塑膠(諸如PVC、PVD、TEFLON 、聚丙烯等)所製或者被塗敷以一通常爲絕緣且非腐蝕之 材料。噴嘴2014可由鉅、鈦、鉑、不銹鋼,等等製造。 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) IJ τ----— 裝-- (請先閱讀背面之注意事項再填寫本頁) 訂 線 經濟部智慧財產局員工消費合作社印製 -34- 經濟部智慧財產局員工消費合作社印製 200300376 A7 B7 五、發明説明(y 圖14C顯示一種使用圖14A之裝置以從一晶圓1004電 解拋光金屬膜之示範性製程。於區塊1中,藉由(例如) 終止點檢測器1 009 (其係移動於X方向當晶圓1 〇〇4如上所 述而旋轉時)以決定金屬膜厚度輪廓。於區塊2中,金屬 膜可使用一大型噴嘴2014而被初始地拋光以高的拋光率。 在高的拋光率之後,旋轉噴嘴固持器2012可被旋轉以使用 小型噴嘴2014來執行較低的拋光率,於區塊3中。在區塊 1及或區塊2中之初始拋光以後,剩餘的金屬厚度輪廓可使 用終止點檢測器1009 (例如,漩渦電流終止點檢測器、光 學終止點檢測器,等等)而被決定於區塊4中。根據區塊4 中所決定之剩餘的金屬厚度輪廓,則可於區塊5中調整或 調諧拋光電流以使用較高速率拋光厚膜的位置、使用低速 率拋光薄膜的位置、及停止拋光於零膜厚度之位置。拋光 電流可藉由(例如)使用不同噴嘴2014及/或改變電源供應 所供應之電荷而被調諧。於區塊6中,厚度輪廓之測量( 即,區塊4)被重複。假如金屬層之厚度到達預設値時,則 拋光製程可被停止。然而,假如金屬之厚度未到達預設値 ,則區塊5可被重複直到獲得理想的厚度。 應理解其各種修飾及改變均可被實施於參考圖14(:所 述之製程。此外,各種其他製程可被使用以配合圖14A之 示範裝置。 參考圖14B,其顯示另一示範性多重旋轉噴嘴總成。圖 14B中所示之旋轉噴嘴總成係類似於圖14A中所示者,除 了其驅動接點2068係由磁性耦合接點2078及2082所取代 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 訂 線 (請先閱讀背面之注意事項再填寫本頁) -35- 200300376 A7 B7 五、發明説明(d • (請先閱讀背面之注意事項再填寫本頁) 。使用磁性耦合接點2078及2082之一優點在於其驅動接點 2078並無與旋轉噴嘴固持器2012之直接連接,及圖14 A之 〇型環2066可被省略。如此減少洩漏電解質液體103 8至驅 動接點2068的發生機率。因而應理解其可使用各種耦合驅 動接點2068至旋轉噴嘴固持器2012之方法。 參考圖15,其顯示一種示範線性可移動多重噴嘴總成 。多重線性可移動噴嘴總成之操作係類似於圖1 3至1 3E之 旋轉噴嘴2012,除了其噴嘴係以線性方式移動而非旋轉方 式。多重線性可移動噴嘴總成包含噴嘴3054、噴嘴3222、 及噴嘴3226,其個別包含電極3056、3220、及3224。三個 噴嘴3054、3022、及3226可被構成以具有不同的輪廓(例 如,不同直徑),而因此可提供不同的拋光率。 經濟部智慈財產局員工消費合作社印製 噴嘴3054、3022、及3226可透過噴嘴固持器3180及 移動導引3182而移動於水平方向(即,X方向)。電極 3056、3220、及3224係透過電饋送道(未顯示)而進一步 連接與電源供應3110。電解質液體3080係透過噴嘴固持器 3180而被供應至噴嘴3054、3022、及3226。如參考圖14C 所述,不同尺寸的噴嘴3054、3022、及3226可於一電解拋 光製程期間被交替地使用以移除一配置於晶圓1 004之上的 金屬膜。通常,可使用一大型噴嘴以使用較高拋光率拋光 金屬膜(當金屬膜較厚時),而使用一小型噴嘴以使用較 低拋光率拋光金屬膜(當金屬膜較薄或者希望移除少量金 屬時> 。 圖16A至16E顯示一種包含多重旋轉噴嘴總成之示範 本紙張尺度適用中國國家標準(CNS ) A4規格(2]0X297公釐) - 36- 200300376 A 7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明( 電解拋光總成。圖16A至16E係類似於圖13A至13E,除 了其加入安裝有旋轉噴嘴4012及4014之線性可移動基座 4180及移動導引4182。 明確地,旋轉多重噴嘴4014、光學終止點檢測器401 6 、及漩渦厚度/終止點檢測器4060被安裝於線性可移動基座 4180之上。線性可移動基座構件可沿著移動導引4182而被 移動於水平方向(即,X方向)。此總成容許多重噴嘴被包 含於一狹小空間中。 多重噴嘴4014之結構及操作係類似於圖14A及14B中 所顯示者,然而,爲說明之目的已省略諸如旋轉驅動機構 、驅動接點、電流饋送通道、及電解質饋送通道。 VII.噴嘴自行淸潔程序 依據另一型態,描述一種用以自行淸潔電解拋光噴嘴 之示範程序。於一典型的電解拋光程序期間,電解質液體 中所溶解之金屬可能被鍍於噴嘴電極之上。鍍上之金屬可 能侷限噴嘴之開口或使其變形,因而改變電解質液體流之 形狀及/或方向。改變該流之形狀可能改變該流之電流密度 ,而因此改變電解拋光裝置之拋光率。噴嘴可藉由施加一 反向電壓至噴嘴而被除電鍍、或淸潔,其造成金屬離子溶 解回入電解質溶液中。例如,金屬可能被電鍍至另一噴嘴 、犧牲材料,等等。 參考圖1A至1E,來自一金屬層(其係從晶圓1004拋 光)之金屬變溶解於電解質液體1 038中而可能導致溶解金 (請先閱讀背面之注意事項再填寫本頁) -裝_1T line -31-Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, 200300376 M ____ Β7 V. Description of the invention (The white light system provides higher sensitivity to air bubbles and lower sensitivity to copper ions (compared to red In addition, the intensity of the red light from the fiber probe 10102 will also be reduced. Due to any bubbles in the electrolyte liquid, the measurement of its copper ion concentration will be inaccurate. However, the second optical sensor 10204 will indicate It is mainly due to the bubbles rather than the decrease in intensity due to the concentration of copper ions, because the sensitivity of the fiber probe 10202 is selected to be insensitive to the concentration of copper ions. The reduction in the intensity of red light can therefore be determined by considering The part of the bubble determined by the optical sensor 10204 is determined. In addition, the end point detector 1 01 0 (Figure 1 A) will be able to retrieve the optical characteristics of the electrolyte liquid from the computer 1 0 1 05 and execute the wafer 1004 (Figure 1 A) Accurate measurement of metal thickness. Therefore, the second optical sensor 10204 can increase the accuracy of the measurement of the end point detector and the measurement of metal ion concentration. Any number of its sensors can be used to measure various properties of the electrolyte liquid. Its various properties (eg, optical properties, etc.) can then be stored and used to adjust or determine the end point detector measurement, etc. VI. Nozzle architecture is based on another One type, an exemplary method and apparatus for electrolytic polishing of a metal film on a wafer includes the use of nozzles of multiple sizes with different polishing rates. Generally, large nozzles allow metal films formed on a wafer ( For example, copper) has a larger polishing rate, while smaller nozzles produce smaller polishing rates. Large nozzles can thus be used for rough polishing of metal layers, and then use smaller nozzles to more accurately control the electrolytic polishing process. Multiple nozzles This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) '-32- — η, ^ Binding. Thread (Please read the notes on the back before filling this page) Intellectual Property Bureau of the Ministry of Economic Affairs Cooperative printed 200300376 A7 _____ B7 V. Description of the invention (thus conducive to more accurate polishing of different areas of a wafer. However, because a The limited space in a clean room, for example, so a device with multiple nozzles should be small. A demonstration device with many nozzles (which is mounted on a rotating nozzle holder) thus allows multiple nozzles to be used in a small space. 13A, 13B, 13C, 13D, and 13E show an exemplary electrolytic polishing assembly including a multiple rotating nozzle assembly. Figures 1 A to 1 3E are similar to Figures 1A to 1E, except that a rotating nozzle 1012 having multiple nozzles is added. Are placed adjacent to the optical termination point detector 1016 and the eddy current thickness / termination point detector 1009. As shown by the arrow in FIG. 1A, the rotating nozzle 2012 can be rotated and provided with nozzles 1014 of different sizes and / or shapes to guide An electrolyte liquid 1 038 is directed to the wafer 1004. Therefore, the pump 1018 only guides the electrolyte liquid 1 038 to the nozzle 1010 and the single nozzle 1014 of the end point detector 1016, and in FIG. 1A, the electrolyte liquid 1 03 8 is guided to the individual nozzles used therein. The termination point detector 1009 is operable to measure the thickness of a metal film formed on the wafer 1004. The detector 1009 can measure the thickness of the metal film before, during, and after an electrolytic polishing process. In an exemplary method, an end point detector 1009 is used to determine the thickness of the metal film on the entire wafer 1004 before electrolytic polishing, using, for example, a eddy current end point detector. The metal film thickness can then be used to control the local polishing rate at various locations on the wafer 1004 by controlling the current density and / or the flow profile. The distance between the end point detector 1 009 and the wafer 1004 is, for example, in a range of about 5 to about 1000 microns. The film thickness on the entire wafer can be in accordance with the Chinese national standard (CNS) A4 specification (210X297 mm) for this paper size. '^' -33- IJ ^ Approved ITi (Please read the precautions on the back before filling this page) 200300376 A7 B7 V. Description of the invention (determined by rotating the wafer 1004 and moving the chuck 1002 in the horizontal direction, while simultaneously allowing the end point detector 1009 to scan the entire surface of the wafer 1004. However, it should be understood that On the one hand, the end point detector 1009 can also scan a fixed wafer 1004. The rotating nozzle 2012 can then be rotated to select an ideal nozzle according to the portion of the wafer 1004 being polished, the metal film thickness, etc. 1014. For example, larger nozzles can be used in areas with thick metal layers, and small nozzles can be used in areas with thin metal layers. Several nozzles of various sizes and contours (which can be quickly and easily exchanged) This improves the accuracy of polishing in a simple small electrolytic polishing assembly. Referring to FIG. 14A, a cross-sectional view of an exemplary multiple rotating nozzle holder 2012 is held. The rotating nozzle holder 2012 is held Nozzle 2014. The driving mechanism 2070 guides the electrolyte liquid flow through the driving contact 2068 to rotate the rotary nozzle holder 2012 to position a new nozzle. An O-ring 2066 (for example) seals the driving contact 2068. The driving mechanism 2070 may It is a stepper motor, servo motor, pneumatic (compressed gas or liquid) driven rotating mechanism, etc. The nozzle 2014 in the rotating nozzle holder 2012 contains an electrode 2056, which can be electrically coupled to a power supply 1040 (Figure 13A). Externally, through the current feed channel 2062. The rotating nozzle holder 2012 is placed on the flat plate 2084, which is sealed with a container 1 008 by an O-ring 2072 and a bolt 2074. The nozzle holder 2012 can be made of plastic (such as PVC, PVD, TEFLON, polypropylene, etc.) or coated with a generally insulating and non-corrosive material. Nozzles 2014 can be made of giant, titanium, platinum, stainless steel, etc. This paper size applies Chinese National Standard (CNS) A4 Specifications (210X297 mm) IJ τ ----— Equipment-- (Please read the precautions on the back before filling out this page) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Employee Consumption Cooperative -3 4- Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, 200300376 A7 B7 V. Description of the Invention (Figure 14C shows an exemplary process for electrolytic polishing of a metal film from a wafer 1004 using the device of Figure 14A. In block 1 , For example, the end point detector 1 009 (which is moved in the X direction when the wafer 1 is rotated as described above) to determine the metal film thickness profile. In block 2, the metal film can be used A large nozzle 2014 is initially polished at a high polishing rate. After a high polishing rate, the rotating nozzle holder 2012 can be rotated to perform a lower polishing rate using the small nozzle 2014, in block 3. After the initial polishing in block 1 or block 2, the remaining metal thickness profile can be determined using a termination point detector 1009 (eg, eddy current termination point detector, optical termination point detector, etc.) Block 4. According to the remaining metal thickness profile determined in block 4, the polishing current can be adjusted or tuned in block 5 to use a higher rate to polish the thick film, use a lower rate to polish the film, and stop polishing at zero. Location of film thickness. The polishing current can be tuned by, for example, using different nozzles 2014 and / or changing the charge supplied by the power supply. In block 6, the measurement of the thickness profile (ie, block 4) is repeated. If the thickness of the metal layer reaches a predetermined thickness, the polishing process can be stopped. However, if the thickness of the metal does not reach the predetermined thickness, the block 5 may be repeated until the desired thickness is obtained. It should be understood that various modifications and changes thereof can be implemented in the process described with reference to FIG. 14 (. In addition, various other processes can be used to match the exemplary device of FIG. 14A. Referring to FIG. 14B, another exemplary multiple rotation is shown. Nozzle assembly. The rotating nozzle assembly shown in FIG. 14B is similar to that shown in FIG. 14A, except that its driving contact 2068 is replaced by magnetic coupling contacts 2078 and 2082. This paper applies Chinese national standards (CNS) ) A4 size (210X297mm) Thread (please read the notes on the back before filling this page) -35- 200300376 A7 B7 V. Description of the invention (d • (Please read the notes on the back before filling this page). One of the advantages of using magnetic coupling contacts 2078 and 2082 is that the driving contact 2078 is not directly connected to the rotating nozzle holder 2012, and the O-ring 2066 in FIG. 14A can be omitted. This reduces the leakage of the electrolyte liquid 103 8 to Probability of occurrence of driving contact 2068. It should be understood that various methods of coupling driving contact 2068 to rotating nozzle holder 2012 can be used. Referring to FIG. 15, there is shown an exemplary linear movable multiple Nozzle assembly. The operation of the multiple linear movable nozzle assembly is similar to that of the rotating nozzle 2012 of FIGS. 13 to 13E, except that the nozzle is moved in a linear manner instead of a rotating manner. The multiple linear movable nozzle assembly includes a nozzle 3054. , Nozzle 3222, and nozzle 3226, each of which contains electrodes 3056, 3220, and 3224. Three nozzles 3054, 3022, and 3226 can be configured to have different profiles (for example, different diameters), and thus can provide different polishing Printed nozzles 3054, 3022, and 3226 by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs can be moved in the horizontal direction (ie, X direction) through the nozzle holder 3180 and the movement guide 3182. The electrodes 3056, 3220, and 3224 It is further connected to the power supply 3110 through an electric feeder (not shown). The electrolyte liquid 3080 is supplied to the nozzles 3054, 3022, and 3226 through the nozzle holder 3180. As described with reference to FIG. 14C, the nozzles 3054 of different sizes , 3022, and 3226 can be used alternately during an electrolytic polishing process to remove a metal film disposed on wafer 1 004. Generally, a Type nozzle to polish the metal film with a higher polishing rate (when the metal film is thicker), and use a small nozzle to polish the metal film with a lower polishing rate (when the metal film is thin or it is desired to remove a small amount of metal>). Figures 16A to 16E show an example of a multi-rotation nozzle assembly. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (2) 0X297 mm-36- 200300376 A 7 B7 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs V. Description of the invention (Electrolytic polishing assembly. Figs. 16A to 16E are similar to Figs. 13A to 13E, except that they include a linear movable base 4180 and a moving guide 4182 installed with rotary nozzles 4012 and 4014. Specifically, a rotary multiple nozzle 4014, an optical termination point detector 4016, and a vortex thickness / termination point detector 4060 are mounted on a linear movable base 4180. The linear movable base member can be moved in the horizontal direction (ie, the X direction) along the movement guide 4182. This assembly allows multiple nozzles to be contained in a small space. The structure and operation of the multi-nozzle 4014 are similar to those shown in Figs. 14A and 14B, however, such as a rotary driving mechanism, a driving contact, a current feeding channel, and an electrolyte feeding channel have been omitted for illustration purposes. VII. Nozzle Self-Cleaning Procedure According to another aspect, a model procedure for self-cleaning the electrolytic polishing nozzle is described. During a typical electrolytic polishing procedure, metals dissolved in the electrolyte liquid may be plated on the nozzle electrode. The plated metal may limit or deform the opening of the nozzle, thereby changing the shape and / or direction of the electrolyte fluid flow. Changing the shape of the stream may change the current density of the stream, and therefore the polishing rate of the electrolytic polishing device. The nozzle can be deplated or cleaned by applying a reverse voltage to the nozzle, which causes the metal ions to dissolve back into the electrolyte solution. For example, metal may be electroplated to another nozzle, sacrificial material, and so on. Referring to FIGS. 1A to 1E, the metal from a metal layer (which is polished from wafer 1004) becomes dissolved in electrolyte liquid 1 038 and may cause dissolution of gold (please read the precautions on the back before filling out this page) -pack_
、1T 線 本纸張尺度適用中國國家標準(CNS ) Α4規格(210Χ 297公釐) -37- 200300376 經濟部智慧財產局員工消費合作社印製 A7 ______ _B7、 1T line This paper size is applicable to China National Standard (CNS) A4 specification (210 × 297 mm) -37- 200300376 Printed by the Employees' Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs A7 ______ _B7
五、發明説明(A 屬之一部分變成被電鍍於噴嘴電極1 056及/或1060上。爲 了從電極1056及/或1 060移除金屬,可施加一反向電壓至 噴嘴電極105 6及/或1 060。可使用任一直流或交流電源供 應以施加反向電壓。於一示範程序中,反向電壓被施加以 電鍍金屬堆積於一可拋棄晶圓上。於又另一範例中,反向 電壓被施加以電鍍金屬堆積於一區塊上。 A.使用直流電源供應以溶解金屬堆積於電解質液體中 參考圖1A,噴嘴1012上之金屬堆積可使用直流電源供 應而被拋光掉並溶解於電解質液體1038中。更明確地,引 線C可被連接至引線b,而引線B可被連接至引線a,以致 其噴嘴電極1056 (圖1B-1E )作用爲陽極而電極1060作用 爲陰極。電解質液體1 038可透過噴嘴1012及1014而被供 應以形成一電路於電極1056與1060之間,其容許金屬堆積 於噴嘴1012上以被移除自噴嘴1012並溶解於電解質液體 1 038中。溶解於電解質液體1038中之金屬的一部份可變爲 鍍於噴嘴1014上。 雖然似乎其製程僅從一噴嘴移動金屬並將其鍍於另一 噴嘴上,但是其移除自噴嘴1012之大部分金屬仍保持溶解 於電解質液體1038中。因而電解拋光製程之電解質液體 1 038中的金屬濃度通常是很低的,例如,小於3重量%, 以致其電解拋光係藉由供電於噴嘴電極1012及1014而非藉 由電解質液體1 038之化學作用以驅動。因此,從噴嘴1〇12 所拋光之金屬量大於其被鍍於噴嘴1014上之金屬量。例如 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) IJ---^------批衣--------1T------^1 (請先閱讀背面之注意事項再填寫本頁) -38- 200300376 A7 B7 五、發明説明(4 (請先閱讀背面之注意事項再填寫本頁) ,對應於每一鍍於噴嘴1014上之金屬離子可能有10金屬 離子被移除自噴嘴1012,其導致大部分金屬離子溶解於電 解質液體1 03 8中。 繼續參考圖1A,此製程可被反轉以致其噴嘴1014上之 金屬堆積係使用直流電源供應而被拋光掉並溶解於電解質 液體1 038中。更明確地,引線B可被連接至引線b而引線 C可被連接至引線a,以致其噴嘴電極1060 (圖1B-1E)作 用爲陽極而噴嘴電極1 056作用爲陰極。電解質液體1 038可 透過噴嘴1012及1014而被供應以形成一電路,其容許金屬 堆積於噴嘴1014上以被移除自噴嘴1014並溶解於電解質液 體1038中。溶解於電解質液體1038中之金屬的一部份可變 爲鍍於噴嘴1 0 1 2上。 經濟部智慧財產局員工消費合作社印製 藉由重複此製程,即,反轉裝置中所使用之每一噴嘴 的電壓,則噴嘴可被淸潔。於一示範性製程中,噴嘴係藉 由電解拋光接續的晶圓而被快速地淸潔,藉由首先除電鍍 噴嘴1012並電鍍噴嘴1〇14,接著除電鍍噴嘴1〇丨4並電鍍 噴嘴1012 °兩個噴嘴被有效地淸潔,因爲(如以上所討論 )大部分金屬係溶解於電解質液體1〇38中而非被鍍於相對 的噴嘴中。 圖2及3顯示於一淸潔程序中之噴嘴ι〇1 2及1014的兩 個示範架構。噴嘴101 2及1〇14被置於彼此接近且電解質液 體被容許流經噴嘴1〇12及1014並形成電解質液體之一膜或 路徑於其間。當噴嘴1012及被設置更接近在一起時( 如圖3中所示),則流動於噴嘴1 〇丨2與1 〇丨4之間的電解質 本纸張尺度適用中國國豕標準(CNS ) A4規格(210X297公釐) -39- 200300376 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(d 液體1 080之兩個膜或路徑可結合以形成單一路徑。此單一 路徑減少電路之長度,因而增加金屬堆積移除程序之效率 。當然應理解其示範方法亦可被使用以兩個以上噴嘴。 B. 使用直流電源供應以電鍍金屬堆積於晶圓上 參考圖1A,噴嘴1012上之金屬堆積可使用直流電源供 應而被拋光掉並鍍於晶圓1004上,依據另一示範性製程。 更明確地,引線A可被連接至引線b而引線B可被連接至 引線a,以致其晶圓1004作用爲陰極而噴嘴電極.1 056 (圖 1B-1E)作用爲陽極。電解質液體1038可透過噴嘴1012而 被供應至晶圓1004以形成一電路,其容許金屬堆積於噴嘴 1012上以被鍍於晶圓1004上。晶圓1004可於噴嘴1012上 之金屬堆積被移除後被拋棄。 類似地,參考圖1A,噴嘴1014上之金屬堆積可使用直 流電源供應而被拋光掉並鍍於晶圓1 004上。更明確地,弓丨 線A可被連接至引線b而引線C可被連接至引線a,以致 其晶圓1004作用爲陰極而噴嘴電極1060 (圖1B-1E )作用 爲陽極。電解質液體1 038可透過噴嘴1014而被供應至晶圓 1004以形成一電路,其容許金屬堆積於噴嘴1014上以被鍍 於晶圓1004上。電解拋光裝置中之噴嘴1012或其他噴嘴可 與噴嘴1014平行地或串列地被淸潔。晶圓1004可於噴嘴 1012上之金屬堆積被移除後被拋棄。 C. 使用直流電源供應以電鍍金屬堆積於一區塊上 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) "" -40» I Ί ; 裝 訂 線 (請先閲讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 200300376 __ B7 五、發明説明(3} 參考圖4,噴嘴1012上之金屬堆積1057可使用直流電 源供應而被拋光掉並鍍於區塊1 082上,依據另一示範性製 程。更明確地,引線B可被連接至引線a而引線D可被連 接至引線b,以致其區塊1082作甩爲陰極而噴嘴電極1056 作用爲陽極。電解質液體1038 (圖1)可透過噴嘴1012而 被供應並容許其接觸區塊1 082以形成一通過電解質液體 1038之電路,其容許金屬堆積於噴嘴1012上以被鍍於區塊 1082上。區塊1082可於噴嘴1012上之金屬堆積被移除後 被拋棄,或者於其他方便的時候。 類似地,參考圖4,噴嘴1014上之金屬堆積1057可使 用直流電源供應而被拋光掉並鍍於區塊1082上。更明確地 ,引線C可被連接至引線a而引線D可被連接至引線b, 以致其區塊1 082作用爲陰極而噴嘴電極1060作用爲陽極。 電解質液體1 03 8 (圖1)可透過噴嘴1014而被供應並容許 其接觸區塊1082以形成一電路,其容許金屬堆積於噴嘴 1014上以被鍍於區塊1082上。區塊1082可於噴嘴1014上 之金屬堆積被移除後被拋棄,或者於其他方便的時候。此 外,電極1056及1060可被串列地或平行地淸潔。 D.使用交流電源供應以移除金屬堆積 於另一示範噴嘴淸潔程序中,可配合任何上述架構使 用交流電源供應(而非直流電源供應)以移除金屬堆積自 噴嘴1012及1014。明確地,一交流電源供應被使用以溶解 金屬堆積於電解質液體中,電鑛金屬堆積於一將被拋棄之 本紙張尺度適用中國國家標準(CNS ) A4規格(2】〇X 297公釐) !·---^------批衣-------1T------^ (請先閲讀背面之注意事項再填寫本頁) -41 - 200300376 A7 B7 五、發明説明(4 晶圓上,或電鍍金屬堆積於一區塊或其他犧牲材料上。 以一交流電源供應自噴嘴移除金屬堆積變爲更有效率 ,因爲電解質液體中之金屬濃度減少。因此,金屬濃度通 常於約0.1%至約5%重量之範圍內,而最好是小於0.5%重 量,於移除程序期間。 VIII.噴嘴形狀 於任何所述之示範實施例中,可有利地使用各種形狀 之噴嘴。不同型式之噴嘴(例如,不同尺寸、輪廓、橫斷 面形狀,等等)提供不同的拋光特性且可根據特定應用而 有利地被使用。例如,如圖1B中所示,示範電解拋光裝置 可包含兩個不同尺寸之噴嘴1012及1014,其可被使用以電 解拋光晶圓1 004之不同區段。 此外,圖5 A至5H顯示具有多種形狀及架構之各種示 範噴嘴。噴嘴之形狀(例如,通道及端部)可改變流自噴 嘴之電解質液體、電解質液體流中之電流密度,等等。圖 A至E顯示各種噴嘴架構及形狀,其包含絕緣器5054及電 極5056。圖5F至5H顯示不具絕緣器之噴嘴。數個噴嘴架 構具有彎曲電極5056接近其開口。彎曲電極避免電極之尖 銳點的電峰値,其有助於產生更均勻的電流密度於電解質 液體流中。圖5H描繪一種包含其置於接近噴嘴中心之電極 5056及桿5058的噴嘴,以增加電極之表面積並產生更均勻 的電流密度。 對於每一上述噴嘴,電極505 6可包含一金屬或合金, 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局資工消費合作社印製 、-口V. Description of the invention (A part of the genera A becomes electroplated on the nozzle electrode 1 056 and / or 1060. In order to remove metal from the electrode 1056 and / or 1 060, a reverse voltage may be applied to the nozzle electrode 1056 and / or 1 060. Any DC or AC power supply can be used to apply the reverse voltage. In a demonstration procedure, the reverse voltage is applied with plated metal deposited on a disposable wafer. In yet another example, the reverse voltage Voltage is applied to deposit metal on a block. A. Use a DC power supply to dissolve the metal deposited in the electrolyte liquid. Referring to Figure 1A, the metal deposit on the nozzle 1012 can be polished off and dissolved in the electrolyte using a DC power supply. Liquid 1038. More specifically, lead C may be connected to lead b, and lead B may be connected to lead a so that its nozzle electrode 1056 (Figures 1B-1E) functions as an anode and electrode 1060 functions as a cathode. Electrolyte liquid 1 038 can be supplied through the nozzles 1012 and 1014 to form a circuit between the electrodes 1056 and 1060, which allows metal to be deposited on the nozzle 1012 to be removed from the nozzle 1012 and dissolved in the electrolyte liquid 1 038. A part of the metal dissolved in the electrolyte liquid 1038 can be plated on the nozzle 1014. Although it seems that the process only moves the metal from one nozzle and plated it on the other nozzle, it is removed from Most of the metal of the nozzle 1012 remains dissolved in the electrolyte liquid 1038. Therefore, the metal concentration in the electrolyte liquid 1 038 of the electrolytic polishing process is usually very low, for example, less than 3% by weight, so that its electrolytic polishing is performed by supplying power to The nozzle electrodes 1012 and 1014 are driven by the chemical action of the electrolyte liquid 1 038. Therefore, the amount of metal polished from the nozzle 1012 is greater than the amount of metal that is plated on the nozzle 1014. For example, the paper size is applicable to China Standard (CNS) A4 specification (210X297 mm) IJ --- ^ ------ batch clothes -------- 1T ------ ^ 1 (Please read the precautions on the back first Fill in this page) -38- 200300376 A7 B7 V. Description of the invention (4 (Please read the precautions on the back before filling this page), 10 metal ions may be removed for each metal ion plated on the nozzle 1014 From nozzle 1012, which causes most metal ions to dissolve Electrolyte liquid 1 03 8. With continued reference to FIG. 1A, this process can be reversed so that the metal deposits on its nozzle 1014 are polished off and dissolved in electrolyte liquid 1 038 using a DC power supply. More specifically, lead B It can be connected to the lead b and the lead C can be connected to the lead a, so that its nozzle electrode 1060 (FIGS. 1B-1E) functions as an anode and the nozzle electrode 1 056 functions as a cathode. The electrolyte liquid 1 038 can pass through the nozzles 1012 and 1014 and It is supplied to form a circuit that allows metal to deposit on the nozzle 1014 to be removed from the nozzle 1014 and dissolved in the electrolyte liquid 1038. A part of the metal dissolved in the electrolyte liquid 1038 may be plated on the nozzle 1012. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs By repeating this process, that is, reversing the voltage of each nozzle used in the device, the nozzles can be cleaned. In an exemplary process, the nozzles are quickly cleaned by electrolytically polishing the successive wafers, by first removing the plating nozzle 1012 and plating the nozzle 1014, and then removing the plating nozzle 10 and the plating nozzle 1012. ° The two nozzles are effectively cleaned because (as discussed above) most of the metal is dissolved in the electrolyte liquid 1038 rather than being plated in the opposite nozzle. Figures 2 and 3 show two exemplary architectures of nozzles 1212 and 1014 during a cleaning process. The nozzles 1012 and 1014 are placed close to each other and the electrolyte liquid is allowed to flow through the nozzles 1012 and 1014 and form a film or path of the electrolyte liquid therebetween. When the nozzle 1012 and the nozzle 1012 are arranged closer to each other (as shown in FIG. 3), the electrolyte flowing between the nozzles 1 〇 丨 2 and 1 〇 丨 4 This paper applies the Chinese National Standard (CNS) A4 Specifications (210X297 mm) -39- 200300376 Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Invention Description (d Two films or paths of liquid 1 080 can be combined to form a single path. This single path reduces the circuit Length, thus increasing the efficiency of the metal deposition removal process. Of course, it should be understood that its exemplary method can also be used with more than two nozzles. B. Use a DC power supply to plate metal on the wafer. Refer to Figure 1A, nozzle 1012. Metal deposits can be polished off and plated on wafer 1004 using a DC power supply, according to another exemplary process. More specifically, lead A can be connected to lead b and lead B can be connected to lead a, so that Wafer 1004 functions as a cathode and nozzle electrode. 1 056 (Figures 1B-1E) functions as an anode. Electrolyte liquid 1038 can be supplied to wafer 1004 through nozzle 1012 to form a circuit that allows metal to accumulate The nozzle 1012 is plated on the wafer 1004. The wafer 1004 can be discarded after the metal deposit on the nozzle 1012 is removed. Similarly, referring to FIG. 1A, the metal deposit on the nozzle 1014 can be removed using a DC power supply. Polished off and plated on wafer 1 004. More specifically, bow A can be connected to lead b and lead C can be connected to lead a, so that its wafer 1004 functions as a cathode and the nozzle electrode 1060 (Figure 1B -1E) acts as an anode. The electrolyte liquid 1 038 can be supplied to the wafer 1004 through the nozzle 1014 to form a circuit that allows metal to be deposited on the nozzle 1014 to be plated on the wafer 1004. The nozzle in the electrolytic polishing device 1012 or other nozzles can be cleaned in parallel or in series with nozzle 1014. Wafer 1004 can be discarded after the metal deposit on nozzle 1012 is removed. C. Use DC power supply to deposit metal plating on a block The above paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) " " -40 »I ;; gutter (please read the precautions on the back before filling this page) Employees of Intellectual Property Bureau, Ministry of Economic Affairs Consumer Cooperation Print 200300376 __ B7 V. Description of the invention (3) Referring to FIG. 4, the metal deposit 1057 on the nozzle 1012 can be polished off and plated on block 1 082 using a DC power supply, according to another exemplary process. More specific Ground, lead B can be connected to lead a and lead D can be connected to lead b, so that its block 1082 functions as a cathode and the nozzle electrode 1056 functions as an anode. The electrolyte liquid 1038 (FIG. 1) can be passed through the nozzle 1012 and can be Supply and allow it to contact block 1 082 to form a circuit through electrolyte liquid 1038, which allows metal to deposit on nozzle 1012 to be plated on block 1082. Block 1082 may be discarded after the metal deposit on nozzle 1012 is removed, or at other convenient times. Similarly, referring to FIG. 4, the metal deposit 1057 on the nozzle 1014 can be polished off and plated on the block 1082 using a DC power supply. More specifically, the lead C may be connected to the lead a and the lead D may be connected to the lead b so that its block 1 082 functions as a cathode and the nozzle electrode 1060 functions as an anode. The electrolyte liquid 1 03 8 (Fig. 1) can be supplied through the nozzle 1014 and allowed to contact the block 1082 to form a circuit, which allows metal to be deposited on the nozzle 1014 to be plated on the block 1082. Block 1082 may be discarded after the metal deposit on nozzle 1014 is removed, or at other convenient times. In addition, the electrodes 1056 and 1060 can be cleaned in series or in parallel. D. Using an AC Power Supply to Remove Metal Deposits In another exemplary nozzle cleaning procedure, an AC power supply (rather than a DC power supply) can be used with any of the above architectures to remove metal deposits from the nozzles 1012 and 1014. Specifically, an AC power supply is used to dissolve the metal deposited in the electrolyte liquid, and the electric mineral metal is deposited on a paper that will be discarded. The size of the paper applies to the Chinese National Standard (CNS) A4 specification (2) 0X 297 mm)! · --- ^ ------ batch clothes ------- 1T ------ ^ (Please read the precautions on the back before filling this page) -41-200300376 A7 B7 V. Invention Note (4 Wafer, or plated metal deposited on a block or other sacrificial material. It is more efficient to remove metal deposits from the nozzle with an AC power supply because the metal concentration in the electrolyte liquid is reduced. Therefore, the metal The concentration is usually in the range of about 0.1% to about 5% by weight, and preferably less than 0.5% by weight, during the removal process. VIII. Nozzle Shapes In any of the exemplary embodiments described, various shapes can be advantageously used Nozzles. Different types of nozzles (eg, different sizes, contours, cross-sectional shapes, etc.) provide different polishing characteristics and can be advantageously used depending on the particular application. For example, as shown in Figure 1B, a demonstration electrolysis Polishing unit can contain two different rulers Nozzles 1012 and 1014, which can be used to electrolytically polish different sections of wafer 004. In addition, FIGS. 5A to 5H show various exemplary nozzles having various shapes and structures. The shapes of the nozzles (for example, channels and ends ) The electrolyte liquid flowing from the nozzle, the current density in the electrolyte liquid flow, etc. can be changed. Figures A to E show various nozzle structures and shapes, which include an insulator 5054 and an electrode 5056. Figures 5F to 5H show those without an insulator Nozzles. Several nozzle structures have curved electrodes 5056 close to their openings. The curved electrodes avoid the sharp peaks of the electrodes, which helps to generate a more uniform current density in the electrolyte liquid flow. Figure 5H depicts a method including its placement The nozzles of the electrode 5056 and the rod 5058 near the center of the nozzle increase the surface area of the electrode and generate a more uniform current density. For each of the above nozzles, the electrode 5056 may contain a metal or an alloy, and the paper size applies the Chinese national standard (CNS ) A4 size (210X 297mm) (Please read the precautions on the back before filling out this page) The Intellectual Property Bureau of the Ministry of Economic Affairs Printed, -port
-42- 200300376 經濟部智慈財產局員工消費合作社印製 A7 B7五、發明説明(4 諸如钽、駄、不鏡鋼,等等。此外,絕緣器5 0 5 4可包含塑 膠,諸如PVC、PVD、Teflon,等等,或陶器,諸如Al2〇3, Zr〇2,Si〇2,等等。因此,因爲金屬及合金通常較塑膠及陶 器更於形成爲各種形狀,所以具有彎曲或錐形形狀之電極 以及筆直形狀之絕緣器的噴嘴可較其他形狀更便宜地被製 造。再者,僅具有一電極5056之噴嘴(諸如那些圖5F、5G 及5H中所示者)可具有較簡單的設計及更大表面積。此外 ,如圖5H所示之噴嘴包含桿5058爲電極5056之部分,其 提供具有更大表面積之電極且可更均勻地分配其跨越流自 噴嘴之電解質液體1 038 (圖1A)的電位。更均勻分配的電 位導致晶圓1 004之更均句的電解拋光。 圖6A及6B具有絕緣器6054、電極6056、及導電內結 構6086之另一示範噴嘴。內結構6086包含一金屬或合金, 諸如鉬、鈦、不銹鋼,等等。此外,內結構6086包含多數 通道,其可增加電極之表面積,且可更均勻地分配其跨越 噴嘴6056之電位。通道之尺寸可於約0.1 mm至約10 mm 之範圍內,根據噴嘴之直徑及特定應用。每一通道之尺寸 最好是可爲噴嘴直徑之約十分之一。 通道可被形成以各種橫斷面形狀,諸如那些圖6B至61 中所示者。例如,通道可爲方形、纖維狀、筆直槽、金屬 桿、波浪槽、矩形、蜂巢,等等。此外,雖然圖B至I顯 示特定的橫斷面形狀,但亦可形成任何橫斷面形狀之通道 ,諸如三角形、多角形、橢圓形,等等。 上述說明係用以解釋示範實施例而非用以限制。那些 本紙張又k適用中國國家標準(CN’S ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) -裝. 訂 線 -43- 200300376 經濟部智慧財產局員工消費合作社印製 A7 ___ B7__五、發明説明(4 熟悉此項技術者將瞭解其本發明範圍內之各種修飾及改變 均有可能。例如,不同的示範性電解拋光裝置(如屏蔽、 導電構件、各種噴嘴、終止點檢測器,等等)可被共同使 用於單一總成中或者可被分離地使用以加強習知的電解拋 光裝置。因此,本發明係由後附申請專利範圍所界定而不 應由此處之描述所限定。 圖式簡單說明 圖1A及1B個別爲一包含屏蔽之示範半導體處理裝置 的橫斷面圖及頂視圖; 圖1C、1D及1E係一半導體處理裝置之示範噴嘴的橫 斷面圖; 圖2係一半導體處理裝置之示範噴嘴的橫斷面圖; 圖3係一半導體處理裝置之示範噴嘴的橫斷面圖; 圖4係一半導體處理裝置之示範噴嘴及一區塊的彳黃斷 面圖; 圖5 A至5H顯示各種示範噴嘴形狀及架構之橫斷面圖 9 圖6A及6B顯示一示範噴嘴結構之橫斷面及頂視圖. 圖6C至61顯示各種示範噴嘴結構之頂視圖; 圖7顯不一包含導電構件之示範半導體處埋爿士 我置的橫 斷面圖; 圖8A及8B顯示一包含導電構件之示範半導體麽理壯 置的橫斷面圖; 本紙張尺度適用中國國家標準(CMS ) A4規格(210X297公釐) ~~^ -44· (請先閱讀背面之注意事項再填寫本頁) •裝·-42- 200300376 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Invention Description (4 such as tantalum, hafnium, non-mirror steel, etc. In addition, the insulator 5 0 5 4 may contain plastic such as PVC, PVD, Teflon, etc., or pottery, such as Al203, Zr〇2, SiO2, etc. Therefore, because metals and alloys are usually formed into various shapes more than plastic and pottery, they have curved or tapered shapes. Shaped electrodes and straight-shaped insulator nozzles can be manufactured cheaper than other shapes. Furthermore, nozzles with only one electrode 5056 (such as those shown in Figures 5F, 5G, and 5H) can have simpler Design and larger surface area. In addition, the nozzle shown in FIG. 5H includes a rod 5058 as part of the electrode 5056, which provides an electrode with a larger surface area and can more evenly distribute the electrolyte liquid 1 038 flowing across the nozzle (Figure 1A). A more evenly distributed potential results in electrolytic polishing of wafers more uniformly. Figures 6A and 6B have another exemplary nozzle with insulator 6054, electrode 6056, and conductive inner structure 6086. The inner structure 6086 contains One Metal or alloy, such as molybdenum, titanium, stainless steel, etc. In addition, the inner structure 6086 contains most channels, which can increase the surface area of the electrode and more evenly distribute its potential across the nozzle 6056. The size of the channel can be about 0.1 In the range of mm to about 10 mm, depending on the diameter of the nozzle and the specific application. The size of each channel is preferably about one tenth of the diameter of the nozzle. The channels can be formed in various cross-sectional shapes, such as those shown in the figure. 6B to 61. For example, the channels may be square, fibrous, straight grooves, metal rods, wave grooves, rectangles, honeycombs, etc. In addition, although Figures B to I show specific cross-sectional shapes, Channels of any cross-sectional shape can also be formed, such as triangles, polygons, ellipses, etc. The above description is intended to explain the exemplary embodiments and is not intended to be limiting. Those papers also apply the Chinese National Standard (CN'S) A4 specification (210X297 mm) (Please read the notes on the back before filling out this page)-Packing. Thread-43- 200300376 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 ___ B7__ 5. (4 Those familiar with the art will understand that various modifications and changes within the scope of the invention are possible. For example, different exemplary electrolytic polishing devices (such as shields, conductive members, various nozzles, termination point detectors, etc.) Etc.) can be used together in a single assembly or can be used separately to enhance the conventional electrolytic polishing device. Therefore, the present invention is defined by the scope of the appended patents and should not be limited by the description herein. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A and 1B are a cross-sectional view and a top view of an exemplary semiconductor processing device including a shield, respectively. FIGS. 1C, 1D, and 1E are cross-sectional views of an exemplary nozzle of a semiconductor processing device. A cross-sectional view of an exemplary nozzle of a semiconductor processing device; FIG. 3 is a cross-sectional view of an exemplary nozzle of a semiconductor processing device; FIG. 4 is a cross-sectional view of an exemplary nozzle of a semiconductor processing device and a block of yellow; Figures 5A to 5H show cross sections of various exemplary nozzle shapes and architectures Figure 9 Figures 6A and 6B show cross sections and top views of an exemplary nozzle structure. Figures 6C to 61 show various exemplary nozzle structures Top view of the structure; Figure 7 shows a cross-sectional view of a semiconductor device embedded in an exemplary semiconductor including a conductive member; Figures 8A and 8B show cross-sectional views of an exemplary semiconductor device including a conductive member; This paper size applies Chinese National Standard (CMS) A4 specification (210X297 mm) ~~ ^ -44 · (Please read the precautions on the back before filling this page) • Installation ·
、1T 線 200300376 Α7 Β7 經濟部智慧財產局員工消費合作社印製 五、發明説明(4;| 圖8C顯示一包含導電構件之示範晶圓夾盤總成的分解 圖; 圖9A及9B顯示包含導電構件之示範半導體處理裝置 的橫斷面圖; 圖10A及10B個別顯示包含一或兩個光學感應器之示 範半導體處理裝置的橫斷面圖; 圖11A及11B顯示一示範半導體處理裝置之頂視圖及 橫斷面圖; 圖1 2顯示一示範半導體處理裝置之橫斷面圖; 圖13A-13E顯示一具有多個旋轉總成之示範電解拋光 總成; Η 14A及14B顯示示範性多個旋轉噴嘴總成之橫斷面 圖; 圖1 4C顯示〜用以電解拋光導電層於一晶圓上之示範 製程; 圖1 5顯示一具有示範性多個線性可移動噴嘴總成之電 解拋光室的橫斷面圖;及 圖1 6A-1 6Ε顯示一具有一線性可移動及多個旋轉噴嘴 之電解拋光裝置的示範圖。 主要元件對照表 1000致動器 1002夾盤 1004晶圓 本紙張尺度適财關家標準(CNs ) Α4規格(2!〇χ297公釐) (請先閱讀背面之注意事項再填寫本頁) -裝' 訂 線 -45- 200300376 A7 B7 經濟部智慧財產局员工消費合作社印製 五、發明説明(扁 1 006屏蔽 1008拋光容器 1 0 0 9檢測器 1010,1012,1014 噴嘴 101 6終止點檢測器 101 8過濾器 1020 泵 1024止回閥 1 02 8電極 1030電源供應 1 032溫度感應器 1034冷卻器/加熱器 1 036熱交換器 1 03 8電解質液體 1040電源供應 1 052 噴嘴 1056,1060 電極 1070貯存器 2012旋轉噴嘴固持器 2014噴嘴 2056電極 2062電流饋送道 2066 〇型環 2068驅動接點 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝· 訂 線 -46 - 200300376 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(4各 2070驅動機構 2072 〇型環 2074螺栓 2078, 2082磁性耦合接點 2084平板 3054噴嘴 3056,3220, 3224 電極 3110電源供應 3180噴嘴固持器 3182移動導引 3222 噴嘴 3226 噴嘴 4012, 4014旋轉噴嘴 4016光學終止點檢測器 4060檢測器 4180基座 4182移動導引 5054絕緣器 505 6電極 505 8 桿 6054絕緣器 6 0 5 6電極 6 0 8 6內結構 7002夾盤 (請先閲讀背面之注意事項再填寫本頁) -裝·1T line 200300376 Α7 Β7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention (4; | Figure 8C shows an exploded view of an exemplary wafer chuck assembly containing conductive members; Figures 9A and 9B A cross-sectional view of an exemplary semiconductor processing device of a component; FIGS. 10A and 10B each show a cross-sectional view of an exemplary semiconductor processing device including one or two optical sensors; FIGS. 11A and 11B show a top view of an exemplary semiconductor processing device And cross-sectional views; Fig. 12 shows a cross-sectional view of an exemplary semiconductor processing device; Figs. 13A-13E show an exemplary electrolytic polishing assembly with multiple rotation assemblies; Η 14A and 14B show exemplary multiple rotations A cross-sectional view of a nozzle assembly; FIG. 14C shows an exemplary process for electrolytically polishing a conductive layer on a wafer; FIG. 15 shows an electrolytic polishing chamber having an exemplary multiple linearly movable nozzle assembly A cross-sectional view; and FIGS. 16A-1 6E show an exemplary diagram of an electrolytic polishing device having a linear movable and a plurality of rotating nozzles. Main components comparison table 1000 actuator 1002 chuck 1004 Standard Paper Standards (CNs) Α4 Specification (2! 〇χ297mm) (Please read the precautions on the back before filling out this page)-Packing 'Thread-45- 200300376 A7 B7 Ministry of Economic Affairs Intellectual Property Printed by the Bureau ’s Consumer Cooperatives. 5. Description of the invention (flat 1 006 shielded 1008 polished container 1 0 0 9 detector 1010, 1012, 1014 nozzle 101 6 termination point detector 101 8 filter 1020 pump 1024 check valve 1 02 8 electrode 1030 power supply 1 032 temperature sensor 1034 cooler / heater 1 036 heat exchanger 1 03 8 electrolyte liquid 1040 power supply 1 052 nozzle 1056, 1060 electrode 1070 reservoir 2012 rotating nozzle holder 2014 nozzle 2056 electrode 2062 current feed channel 2066 〇 ring 2068 drive contact This paper size is applicable to Chinese National Standard (CNS) A4 specification (210X297 mm) (Please read the precautions on the back before filling this page) Binding · Binding -46-200300376 A7 B7 Economy Printed by the Ministry of Intellectual Property Bureau's Consumer Cooperatives V. Invention Description (4 each 2070 drive mechanism 2072 o-ring 2074 bolt 2078, 2082 magnetic coupling contact 2084 flat plate 3054 nozzle 3056, 322 0, 3224 electrode 3110 power supply 3180 nozzle holder 3182 mobile guide 3222 nozzle 3226 nozzle 4012, 4014 rotary nozzle 4016 optical end point detector 4060 detector 4180 base 4182 mobile guide 5054 insulator 505 6 electrode 505 8 rod 6054 Insulator 6 0 5 6 Electrode 6 0 8 6 Inner structure 7002 chuck (Please read the precautions on the back before filling this page) -Installation ·
、1T 線 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) -47- 200300376 A7 B7 五、發明説明(4 經濟部智慧財產局員工消費合作社印製 7004 晶 圓 7054 噴 嘴 7080 電 解 質 液 體流 708 1 薄 層 7110 電 源 供 應 7114 導 電 構 件 8002 夾 盤 8004 晶 圓 8110 電 源 供 應 8112 電 源 供 應 8114 導 電 構 件 8118 間 隔 物 元 件 8119 彈 簧 構 件 8121 絕 緣 器 構 件 9002 晶 圓 夾 盤 9004 晶 圓 9005 金 屬 層 9080 電 解 質 液 體 9110 電 源 供 9112 可 電 阻 9114 導 電 構 件 9115 絕 緣 環 9116 導 電 環 9118 間 隔 物 元 件 (請先閱讀背面之注意亊項再填寫本頁) 裝· 訂 線 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨0X 297公釐) -48- 200300376 A7 經濟部智慧財產局員工消費合作社印製 B7五、發明説明( 9121絕緣構件 10028,10029 電極 10030電源供應 10100反射器 10102纖維探針 10104纖維光學感應器 10105電腦 10202光學纖維 10204第二光學感應器 1 1000致動器 1 1002 夾盤 11004 晶圓 1 1054 噴嘴 1 1080電解質液體 11081薄層 1111 0電源供應 11114導電構件 11150金屬層 12000致動器 12002夾盤 1 2054 噴嘴 1 21 80, 1 2 1 82 致動器 (請先閱讀背面之注意事項再填寫本頁) •裝·1. The paper size of the 1T line is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) -47- 200300376 A7 B7 V. Description of the invention (4 Printed 7004 Wafer 7054 Nozzle 7080 Electrolyte Electrolyte by the Intellectual Property Bureau of the Ministry of Economic Affairs Staff Consumer Cooperative Liquid flow 708 1 thin layer 7110 power supply 7114 conductive member 8002 chuck 8004 wafer 8110 power supply 8112 power supply 8114 conductive member 8118 spacer element 8119 spring member 8121 insulator member 9002 wafer chuck 9004 wafer 9005 metal layer 9080 Electrolyte liquid 9110 Power supply for 9112 Resistive 9114 Conductive member 9115 Insulating ring 9116 Conductive ring 9118 Spacer element (Please read the note on the back first and then fill out this page) Binding and binding This paper size applies to Chinese National Standard (CNS) A4 Specification (2 丨 0X 297mm) -48- 200300376 A7 Printed by B7 of the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economy V. Invention Description (9121 Insulating member 10028, 10029 Electrode 10030 Power supply 1010 0 reflector 10102 fiber probe 10104 fiber optical sensor 10105 computer 10202 optical fiber 10204 second optical sensor 1 1000 actuator 1 1002 chuck 11004 wafer 1 1054 nozzle 1 1080 electrolyte liquid 11081 thin layer 1111 0 power supply 11114 Conductive member 11150 Metal layer 12000 Actuator 12002 Chuck 1 2054 Nozzle 1 21 80, 1 2 1 82 Actuator (Please read the precautions on the back before filling this page) • Installation ·
、1T 線 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) -49-、 1T line This paper size applies to China National Standard (CNS) Α4 size (210X 297mm) -49-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33241701P | 2001-11-13 | 2001-11-13 | |
US37256702P | 2002-04-14 | 2002-04-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200300376A true TW200300376A (en) | 2003-06-01 |
TWI275452B TWI275452B (en) | 2007-03-11 |
Family
ID=26988208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW091133283A TWI275452B (en) | 2001-11-13 | 2002-11-13 | Electropolishing assembly and methods for electropolishing conductive layers |
Country Status (8)
Country | Link |
---|---|
US (1) | US20040238481A1 (en) |
EP (1) | EP1446514A4 (en) |
JP (5) | JP2005509746A (en) |
KR (1) | KR20050044404A (en) |
CN (1) | CN100497748C (en) |
CA (1) | CA2464423A1 (en) |
TW (1) | TWI275452B (en) |
WO (1) | WO2003042433A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7837850B2 (en) | 2005-09-28 | 2010-11-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Electroplating systems and methods |
TWI512851B (en) * | 2012-09-01 | 2015-12-11 | Alpha & Omega Semiconductor | Molded wlcsp with thick metal bonded and top exposed |
TWI647343B (en) * | 2014-05-16 | 2019-01-11 | 盛美半導體設備(上海)有限公司 | Apparatus and method for electroplating or electropolishing bracts |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7205166B2 (en) * | 2002-06-28 | 2007-04-17 | Lam Research Corporation | Method and apparatus of arrayed, clustered or coupled eddy current sensor configuration for measuring conductive film properties |
TW200409223A (en) * | 2002-07-22 | 2004-06-01 | Acm Res Inc | Adaptive electropolishing using thickness measurements and removal of barrier and sacrificial layers |
JP2005082843A (en) * | 2003-09-05 | 2005-03-31 | Ebara Corp | Electrolytic solution control method and control device |
JP2005120464A (en) * | 2003-09-26 | 2005-05-12 | Ebara Corp | Electrolytic processing apparatus and electrolytic processing method |
US7224456B1 (en) * | 2004-06-02 | 2007-05-29 | Advanced Micro Devices, Inc. | In-situ defect monitor and control system for immersion medium in immersion lithography |
WO2007035408A1 (en) * | 2005-09-19 | 2007-03-29 | Applied Materials, Inc. | Method for stabilized polishing process |
US20070181441A1 (en) * | 2005-10-14 | 2007-08-09 | Applied Materials, Inc. | Method and apparatus for electropolishing |
JP5012252B2 (en) | 2007-06-25 | 2012-08-29 | ヤマハ株式会社 | Magnetic data processing apparatus, method and program |
DE102007044091A1 (en) * | 2007-09-14 | 2009-03-19 | Extrude Hone Gmbh | Process and device for electrochemical machining |
US8496511B2 (en) * | 2010-07-15 | 2013-07-30 | 3M Innovative Properties Company | Cathodically-protected pad conditioner and method of use |
US9255339B2 (en) * | 2011-09-19 | 2016-02-09 | Fei Company | Localized, in-vacuum modification of small structures |
KR101300325B1 (en) * | 2011-12-21 | 2013-08-28 | 삼성전기주식회사 | Apparatus for plating substrate and control method thereof |
CN102601471B (en) * | 2012-03-28 | 2013-07-24 | 华南理工大学 | Finish machining method for space curve meshing gear mechanism |
CN103590092B (en) * | 2012-08-16 | 2017-05-10 | 盛美半导体设备(上海)有限公司 | Device and method used for electrochemical polishing/electroplating |
KR102043811B1 (en) | 2013-05-09 | 2019-11-12 | 에이씨엠 리서치 (상하이) 인코포레이티드 | Apparatus and method for plating and/or polishing wafer |
CN105088328B (en) * | 2014-05-07 | 2018-11-06 | 盛美半导体设备(上海)有限公司 | Electrochemical polish liquid feed device |
CN105316755B (en) * | 2014-07-29 | 2019-06-25 | 盛美半导体设备(上海)有限公司 | Electrochemical polish equipment |
CN105312999A (en) * | 2014-07-29 | 2016-02-10 | 盛美半导体设备(上海)有限公司 | SFP (stress-free polish) equipment and technological cavity thereof |
CN104241159B (en) * | 2014-09-19 | 2018-04-03 | 中海阳能源集团股份有限公司 | Solar power generation support liquid coating and measurement integrated device |
CN105448817B (en) * | 2014-09-29 | 2020-05-19 | 盛美半导体设备(上海)股份有限公司 | Method for electrochemically polishing metal interconnection wafer structure |
CN106567130A (en) * | 2015-10-10 | 2017-04-19 | 盛美半导体设备(上海)有限公司 | Method for improving roughness of wafers |
CN105780101B (en) * | 2016-01-27 | 2018-06-26 | 杨继芳 | A kind of Novel electrolytic polissoir |
CN105742213B (en) * | 2016-03-07 | 2019-03-12 | 京东方科技集团股份有限公司 | Wet-method etching equipment and wet etching method |
WO2018093958A1 (en) * | 2016-11-15 | 2018-05-24 | Postprocess Technologies Inc. | Self-modifying process for rotational support structure removal in 3d printed parts using calibrated resonant frequency |
CN106352782A (en) * | 2016-11-24 | 2017-01-25 | 中国航空工业集团公司金城南京机电液压工程研究中心 | High-temperature electrical vortex sensor and manufacturing method |
CN106625033B (en) * | 2016-12-09 | 2018-12-18 | 天津津航技术物理研究所 | A kind of method of determining Single point diamond turning o tool marks polishing removal behavior |
JP6431128B2 (en) * | 2017-05-15 | 2018-11-28 | エーシーエム リサーチ (シャンハイ) インコーポレーテッド | Apparatus and method for plating and / or polishing of wafers |
CN109423688B (en) * | 2017-08-31 | 2022-03-22 | 深圳市水佳鑫科技有限公司 | Electrochemical treatment fluid circulation system and equipment |
CN111250805A (en) * | 2020-03-20 | 2020-06-09 | 南京航空航天大学 | Flying type electrolytic milling leveling method for rough metal surface |
CN111230727B (en) * | 2020-03-28 | 2024-08-02 | 苏州赛森电子科技有限公司 | Silicon wafer single-side polishing device and single-side polishing method in vacuum coating process |
CN111958478B (en) * | 2020-07-27 | 2024-06-18 | 浙江工业大学 | Bearing roller ELID grinding device based on active control of oxide film state |
US20220282807A1 (en) * | 2021-03-04 | 2022-09-08 | Applied Materials, Inc. | Insulated fluid lines in chemical mechanical polishing |
CN114951858B (en) * | 2022-05-17 | 2024-05-10 | 哈尔滨工业大学 | Optical-electro-hydraulic coupling device for optical fiber laser and tube electrode electrolysis combination |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4304641A (en) * | 1980-11-24 | 1981-12-08 | International Business Machines Corporation | Rotary electroplating cell with controlled current distribution |
DE4121032A1 (en) * | 1991-06-26 | 1993-01-07 | Schmid Gmbh & Co Geb | DEVICE FOR TREATING PLATE-SHAPED OBJECTS, IN PARTICULAR BOARDS |
US5217586A (en) * | 1992-01-09 | 1993-06-08 | International Business Machines Corporation | Electrochemical tool for uniform metal removal during electropolishing |
US5421987A (en) * | 1993-08-30 | 1995-06-06 | Tzanavaras; George | Precision high rate electroplating cell and method |
US5567300A (en) * | 1994-09-02 | 1996-10-22 | Ibm Corporation | Electrochemical metal removal technique for planarization of surfaces |
US5843520A (en) * | 1997-01-13 | 1998-12-01 | Vanguard International Semiconductor Corporation | Substrate clamp design for minimizing substrate to clamp sticking during thermal processing of thermally flowable layers |
JPH10256450A (en) * | 1997-03-12 | 1998-09-25 | Mitsubishi Electric Corp | Device and method for machining lead frame |
KR100271759B1 (en) * | 1997-07-25 | 2000-12-01 | 윤종용 | Photoresist coating apparatus and method thereof |
US6447668B1 (en) * | 1998-07-09 | 2002-09-10 | Acm Research, Inc. | Methods and apparatus for end-point detection |
US6395152B1 (en) * | 1998-07-09 | 2002-05-28 | Acm Research, Inc. | Methods and apparatus for electropolishing metal interconnections on semiconductor devices |
JP3619021B2 (en) * | 1998-08-06 | 2005-02-09 | アルプス電気株式会社 | Thin-film magnetic head plating apparatus and thin-film magnetic head |
JP2000087295A (en) * | 1998-09-09 | 2000-03-28 | Matsushita Electronics Industry Corp | Electroplating method, electroplating device and production of semiconductor device |
US6120607A (en) * | 1998-12-03 | 2000-09-19 | Lsi Logic Corporation | Apparatus and method for blocking the deposition of oxide on a wafer |
US6582578B1 (en) * | 1999-04-08 | 2003-06-24 | Applied Materials, Inc. | Method and associated apparatus for tilting a substrate upon entry for metal deposition |
US6444101B1 (en) * | 1999-11-12 | 2002-09-03 | Applied Materials, Inc. | Conductive biasing member for metal layering |
-
2002
- 2002-11-13 EP EP02789648A patent/EP1446514A4/en not_active Withdrawn
- 2002-11-13 CN CNB028225864A patent/CN100497748C/en not_active Expired - Lifetime
- 2002-11-13 KR KR1020047007132A patent/KR20050044404A/en not_active Application Discontinuation
- 2002-11-13 US US10/495,206 patent/US20040238481A1/en not_active Abandoned
- 2002-11-13 WO PCT/US2002/036567 patent/WO2003042433A1/en not_active Application Discontinuation
- 2002-11-13 CA CA002464423A patent/CA2464423A1/en not_active Abandoned
- 2002-11-13 TW TW091133283A patent/TWI275452B/en active
- 2002-11-13 JP JP2003544243A patent/JP2005509746A/en active Pending
-
2006
- 2006-06-15 JP JP2006165966A patent/JP2006291361A/en active Pending
- 2006-07-11 JP JP2006190757A patent/JP2006316352A/en active Pending
- 2006-08-24 JP JP2006227781A patent/JP2007016320A/en active Pending
- 2006-10-17 JP JP2006282312A patent/JP2007051376A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7837850B2 (en) | 2005-09-28 | 2010-11-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Electroplating systems and methods |
TWI512851B (en) * | 2012-09-01 | 2015-12-11 | Alpha & Omega Semiconductor | Molded wlcsp with thick metal bonded and top exposed |
TWI647343B (en) * | 2014-05-16 | 2019-01-11 | 盛美半導體設備(上海)有限公司 | Apparatus and method for electroplating or electropolishing bracts |
Also Published As
Publication number | Publication date |
---|---|
CN100497748C (en) | 2009-06-10 |
KR20050044404A (en) | 2005-05-12 |
US20040238481A1 (en) | 2004-12-02 |
EP1446514A4 (en) | 2007-11-28 |
TWI275452B (en) | 2007-03-11 |
WO2003042433A1 (en) | 2003-05-22 |
JP2005509746A (en) | 2005-04-14 |
JP2007051376A (en) | 2007-03-01 |
JP2007016320A (en) | 2007-01-25 |
JP2006316352A (en) | 2006-11-24 |
CN1585835A (en) | 2005-02-23 |
CA2464423A1 (en) | 2003-05-22 |
JP2006291361A (en) | 2006-10-26 |
EP1446514A1 (en) | 2004-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI275452B (en) | Electropolishing assembly and methods for electropolishing conductive layers | |
TW523558B (en) | Method and apparatus for electrochemical mechanical deposition | |
KR100780257B1 (en) | Polishing method, polishing apparatus, plating method, and plating apparatus | |
TW541609B (en) | Electro-chemical machining apparatus | |
TW494049B (en) | Method and apparatus for end-point detection | |
US20070037490A1 (en) | Methods and apparatus for selectively removing conductive material from a microelectronic substrate | |
JP2010216015A (en) | Apparatus for depositing and planarizing thin film of semiconductor wafer | |
US20060217040A1 (en) | Methods and apparatus for removing conductive material from a microelectronic substrate | |
CN1742119B (en) | Plating method | |
US20070181432A1 (en) | Electrolytic processing apparatus and substrate processing apparatus and method | |
JP2007050506A (en) | Apparatus for electrochemical machining | |
US20050077182A1 (en) | Volume measurement apparatus and method | |
US20040259365A1 (en) | Polishing method polishing system and method for fabricating semiconductor device | |
US20070034525A1 (en) | Electrolytic processing method | |
JP5148206B2 (en) | Electrolytic processing method and electrolytic processing apparatus | |
CN116079580A (en) | Electrochemical mechanical polishing device | |
US7578920B2 (en) | Electrolytic processing method | |
US6752916B1 (en) | Electrochemical planarization end point detection | |
TWI392003B (en) | Method and system of monitoring an electropolishing process of a metal layer, system to electropolishing a metal layer formed on a wafer and methods and systems to monitor the same | |
TW200529973A (en) | Real time process control for a polishing process | |
TW476992B (en) | Electroplating system having auxiliary electrode exterior to main reactor chamber for contact cleaning operations | |
TW202348354A (en) | Face-up wafer electrochemical planarization apparatus | |
JP2006128576A (en) | Electrolytic processing apparatus and method therefor | |
JP2006013177A (en) | Apparatus and method for electrolytic processing |