TWI275092B - A novel underlayer for high performance magnetic tunneling junction MRAM - Google Patents

A novel underlayer for high performance magnetic tunneling junction MRAM Download PDF

Info

Publication number
TWI275092B
TWI275092B TW094121669A TW94121669A TWI275092B TW I275092 B TWI275092 B TW I275092B TW 094121669 A TW094121669 A TW 094121669A TW 94121669 A TW94121669 A TW 94121669A TW I275092 B TWI275092 B TW I275092B
Authority
TW
Taiwan
Prior art keywords
layer
magnetic
thickness
angstroms
nickel
Prior art date
Application number
TW094121669A
Other languages
Chinese (zh)
Other versions
TW200614232A (en
Inventor
Liubo Hong
Cheng T Horng
Mao Min Chen
Ru-Ying Tong
Original Assignee
Headway Technologies Inc
Applied Spintronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Headway Technologies Inc, Applied Spintronics Inc filed Critical Headway Technologies Inc
Publication of TW200614232A publication Critical patent/TW200614232A/en
Application granted granted Critical
Publication of TWI275092B publication Critical patent/TWI275092B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/30Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers characterised by the composition of the intermediate layers, e.g. seed, buffer, template, diffusion preventing, cap layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3295Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • H01F10/3259Spin-exchange-coupled multilayers comprising at least a nanooxide layer [NOL], e.g. with a NOL spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1114Magnetoresistive having tunnel junction effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Semiconductor Memories (AREA)

Abstract

An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the alpha-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer comprised of a NiCr, NiFe, or NiFeCr layer on the alpha-TaN layer. An alpha-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an alpha-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.

Description

1275092 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種高性能磁性穿隧接面元件及其製造方法,特是有關一種應 用在磁性隨機存取記憶體裝置內之磁性穿隧接面元件,其中,此磁性穿險接面元件 係利用一種晶層作爲下電極之覆蓋層者。 【先前技術】1275092 IX. Description of the Invention: [Technical Field] The present invention relates to a high performance magnetic tunneling junction element and a method of fabricating the same, and more particularly to a magnetic tunneling connection for use in a magnetic random access memory device The surface element, wherein the magnetic perforating junction element utilizes a seed layer as a cover layer for the lower electrode. [Prior Art]

習知一磁性隨機存取記憶體裝置係利用一組平行的第二導電線陣列交叉在另一組平 行的第一導電線陣列上所組成,爲一交叉點設計之方法,而由兩陣列之導線所交叉形成之 每一交點即爲一5兹性穿隧接面元件,其中,第一導線爲字元線而第二導線即爲位元線,且 反之亦然,亦或是,第一導線爲分段線之下電極時,S牒二導線可爲位元線或字元線二者 中擇一爲之。通常在第一導電線陣列的下方有電晶體、二極體及其他結構與之連接,而在 第二導電陣列的上方有時會額外附加一導電層,此導電層可爲次要字元線或次要位元線所 構成之陣列。 如第一圖所示,基於穿隧磁阻(tunnelingmagneto-resistance , TMR)效應,習知之磁性 穿隧接面元件(ΜΉ) 1是以一非磁性之介電層區隔開兩強鐵磁性層之堆疊層狀結構。在磁 性隨機存取記憶體裝置中,此磁性穿隧接面元件1係形成在下電極2與上電極9之間,其中, 下電極2可爲分段之第一導線,上電極9則可爲第二導線。習之之下電極2通常具有一種晶 層/導電層/覆蓋層之結構,例如鉬/銅/鉅或鎳鉻/釕/鉅,而在磁性穿隧接面元件1 中之下電極3通常由一或多種晶層之結構所組成,其組成可爲鎳鐵鉻、鎳鐵、鎳鉻、鉅/ 鎳鐵鉻、钽/鎳鐵或是鉬/鎮鉻,且此種晶層會促使疊加層中之晶格具有<111>之相位性。 生成在緊鄰的爲一抗鐵磁性固定層4 ,其組成可爲錳釩或銥錳,一多層鈷鐵結構之鐵磁性 固定層5生成於抗鐵磁性固定層4上方,而一組成爲介電物質之多層結構穿隧阻障層6覆蓋 在鐵磁性固定層5上方,此層之常見的材料爲有氧化鋁,而在此穿隧阻障層6之上方,覆蓋 一鐵磁性自由層7,此層之組成爲鈷鐵與鎳鐵,或上述之兩者擇一,而在此磁性穿隧接面 元件1的上表面層結構係爲一或多層之覆蓋層8所組成,此種堆疊式之磁性穿隧接面元件1 結構亦稱作底部旋轉閥門結構。一磁性穿隧接面元件騰上述之結構之外,亦可以由底至 頂依種晶層、自由層、穿隧阻障層、固定層、抗鐵磁性層以及覆蓋層之順序堆疊結構所組 成,此一堆疊式之磁性穿隧接面元件1結構則稱作頂部旋轉閥門結構。 1275092A conventional magnetic random access memory device is formed by using a set of parallel second conductive line arrays to be crossed on another set of parallel first conductive line arrays, which is a method for designing a cross point, and by two arrays Each intersection formed by the intersection of the wires is a 5-way tunneling junction element, wherein the first wire is a word line and the second wire is a bit line, and vice versa, or first When the wire is the electrode below the segment line, the S wire may be one of the bit line or the word line. Usually, a transistor, a diode and other structures are connected under the first conductive line array, and a conductive layer is additionally added above the second conductive array, and the conductive layer may be a secondary word line. Or an array of secondary bit lines. As shown in the first figure, based on the tunneling magneto-resistance (TMR) effect, the conventional magnetic tunneling junction element (1) is a non-magnetic dielectric layer separating two strong ferromagnetic layers. Stacked layered structure. In the magnetic random access memory device, the magnetic tunneling junction element 1 is formed between the lower electrode 2 and the upper electrode 9, wherein the lower electrode 2 can be a segmented first wire, and the upper electrode 9 can be The second wire. The electrode 2 usually has a structure of a crystalline layer/conductive layer/cover layer, such as molybdenum/copper/giant or nickel-chromium/iridium/giant, while in the magnetic tunneling junction element 1, the lower electrode 3 is usually composed of a structure consisting of one or more crystal layers, which may be composed of nickel-iron-chromium, nickel-iron, nickel-chromium, giant/nickel-iron-chromium, bismuth/nickel-iron or molybdenum/chrome, and such a layer promotes an overlay The medium lattice has a phase property of <111>. Immediately formed is an antiferromagnetic pinned layer 4, which may be composed of manganese vanadium or lanthanum manganese, and a ferromagnetic pinned layer 5 of a multi-layered cobalt iron structure is formed on the antiferromagnetic pinned layer 4, and a group is referred to as A multilayer structure of an electric substance tunneling barrier layer 6 is overlaid on the ferromagnetic pinned layer 5. The common material of this layer is alumina, and above the tunneling barrier layer 6, a ferromagnetic free layer 7 is covered. The composition of the layer is cobalt iron and nickel iron, or both of the above, and the upper surface layer structure of the magnetic tunneling junction element 1 is composed of one or more layers of the cover layer 8, such a stack The structure of the magnetic tunneling junction element 1 is also referred to as a bottom rotary valve structure. In addition to the above structure, a magnetic tunneling junction element may also be composed of a bottom-to-top seed layer, a free layer, a tunneling barrier layer, a fixed layer, an antiferromagnetic layer, and a cap layer. The structure of the stacked magnetic tunneling junction element 1 is referred to as a top rotary valve structure. 1275092

上述之鐵磁性固定層5與其鄰近的抗鐵磁性固定層4因爲交換耦合之作用下’均具有X 方向之磁矩,而鐵磁性自由層7亦具有磁矩’其磁矩之方向性爲平行或反平行(即是沿著X 座標軸方向)於上述之固定層之磁矩方向。穿隧阻障層6的厚度十分的薄’以致於流通過此 層之電流可利用量子機械穿隧的傳導電子來進行。鐵磁性自由層7之磁矩會隨外界磁場而 改變,且在鐵磁性自由層7與固定層(包含抗鐵磁性固定層4與鐵磁性固定層5)的兩種磁矩間 之相對方向性將會決定穿隧接面的穿隧電流與其阻抗。當一檢測電流經自上電極9以垂直 於磁性穿隧接面層方向向下傳遞至下電極3時,若鐵磁性自由層7與固定層(包含抗鐵磁性固 定層4與鐵磁性固定層5)之磁性方向平行(稱爲” Γ記憶狀態),此時所偵測到上述之穿隧 接面具有一較低的電阻値,反之,若鐵磁性自由層7與固定層(包含抗鐵磁性固定層4與鐵磁 性固定層5)之磁性方向反平行(稱爲” 0”記憶狀態),則此時所偵測到上述之穿隧接面具有 一較高的電阻値。 在進行讀取磁性隨機存取記憶體15內的資訊時,係利用一從磁性穿隧接面元件1之頂 部輸入之偵測電流,以電流傳送垂直於層平面的方向導至底部,藉以偵測此磁性穿隧接面 元件1的磁性狀態(阻抗程度)以達到讀取資訊的目的。而在進行寫入資訊至磁性隨機存取記 憶體時,則利用製造一外在磁場來改變鐵磁性自由層7之磁性狀態,使之得以轉變成一適 合的磁場狀態,以提供磁性穿隧接面元件1之上方或下方中的兩交叉導電線一位元線與一 字元線之電流。在某些特定的磁性隨機存取記憶體裡,其上電極與下電極在讀取與寫入的 過程中皆有參與。 一個具有良好性能的磁性隨機存取記憶體裝置應具備有高的磁阻比率,其中磁阻比率 的定義爲藉由改變鐵磁性自由層的磁性狀態後,以所觀察到的最大阻抗改變量(dR)爲分 子’且以所觀察到的整個磁性穿隧接面裝置1之最小阻抗(R)爲分母得到的比率。爲了獲得 令人滿意的特質,如高的磁阻比率値以及高的崩潰電壓(Vb),穿隧阻障層6需本身需具良好 的平滑度以及在結構上需要求緊密的堆積,例如具有<111:^造的抗鐵磁性固定層4與鐵磁 性固定層5。如前所述,抗鐵磁性固定層4與鐵磁性固定層5所欲求的構造通常是由以鉬、 鎳鉻 '鎳鐵鉻或其他相似的組成所構成之種晶層提供。然而,欲將鉬層長在鎳絡/鎳鐵鉻 層上時’其對於初始表面條件的要求相當敏感,例如,組可能爲会i卜相層或是脉i卜相層, 但若改U鎳鉻或鎳鐵鉻爲材料的情況下,兩者皆可於無定相的氧化銘層上長出一平滑 仓轨轨轨刚構造的緩衝層,不過,若欲在鉅層表面上長鎳鉻或是鎳鐵鉻之種晶層,則有時 會因鉬層本身的結構而可能出現所長之種晶層不一致的情形,進而導致每一裝置出現不一 1275092 致性能的問題。有關應用在磁性穿隧元件轨之堆疊結構,使用鉅層爲種晶層以促使 仓轨轨轨刚成長的相關技術,已在美國專利案第6,144,719纡11^&16泣6,144,719)中提及, 另外,有關應用在磁性隨機存取記憶體之結構,以一鉅質種晶層形成在鉅氮爲材料所構成 的橫向電極上,並與字元線相連接之相關技術,以揭露在美國專利案第6,518,588(U.S. Patent 6,518,588)裡。The above-mentioned ferromagnetic pinned layer 5 and its adjacent antiferromagnetic pinned layer 4 both have a magnetic moment in the X direction due to exchange coupling, and the ferromagnetic free layer 7 also has a magnetic moment 'the directivity of the magnetic moment is parallel Or anti-parallel (that is, along the direction of the X coordinate axis) in the direction of the magnetic moment of the above fixed layer. The thickness of the tunneling barrier layer 6 is so thin that the current flowing through the layer can be conducted using quantum mechanical tunneling conduction electrons. The magnetic moment of the ferromagnetic free layer 7 changes with the external magnetic field, and the relative directivity between the two magnetic moments of the ferromagnetic free layer 7 and the fixed layer (including the antiferromagnetic fixed layer 4 and the ferromagnetic fixed layer 5) The tunneling current through the tunnel junction and its impedance will be determined. When a detection current is transmitted downward from the upper electrode 9 in a direction perpendicular to the magnetic tunnel junction layer to the lower electrode 3, if the ferromagnetic free layer 7 and the fixed layer (including the antiferromagnetic fixed layer 4 and the ferromagnetic fixed layer) 5) The magnetic direction is parallel (referred to as "Γ memory state"), and the above-mentioned tunneling mask is detected to have a lower resistance 値, and vice versa, if the ferromagnetic free layer 7 and the fixed layer (including anti-iron) The magnetic pinned layer 4 and the ferromagnetic pinned layer 5) are anti-parallel to the magnetic direction (referred to as a "zero" memory state), and the above-mentioned tunneling mask is detected to have a higher resistance 値. When the information in the magnetic random access memory 15 is taken, the detection current is input from the top of the magnetic tunneling junction element 1, and the current is transmitted to the bottom in a direction perpendicular to the layer plane, thereby detecting the magnetic property. The magnetic state (impedance level) of the tunnel junction element 1 is used for the purpose of reading information. When writing information to the magnetic random access memory, the ferromagnetic free layer is changed by manufacturing an external magnetic field. Magnetic state, which enables it to be transformed into one a magnetic field state to provide a current between a one-dimensional line and a word line of two intersecting conductive lines above or below the magnetic tunneling junction element 1. In some specific magnetic random access memories, The upper and lower electrodes are involved in the process of reading and writing. A magnetic random access memory device with good performance should have a high magnetoresistance ratio, wherein the magnetoresistance ratio is defined by changing the iron. After the magnetic state of the magnetic free layer, the observed maximum impedance change amount (dR) is the ratio of the molecule 'and the observed minimum impedance (R) of the entire magnetic tunnel junction device 1 is the denominator. Obtaining satisfactory characteristics, such as a high magnetoresistance ratio 値 and a high breakdown voltage (Vb), the tunneling barrier layer 6 needs to have good smoothness itself and requires tight packing on the structure, for example, with < 111: The antiferromagnetic pinned layer 4 and the ferromagnetic pinned layer 5. As described above, the structure of the antiferromagnetic pinned layer 4 and the ferromagnetic pinned layer 5 is usually made of molybdenum, nickel chrome 'nickel Iron chrome or other similar composition The seed layer is provided. However, when the molybdenum layer is to be grown on the nickel/nickel-iron-chromium layer, it is quite sensitive to the initial surface conditions. For example, the group may be the phase layer or the pulse phase. Layer, but if U-nickel-chromium or nickel-iron-chromium is used as the material, both of them can grow a smooth buffer rail just constructed on the oxidized layer of the amorphous phase, but if you want to The thick nickel-chromium or nickel-iron-chromium seed layer on the surface of the giant layer may sometimes cause inconsistencies in the length of the seed layer due to the structure of the molybdenum layer itself, resulting in a performance of 1270092 for each device. The related technology applied in the stacking structure of the magnetic tunneling component rail, using the giant layer as the seed layer to promote the growth of the rail track, has been weep in the US Patent No. 6,144,719纡11^&16 6,144,719), in addition, related to the structure of the magnetic random access memory, a giant seed layer is formed on the lateral electrode formed by the giant nitrogen material, and is connected with the word line. Related Art, to disclose in U.S. Patent No. 6,518,588 (US Patent 6,51) 8,588).

第二圖所示係爲如前所述之位於磁性隨機存取記憶體記憶胞15內,一具有下電極2與 上電極9的磁性穿隧接面元件1,其中,此磁性穿隧接面元件1係形成於一第一絕緣層11並 且與之共平面,而上電極9則是形成於一第二絕緣層12並且與之共平面,而在上電極9與一 疊加第三導電層14之間,存在一第三絕緣層B,此層可爲字元線或位元線之構造。從一由 總體到細部的透視圖(未顯示此圖)來說明,多層性的磁性穿隧接面元件1係位在一複數排的 下電極2與一複數列上電極9所形成的陣列之中。 從鉅層本身所具有多樣性態相(脉或刍胝的角度來探討,當鉬層爲刍讣結構時,其在 無定相基底纡如:氧化鋁基底胝上將形成四方晶系的鉬種晶層且阻抗値約在轨们军至 闩军军微毆姆讣公分,而當鉅層爲脉讣結構時,在鉻、鎢或鈦鎢的體心立方晶系種晶層上 形成的鉅種晶層,具有較低的阻抗値,約在闩风至风军微毆姆讣公分,然,在一般以鎳鉻 /铑/鉬爲結構的下電極闩,其鉬層係爲具較低阻抗値之脉讣結構。而在製造磁性穿隧接 面元件轨時,會以一罩幕纡圖中未示胝在覆蓋層们以及不欲保留的區域加以飩刻後去除, 結果造成下電極闩上部分鉬覆蓋層沿著磁性穿隧接面元件轨之側壁la、lb再沉積,且此側 壁範圍係包含穿隧阻障層6之區域。而此再沉積於穿隧阻障層6側壁上的鉅材,因具有高度 的導電性’使得輸入之偵測電流在穿隧阻障層6之周圍發生分流現象,此係爲磁性穿隧接 面元件1的最主要問題。因此,在下電極2上覆有具有高阻抗之覆蓋層係爲最迫切之需求。 需再一考量的是一習知在下電極2上的鉅覆蓋層,由於鉅極易發生氧化,且生成在钽 覆蓋層上的氧化物必須在磁性穿隧接面元件1之堆疊結構進行沉積以前,先以原位的前清 洗製程去除附著之氧化物,如濺鍍蝕刻或離子束蝕刻之方式,以提供具有優良電性之接觸 面。然,加入此繁重的前清洗製程除了必須耗費大量的時間,在形成磁性穿隧接面元件1 上之種晶層時,如鎳鉻種晶層,其對於經前清洗處理後之鉅層表面條件要求仍是十分敏 感。因此,在下電極2的覆蓋層上,極需針對其是否可提供形成具一致性種晶層與去除繁 重的前清洗製程之條件以進行改善。 1275092The second figure shows a magnetic tunneling junction element 1 having a lower electrode 2 and an upper electrode 9 in the magnetic random access memory cell 15, as described above, wherein the magnetic tunneling junction The element 1 is formed on and coplanar with a first insulating layer 11, and the upper electrode 9 is formed on and coplanar with a second insulating layer 12, and the upper conductive layer 9 and a superposed third conductive layer 14 are stacked. There is a third insulating layer B, which may be a word line or a bit line. From a general-to-detail perspective view (not shown), the multilayer magnetic tunneling junction element 1 is positioned in an array formed by a plurality of lower electrodes 2 and a plurality of upper electrodes 9 in. From the perspective of the diversity phase of the giant layer itself (pulse or enthalpy), when the molybdenum layer is a bismuth structure, it will form a tetragonal molybdenum on a non-phased substrate such as an alumina substrate. The seed layer and the impedance are formed in the core of the body, and when the giant layer is a pulse structure, it is formed on the body-centered cubic crystal layer of chromium, tungsten or titanium tungsten. The giant crystal layer has a lower impedance 値, which is about the zigzag to the wind force. However, in the lower electrode latch, which is generally made of nickel chrome/铑/molybdenum, the molybdenum layer is Low-impedance 讣 pulse structure. When manufacturing the magnetic tunneling junction component rail, it will be removed by engraving in the cover layer and the area not to be preserved. The upper portion of the electrode latch is deposited over the sidewalls la, lb of the magnetic tunnel junction element rail, and the sidewall region includes a region that penetrates the barrier layer 6. This is redeposited on the tunnel barrier layer 6 The giant material on the sidewall has a high conductivity, so that the input detection current occurs around the tunneling barrier layer 6. The flow phenomenon, which is the main problem of the magnetic tunneling junction element 1. Therefore, it is the most urgent need to cover the lower electrode 2 with a high-impedance coating layer. What is further considered is a conventional lower electrode. The giant overburden layer on 2, because the giant electrode is susceptible to oxidation, and the oxide formed on the ruthenium cap layer must be removed in the in-situ pre-cleaning process before the deposition of the magnetic tunneling junction element 1 is deposited. The oxide, such as a sputtering etch or an ion beam etch, to provide a contact surface having excellent electrical properties. However, the addition of this cumbersome pre-cleaning process requires a significant amount of time to form the magnetic tunneling junction element 1 When the seed layer is formed, such as a nickel-chromium seed layer, it is still very sensitive to the requirements of the surface condition of the giant layer after the pre-cleaning treatment. Therefore, on the cover layer of the lower electrode 2, it is extremely necessary to provide for formation. Consistent seed layer and removal of heavy pre-cleaning conditions for improvement. 1275092

除了應用在磁性隨機存取記憶體上,具有較薄的穿隧阻障層6以及非常低的電阻與面 積的乘積値時之磁性穿隧接面元件1,亦可應用在穿隧磁阻讀取頭20中之磁性感應器上。 如第三圖所示,此爲在氣浮式平面上,一基底21上部份穿隧磁阻讀取頭之結構,有一5兹性 穿隧接面元件23係形成於下導弓丨22與下導弓丨30間,其中下導引22係爲一底部遮蔽(S1湎上 導引30則爲一頂部遮蔽(S2)。此磁性穿隧接面元件23之堆疊層狀結構由下導弓丨22向上堆疊 依序爲種晶層24、抗鐵磁性層25、固定層26、穿隧阻障層27、自由層28以及覆蓋層29,與 應用於磁性隨機存取記憶體上之磁性穿隧接面元件冲之堆疊層狀結構相似,且相對應之 層所具有的功能均亦相近。通常,習知之下導引22爲鎳鐵/鉅之構造,上導引30爲釕/鉅 /鎳鐵之構造(約2微米),而在下導弓丨22上之鉬覆蓋層則與在磁性隨機存取記憶體15中,覆 蓋於下電極2上的鉅覆蓋層具有相同的特性要求,例如,對於可否在磁性穿隧接面堆疊結 構內形成平滑、一致性高的疊加層,鉬氧化物的生成,以及於穿隧阻障層27側壁上之再沉 積鉬之問題,亦均存在於此穿隧磁阻讀取感應裝置中。在讀取的操作中,係沿著氣浮式表 面之z方向移動讀取頭以越過一記錄媒介,此記錄媒介可引起一外界的磁場以影響自由層 28上之磁性方向。 在美國專利案6,703,654(U.S. Patent 6,703,654)中揭明一具有以鎳鉻/釕/鎳鉻爲下電極 構造之磁電式隨機存取記憶體。利用高熔點金屬,例如,釕、铑或銥,以作爲下電極之中 間導電層,以縮小粒徑尺寸得以使電極表面平滑化。另外並提及磁性穿隧接面元件之疊加 層性能亦有提昇。 在美國專利案6,538,324 (U.S. Patent 6,538,324)中顯示鉅氮層爲結晶化或爲無定相結構 係決定於其電漿沈積之條件有關。一結晶化的鉬氮薄膜對於銅層具有較好的附著力,而無 定相的鉅氮結構則提供較佳的擴散阻隔層功效。此銅層係生成於此雙層結構中,其中,其 上方爲結晶化之鉬氮層,下方則爲無定相之鉬氮層。 於美國專利案6,473,336 (U.S. Patent 6,473,336)說明了一鉬氮阻隔層係爲在於單元平面 與穿隧磁性元件之間,以防止金屬之擴散。然而,在此專利案中並無揭露此鉬氮層之組成 是爲無定相者或是結晶化者,但指出其種晶層係利用銀、鈀、鉬、鈦或鉻所構成者,以控 制磁性穿隧接面堆疊結構中之結晶相位以及結晶度。 · 美國專利案6,704,220 (U.S. Patent 6,704,220),在一記憶單元中之第一磁性層係 包含一由鉅氮所組成之種晶層,以預防其下方之第一導電線發生鏽蝕。然而,在此 專利案中並無聲明鉬氮層應爲無定相者,亦無提供生成此銦氮層之方法。 1275092 【發明内容】 本發明之主要目的係在提供一種覆蓋層,其係應用在磁性隨機存取記憶體之下 電極,或是應用在穿隧磁阻讀取頭之下導引,係提供隨後之磁性穿隧接面元件可具 有一致性的成長條件。此一覆蓋層係具有高阻抗,且在磁性穿隧接面元件進行沉積 前,無須在加以實施繁重的前清洗製程。 本發明係之另一目的係在提供一種無定相種晶層,係可使得隨後形成之層狀結 構具有良好平滑度並使堆疊結構緊密成長,而在磁性穿隧接面元件內,隨後形成之 層狀結構包括有抗鐵磁性層、固定層以及穿隧阻障層。 本發明係再一目的係在利用上述之覆蓋層與無定相種晶層爲基礎之製造磁性 隨機存取記憶體結構之方法。 根據本發明所揭示之技術,係可達成一依附於基底而形成之磁性隨機存取記憶 體,其一重要的特徵係在基座上先生成一以種晶層/導電層/覆蓋層爲結構之下電 極,接著覆以無定相钽氮所組成之覆蓋層,促使隨後形成之磁性穿隧接面元件內層 狀結構之生長得以平滑且堆疊緊密,而上述之無定相鉬氮層最好爲利用氬/氮電漿 以反應性濺鍍法得到一α-鉬氮之沉積層,其中,較常見的的濺鍍法爲直流磁控濺 鍍法或是射頻磁控濺鍍法。在α-钽氮層中之氮含量通常介於25至35原子百分比之 間,而較佳的氮含量則在30原子百分比。在一個較爲建議的實施例中,下電極之結 構係爲鎳鉻/釕/α-鉅氮或爲鎳鉻/銅/α-鉬氮。 磁性穿隧接面元件係爲在下電極上堆疊複數層狀結構所組成。以本發明之一具 體的實施態樣來說明,具有依序以種晶層、抗鐵磁性層、合成反平行固定層、穿隧 阻障層、自由層以及覆蓋層所組成之磁性穿隧接面元件之結構S卩稱爲底部旋轉閥門 結構,其中,種晶層之材料以鎳鉻爲佳,抗鐵磁性層之材料則是以錳釩或銥錳中之 一者,合成反平行固定層是爲兩鈷鐵層中夾一釕層之三明治結構,而穿隧阻障層是 以氧化的鋁層所構成,在穿隧阻障層上係形成有一由鎳鐵層或附於鈷鐵層上之鎳鐵 層所構成之自由層,至於磁性穿隧接面元件之頂端層,則以釕層或鉅層爲佳。上述 所有於磁性穿隧接面元件中之層狀結構均係由濺鍍或離子束沉積所形成,而鋁層之 氧化係由自然氧化或自由基氧化所達成。依上述之磁性穿隧接面元件形狀所定義之 習知順序,最終在鄰近此磁性穿隧接面元件上先形成第一絕緣層後再形成一上電 極0 1275092 本發明之另一實施態樣係闡明有關下電極之材質以鉅/銅、鎳鉻/銅或鎳鉻/ 釕爲組成,且無需使用覆蓋層之結構。在磁性穿隧接面元件中,上電極上之種晶層 除了前項實施態樣所述之α-鉅氮層是爲較佳的選擇外,亦可使用以α-鉬氮/鎳 鉻、α-鉅氮/鎳鐵或是鉅氮/鎳鐵鉻爲組成之種晶層。而在此磁性穿隧接面元 件中其餘的層狀結構則與前述第一項實施態樣無異。 本發明之又一實施態樣係揭露在一穿隧磁阻讀取頭內之底部遮蔽可以鎳鐵所 構成,而爲無覆蓋層之結構。在此磁性穿隧接面元件之底部遮蔽上,係有一以α-鉅氮、cx-鉅氮/鎳鉻或是α-鉅氮/鎳鐵鉻爲種晶層之底層’而其餘之層狀結構則 亦與上述第一項實施態樣無異。 【實施方式】 Β 本發明係將α-鉅氮層結合於磁性穿隧接面設計中,此α-鉅氮層係配合應用於 磁性隨機存取記憶體與穿隧磁阻讀取頭內,以使得磁性穿隧接面中之疊加層結構可 平滑且堆疊緊密地生長。圖示中所提供的係爲部分施行方式之應用,並非限定本發 明之專利範圍,雖然圖示中僅提及於磁性穿隧接面元件中所具有之底部旋轉閥門結 構,然,實際上本發明亦適用於具有頂部旋轉閥門結構或雙重旋轉閥門結構之現行 技術上的磁性穿隧接面元件。 依據第一實施例中所構成之磁性隨機存取記憶體之結構將不在此贅述。現以第四圖中所示 之磁性隨機存取記憶、體的部分截面包含一基底41,其可爲矽材質或是其他現行技術上含有電晶 I體或二極體的半導體材料基材,位於此基底41上,係有一具種晶層42/導電層43/覆蓋層44 結構之下電極45,並與一絕緣層(未顯示於圖中)共平面。 眾所熟知的磁性隨機存取記憶體結構可分爲多個形成在第一導電層中之下電極45,與多個 形成在第二導電層上以平行之位元線或字元線所構成之上電極54,且此上電極54係位在此下電 極45之上方,而磁性穿隧接面元件係形成在第一與第二導電層間所有上電極54與下電極45之 交點處。下電極45可爲一特定外型,例如其可爲一以x-y爲平面、延ζ座標延伸厚度的矩形。或 者,下電極45可爲一與上電極54之字元線(或位元線)呈直角對準之位元線(或字元線)。在下電 極45與上電極54之間,係存在有一絕緣層53將兩者隔開。 1275092 在第一個實施例中,下電極45係具有鎳鉻/釕/α-鉅氮或是鎳鉻/銅/α-鉅氮之結構,且以種晶層42/導電層43/覆蓋層44爲結構,其中厚度在40至 100埃之鎳鉻所構成的種晶層42與基底41接觸。在種晶層42之上之導電層43 爲厚度50至1000埃的釕或銅層。以歸屬於Headway Technologies公司的美國 專利第6,703,654號作爲參考,其提及具有高熔點之金屬,如釕以及铑,均具有小 的粒子尺寸和平滑的表面,可用以當作導電層43。上述之種晶層42與導電層43 一般而言是利用現行科技中熟知之濺鍍法或離子束沉積法以形成。在下電極45中 之一關鍵組成係爲以oc-鉅氮組成之覆蓋層44,其生成之方法係利用反應性濺鍍製 程使α-鉬氮層沉積於導電層43上,而所使用之反應性濺鍍製程係以高能量之含氮 組成電漿,如氬/氮混合物,以衝擊鉬標的,並使用直流磁控濺鍍機或射頻磁控濺 鍍機配合此製程進行。而此覆蓋層44之理想厚度係介於50至400埃,而其鉅氮 層中之氮含量則應控制在25至35原子百分比間,其中以30原子百分比之氮含量 爲最佳建議値。 下電極45除上述之組成外,亦可由鉬種晶層42/銅導電層43/α-鉬氮覆蓋 層所組成,而其中之種晶層42、導電層43仍是以濺鍍法或離子束沉積法依序生成 於基底41上,在此組成中,α-鉬氮覆蓋層之理想厚度亦介在50至400埃,且其 製造之方法亦與上述之組成之覆蓋層44相同。 本發明中以〇t-鉬氮覆蓋層取代習知技術中的鉬覆蓋層,其具有許多的優點。 第一,α-鉬氮層之氧化反應不如純鉅層嚴重,因此在磁性穿隧接面之層狀堆疊結 構進行沉積前,無須在施以繁重的前清洗步驟。第二,α—鉅氮層可穩定地提供磁 性穿隧接面層狀構造依序生長時所需的平滑度,並且使其堆疊結構得以緊密排列。 其他的優點將在以下介紹本發明時,--明顯地揭示出來。 磁性穿隧接面之層狀堆疊結構係可利用與形成下電極45時所使用的方法以形 成於下電極45上’例如’下電極45與磁性穿隧接面層狀堆叠結構均可利用一 Anelva 7100系統,或其他包含有超高真空直流磁控彳賤鍍腔及氧化腔之相似的$ 統。一般而言,濺鍍沉積製程需要涉及到氬濺鍍氣體以及具有多種低壓放電陰極之 標的’且先將濺鍍沉積系統進行一次單一抽真空之過程後,在用以進行下電極45 與磁性穿隧接面層裝堆疊結構之沉積,可使得製程之產率提昇。 在一實施例中’此磁性穿隧接面層狀堆疊結構係依種晶層46、抗鐵磁性層、In addition to being applied to magnetic random access memory, the magnetic tunneling junction element 1 having a thin tunneling barrier layer 6 and a very low product of resistance and area can also be applied to tunneling magnetoresistive reading. The magnetic sensor in the head 20 is taken. As shown in the third figure, this is a structure in which a portion of the substrate 21 is tunneled through the magnetoresistive read head on the air floating plane, and a 5-way tunneling junction member 23 is formed on the lower guide bow 22 And the lower guide bow 30, wherein the lower guide 22 is a bottom shield (S1湎 upper guide 30 is a top shield (S2). The stacked layered structure of the magnetic tunneling interface element 23 is guided by The cymbal 22 is stacked upward in order to form the seed layer 24, the antiferromagnetic layer 25, the fixed layer 26, the tunneling barrier layer 27, the free layer 28, and the cap layer 29, and the magnetic properties applied to the magnetic random access memory. The layered structure of the tunneling junction elements is similar, and the corresponding layers have similar functions. Generally, the guide 22 is a nickel-iron/giant structure, and the upper guide 30 is a 钌/巨/ nickel-iron structure (about 2 microns), and the molybdenum coating on the lower guide 22 has the same characteristic requirements as the giant cover layer covering the lower electrode 2 in the magnetic random access memory 15 For example, for the formation of a smooth, highly uniform superposition layer in the magnetic tunnel junction stack structure, the formation of molybdenum oxide And the problem of redepositing molybdenum on the sidewall of the tunneling barrier layer 27 is also present in the tunneling magnetoresistive sensing device. In the reading operation, the z-direction is moved along the air-floating surface. The read head is passed over a recording medium which causes an external magnetic field to affect the magnetic direction on the free layer 28. A nickel-chromium/niobium/nickel is disclosed in U.S. Patent No. 6,703,654 (U.S. Patent No. 6,703,654). Chromium is a magnetoelectric random access memory having a lower electrode structure, and a high melting point metal such as ruthenium, osmium or iridium is used as an intermediate conductive layer of the lower electrode to reduce the particle size to smooth the surface of the electrode. There is also an increase in the performance of the superimposed layer of the magnetic tunneling junction element. It is shown in U.S. Patent No. 6,538,324 (U.S. Patent No. 6,538,324) that the formation of a large nitrogen layer is a crystallization or an amorphous phase is determined by the conditions of its plasma deposition. A crystallized molybdenum nitride film has good adhesion to the copper layer, and a non-phased giant nitrogen structure provides a better diffusion barrier layer. The copper layer is formed in the double layer structure, wherein its The upper part is a crystallized molybdenum-nitrogen layer, and the lower part is a non-phased molybdenum-nitrogen layer. The U.S. Patent No. 6,473,336 (U.S. Patent No. 6,473,336) discloses a molybdenum nitride barrier layer between a cell plane and a tunneling magnetic element. In order to prevent the diffusion of metal. However, it is not disclosed in this patent that the composition of the molybdenum nitride layer is either amorphous or crystallized, but it is indicated that the seed layer is made of silver, palladium, molybdenum, titanium or The chrome is used to control the crystal phase and crystallinity in the magnetic tunnel junction stack structure. · US Patent No. 6,704,220 (U.S. Patent 6,704,220), the first magnetic layer in a memory cell contains a large nitrogen A seed layer is formed to prevent rusting of the first conductive line below it. However, it is not stated in this patent that the molybdenum-nitrogen layer should be unphased, nor does it provide a means of forming this indium nitride layer. 1275092 SUMMARY OF THE INVENTION The primary object of the present invention is to provide a cover layer for use in an electrode under a magnetic random access memory or for use under a tunneling magnetoresistive read head for providing The magnetic tunneling junction elements can have consistent growth conditions. This overcoat layer has a high impedance and does not require a heavy pre-cleaning process before the magnetic tunneling junction elements are deposited. Another object of the present invention is to provide a phaseless seed layer which allows the subsequently formed layered structure to have good smoothness and to make the stacked structure grow tightly, and subsequently formed in the magnetic tunneling junction element. The layered structure includes an antiferromagnetic layer, a fixed layer, and a tunneling barrier layer. Still another object of the present invention is a method of fabricating a magnetic random access memory structure based on the above-described cladding layer and amorphous phase seed layer. According to the technology disclosed in the present invention, a magnetic random access memory formed by attaching to a substrate can be realized, and an important feature is formed on the pedestal by a seed layer/conductive layer/cover layer. The lower electrode is then covered with a coating layer of amorphous nitrogen, which promotes the smooth growth and close stacking of the layered structure in the subsequently formed magnetic tunneling junction element, and the above-mentioned amorphous phase molybdenum nitride layer is preferably In order to obtain a layer of α-molybdenum nitrogen by reactive sputtering using argon/nitrogen plasma, the more common sputtering method is DC magnetron sputtering or RF magnetron sputtering. The nitrogen content in the α-钽 nitrogen layer is usually between 25 and 35 atomic percent, and the preferred nitrogen content is 30 atomic percent. In a more preferred embodiment, the structure of the lower electrode is nickel chromium/ruthenium/α-macro nitrogen or nickel chromium/copper/α-molybdenum nitrogen. The magnetic tunneling junction component is composed of a plurality of layered structures stacked on the lower electrode. According to a specific embodiment of the present invention, the magnetic tunneling layer consisting of a seed layer, an antiferromagnetic layer, a synthetic antiparallel fixed layer, a tunneling barrier layer, a free layer and a cover layer is sequentially provided. The structure of the surface element S is called the bottom rotary valve structure, wherein the material of the seed layer is nickel chrome, and the material of the antiferromagnetic layer is one of manganese vanadium or lanthanum manganese, and the antiparallel fixed layer is synthesized. It is a sandwich structure sandwiched between two cobalt-iron layers, and the tunnel barrier layer is composed of an oxidized aluminum layer, and a nickel-iron layer or a cobalt-iron layer is formed on the tunnel barrier layer. The free layer formed by the upper nickel-iron layer, as for the top layer of the magnetic tunneling junction element, is preferably a tantalum layer or a giant layer. All of the above-mentioned layered structures in the magnetic tunneling junction elements are formed by sputtering or ion beam deposition, and the oxidation of the aluminum layer is achieved by natural oxidation or radical oxidation. According to the conventional order defined by the shape of the magnetic tunneling junction element, a first insulating layer is formed adjacent to the magnetic tunneling junction element, and then an upper electrode is formed. 12 1275092 Another embodiment of the present invention It is stated that the material of the lower electrode is composed of giant/copper, nickel-chromium/copper or nickel-chromium/iridium, and the structure of the cover layer is not required. In the magnetic tunneling junction element, the seed layer on the upper electrode is a preferred choice in addition to the α-macrozide layer described in the previous embodiment, and α-molybdenum nitrogen/nickel chromium, α may also be used. - Giant nitrogen/nickel iron or giant nitrogen/nickel iron chromium is the seed layer of the composition. The remaining layered structure in the magnetic tunneling junction element is no different from the first embodiment described above. Another embodiment of the present invention discloses a structure in which a bottom portion of a tunneling magnetoresistive reading head is shielded by ferronickel and has no cover layer. At the bottom of the magnetic tunneling junction element, there is a bottom layer of the seed layer with α-diazo, cx-diazo/nickel-chromium or α-diazo/nickel-iron chromium and the remaining layered layer The structure is also the same as the first implementation described above. [Embodiment] Β The invention combines an α-major nitrogen layer into a magnetic tunneling junction design, and the α-macro nitrogen layer is used in a magnetic random access memory and a tunneling magnetoresistive read head. So that the superposed layer structure in the magnetic tunnel junction can be smoothly and stacked closely. The application provided in the drawings is a partial application mode, and does not limit the scope of the patent of the present invention. Although the figure only mentions the bottom rotary valve structure in the magnetic tunneling interface element, actually, The invention is also applicable to prior art magnetic tunneling junction elements having a top rotary valve configuration or a dual rotary valve configuration. The structure of the magnetic random access memory constructed in accordance with the first embodiment will not be described herein. The magnetic random access memory shown in the fourth figure, the partial cross section of the body comprises a substrate 41, which may be a tantalum material or other semiconductor material substrate containing an electromorphic body or a diode in the prior art. Located on the substrate 41, there is a seed layer 42 / conductive layer 43 / cover layer 44 under the electrode 45, and is coplanar with an insulating layer (not shown). The well-known magnetic random access memory structure can be divided into a plurality of lower electrodes 45 formed in the first conductive layer, and a plurality of bit lines or word lines formed on the second conductive layer in parallel. The upper electrode 54 is located above the lower electrode 45, and the magnetic tunneling interface element is formed at the intersection of all the upper electrode 54 and the lower electrode 45 between the first and second conductive layers. The lower electrode 45 can be of a particular shape, for example, it can be a rectangle with a x-y plane extending the thickness of the extension. Alternatively, the lower electrode 45 may be a bit line (or word line) aligned at right angles to the word line (or bit line) of the upper electrode 54. Between the lower electrode 45 and the upper electrode 54, there is an insulating layer 53 separating the two. 1275092 In the first embodiment, the lower electrode 45 has a structure of nickel chromium/germanium/α-diazo or nickel-chromium/copper/α-diazo, and is seeded with a seed layer 42/conductive layer 43/cover layer. 44 is a structure in which a seed layer 42 composed of nickel-chromium having a thickness of 40 to 100 angstroms is in contact with the substrate 41. The conductive layer 43 over the seed layer 42 is a tantalum or copper layer having a thickness of 50 to 1000 angstroms. Reference is made to US Pat. The seed layer 42 and the conductive layer 43 described above are generally formed by sputtering or ion beam deposition methods well known in the art. One of the key components in the lower electrode 45 is a cap layer 44 composed of oc-macro nitrogen, which is formed by depositing an α-molybdenum nitride layer on the conductive layer 43 by a reactive sputtering process, and the reaction used. The sputtering process consists of a high-energy nitrogen-containing plasma, such as an argon/nitrogen mixture, impacting the molybdenum standard, and using a DC magnetron sputtering machine or an RF magnetron sputtering machine in conjunction with the process. The ideal thickness of the cover layer 44 is between 50 and 400 angstroms, and the nitrogen content of the bulk nitrogen layer should be controlled between 25 and 35 atomic percent, with a nitrogen content of 30 atomic percent being the best recommendation. The lower electrode 45 may be composed of a molybdenum seed layer 42/copper conductive layer 43/α-molybdenum nitride coating layer in addition to the above composition, and the seed layer 42 and the conductive layer 43 are still sputtered or ionized. The beam deposition method is sequentially formed on the substrate 41. In this composition, the ideal thickness of the α-molybdenum nitride coating layer is also in the range of 50 to 400 angstroms, and the method of manufacturing the same is the same as the coating layer 44 of the above composition. In the present invention, the 〇t-molybdenum nitride coating layer is substituted for the molybdenum coating layer of the prior art, which has many advantages. First, the oxidation reaction of the α-molybdenum nitride layer is not as severe as that of the pure macrolayer, so that it is not necessary to apply a cumbersome pre-cleaning step before the layered stacked structure of the magnetic tunneling junction is deposited. Second, the α-macro-nitride layer can stably provide the smoothness required for the sequential growth of the magnetic tunneling junction layer structure, and the stack structure can be closely arranged. Other advantages will be apparent when the invention is described below. The layered stacked structure of the magnetic tunneling junction can be formed on the lower electrode 45 by using a method used when forming the lower electrode 45. For example, both the lower electrode 45 and the magnetic tunneling junction layer stack structure can be utilized. The Anelva 7100 system, or other similar systems that contain ultra-high vacuum DC magnetron plating chambers and oxidation chambers. In general, the sputter deposition process requires a argon-sputtering gas and a plurality of low-voltage discharge cathodes, and a single vacuum process is first performed on the sputter deposition system to perform the lower electrode 45 and magnetic wear. The deposition of the stacking structure of the tunnel face layer can increase the yield of the process. In an embodiment, the magnetic tunnel junction layer stack structure is based on the seed layer 46, the antiferromagnetic layer,

11 1275092 合成反平行固定層、穿隧阻障層、自由層以及覆蓋層之順序形成在下電極45上, 其中種晶層46之厚度係介於40至100埃且以含鉻量在35至45原子百分比之鎳 鉻組成爲最建議者,雖然鎳鐵或鎳鐵鉻亦爲有效的種晶層組成。而由於種晶層46 係生成在α-鉅氮覆蓋層44上,因此其係具有平且緊密的<111>種晶層結構。本發 明之發明人曾參考專利HT03-025/031,嘗試以不定相鉬層上沉積一鎳鉻種晶層發 現,一平滑且堆疊緊密的種晶層46係爲隨後磁性穿隧接面層狀堆疊結構是否可具 有平滑且堆疊緊密之關鍵性因素。而上述之抗鐵磁性層係建議與猛釩爲族成且厚度 宜介於80至200埃之間,但厚度介於50至100埃之銥錳組成的抗鐵磁性層亦爲 可接受的構造。 合成反平行固定層48宜以ΑΡ2/釕/ΑΡ1組成之結構,而其中之ΑΡ2層是 形成在抗鐵磁性層47上且爲厚度介於15至30埃之鈷鐵組成層,在ΑΡ2層中之 磁矩係固定爲與ΑΡ1層成反平行之方向。由於ΑΡ2層與ΑΡ1層均屬於具有磁矩 之結構,而兩者間因存在著些微厚度差異而造成合成反平行固定層48內之磁矩方 向。在ΑΡ2層與ΑΡ1層間置入一耦合層可使得此兩層之交換耦合更爲容易,而此 耦合層之厚度宜爲7.5埃,且所建議之原材料爲釕。上述之ΑΡ1層在一實施例中 係使用含鐵量介於25至50原子百分比之鈷鐵組成層,且厚度在1〇至25埃,除 此之外,ΑΡ1層亦可採用在兩鈷鐵層間夾有一奈米氧化物薄層之鐵鉅氧化物或鈷 鐵氧化物之三明治結構層,而此奈米氧化層係用以提昇六⑺層之平滑度。 在合成反平行固定層48上,係爲一氧化的鋁薄層之穿隧阻障層49 ’其中,氧 化的鋁層內之氧含量係接近於三氧化二鋁之化學劑量比例’而在此以Α|0χ層稱 之。最初先於合成反平行固定層48上沉積一 7至10埃的厚銘層’後以原位自由 基氧化反應對此一厚鋁層進行氧化。而此自由基氧化反應流程可爲應用電漿氧化製 程,如Headway Technologies公司之相關專利應用ΗΤ03-022中’所提及之施行 方法是爲在一進行氧化反應之腔體中,將一格子柵網狀之蓋罩置於上離子化電極與 鋁基材表面之間,以進行鋁層之氧化反應。最終,在鋁層進行完自由基氧化反應後 形成一氧化的鋁層,其理想厚度介於10至15埃,且由於先前已形成一平滑且端 疊緊密之種晶層46於α_鉅氮覆蓋層44上,得以使此時所生成之氧化的鋁層亦具 有相當優良的平滑度與平整度。 在上述之穿隧阻障層49上係生成一厚度在25至60埃之鎳鐵自由層50,而 12 1275092 在自由層50之上覆有一以釕或鉅爲組成之覆蓋層51,覆蓋層51厚度一般介於60 至250埃。也由於先前已形成一α-鉬氮覆蓋層44於下電極45上,因此隨後之所 有磁性穿隧接面的層狀堆疊均得以具有良好的平滑度與堆疊緊密的結構。11 1275092 A synthetic anti-parallel fixed layer, a tunneling barrier layer, a free layer, and a capping layer are sequentially formed on the lower electrode 45, wherein the seed layer 46 has a thickness of 40 to 100 angstroms and a chromium content of 35 to 45 The atomic percentage of nickel-chromium composition is the most recommended, although nickel-iron or nickel-iron-chromium is also an effective seed layer composition. Since the seed layer 46 is formed on the α-macro-nitride layer 44, it has a flat and compact <111> seed layer structure. The inventors of the present invention have attempted to deposit a nickel-chromium seed layer on the amorphous phase molybdenum layer with reference to the patent HT03-025/031. It is found that a smooth and closely packed seed layer 46 is followed by a magnetic tunneling junction layer. Whether the stacked structure can have a critical factor of smoothness and tight stacking. The above-mentioned antiferromagnetic layer is suggested to be a mixture with the vanadium and the thickness is preferably between 80 and 200 angstroms, but the antiferromagnetic layer composed of lanthanum having a thickness of 50 to 100 angstroms is also an acceptable structure. . The synthetic anti-parallel fixed layer 48 is preferably composed of ΑΡ2/钌/ΑΡ1, and the ΑΡ2 layer is formed of the cobalt-iron layer formed on the antiferromagnetic layer 47 and having a thickness of 15 to 30 angstroms. The magnetic moment is fixed in a direction parallel to the ΑΡ1 layer. Since both the ΑΡ2 layer and the ΑΡ1 layer belong to the structure having the magnetic moment, the magnetic moment direction in the synthetic anti-parallel fixed layer 48 is caused by the slight difference in thickness between the two layers. The insertion of a coupling layer between the ΑΡ2 layer and the ΑΡ1 layer makes the exchange coupling of the two layers easier, and the thickness of the coupling layer is preferably 7.5 angstroms, and the recommended raw material is 钌. The above-mentioned layer 1 is in the embodiment using a cobalt iron composition layer having an iron content of 25 to 50 atomic percent and a thickness of 1 to 25 angstroms. In addition, the ruthenium 1 layer may also be used in the two cobalt iron. The sandwich layer of iron oxide or cobalt iron oxide of a thin layer of nano oxide is sandwiched between the layers, and the nano oxide layer is used to improve the smoothness of the six (7) layer. On the synthetic anti-parallel fixed layer 48, it is a tunneling barrier layer 49 of a thin layer of oxidized aluminum, wherein the oxygen content in the oxidized aluminum layer is close to the stoichiometric ratio of aluminum oxide. It is called Α|0χ. Initially, a thick layer of 7 to 10 angstroms was deposited on the synthetic antiparallel fixed layer 48, and this thick aluminum layer was oxidized by an in situ free radical oxidation reaction. The radical oxidation reaction process can be applied to a plasma oxidation process, as described in the related patent application of the Headway Technologies, ΗΤ03-022, for the purpose of performing a grid process in a chamber in which an oxidation reaction is carried out. A mesh cover is placed between the upper ionizing electrode and the surface of the aluminum substrate to perform an oxidation reaction of the aluminum layer. Finally, after the radical oxidation reaction of the aluminum layer is completed, an oxidized aluminum layer is formed, which has a desired thickness of 10 to 15 angstroms, and since a smooth and end-stacked seed layer 46 has been previously formed on the α-diazo On the cover layer 44, the oxidized aluminum layer formed at this time also has a relatively good smoothness and flatness. A nickel-iron free layer 50 having a thickness of 25 to 60 angstroms is formed on the tunneling barrier layer 49, and 12 1275092 is overlaid on the free layer 50 with a covering layer 51 composed of tantalum or giant. The thickness of 51 is generally between 60 and 250 angstroms. Also, since an α-molybdenum nitride coating layer 44 has been previously formed on the lower electrode 45, the subsequent layered stack of all magnetic tunneling junctions has a good smoothness and a compact structure.

一磁性穿隧接面元件經由在覆蓋層51上,以第一次塗佈與寬度爲w光阻層 52加以圖樣化後,係形成一具有側壁與上表面之型態,接著利用光阻層52進行罩 幕蝕刻,使得磁性穿隧接面元件內未被罩幕保護之部分自種晶層46至覆蓋層51 皆以蝕刻方式去除,因而形成一具有斜側壁、寬幅爲w之覆蓋層51且底部寬幅大 於w之種晶層46結構的磁性穿隧接面元件。値得注意的是,由於傳統的下電極係 使用鉬作爲覆蓋層之材料,在進行罩幕蝕刻時鉬覆蓋層並未受到光阻層的保護,而 在整個罩幕蝕刻過程中爲直接暴露於蝕刻液,因此鉬覆蓋層在被蝕刻後,又再度沉 積於磁性穿隧接面元件之側壁上,尤以穿隧阻障層側壁上之鉅沉積,因會造成偵測 電流在此發生分流,而導致整個裝置發生嚴重的問題,不過,在本發明中係採用α-钽氮覆蓋層44,雖在進行罩幕蝕刻時亦未受到光阻層的保護,相同地在整個罩幕 蝕刻過程中也爲直接暴露於蝕刻液的情形,然而僅在某些情形下^鉅氮層會發生 在部分蝕刻,雖會再度沉積於磁性穿隧接面元件之側壁上’然鉅氮層因其本身 具有高電阻特質,因此再沉積的0^-鉬氮層並不會對輸入之偵測電流(ls ’第五圖)造 成分流的影響,故以α-鉅氮層作爲覆蓋層44之磁性穿隧接面元件,可有效避免在 製程過程中的蝕刻步驟所生成之再沉積物質而引發的分流問題。 在α-鉅氮覆蓋層44上,一絕緣層53環包於磁性穿隧接面元件之側壁四周’ 如第五圖所示,此一絕緣層53之形成係是將絕緣物質先以習知的沉積方法進行沉 積,再以共平面化步驟使之與磁性穿隧接面元件之上表面51a共平面。 爲組成一磁性隨機存取記憶體,在完成絕緣層53的沉積後,接以於其上覆蓋 一與磁性穿隧接面上表面51a接觸之上電極54 ’此上電極54係置於對準下電極 45之垂直的方向,舉例來說,若下電極45爲一朝向x座標軸之位元線(或字元線) 時,此時之上電極54則應爲置於朝向y座標軸之字元線(或位元線)。選擇性地來 說,在此之下電極係爲一具直角形狀的特定線段。此外,以現行技術可及之生產方 式,上電極54之組成可爲多層之結構,如一包含有擴散阻隔層與其上之導電層之 結構。 如第六圖所示之磁性隨機存取記憶體陣列係由四個磁性隨機存取記憶體、四個 13 1275092 磁性穿隧接面元件、兩個下電極與兩個上電極所組成。在此示範性的實施例中,當 下電極45係爲y方向且具一定長度,而在χ方向具有b寬度的字元線,則上電極 54則爲X方向且具一定長度,而在y方向具有v寬度的位元線,眾所皆知的’此 四個上電極54係以第二絕緣層58各自區分開來但兩者間係呈現共平面’且可能 具有與磁性穿隧接面元件共平面之絕緣層(未顯示於圖中)具有相同的介電物質。而 每一磁性穿隧接面元件的上表面51 a與其下方之磁性穿隧接面元件層狀堆疊之各 層均爲具有以長軸軸長w、短軸軸長a的橢圓形狀,其中長軸通常爲易磁化軸,至 於磁性穿隧接面元件中的上電極54之寬度v係較長軸軸長w爲長,而下電極45 之寬度b係較短軸軸長a爲長。 有一實驗已被用以測定一在下電極上形成一鉬氮覆蓋層之磁性穿隧接面元 件的性能,此實驗的對照組之目標物僅改以鉬層作爲下電極上之覆蓋層,其餘部分 皆與上述實驗中所使用之磁性隨機存取記憶體結構相似,且在此對照組經過特殊前 清洗處理以避免層狀結構成長一致性不佳的問題,並同時達到去除再沉積於側壁上 之氧化鉬的目的。而實驗的結果列於表一,其中顯示出縱然本發明所採用的鎳鉻/ 釕/α-鉬氮結構下電極尙未經過最佳化,所得到的磁阻比率、阻抗面積(RA)、阻 抗面積標準差(RA sigma)以及崩潰電壓之値,與已最佳化之鎳鉻/釕/钽結構下電 極所得到的數値相比十分相近。由表一中之數値可確定本發明中所提出的α-鉅氮覆 蓋層確實可讓磁性穿隧接面元件中疊加的層狀堆疊結構得以良好地成長。因此,此 發明中之α-鉬氮覆蓋層係提供先前技術的下電極覆蓋層所不能及的許多優點,包 含具有高電阻、高抗氧化能力以及可促進磁性穿隧接面元件堆疊結構生成良好的特 質。 表一下電極/磁性穿隧接面元件堆疊結構之磁性特徵 樣 品 下電極//5兹性穿隧接面元件堆疊 dR/R (%) RA (ohm-um2) RA sigma Vb (Volts) V50 (mV) 1 鎳鉻/釕鹿//鎳鉻纖/銘鐵/釕/ 鈷鐵/銘氧化物纖顧鐵/釕 48 3568 10% 1.63 703 2 鎳鉻/釕/α-鉬氮//鎳鉻/讎八/銘 鐵/釘/銘鐵/銘氧化物/銘鐵/鎳鐵/ 釕 45 3628 11% 1.61 639 鋁氧化物係爲原子計量接近於Αΐ2〇3的化合物,以ΑΙΟχ表示之 1275092 在第七圖中說明本發明之第二個實施例,其中所顯示之磁性隨機存取記憶體結 構40,係爲以一下電極55與一上電極54間夾設一磁性穿隧接面元件之三明治結 構。此fe性隨機存取gH憶體結構40之組成方式與第一^個實施例中所述之流程相 似,不過,在此磁性隨機存取記憶結構中無覆蓋層之結構,且其中之磁性穿隧接面 元件中的種晶層係由α -鉬氮所構成。 參考第七圖,下電極55係由一種晶層42與疊加於其上的導電層43所構成, 而此種晶層42與導電層43之厚度與組成均與上述無異,例如此下電極55係爲具 有鎳鉻/釕、鎳鉻/銅或是鉬/銅組成之結構,之中値得留意的是,在下電極上以 釕或銅組成的覆蓋層較習知的鉅覆蓋層更容易清洗。然而,其他具有覆蓋層結構的 下電極亦是可被接受的,雖然在此一實施例中之下電極並不需要設有覆蓋層結構。 在第二個實施例中提供一更具彈性的下電極選擇,因爲α-鉬氮種晶層已隔離下電 極對磁性穿隧接面元件層狀堆疊結構的影響。 一磁性穿隧接面元件層狀結構係依種晶層56、抗鐵磁性層47、合成反平面固 定層48、穿隧阻障層49、自由層50以及覆蓋層51的順序形成在下電極55上。 一關鍵的型態係爲以α-鉅氮組成的種晶層56結構,其形成的方法與前段所述相 同,而其理想厚度介於50至400埃,功能爲使得隨後疊加之磁性穿隧接面元件層 狀堆疊結構可具有良好平滑度且堆疊緊密之結構。α-鉅氮種晶層較習知的鉬種晶 層更可使得隨後疊加的磁性穿隧接面元件層狀堆疊結構生長得滑且堆疊緊密,因爲 習知的鉬種晶層會形成不同相之鉬並導致層狀結構的不一致性。或者,種晶層56 亦可以爲厚度介於50至400埃爲-鉬氮層爲最底部結構,其上覆有厚度介在40 至1〇〇埃的鎳鉻、鎳鐵或是鎳鐵鉻的層狀結構者。 在此實施例中,5玆性穿隧接面元件中其他層狀結構的組成與厚度條件’均與第 一個實施例所述相同,因此,在利用光阻圖樣化及施行罩幕鈾刻時,亦生成的斜側 壁與上表面51a。通常,種晶層56的寬度大於覆蓋層56的寬度,絕緣層53係緊 鄰於磁性穿隧接面元件的上表面51a且與之共平面。如前實施例所述’一上電極 54生成在絕緣層53上,並與上表面51a接觸。另外,一或多層的絕緣層與導電 層係形成於上電極54之上,使磁性隨機存取記憶體之結構40得以完整。 第二個實施例的優點與第一個實施例很類似,與習知的鉬組成種晶層相較’一由^-钽氮 組成之種晶層,可提供高磁阻比率且使得隨後生成的層狀結構具有高度的一致性。 15 1275092 在第三個實施例中,一5玆性讀取頭60在此係爲具有磁性穿隧接面元件夾設於 一底部遮蔽(S1)65與一頂部遮蔽(S2)75的穿隧磁阻讀取頭結構,此底部遮蔽之覆 蓋層係以α-鉅氮所組成。在此典型的實施例中雖然僅提及一具有底部旋轉閥門結 構的磁性穿隧接面元件,不過本發明亦適用於具有頂部旋轉閥門的磁性穿隧接面元 件中。A magnetic tunneling junction element is patterned on the cover layer 51 by a first coating and a width of the photoresist layer 52, and then formed into a pattern having sidewalls and an upper surface, and then a photoresist layer is used. The mask etching is performed such that portions of the magnetic tunneling junction element that are not protected by the mask are removed from the seed layer 46 to the cover layer 51 by etching, thereby forming a cover layer 51 having oblique sidewalls and a width w. And a magnetic tunneling junction element having a bottom width wider than w of the seed layer 46 structure. It is noted that since the conventional lower electrode uses molybdenum as the material of the cover layer, the molybdenum cover layer is not protected by the photoresist layer during the mask etching, and is directly exposed to the entire mask etching process. Etching liquid, so that after the molybdenum coating layer is etched, it is again deposited on the sidewall of the magnetic tunneling junction element, especially the giant deposition on the sidewall of the tunnel barrier layer, which causes the detection current to be shunted here. As a result, the entire device is subject to serious problems. However, in the present invention, the α-germanium nitride coating layer 44 is used, which is not protected by the photoresist layer during the mask etching, and is the same throughout the mask etching process. Also for the case of direct exposure to the etchant, however, in some cases only the monazide layer will occur in partial etching, although it will be deposited again on the sidewall of the magnetic tunneling junction element. High resistance characteristics, so the redeposited 0^-molybdenum nitrogen layer does not affect the input detection current (ls 'fifth figure), so the α-macrozide layer is used as the magnetic tunneling of the cladding layer 44. Connecting elements can be effective Free shunt problems generated during the process step of etching the deposited material re-triggered. On the α-macro-nitride layer 44, an insulating layer 53 is wrapped around the sidewall of the magnetic tunneling junction member. As shown in FIG. 5, the formation of the insulating layer 53 is conventionally known as an insulating material. The deposition method is deposited and then coplanar with the magnetic tunneling junction element upper surface 51a in a coplanarization step. In order to form a magnetic random access memory, after the deposition of the insulating layer 53 is completed, the upper electrode 54 is placed on the upper surface of the magnetic tunneling surface 51a. The vertical direction of the lower electrode 45, for example, if the lower electrode 45 is a bit line (or word line) facing the x coordinate axis, then the upper electrode 54 should be placed on the y coordinate axis. Line (or bit line). Optionally, the electrode is a specific segment of a right angle shape. In addition, the composition of the upper electrode 54 may be a multi-layer structure, such as a structure including a diffusion barrier layer and a conductive layer thereon, in a production method that is compatible with the prior art. The magnetic random access memory array as shown in the sixth figure is composed of four magnetic random access memories, four 13 1275092 magnetic tunneling junction elements, two lower electrodes and two upper electrodes. In this exemplary embodiment, when the lower electrode 45 is in the y direction and has a length and the word line has a b width in the x direction, the upper electrode 54 is in the X direction and has a certain length, and in the y direction. A bit line having a v-width, which is well known, 'the four upper electrodes 54 are each separated by a second insulating layer 58 but are coplanar between the two' and may have a magnetic tunneling junction element Coplanar insulating layers (not shown) have the same dielectric species. Each of the layers of the upper surface 51 a of each of the magnetic tunneling junction elements and the layer of the magnetic tunneling junction elements below has a elliptical shape with a major axis length w and a minor axis length a, wherein the long axis Usually, the axis of easy magnetization is such that the width v of the upper electrode 54 in the magnetic tunneling junction element is longer than the longer axial length w, and the width b of the lower electrode 45 is shorter than the shorter axial length a. An experiment has been used to determine the performance of a magnetic tunneling junction element that forms a molybdenum nitride coating on the lower electrode. The target of the control group in this experiment is only modified with a molybdenum layer as the coating on the lower electrode, and the rest. Both of them are similar in structure to the magnetic random access memory used in the above experiments, and the control group is subjected to special pre-cleaning treatment to avoid the problem of poor uniformity of lamellar structure growth, and at the same time, the removal and redeposition on the sidewalls is achieved. The purpose of molybdenum oxide. The results of the experiment are shown in Table 1, which shows that the magnetoresistance ratio, the resistive area (RA), and the resulting resistivity (RA) are not optimized even if the electrode crucible is not optimized for the nickel-chromium/niobium/α-molybdenum-nitrogen structure used in the present invention. The standard deviation of the impedance area (RA sigma) and the breakdown voltage are very similar to those obtained by the optimized Ni-Cr/钌/钽 structure lower electrode. From the number in Table 1, it can be confirmed that the α-macro-nitride layer proposed in the present invention can surely allow the layered stacked structure superimposed in the magnetic tunneling junction member to grow well. Therefore, the α-molybdenum nitride coating layer of the present invention provides many advantages that are not possible with the prior art lower electrode coating layer, including high electrical resistance, high oxidation resistance, and good formation of a magnetic tunneling junction element stack structure. The traits. Table shows the magnetic characteristics of the electrode/magnetic tunneling junction element stack structure. The lower electrode//5-type tunneling junction element stack dR/R (%) RA (ohm-um2) RA sigma Vb (Volts) V50 (mV ) 1 Nickel chrome / elk / / nickel chrome / Ming iron / 钌 / cobalt iron / Ming oxide fiber iron / 钌 48 3568 10% 1.63 703 2 nickel chrome / 钌 / α - molybdenum / / nickel chrome /雠八/铭铁/钉/铭铁/铭氧化/明铁/铁铁/ 钌45 3628 11% 1.61 639 Aluminium oxide is a compound with atomic weight close to Αΐ2〇3, expressed as 127 127 127 127 127 127 127 127 In the seventh embodiment, a second embodiment of the present invention is illustrated. The magnetic random access memory structure 40 is a sandwich structure in which a magnetic tunneling junction element is interposed between the lower electrode 55 and an upper electrode 54. . The composition of the Fe random access gH memory structure 40 is similar to that described in the first embodiment, but the magnetic random access memory structure has no cover layer structure, and the magnetic wear therein The seed layer in the tunnel face element is composed of α-molybdenum nitrogen. Referring to the seventh figure, the lower electrode 55 is composed of a crystal layer 42 and a conductive layer 43 superimposed thereon, and the thickness and composition of the crystal layer 42 and the conductive layer 43 are the same as those described above, for example, the lower electrode. The 55 series is a structure composed of nickel chrome/iridium, nickel chrome/copper or molybdenum/copper, and it is noted that the cover layer composed of bismuth or copper on the lower electrode is easier than the conventional overburden layer. Cleaning. However, other lower electrodes having a cap layer structure are also acceptable, although in this embodiment the lower electrodes do not need to be provided with a cover layer structure. A more flexible lower electrode selection is provided in the second embodiment because the alpha-molybdenum nitride seed layer has isolated the effect of the lower electrode on the layered stack of magnetic tunneling junction elements. A magnetic tunneling junction element layer structure is formed on the lower electrode 55 in the order of the seed layer 56, the antiferromagnetic layer 47, the synthetic anti-planar fixing layer 48, the tunneling barrier layer 49, the free layer 50, and the cap layer 51. on. A key type is a seed layer 56 structure composed of α-macro nitrogen, which is formed in the same manner as described in the previous paragraph, and has a desired thickness of 50 to 400 angstroms, and functions to cause subsequent magnetic tunneling. The junction element layered stack structure can have a good smoothness and a closely packed structure. Compared with the conventional molybdenum seed layer, the α-macrozene seed layer can make the layered stack of magnetic tunneling junction elements which are subsequently superposed grow smooth and compact, because the conventional molybdenum seed layer will form different phases. Molybdenum and cause inconsistencies in the layered structure. Alternatively, the seed layer 56 may have a thickness of 50 to 400 angstroms - the molybdenum nitride layer is the bottommost structure, and is covered with nickel chrome, ferronickel or ferronickel having a thickness of 40 to 1 angstrom. Layered structure. In this embodiment, the composition and thickness conditions of the other layered structures in the five-way tunneling junction elements are the same as those described in the first embodiment. Therefore, in the use of photoresist patterning and implementation of the mask uranium engraving At the same time, the oblique side wall and the upper surface 51a are also formed. Typically, the seed layer 56 has a width greater than the width of the cover layer 56, and the insulating layer 53 is adjacent to and coplanar with the upper surface 51a of the magnetic tunneling junction member. An upper electrode 54 is formed on the insulating layer 53 as in the previous embodiment, and is in contact with the upper surface 51a. In addition, one or more insulating layers and conductive layers are formed over the upper electrode 54 to complete the structure 40 of the magnetic random access memory. The advantages of the second embodiment are very similar to those of the first embodiment. Compared with the conventional molybdenum seed layer, a seed layer composed of ?-niobium nitrogen can provide a high magnetoresistance ratio and enable subsequent generation. The layered structure has a high degree of consistency. 15 1275092 In a third embodiment, a 5-inch read head 60 is here a tunnel having a magnetic tunneling junction member sandwiched between a bottom shield (S1) 65 and a top shield (S2) 75. The magnetoresistive read head structure, the cover layer of the bottom shield is composed of α-diazo. Although only a magnetic tunneling junction member having a bottom rotary valve configuration is mentioned in this exemplary embodiment, the invention is also applicable to a magnetic tunneling junction member having a top rotary valve.

基底61可爲鋁鈦碳的組成結構,而生成於基底61上的底部遮蔽65爲一重要 的組件,其組成係爲鎳鐵/α-鉬氮之層狀結構,其中厚度約爲2微米的鎳鐵材質 磁性層62爲底部遮蔽65內主要的部份,另一部分的α-鉬氮材質覆蓋層64係以 前述已提及的方法生成在磁性層62上,其厚度介於50至400埃。此α -鉅氮覆蓋 層可促使隨後磁性穿隧接面之層狀結構平滑且堆疊緊密,且與習知的鉬覆蓋層相比 較,由於其氧化阻抗及氧化能力,可使磁性穿隧接面的疊加層狀結構具有一致性。 一磁性穿隧接面層狀堆疊係已習知的方法生成在此底部遮蔽65上,於此不多 加描述此一習知方法。而此磁性穿隧接面層狀堆疊是依種晶層66、抗鐵磁性層67、 合成反平行固定層68、穿隧阻障層69、自由層70與覆蓋層71的順序生成在底部 遮蔽65上。雖然鎳鐵或鎳鐵鉻也都爲有效的種晶層結構,但此種晶層66爲厚度 介於40至100埃的鎳鉻層,且其中之鉻含量介於35至45原子百分比。由於種晶 層66係生成在α-鉬氮覆蓋層上,因此具有一平滑且緊密的<111>種晶層結構。在 磁性穿隧接面的疊加層狀結構中,平滑且緊密的種晶層66爲一決定性的因素。而 抗鐵磁性層67建議以厚度介於80至200埃的錳釩組成,或厚度介於50至100 埃的銥錳組成之結構。 合成反平行固定層68建議爲ΑΡ2/釕/ΑΡ1的結構,其中ΑΡ2層係生成於 抗鐵磁性層上之鈷鐵層,鐵含量介在10至25原子百分比間,其厚度介於15至 25埃。由於ΑΡ2層與ΑΡ1層均屬於具有磁矩之結構,而兩者間因存在著些微厚 度差異而造成兩磁矩產生一淨磁矩,合成反平行固定層68內之磁矩方向係以此一 淨磁矩來決定。在ΑΡ2層與ΑΡ1層有一耦合層,而此耦合層之厚度宜爲7.5埃, 且所建議之原材料爲釕。上述之ΑΡ1層在一實施例中係使用含鐵量介於25至50 原子百分比之鈷鐵組成層,且厚度在20至30埃,除此之外,ΑΡ1層亦可採用在 兩鈷鐵層間夾有一奈米氧化物薄層之鐵鉅氧化物或鈷鐵氧化物之三明治結構層,而 此奈米氧化層之厚度約在5至6埃,且其係用以提昇ΑΡ1層之平滑度。The substrate 61 may be a composition of aluminum-titanium carbon, and the bottom shield 65 formed on the substrate 61 is an important component composed of a layer structure of nickel iron/α-molybdenum nitrogen, wherein the thickness is about 2 μm. The ferronickel magnetic layer 62 is the main portion of the bottom shield 65, and the other portion of the α-molybdenum nitrogen material cover layer 64 is formed on the magnetic layer 62 by the aforementioned method, and has a thickness of 50 to 400 angstroms. . The α-macrozide cap layer can promote the layered structure of the subsequent magnetic tunneling junction to be smooth and tightly packed, and the magnetic tunneling junction can be made due to its oxidation resistance and oxidation ability compared with the conventional molybdenum coating layer. The superimposed layered structure is consistent. A magnetic tunneling layered stack is formed on the bottom shield 65 by conventional methods, and this conventional method will not be described here. The magnetic tunneling junction layer stack is formed in the bottom layer according to the order of the seed layer 66, the antiferromagnetic layer 67, the synthetic antiparallel fixed layer 68, the tunneling barrier layer 69, the free layer 70 and the cover layer 71. 65 on. Although nickel iron or nickel iron chromium is also an effective seed layer structure, the crystal layer 66 is a nickel chromium layer having a thickness of 40 to 100 angstroms and a chromium content of 35 to 45 atom%. Since the seed layer 66 is formed on the α-molybdenum nitride coating layer, it has a smooth and compact <111> seed layer structure. In the superimposed layered structure of the magnetic tunneling junction, the smooth and compact seed layer 66 is a decisive factor. The antiferromagnetic layer 67 is preferably composed of manganese vanadium having a thickness of 80 to 200 angstroms or yttrium manganese having a thickness of 50 to 100 angstroms. The synthetic anti-parallel fixed layer 68 is suggested to be a structure of ΑΡ2/钌/ΑΡ1, wherein the ΑΡ2 layer is formed on the antiferromagnetic layer of cobalt iron, the iron content is between 10 and 25 atomic percent, and the thickness is between 15 and 25 angstroms. . Since both the ΑΡ2 layer and the ΑΡ1 layer belong to a structure having a magnetic moment, and the two magnetic moments cause a net magnetic moment due to the slight difference in thickness between the two, the direction of the magnetic moment in the synthetic anti-parallel fixed layer 68 is one. The net magnetic moment is determined. There is a coupling layer between the ΑΡ2 layer and the ΑΡ1 layer, and the thickness of the coupling layer is preferably 7.5 angstroms, and the recommended raw material is 钌. The above-mentioned layer 1 is in the embodiment using a cobalt iron composition layer having an iron content of 25 to 50 atomic percent and a thickness of 20 to 30 angstroms. In addition, the ruthenium layer 1 may also be used between the two cobalt-iron layers. The sandwich structure layer of iron oxide or cobalt iron oxide having a thin layer of nano oxide is sandwiched, and the thickness of the nano oxide layer is about 5 to 6 angstroms, and is used to improve the smoothness of the layer of ruthenium.

16 1275092 在上述的合成反平行固定層68上,係爲一氧化的鋁薄層之穿隧阻障層69,其 中,氧化的鋁層在此以ΑΙΟχ層稱之。最初先於合成反平行固定層68上沉積一 5 至6埃的厚鋁層,後以如前所述之自然氧化反應或原位自由基氧化反應對此一厚 鋁層進行氧化。最終,在鋁層進行完氧化反應後形成一氧化的鋁層,其理想厚度介 於7至11埃,且由於先前已形成一平滑且端疊緊密之種晶層66於α-鉬氮覆盞層 64上,得以使此時所生成之氧化的鋁層亦具有相當優良的平滑度與平整度。 在上述之穿隧阻障層69上係生成一鈷鐵層厚度在5至15埃且鎳鐵層厚度在 20至40埃的鈷鐵/鎳鐵自由層70,且其中係爲以鎳鐵層沉積在鈷鐵層之上的結 構。在實施例中,鈷鐵層的組成係與前述之ΑΡ1層相似,而鎳鐵層中之鎳含纛介 在75至85原子百分比。在本發明中,亦包含以鈷鐵層與鎳鐵層間夾有一奈米氧 化層的自由層70結構之具體實施例。 於自由層70上,爲一釕/鉬結構的覆蓋層71,而其中的釕層厚度介於10至 30埃,並於上疊加一厚度介於100至250埃的鉬層。而由於先前已形成一 α崔氮 覆蓋層64於底部遮蔽65上,可使得磁性穿隧接面的疊加層狀結構具有相當優良 的平滑度與緊密的堆疊。 接著,依習知的罩幕蝕刻光阻生成、離子束蝕刻及光阻去除之步驟以形成磁性 穿隧接面元件中的側壁及上表面71a。在底部遮蔽與沿著側壁的周圍,以化學氣相 沉積法或物理氣相沉積法,使二鋁化三氧組成的第一介電層72,其厚度介於1〇〇 至150埃。在此第一介電層72上係有一鈦鎢/鈷絡鉑/鉬組成的硬偏壓層73, 此層的厚度介於200至400埃。後在以一厚度介於150至250埃的二鋁化三氧組 成之第二介電層74疊加於此硬偏壓層上,且在去除光阻罩幕(未在此顯示)後,此 第二介電層74時需加以平坦化使之可與上表面71a共平面。再接用以一頂部遮蔽 75沉積於磁性穿隧接面元件的上表面71a以及第二介電層74之上,此頂部遮蔽 75可由鉅/鎳鐵組成,並以現行技術中可理解之方法達成。 與習知具鉅覆蓋層之底部遮蔽的穿隧磁阻讀取頭,本發明所提出的爲一具氧化 阻抗且助於晶體生長一致的α-鉬氮覆蓋層,因此爲一可靠度更高且性能更穩定的 穿隧磁阻讀取頭。 在第九圖中係說明本發明的第四個實施例,一穿隧磁阻讀取頭之結構係以一底 部遮蔽62與一底部遮蔽75間夾設一磁性穿隧接面元件所形成。此穿隧磁阻讀取 17 1275092 頭之構成方法與前述之實施例相似,不過在此實施例中的磁性穿隧接面元件無覆蓋 層之結構,鉅其種晶層係以一 α-鉬鉅層所組成。 參考第九圖,底部遮蔽62建議以鎳鐵組成,且其厚度約在2微米。雖在本發 明中之底部遮蔽無須有覆蓋層的構造,但是其他含有覆蓋層的底部遮蔽結構亦適用 於此實施例裡。一底部遮蔽62之結構係依種晶層66、抗鐵磁性層67、合成反平 面固定層68、穿隧阻障層69、自由層70以及覆蓋層71的順序由下向上形成。一 關鍵的型態係爲以α -鉅氮組成的種晶層66結構,其形成的方法與前段所述相同, 而其理想厚度介於50至400埃,功能爲使得隨後疊加之磁性穿隧接面元件層狀堆 疊結構可具有良好平滑度且堆疊緊密之結構。α-钽氮種晶層較習知的鉅種晶層更 可使得隨後疊加的磁性穿隧接面元件層狀堆疊結構生長得滑且堆疊緊密,因爲習知 的鉅種晶層會形成不同相之鉅並導致層狀結構的不一致性。 另外,種晶層66亦可以爲厚度介於50至300埃爲α -鉬氮層爲最底部結構, 其上覆有厚度介在40至100埃的鎳鉻、鎳鐵或是鎳鐵鉻的層狀結構者。在此實施 例中,α-鉬氮種晶層66係將隨後疊力口的磁性穿隧接面元件層狀結構與底部遮蔽 62相阻隔。 在此實施例中,磁性穿隧接面元件中其他層狀結構的組成與厚度條件,均與第 三個實施例所述相同。上表面71 ει係形成在磁性穿隧接面元件堆疊結構的頂端。 一般來說,種晶層66的寬幅較覆蓋層71寬一些。在磁性穿隧接面元件中的底部 遮蔽上,如前述的實施例一樣,亦有一第一介電層72生成在其上。再者,在第一 介電層72上有一硬偏壓層73沉積,而在其上的第二介電層74亦與上述的實施例 相同,係與上表面74成共平面。再接用以一頂部遮蔽75沉積於磁性穿隧接面元 件的上表面71a以及第二介電層74之上,此頂部遮蔽75可由鉬/鎳鐵組成。 此實施例中的優點可由第三個實施例中的優點理解。與習知具鉅覆蓋層之底部 遮蔽的磁性穿隧接面元件,本發明藉由利用α-鉅氮層作爲穿隧磁阻讀取頭中底部 遮蔽的覆蓋層,或是磁性穿隧接面元件中底部遮蔽的種晶層,尤以使得在磁阻比 率、崩潰電壓、阻抗面積的特徵上均有良好的表現。 以上所述之實施例僅係爲說明本發明之技術思想及特點,其目的在使熟習此項 技藝之人士能夠瞭解本發明之內容並據以實施,當不能以之限定本發明之專利範 圍,即大凡依本發明所揭示之精神所作之均等變化或修飾,仍應涵蓋在本發明之專 18 1275092 利範圍內。 【圖式簡單說明】 第一圖爲習知磁性隨機存取記憶體結構中形成在下電極與上電極間之磁性穿隧接面 元件之截面圖。 第二圖爲第一圖之磁性穿隧接面元件中具有斜度的壁面與鄰近於上電極之絕緣層之 放大圖。 第三圖爲習知穿隧磁阻讀取頭中形成在底部遮蔽與頂部遮蔽間作爲感應器之磁性穿 隧接面元件之截面圖。 第四圖爲本發明中以脉讣鉅氮層覆蓋於下電極之磁性穿隧接面元件之磁性隨機存取 記憶體的部分截面圖。 弟五圖爲弟四圖在移除光阻触刻罩幕並具有一V絕緣層且生成一^上電極於磁性穿隧接 面元件之上表面的截面圖。 第六圖爲第五圖磁性隨機存取記憶體結構中形成在上電極與下電極間之磁性穿隧接 面元件於交叉點上之上視圖。 第七圖爲本發明應用在磁性隨機存取記憶體結構中具有脉讣鉅氮種晶層結構之磁性 穿隧接面元件的截面圖。 第八圖爲本發明應用在穿隧磁阻讀取頭中形成在底部遮蔽與頂部遮蔽間作爲感應器 之磁性穿隧接面元件之截面圖。 第九圖爲本發明中以脉讣鉬氮層爲種晶層之磁性穿隧接面元件之磁性隨機存 取記憶體的部分截面圖。 【主要元件符號說明】 2 下電極 4 抗鐵磁性固定層 6 穿隧阻障層 8 覆蓋層 10偵測電流 12第二絕緣層 14疊加第三導電層 1 磁性穿隧接面元件 3 下電極 5 鐵磁性固定層 7 鐵磁性自由層 9 上電極 11第一絕緣層 13第三絕緣層 15磁性隨機存取記憶體 19 1275092 20 穿隧磁阻讀取頭 22 上導引 24 種晶層 26固定層 28自由層 30下導引 21基底 23磁性穿隧接面元件 25抗鐵磁性層 27穿隧阻障層 29覆蓋層 40磁性隨機存取記憶體之部分結構 41 基底 42種晶層 43 導電層 45 下電極 47 抗鐵磁性層 49 穿隧阻障層 51 覆蓋層 52光阻層 54 上電極16 1275092 On the above synthetic antiparallel fixed layer 68, it is a tunneling barrier layer 69 of a thin layer of oxidized aluminum, wherein the oxidized aluminum layer is referred to herein as a layer of germanium. A thick aluminum layer of 5 to 6 angstroms is initially deposited on the synthetic antiparallel fixed layer 68, and this thick aluminum layer is oxidized by natural oxidation reaction or in situ radical oxidation reaction as described above. Finally, after the oxidation of the aluminum layer is completed, an oxidized aluminum layer is formed, which has a desired thickness of 7 to 11 angstroms, and has been formed by a smooth and end-stacked seed layer 66 on the α-molybdenum nitride layer. On layer 64, the oxidized aluminum layer formed at this time also has a relatively good smoothness and flatness. A cobalt iron/nickel free layer 70 having a cobalt iron layer thickness of 5 to 15 angstroms and a nickel iron layer thickness of 20 to 40 angstroms is formed on the tunneling barrier layer 69, and the nickel iron layer is formed therein. A structure deposited on top of a cobalt iron layer. In the embodiment, the composition of the cobalt iron layer is similar to that of the above first layer, and the nickel content of the nickel iron layer is between 75 and 85 atomic percent. In the present invention, a specific embodiment of the structure of the free layer 70 in which a nano oxide layer is interposed between the cobalt iron layer and the nickel iron layer is also included. On the free layer 70, there is a cover layer 71 of a bismuth/molybdenum structure, wherein the ruthenium layer has a thickness of 10 to 30 angstroms, and a molybdenum layer having a thickness of 100 to 250 angstroms is superposed thereon. Since a ? Cui nitrogen cap layer 64 has been previously formed on the bottom shield 65, the superposed layered structure of the magnetic tunneling junction can have a fairly excellent smoothness and tight stacking. Next, the steps of photoresist generation, ion beam etching, and photoresist removal are conventionally performed to form sidewalls and upper surface 71a in the magnetic tunnel junction element. A first dielectric layer 72 composed of dialuminum trioxide having a thickness of between 1 Å and 150 Å is deposited at the bottom and along the periphery of the sidewall by chemical vapor deposition or physical vapor deposition. A first hard dielectric layer 72 is provided with a hard bias layer 73 of titanium tungsten/cobalt platinum/molybdenum, the layer having a thickness of between 200 and 400 angstroms. Thereafter, a second dielectric layer 74 composed of a di-alumina trioxide having a thickness of 150 to 250 angstroms is superposed on the hard bias layer, and after removing the photoresist mask (not shown here), The second dielectric layer 74 is planarized to be coplanar with the upper surface 71a. A top mask 75 is deposited over the upper surface 71a of the magnetic tunneling junction element and the second dielectric layer 74. The top shield 75 can be composed of giant/nickel iron and can be understood in the prior art. Achieved. The present invention proposes an α-molybdenum nitrogen coating layer having an oxidized impedance and contributing to crystal growth, and thus is more reliable than a tunneling magnetoresistive read head which is shielded at the bottom of a large cover layer. And a more stable tunneling magnetoresistive read head. In a ninth embodiment, a fourth embodiment of the present invention is illustrated. A tunneling magnetoresistive readhead structure is formed by sandwiching a magnetic tunneling junction member between a bottom shield 62 and a bottom shield 75. The method of constructing the tunneling magnetoresistance reading 17 1275092 head is similar to the foregoing embodiment, but the magnetic tunneling junction element in this embodiment has no cover layer structure, and the seed layer is a kind of α-molybdenum. It consists of giant layers. Referring to the ninth figure, the bottom shield 62 is suggested to be composed of nickel iron and has a thickness of about 2 microns. Although the bottom portion of the present invention does not require a cover layer construction, other bottom shield structures including a cover layer are also suitable for use in this embodiment. The structure of a bottom shield 62 is formed from the bottom to the top in the order of the seed layer 66, the antiferromagnetic layer 67, the synthetic back plane fixing layer 68, the tunneling barrier layer 69, the free layer 70, and the cover layer 71. A key type is a seed layer 66 structure composed of α-macro nitrogen, which is formed in the same manner as described in the previous paragraph, and its ideal thickness is between 50 and 400 angstroms, and functions to cause subsequent magnetic tunneling. The junction element layered stack structure can have a good smoothness and a closely packed structure. The α-yttrium nitrogen seed layer can make the layered stack of magnetic tunneling junction elements which are subsequently superimposed grow smooth and stacked tightly, because the conventional giant crystal layer will form different phases. It is huge and leads to inconsistencies in the layered structure. In addition, the seed layer 66 may also have a thickness of 50 to 300 angstroms, and the α-molybdenum nitride layer is the bottommost structure, and is covered with a layer of nickel chromium, nickel iron or nickel iron chromium having a thickness of 40 to 100 angstroms. Shaped structure. In this embodiment, the alpha-molybdenum nitride seed layer 66 is used to block the magnetic tunneling junction element layer structure of the subsequent stacking port from the bottom shield 62. In this embodiment, the composition and thickness conditions of the other layered structures in the magnetic tunneling junction elements are the same as those described in the third embodiment. The upper surface 71 is formed at the top end of the magnetic tunneling junction element stack structure. Generally, the seed layer 66 is wider than the cover layer 71. On the bottom shield in the magnetic tunneling junction element, as in the previous embodiment, a first dielectric layer 72 is also formed thereon. Furthermore, a hard bias layer 73 is deposited over the first dielectric layer 72, and the second dielectric layer 74 thereon is also coplanar with the upper surface 74 as in the previous embodiment. A top mask 75 is then deposited over the upper surface 71a of the magnetic tunneling junction member and the second dielectric layer 74. The top shield 75 may be comprised of molybdenum/nickel iron. The advantages in this embodiment can be understood by the advantages in the third embodiment. The present invention utilizes an alpha-diazoic layer as a cover layer for shielding at the bottom of a tunneling magnetoresistive read head or a magnetic tunneling junction by using a magnetic tunneling junction element that is shielded from the bottom of a giant cladding layer. The seed layer shielded at the bottom of the element is particularly good in terms of magneto resistance ratio, breakdown voltage, and impedance area. The embodiments described above are merely illustrative of the technical spirit and the features of the present invention, and the objects of the present invention can be understood by those skilled in the art, and the scope of the present invention cannot be limited thereto. That is, the equivalent variations or modifications made by the spirit of the present invention should still be covered by the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a cross-sectional view of a magnetic tunnel junction element formed between a lower electrode and an upper electrode in a conventional magnetic random access memory structure. The second figure is an enlarged view of the wall surface having a slope in the magnetic tunneling junction member of the first figure and the insulating layer adjacent to the upper electrode. The third figure is a cross-sectional view of a conventional tunneling magnetoresistive readhead in which a magnetic tunneling junction element is formed between the bottom shield and the top shield as an inductor. Fig. 4 is a partial cross-sectional view showing the magnetic random access memory of the magnetic tunneling junction member of the lower electrode covered with a pulsed large nitrogen layer in the present invention. The fifth figure is a cross-sectional view of the upper surface of the magnetic tunneling interface element after removing the photoresist etch mask and having a V insulating layer and generating an upper electrode. Fig. 6 is a top view of the magnetic tunneling junction element formed between the upper electrode and the lower electrode in the magnetic random access memory structure of Fig. 5 at an intersection. Figure 7 is a cross-sectional view showing a magnetic tunneling junction element having a pulsed macro-nitride layer structure in a magnetic random access memory structure. Figure 8 is a cross-sectional view showing the magnetic tunneling junction member of the present invention applied to the tunneling magnetoresistive read head as a sensor between the bottom shield and the top shield. Figure 9 is a partial cross-sectional view showing the magnetic random access memory of the magnetic tunneling junction member having the pulsed molybdenum nitride layer as the seed layer in the present invention. [Main component symbol description] 2 Lower electrode 4 Antiferromagnetic fixed layer 6 Tunneling barrier layer 8 Cover layer 10 Detection current 12 Second insulating layer 14 Superposed third conductive layer 1 Magnetic tunneling junction element 3 Lower electrode 5 Ferromagnetic pinned layer 7 Ferromagnetic free layer 9 Upper electrode 11 First insulating layer 13 Third insulating layer 15 Magnetic random access memory 19 1275092 20 Tunneling magnetoresistive read head 22 Guided 24 kinds of crystal layer 26 fixed layer 28 free layer 30 lower guide 21 substrate 23 magnetic tunneling junction element 25 antiferromagnetic layer 27 tunneling barrier layer 29 cladding layer 40 part of magnetic random access memory structure 41 substrate 42 seed layer 43 conductive layer 45 Lower electrode 47 antiferromagnetic layer 49 tunneling barrier layer 51 cladding layer 52 photoresist layer 54 upper electrode

44覆蓋層 46種晶層 48合成反平行固定層 50自由層 51a上表面 53絕緣層 55下電極 56種晶層 58第二導電層 60 磁性讀取頭 61基底 62磁性層 64 覆蓋層 65底部遮蔽44 cover layer 46 seed layers 48 synthetic anti-parallel fixed layer 50 free layer 51a upper surface 53 insulating layer 55 lower electrode 56 seed layer 58 second conductive layer 60 magnetic read head 61 substrate 62 magnetic layer 64 cover layer 65 bottom shield

66種晶層 68 合成反平行固定層 70自由層 71a上表面 73 硬偏壓層 75 頂部遮蔽 67抗鐵磁性層 69穿隧阻障層 71覆蓋層 72第一介電層 74第二介電層 2066 kinds of crystal layers 68 synthetic anti-parallel fixed layer 70 free layer 71a upper surface 73 hard bias layer 75 top mask 67 antiferromagnetic layer 69 tunneling barrier layer 71 cover layer 72 first dielectric layer 74 second dielectric layer 20

Claims (1)

1275092 十、申請專利範圍·· L ~種形成在一基底上之磁性隨機存取記億體(MRAM)結構,包括·· ⑻一下電極,其係包括一形成於該基底之種晶層與一形成於該種晶層上之導電層,且 此導電層係具有一α -鉅氮覆蓋層; (b)—上電極,其係由一導電線所構成,且位於該下電極之上方;以及 ⑹一磁性穿隧接面元件,其係爲具有複數側壁與一上表面形成於該下電極與該上電極 間,該磁性穿隧接面元件係包括與該下電極接觸之一種晶層、一抗鐵磁性固定層、一固定 層、一穿隧阻障層、一自由層,及一與該上電極接觸之覆蓋層。 2·如申請專利範圍第1項所述之磁性隨機存取記憶體結構,其中該下電極具有一由鎳鉻所 組成之種晶層,以及一由釕或銅所組成之該導電層。 • 3·如申請專利範圍第2項所述之磁性隨機存取記憶體結構,其中該種晶層之厚度係 介於40至1〇〇埃,且該導電層之厚度係介於50至1000埃,且在該導電層中之該α -鉅氮覆蓋層之厚度係介在50至400埃,並該α -鉅氮覆蓋層中之氮含量係介於25至 35原子百分比。 4. 如申請專利範圍第1項所述之磁性隨機存取記憶體結構,其中該下電極具有一由鉬所組 成之種晶層,以及一由銅所組成導電層。 5. 如申請專利範圍第4項所述之磁性隨機存取記憶體結構,其中該種晶層之厚度係介於20 至100埃,且該導電層之厚度係介於50至1000埃,且在該導電層中之該心鉅氮覆蓋層之厚度 係介在50至400埃。 • 6.如申請專利範圍第1項所述之磁性隨機存取記憶體結構,其中於該磁性穿隧接面元件中 之該種晶層係由鎳鉻、鎳鐵或鎳鐵鉻其中之一者所組成,且其厚度係介於40至100埃。 7. 如申請專利範圍第1項所述之磁性隨機存取記憶體結構,其中該抗鐵磁性固定層係由錳 釩或銥錳所組成。 8. 如申請專利範圍第1項所述之磁性隨機存取記憶體結構,其中該固定層係爲合成反平行 結構,以第一與第二鈷鐵層中間夾設釕介電層所組成。 9. 如申請專利範圍第1項所述之磁性隨機存取記憶體結構,其中該穿隨阻障層係爲一氧化 鋁層,且其厚度係介於10至15埃。 10•如申請專利範圍第1項所述之磁性隨機存取記憶體結構,其中該自由層係由鎳鐵所組 成01275092 X. Patent Application Range·· L ~ The magnetic random access memory (MRAM) structure formed on a substrate, including (8) a lower electrode, which comprises a seed layer formed on the substrate and a a conductive layer formed on the seed layer, the conductive layer having an α-macro nitrogen cap layer; (b) an upper electrode composed of a conductive line and located above the lower electrode; (6) a magnetic tunneling junction member having a plurality of sidewalls and an upper surface formed between the lower electrode and the upper electrode, the magnetic tunneling junction member comprising a crystal layer in contact with the lower electrode, An antiferromagnetic pinned layer, a pinned layer, a tunneling barrier layer, a free layer, and a cap layer in contact with the upper electrode. 2. The magnetic random access memory structure according to claim 1, wherein the lower electrode has a seed layer composed of nickel chromium and a conductive layer composed of tantalum or copper. 3. The magnetic random access memory structure of claim 2, wherein the thickness of the layer is between 40 and 1 〇〇, and the thickness of the conductive layer is between 50 and 1000 The thickness of the α-macro-nitride layer in the conductive layer is between 50 and 400 angstroms, and the nitrogen content in the α-macro-nitride layer is between 25 and 35 atomic percent. 4. The magnetic random access memory structure according to claim 1, wherein the lower electrode has a seed layer composed of molybdenum and a conductive layer composed of copper. 5. The magnetic random access memory structure of claim 4, wherein the thickness of the layer is between 20 and 100 angstroms, and the thickness of the conductive layer is between 50 and 1000 angstroms, and The thickness of the core-macro-nitride layer in the conductive layer is between 50 and 400 angstroms. 6. The magnetic random access memory structure of claim 1, wherein the seed layer in the magnetic tunneling junction element is one of nickel chromium, nickel iron or nickel iron chromium. It consists of a thickness of 40 to 100 angstroms. 7. The magnetic random access memory structure according to claim 1, wherein the antiferromagnetic fixed layer is composed of manganese vanadium or strontium manganese. 8. The magnetic random access memory structure according to claim 1, wherein the fixed layer is a synthetic anti-parallel structure, and the first and second cobalt iron layers are interposed between the dielectric layers. 9. The magnetic random access memory structure of claim 1, wherein the pass-through barrier layer is an aluminum oxide layer and has a thickness of between 10 and 15 angstroms. 10. The magnetic random access memory structure of claim 1, wherein the free layer is composed of ferronickel. 21 1275092 ιι· 一種形成在一基底上之磁性隨機存取記憶體結構,包括: ⑻一下電極,其係包括一形成於該基底之種晶層以及一形成於該種晶層上之 導電層; ⑹一上電極,其係由一導電線所構成,且位於該下電極之上方;以及 (c)一磁性穿隧接面元件,其係爲具有複數側壁與一上表面之結構,位在該下電極與該 上電極間,一 α -鉅氮組成種晶層係與該下電極接觸,在該α -鉅氮組成種晶層上依一抗鐵磁 性固定層、一固定層、一穿隧阻障層、一自由層,及一覆蓋層的順序結構以形成該磁性穿 隧接面元件,且該覆蓋層係與該上電極接觸。 12. 如申請專利範圍第11項所述之磁性隨機存取記憶體結構,其中該下電極係包括一鉅或 鎳鉻種晶層,以及一銅導電層。 13. 如申請專利範圍第11項所述之磁性隨機存取記憶體結構,其中該下電極係包括一鎳鉻 種晶層,以及一釕或銅導電層。 14. 如申請專利範圍第11項所述之磁性隨機存取記憶體結構,其中該磁性穿隧接面元件係 爲一 α-钽氮層,其厚度係介於40至100埃,且氮含量係介於25至35原子百分比。 15. 如申請專利範圍第11項所述之磁性隨機存取記憶體結構,其中在該磁性穿隧接面元件 中之種晶層係爲一包含有一α-钽氮底層與一鎳鉻、鎳鐵或鎳鐵鉻頂層的複合層。 16. 如申請專利範圍第15項所述之磁性隨機存取記憶體結構,其中該α -鉬氮底層之厚度係 介於50至400埃,且該頂層之厚度係介於40至100埃。 17. 如申請專利範圍第11項所述之磁性隨機存取記憶體結構,其中該抗鐵磁性固定層係由 猛隹八或銃猛中擇一所組成。 18. 如申請專利範圍第11項所述之磁性隨機存取記憶體結構,其中該固定層係爲合成反平 行結構,以第一與第二鈷鐵層中間夾設釕介電層所組成。19.如申請專利範圍第11項所述 之磁性隨機存取記憶體結構,其中該穿隧阻障層係爲氧化鋁層,且其厚度係介於10至15埃。 20. 如申請專利範圍第11項所述之磁性隨機存取記憶體結構,其中該自由層係由鎳鐵所組 成。 21. —種形成在一基底上之穿隧磁阻(TMR)讀取頭,包括: ⑻一底部遮蔽,其係包括形成於該基底之一磁性層與形成於該導電層之一α-鉅氮覆 蓋層; 22 1275092 (b) —磁性穿隧接面元件,其係具有複數側壁形成於該底部遮蔽上,該磁性穿隧接面 元件包括位於該底部遮蔽上之一種晶層、一抗鐵磁性固定層、一固定層、一穿隧阻障層、 一自由層,及具有一上表面的一上覆蓋層;以及 (c) 一頂部遮蔽,其係形成於該上覆蓋層之該上表面上。 22·如申請專利範圍第21項所述之穿隧磁阻讀取頭,其中該α -鉬氮覆蓋層之厚度係介在50 至400埃,並該α-鉅氮覆蓋層中之氮含量係介於25至35原子百分比。 23·如申請專利範圍第21項所述之穿隧磁阻讀取頭,其中該磁性穿隧接面元件中之該種晶 層係爲鎳鉻、鎳鐵或鎳鐵鉻。 24.如申請專利範圍第21項所述之穿隧磁阻讀取頭,其中該抗鐵磁性固定層係由錳飢所組 成且其厚度係介於80至200埃,或由銥錳所組成且其厚度係介於50至100埃。 Β 25.如申請專利範圍第21項所述之穿險5兹阻讀取頭,其中該固定層係具有合成反平 行(SyAP)結構,其係由第一與第二鈷鐵層中間夾設釕介電層所組成。 26·如申請專利範圍第21項所述之穿隧磁阻讀取頭,其中該穿隧阻障層係爲氧化鋁層’且 其厚度係介於7至11埃。 27. 如申請專利範圍第21項所述之穿隧磁阻讀取頭,其中該自由層係爲一複合層,其包含 一形成於鈷鐵層上之鎳鐵層。 28. —種形成在一基底上之穿隧磁阻讀取頭,包括: (a) —底部遮蔽,其係由形成於該基底之一磁性層所構成; (b) —磁性穿險接面元件,其係具有複數側壁形成於該底部遮蔽之上,該磁性穿隧接 _ 面元件具有一由該底部遮蔽上之α -鉬氮組成之種晶層、一抗鐵磁性固定層、一固定層、一 穿隧阻障層、一自由層,及具有一上表面的一上覆蓋層;以及 (c) 一頂部遮蔽,其係形成於該上覆蓋層之該上表面上。 29. 如申請專利範圍第28項所述之穿隧磁阻讀取頭,其中該心鉅氮組成之種晶層之厚度係 介在50至400埃,並該α-鉬氮覆蓋層中之氮含量係介於25至35原子百分比。 30. 如申請專利範圍第28項所述之穿隧磁阻讀取頭,其中該磁性穿隧接面元件中之該種晶 層係爲一複合層,包括一鉅氮底層以及鎳鉻層、鎳鐵層或鎳鐵鉻層之頂層組成。 31. 如申請專利範圍第30項所述之穿隧磁阻讀取頭,其中該鉅氮底層之厚度係介於50至300 埃,而該頂層之厚度係介於40至100埃。 23 1275092 32.如申請專利範圍第28項所述之穿隧磁阻讀取頭,其中該抗鐵磁性固定層係由錳飢或銥 錳所組成。 33. 如申請專利範圍第28項所述之穿隧磁阻讀取頭,其中該固定層係爲合成反平行 結構,以第一與第二鈷鐵層中間夾設釕介電層所組成。 34. 如申請專利範圍第28項所述之穿隧磁阻讀取頭,其中該穿隧阻障層係爲氧化鋁層,其 厚度係介於7至11埃。 35. 如申請專利範圍第28項所述之穿隧磁阻讀取頭,其中該自由層係爲一複合層,包括一 鎳鐵層形成於銘鐵層上。 36. —種在基底上形成磁性隨機存取記憶體結構的方法,其步驟包括:21 1275092 ιι. A magnetic random access memory structure formed on a substrate, comprising: (8) a lower electrode comprising a seed layer formed on the substrate and a conductive layer formed on the seed layer; (6) an upper electrode composed of a conductive line and located above the lower electrode; and (c) a magnetic tunneling junction element having a structure having a plurality of side walls and an upper surface, Between the lower electrode and the upper electrode, an α-macrozene seed layer is in contact with the lower electrode, and an anti-ferromagnetic pinned layer, a fixed layer, and a tunneling layer are formed on the α-macrozene seed layer A barrier layer, a free layer, and a capping layer are sequentially formed to form the magnetic tunneling junction element, and the capping layer is in contact with the upper electrode. 12. The magnetic random access memory structure of claim 11, wherein the lower electrode layer comprises a giant or nickel chromium seed layer and a copper conductive layer. 13. The magnetic random access memory structure of claim 11, wherein the lower electrode layer comprises a nickel-chromium seed layer and a tantalum or copper conductive layer. 14. The magnetic random access memory structure according to claim 11, wherein the magnetic tunneling junction element is an alpha-niobium nitride layer having a thickness of 40 to 100 angstroms and a nitrogen content. The system is between 25 and 35 atomic percent. 15. The magnetic random access memory structure of claim 11, wherein the seed layer in the magnetic tunneling junction element comprises an alpha-germanium nitrogen underlayer and a nickel-chromium, nickel A composite layer of iron or nickel-iron-chromium top layer. 16. The magnetic random access memory structure of claim 15, wherein the alpha-molybdenum nitrogen underlayer has a thickness of between 50 and 400 angstroms and the top layer has a thickness of between 40 and 100 angstroms. 17. The magnetic random access memory structure according to claim 11, wherein the antiferromagnetic fixed layer is composed of a mammoth or a scorpion. 18. The magnetic random access memory structure according to claim 11, wherein the fixed layer is a synthetic anti-parallel structure, and the first and second cobalt-iron layers are interposed between the dielectric layers. 19. The magnetic random access memory structure of claim 11, wherein the tunneling barrier layer is an aluminum oxide layer and has a thickness of between 10 and 15 angstroms. 20. The magnetic random access memory structure of claim 11, wherein the free layer is comprised of ferronickel. 21. A tunneling magnetoresistive (TMR) read head formed on a substrate, comprising: (8) a bottom shield comprising a magnetic layer formed on one of the substrates and an alpha-macro formed on the conductive layer a nitrogen capping layer; 22 1275092 (b) - a magnetic tunneling junction element having a plurality of sidewalls formed on the bottom shield, the magnetic tunneling junction element comprising a layer of crystal on the bottom shield, an anti-iron a magnetic pinned layer, a pinned layer, a tunneling barrier layer, a free layer, and an upper cap layer having an upper surface; and (c) a top mask formed on the upper surface of the upper cap layer on. The tunneling magnetoresistive read head according to claim 21, wherein the thickness of the α-molybdenum nitride coating layer is between 50 and 400 angstroms, and the nitrogen content in the α-macro nitrogen coating layer is Between 25 and 35 atomic percent. The tunneling magnetoresistive read head of claim 21, wherein the seed layer in the magnetic tunneling junction element is nickel chromium, nickel iron or nickel iron chromium. 24. The tunneling magnetoresistive read head according to claim 21, wherein the antiferromagnetic fixed layer is composed of manganese hunger and has a thickness of 80 to 200 angstroms or consists of lanthanum manganese. And its thickness is between 50 and 100 angstroms. Β 25. The tamper-evident 5-inch resistive read head of claim 21, wherein the fixed layer has a synthetic anti-parallel (SyAP) structure interposed between the first and second cobalt-iron layers. The composition of the dielectric layer. The tunneling magnetoresistive read head of claim 21, wherein the tunneling barrier layer is an aluminum oxide layer' and has a thickness of between 7 and 11 angstroms. 27. The tunneling magnetoresistive read head of claim 21, wherein the free layer is a composite layer comprising a layer of nickel iron formed on the cobalt iron layer. 28. A tunneling magnetoresistive readhead formed on a substrate, comprising: (a) a bottom shield formed by a magnetic layer formed on the substrate; (b) - a magnetic wear junction An element having a plurality of sidewalls formed on the bottom shield, the magnetic tunneling component having a seed layer composed of α-molybdenum nitrogen shielded by the bottom, an antiferromagnetic fixed layer, and a fixing a layer, a tunneling barrier layer, a free layer, and an upper cladding layer having an upper surface; and (c) a top mask formed on the upper surface of the upper cladding layer. 29. The tunneling magnetoresistive read head according to claim 28, wherein the seed layer of the core macronuclear layer has a thickness of 50 to 400 angstroms, and the nitrogen in the α-molybdenum nitride coating layer The content is between 25 and 35 atomic percent. 30. The tunneling magnetoresistive read head of claim 28, wherein the seed layer in the magnetic tunneling junction element is a composite layer comprising a giant nitrogen bottom layer and a nickel chromium layer, The top layer of the nickel iron layer or the nickel iron chromium layer. 31. The tunneling magnetoresistive read head of claim 30, wherein the arbor layer has a thickness of between 50 and 300 angstroms and the top layer has a thickness of between 40 and 100 angstroms. The tunneling magnetoresistive read head of claim 28, wherein the antiferromagnetic fixed layer is composed of manganese or manganese. 33. The tunneling magnetoresistive read head of claim 28, wherein the fixed layer is a synthetic anti-parallel structure, and the first and second cobalt iron layers are interposed between the dielectric layers. The tunneling magnetoresistive read head of claim 28, wherein the tunneling barrier layer is an aluminum oxide layer having a thickness of between 7 and 11 angstroms. 35. The tunneling magnetoresistive read head of claim 28, wherein the free layer is a composite layer comprising a layer of nickel iron formed on the layer of iron. 36. A method of forming a magnetic random access memory structure on a substrate, the steps comprising: (a) 形成一下電極,其係包括一位於該基底上之種晶層、一位於該種晶層上之導電層以 及一位於該導電層上之α -鉅氮覆蓋層; (b) 在該下電極上形成一具有複數側壁與一上表面之磁性穿隧接面元件;以及 (c) 在該磁性穿隧接面元件的該上表面上形成一上電極。 37. 如申請專利範圍第36項所述之方法,其中該α -鉅氮覆蓋層之厚度係介在50至400埃,且 氮含量係介於25至35原子百分比。 38. 如申請專利範圍第36項所述之方法,其中該種晶層係爲鎳鉻組成,厚度係介於40至100 埃,而該導電層係爲釕或銅組成,厚度係介於50至1〇〇〇埃。 39. 如申請專利範圍第36項所述之方法,其中該種晶層係爲鉅,厚度係介於20至100埃,而 該導電層係爲銅組成,厚度係介於50至1000埃。 40. 如申請專利範圍第37項所述之方法,其中該α -鉬氮覆蓋層係以含有氮電漿之反應性濺 鍍製程形成。 41. 如申請專利範圍第36項所述之方法,其中該磁性穿隧接面元件係爲一層狀堆疊結構, 包含以鎳鉻、鎳鐵或鎳鐵鉻組成之一下種晶層。 42. —種在基底上形成磁性隨機存取記憶體結構的方法,其步驟包括: ⑻形成一下電極,包括一位於該基底上之種晶層以及一位於該種晶層上之導電層; (b) 在該下電極上,形成具有複數側壁與一上表面結構之一磁性穿隧接面元件,該磁性 穿隧接面元件中係、有一 α -鉅氮組成之下種晶層;以及 (c) 在該磁性穿隧接面元件的該上表面上形成一上電極。 24 1275092 43. 如申請專利範圍第42項所述之方法,其中該α -鉅氮下種晶層之厚度係介在50至400埃, 且氮含量係介於25至35原子百分比。 44. 如申請專利範圍第42項所述之方法,其中該α -鉬氮下種晶層係爲一複合層,其係具有 一鎳鉻、鎳鐵或鎳鐵鉻組成之頂層,其厚度係介於40至100埃,以及一α-鉅氮底層,其厚度 係介於50至400埃。 45·如申請專利範圍第42項所述之方法,其中該α -鉬氮下種晶層係以含有氮電漿之反應性 濺鍍製程形成者。 46. —種在基底上形成穿隧磁阻(TMR)讀取頭的方法,其步驟包括: ⑻形成一底部遮蔽,其係由該基底上之一磁性層所構成,且該磁性層上係有一α-鉅 氮覆蓋層; P (b)在該底部遮蔽上,形成具有一上表面與複數側壁之一磁性穿隧接面元件;以及 (c)在該磁性穿隧接面元件的該上表面上形成一頂部遮蔽。 47. 如申請專利範圍第46項所述之方法,其中該α -鉬氮覆蓋層之厚度係介在50至400埃,且 氮含量係介於25至35原子百分比。 48·如申請專利範圍第46項所述之方法,其中該磁性穿隧接面元件具有一底層,其係爲一 種晶層,且該種晶層係以鎳鉻、鎳鐵或是鎳鐵鉻所組成。 49·如申請專利範圍第46項所述之方法,其中該磁性層係唯一鎳鐵層,其厚度約爲2微米。 50·如申請專利範圍第47項所述之方法,其中該α -鉅氮覆蓋層係以含有氮電漿之反應性滕 鍍製程形成者。 Φ 51· 一種在基底上形成穿隧磁阻讀取頭的方法,其步驟包括·· ⑻形成一*底部遮蔽,其係由一*基底上之一ί兹性層所構成; (b) 在該底部遮蔽上,形成具有複數側壁與一上表面結構之一磁性穿險接面元件,且該 磁性穿隧接面元件中係有一 α -鉅氮組成之種晶層形成於該底部遮蔽上;以及 (c) 在該磁性穿隧接面元件的該上表面上形成一頂部遮蔽。 52·如申請專利範圍第51項所述之方法,其中該α _鉅氮組成之種晶層之厚度係介在5〇至4〇〇 埃,且氮含量係介於25至35原子百分比。 53.如申請專利範圍第51項所述之方法,其中該種晶層係爲一複合層,包括一 鉅氮底 層,其厚度係介於50至3〇〇埃,以及頂層,其係爲鎳鉻層、鎳鐵層或鎳鐵鉻層,其厚度係介 於4〇至1〇〇埃。(a) forming a lower electrode comprising a seed layer on the substrate, a conductive layer on the seed layer, and an alpha-macrozide cap layer on the conductive layer; (b) Forming a magnetic tunneling junction member having a plurality of sidewalls and an upper surface; and (c) forming an upper electrode on the upper surface of the magnetic tunneling junction member. 37. The method of claim 36, wherein the alpha-macro-nitride layer has a thickness between 50 and 400 angstroms and a nitrogen content of between 25 and 35 atomic percent. 38. The method of claim 36, wherein the seed layer is a nickel-chromium composition having a thickness of 40 to 100 angstroms, and the conductive layer is composed of tantalum or copper and has a thickness of 50 To 1 〇〇〇. 39. The method of claim 36, wherein the seed layer is giant and has a thickness between 20 and 100 angstroms, and the conductive layer is composed of copper and has a thickness of between 50 and 1000 angstroms. 40. The method of claim 37, wherein the alpha-molybdenum nitrogen blanket is formed by a reactive sputtering process comprising a nitrogen plasma. 41. The method of claim 36, wherein the magnetic tunneling junction element is a layered stack comprising a seed layer of nickel chromium, nickel iron or nickel iron chromium. 42. A method of forming a magnetic random access memory structure on a substrate, the steps comprising: (8) forming a lower electrode comprising a seed layer on the substrate and a conductive layer on the seed layer; b) forming, on the lower electrode, a magnetic tunneling junction member having a plurality of sidewalls and an upper surface structure, wherein the magnetic tunneling junction member has a seed layer under the α-macro nitrogen composition; c) forming an upper electrode on the upper surface of the magnetic tunneling junction element. The method of claim 42, wherein the thickness of the α-basic nitrogen seed layer is between 50 and 400 angstroms and the nitrogen content is between 25 and 35 atomic percent. 44. The method of claim 42, wherein the α-molybdenum nitrogen seed layer is a composite layer having a top layer composed of nickel chromium, nickel iron or nickel iron chromium, the thickness of which is Between 40 and 100 angstroms, and an alpha-diazo bottom layer having a thickness of between 50 and 400 angstroms. 45. The method of claim 42, wherein the alpha-molybdenum nitrogen seed layer is formed by a reactive sputtering process comprising a nitrogen plasma. 46. A method of forming a tunneling magnetoresistive (TMR) readhead on a substrate, the steps comprising: (8) forming a bottom mask formed by a magnetic layer on the substrate, and the magnetic layer is An alpha-macro nitrogen blanket; P(b) is formed on the bottom shield to form a magnetic tunneling junction member having an upper surface and a plurality of sidewalls; and (c) on the magnetic tunneling junction member A top shield is formed on the surface. 47. The method of claim 46, wherein the alpha-molybdenum nitride coating layer has a thickness between 50 and 400 angstroms and a nitrogen content of between 25 and 35 atomic percent. The method of claim 46, wherein the magnetic tunneling junction element has a bottom layer which is a crystal layer and the crystal layer is nickel chromium, nickel iron or nickel iron chromium Composed of. 49. The method of claim 46, wherein the magnetic layer is the only nickel iron layer having a thickness of about 2 microns. 50. The method of claim 47, wherein the alpha-macro-nitride layer is formed by a reactive plating process comprising a nitrogen plasma. Φ 51· A method of forming a tunneling magnetoresistive readhead on a substrate, the steps comprising: (8) forming a * bottom mask, which is composed of a layer on a substrate; (b) Forming a magnetic perforating junction element having a plurality of sidewalls and an upper surface structure, and forming a seed layer of α-macro nitrogen in the magnetic tunneling junction element on the bottom shield; And (c) forming a top shield on the upper surface of the magnetic tunneling junction element. 52. The method of claim 51, wherein the thickness of the seed layer of the alpha-macro nitrogen is between 5 and 4 angstroms and the nitrogen content is between 25 and 35 atomic percent. 53. The method of claim 51, wherein the seed layer is a composite layer comprising a giant nitrogen base layer having a thickness of 50 to 3 angstroms and a top layer of nickel A chromium layer, a nickel iron layer or a nickel iron chromium layer having a thickness of 4 to 1 angstrom. 25 1275092 Μ.如申請專利範圍第51項所述之方法,其中該磁性層係爲鎳鐵層,其厚度約爲2微米。 55.如申請專利範圍第52項所述之方法,其中該α-鉅氮覆蓋層係以含有氮電漿之 反應性濺鍍製程形成者。 26The method of claim 51, wherein the magnetic layer is a nickel iron layer having a thickness of about 2 microns. 55. The method of claim 52, wherein the alpha-macro-nitride layer is formed by a reactive sputtering process comprising a nitrogen plasma. 26
TW094121669A 2004-06-30 2005-06-28 A novel underlayer for high performance magnetic tunneling junction MRAM TWI275092B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/881,445 US7611912B2 (en) 2004-06-30 2004-06-30 Underlayer for high performance magnetic tunneling junction MRAM

Publications (2)

Publication Number Publication Date
TW200614232A TW200614232A (en) 2006-05-01
TWI275092B true TWI275092B (en) 2007-03-01

Family

ID=35241294

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094121669A TWI275092B (en) 2004-06-30 2005-06-28 A novel underlayer for high performance magnetic tunneling junction MRAM

Country Status (5)

Country Link
US (3) US7611912B2 (en)
EP (1) EP1615226B1 (en)
JP (2) JP5153061B2 (en)
KR (1) KR101166356B1 (en)
TW (1) TWI275092B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447726B (en) * 2010-04-02 2014-08-01 Ind Tech Res Inst Magnetic random access memory

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988081B1 (en) * 2003-04-23 2010-10-18 삼성전자주식회사 Magnetic Random Access Memory comprising middle oxide layer formed with hetero-method and method of manufacturing the same
US7319262B2 (en) * 2004-08-13 2008-01-15 Taiwan Semiconductor Manufacturing Company, Ltd. MRAM over sloped pillar
US7672094B2 (en) * 2005-01-18 2010-03-02 Hitachi Global Storage Technologies Netherlands B.V. TMR sensor having an under-layer treated with nitrogen for increased magnetoresistance
US7230845B1 (en) * 2005-07-29 2007-06-12 Grandis, Inc. Magnetic devices having a hard bias field and magnetic memory devices using the magnetic devices
US7265404B2 (en) * 2005-08-30 2007-09-04 Magic Technologies, Inc. Bottom conductor for integrated MRAM
US20070054450A1 (en) * 2005-09-07 2007-03-08 Magic Technologies, Inc. Structure and fabrication of an MRAM cell
US7777261B2 (en) * 2005-09-20 2010-08-17 Grandis Inc. Magnetic device having stabilized free ferromagnetic layer
US7880249B2 (en) * 2005-11-30 2011-02-01 Magic Technologies, Inc. Spacer structure in MRAM cell and method of its fabrication
JP4786331B2 (en) 2005-12-21 2011-10-05 株式会社東芝 Method for manufacturing magnetoresistive element
JP4514721B2 (en) 2006-02-09 2010-07-28 株式会社東芝 Magnetoresistive element manufacturing method, magnetoresistive element, magnetoresistive head, magnetic recording / reproducing apparatus, and magnetic storage apparatus
JP2007299880A (en) * 2006-04-28 2007-11-15 Toshiba Corp Magnetoresistance effect element and its manufacturing method
JP4550777B2 (en) 2006-07-07 2010-09-22 株式会社東芝 Magnetoresistive element manufacturing method, magnetoresistive element, magnetic head, magnetic recording / reproducing apparatus, and magnetic memory
JP5044157B2 (en) * 2006-07-11 2012-10-10 株式会社東芝 Magnetoresistive element, magnetic head, and magnetic reproducing apparatus
US7838436B2 (en) * 2006-09-28 2010-11-23 Magic Technologies, Inc. Bottom electrode for MRAM device and method to fabricate it
JP2008211057A (en) 2007-02-27 2008-09-11 Toshiba Corp Magnetic random access memory
US8335105B2 (en) * 2007-03-07 2012-12-18 Headway Technologies, Inc. Magnetic memory cell
JP4388093B2 (en) 2007-03-27 2009-12-24 株式会社東芝 Magnetoresistive element, magnetic head, magnetic recording / reproducing apparatus
US8164862B2 (en) * 2008-04-02 2012-04-24 Headway Technologies, Inc. Seed layer for TMR or CPP-GMR sensor
JP5203844B2 (en) * 2008-08-07 2013-06-05 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US7894248B2 (en) * 2008-09-12 2011-02-22 Grandis Inc. Programmable and redundant circuitry based on magnetic tunnel junction (MTJ)
US8482966B2 (en) * 2008-09-24 2013-07-09 Qualcomm Incorporated Magnetic element utilizing protective sidewall passivation
JP5039006B2 (en) 2008-09-26 2012-10-03 株式会社東芝 Magnetoresistive element manufacturing method, magnetoresistive element, magnetic head assembly, and magnetic recording / reproducing apparatus
JP5039007B2 (en) 2008-09-26 2012-10-03 株式会社東芝 Magnetoresistive element manufacturing method, magnetoresistive element, magnetic head assembly, and magnetic recording / reproducing apparatus
JP2010080839A (en) 2008-09-29 2010-04-08 Toshiba Corp Method of manufacturing magneto-resistance effect device, the magneto-resistance effect device, magnetic head assembly, and magnetic recording and reproducing apparatus
KR101255474B1 (en) * 2008-12-10 2013-04-16 가부시키가이샤 히타치세이사쿠쇼 Magnetoresistance effect element and magnetic memory cell and magnetic random access memory using same
US8553449B2 (en) * 2009-01-09 2013-10-08 Micron Technology, Inc. STT-MRAM cell structures
US7833806B2 (en) * 2009-01-30 2010-11-16 Everspin Technologies, Inc. Structure and method for fabricating cladded conductive lines in magnetic memories
US8120126B2 (en) 2009-03-02 2012-02-21 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
US8735179B2 (en) * 2009-08-27 2014-05-27 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
US8492858B2 (en) * 2009-08-27 2013-07-23 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
KR101789837B1 (en) 2009-09-17 2017-10-25 아이아이아이 홀딩스 3, 엘엘씨 Magnetoresistive element and non-volatile semiconductor memory device using same
US8828821B2 (en) * 2009-09-18 2014-09-09 Intermolecular, Inc. Fabrication of semiconductor stacks with ruthenium-based materials
US8912012B2 (en) * 2009-11-25 2014-12-16 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
US8513749B2 (en) * 2010-01-14 2013-08-20 Qualcomm Incorporated Composite hardmask architecture and method of creating non-uniform current path for spin torque driven magnetic tunnel junction
JP5476185B2 (en) * 2010-03-31 2014-04-23 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
US8922956B2 (en) * 2010-06-04 2014-12-30 Seagate Technology Llc Tunneling magneto-resistive sensors with buffer layers
CN102376871B (en) * 2010-08-19 2013-12-11 中芯国际集成电路制造(上海)有限公司 Magnetic tunnel junction memory unit and manufacturing method thereof
JP5782715B2 (en) * 2011-01-07 2015-09-24 ソニー株式会社 Storage element and storage device
JP5736836B2 (en) * 2011-02-23 2015-06-17 Tdk株式会社 Spin conduction type magnetic sensor
US8541855B2 (en) * 2011-05-10 2013-09-24 Magic Technologies, Inc. Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
US8420531B2 (en) 2011-06-21 2013-04-16 International Business Machines Corporation Enhanced diffusion barrier for interconnect structures
KR101870873B1 (en) * 2011-08-04 2018-07-20 에스케이하이닉스 주식회사 Method for fabricating magnetic tunnel junction device
US8895323B2 (en) 2011-12-19 2014-11-25 Lam Research Corporation Method of forming a magnetoresistive random-access memory device
KR101617113B1 (en) * 2011-12-20 2016-04-29 인텔 코포레이션 Method for reducing size and center positioning of magnetic memory element contacts
KR20130093394A (en) 2012-02-14 2013-08-22 삼성전자주식회사 Resistive memory device performing write operation using multi-mode switching current, memory system including the same, and method of writing data in a resistive memory device
US20140252439A1 (en) * 2013-03-08 2014-09-11 T3Memory, Inc. Mram having spin hall effect writing and method of making the same
US10096767B2 (en) * 2013-03-09 2018-10-09 Taiwan Semiconductor Manufacturing Company, Ltd. Elongated magnetoresistive tunnel junction structure
US8743507B1 (en) 2013-03-12 2014-06-03 Seagate Technology Llc Seed trilayer for magnetic element
US10522591B2 (en) * 2013-03-13 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Integration of magneto-resistive random access memory and capacitor
JP6161026B2 (en) 2013-03-14 2017-07-12 株式会社東芝 Magnetic memory
US9529060B2 (en) * 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
KR102214798B1 (en) 2014-02-05 2021-02-10 삼성전자주식회사 Package substrate and semiconductor package including the same
US9368136B2 (en) * 2014-02-27 2016-06-14 Seagate Technology Llc Magnetoresistive sensor having synthetic antiferromagnetic layer in top and bottom shields
KR102255436B1 (en) * 2014-05-27 2021-05-24 한양대학교 산학협력단 Magnetic tunnel junction device and method of manufacturing the same
US9437811B2 (en) * 2014-12-05 2016-09-06 Shanghai Ciyu Information Technologies Co., Ltd. Method for making a magnetic random access memory element with small dimension and high quality
US9728712B2 (en) 2015-04-21 2017-08-08 Spin Transfer Technologies, Inc. Spin transfer torque structure for MRAM devices having a spin current injection capping layer
US10468590B2 (en) * 2015-04-21 2019-11-05 Spin Memory, Inc. High annealing temperature perpendicular magnetic anisotropy structure for magnetic random access memory
US9853206B2 (en) 2015-06-16 2017-12-26 Spin Transfer Technologies, Inc. Precessional spin current structure for MRAM
US9508365B1 (en) 2015-06-24 2016-11-29 Western Digital (Fremont), LLC. Magnetic reader having a crystal decoupling structure
US9773974B2 (en) 2015-07-30 2017-09-26 Spin Transfer Technologies, Inc. Polishing stop layer(s) for processing arrays of semiconductor elements
US20170069835A1 (en) * 2015-09-09 2017-03-09 Kabushiki Kaisha Toshiba Method of manufacturing magnetoresistive memory device
KR102465539B1 (en) 2015-09-18 2022-11-11 삼성전자주식회사 Semiconductor device having a magnetic tunnel junction assembly, and Mehtod for fabricating the same
WO2017052494A1 (en) * 2015-09-21 2017-03-30 Intel Corporation Flash anneal of a spin hall effect switched magnetic tunnel junction device to reduce resistivity of metal interconnects
US9893271B2 (en) 2015-10-15 2018-02-13 Samsung Electronics Co., Ltd. Semiconductor memory device
US9406617B1 (en) 2015-11-19 2016-08-02 International Business Machines Corporation Structure and process for W contacts
US10115892B2 (en) 2015-11-23 2018-10-30 Headway Technologies, Inc. Multilayer structure for reducing film roughness in magnetic devices
US9780299B2 (en) 2015-11-23 2017-10-03 Headway Technologies, Inc. Multilayer structure for reducing film roughness in magnetic devices
US10141498B2 (en) * 2015-12-10 2018-11-27 Everspin Technologies, Inc. Magnetoresistive stack, seed region thereof and method of manufacturing same
US10483320B2 (en) 2015-12-10 2019-11-19 Everspin Technologies, Inc. Magnetoresistive stack with seed region and method of manufacturing the same
US9741926B1 (en) 2016-01-28 2017-08-22 Spin Transfer Technologies, Inc. Memory cell having magnetic tunnel junction and thermal stability enhancement layer
US10361361B2 (en) * 2016-04-08 2019-07-23 International Business Machines Corporation Thin reference layer for STT MRAM
US9940956B1 (en) 2016-06-30 2018-04-10 Western Digital (Fremont), Llc Apparatus and method for reducing corrosion in capping layer of magnetic recording reader
KR102511914B1 (en) 2016-08-04 2023-03-21 삼성전자주식회사 Magnetic memory device and method for manufacturing the same
US9768118B1 (en) 2016-09-19 2017-09-19 International Business Machines Corporation Contact having self-aligned air gap spacers
US10586914B2 (en) * 2016-10-14 2020-03-10 Applied Materials, Inc. Method of forming ultra-smooth bottom electrode surface for depositing magnetic tunnel junctions
US10672976B2 (en) 2017-02-28 2020-06-02 Spin Memory, Inc. Precessional spin current structure with high in-plane magnetization for MRAM
US10665777B2 (en) 2017-02-28 2020-05-26 Spin Memory, Inc. Precessional spin current structure with non-magnetic insertion layer for MRAM
US10096769B2 (en) 2017-03-10 2018-10-09 International Business Machines Corporation Bottom electrode for MRAM applications
US10297746B2 (en) 2017-04-05 2019-05-21 Taiwan Semiconductor Manufacturing Company, Ltd. Post treatment to reduce shunting devices for physical etching process
US10069064B1 (en) 2017-07-18 2018-09-04 Headway Technologies, Inc. Memory structure having a magnetic tunnel junction (MTJ) self-aligned to a T-shaped bottom electrode, and method of manufacturing the same
CN108336223B (en) * 2017-12-08 2024-03-22 北京航空航天大学青岛研究院 Memory device, preparation method of memory device and electronic equipment
US10360961B1 (en) 2017-12-29 2019-07-23 Spin Memory, Inc. AC current pre-charge write-assist in orthogonal STT-MRAM
US10339993B1 (en) 2017-12-30 2019-07-02 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic assist layers for free layer switching
US10319900B1 (en) 2017-12-30 2019-06-11 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with precessional spin current layer having a modulated moment density
US10468588B2 (en) 2018-01-05 2019-11-05 Spin Memory, Inc. Perpendicular magnetic tunnel junction device with skyrmionic enhancement layers for the precessional spin current magnetic layer
US10622047B2 (en) 2018-03-23 2020-04-14 Taiwan Semiconductor Manufacturing Company, Ltd. Free layer structure in magnetic random access memory (MRAM) for Mo or W perpendicular magnetic anisotropy (PMA) enhancing layer
US10475987B1 (en) * 2018-05-01 2019-11-12 Taiwan Semiconductor Manufacturing Company, Ltd. Method for fabricating a magnetic tunneling junction (MTJ) structure
US10944050B2 (en) 2018-05-08 2021-03-09 Applied Materials, Inc. Magnetic tunnel junction structures and methods of manufacture thereof
US10515903B2 (en) * 2018-05-18 2019-12-24 International Business Machines Corporation Selective CVD alignment-mark topography assist for non-volatile memory
US10522752B1 (en) 2018-08-22 2019-12-31 Taiwan Semiconductor Manufacturing Company, Ltd. Magnetic layer for magnetic random access memory (MRAM) by moment enhancement
US10916503B2 (en) 2018-09-11 2021-02-09 International Business Machines Corporation Back end of line metallization structure
CN110970350A (en) * 2018-09-28 2020-04-07 长鑫存储技术有限公司 Method for preparing a diffusion barrier comprising an α -Ta layer and composite diffusion barrier
US10580827B1 (en) 2018-11-16 2020-03-03 Spin Memory, Inc. Adjustable stabilizer/polarizer method for MRAM with enhanced stability and efficient switching
US10833122B2 (en) 2019-01-07 2020-11-10 International Business Machines Corporation Bottom electrode and dielectric structure for MRAM applications
KR102657361B1 (en) * 2019-07-05 2024-04-17 삼성전자주식회사 Magnetic memory device
US20230044333A1 (en) * 2021-08-04 2023-02-09 International Business Machines Corporation Replacement bottom electrode structure for mram devices
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT341650B (en) * 1975-05-26 1978-02-27 Knetsch Ges M B H Ing ACUPRESSURE DEVICE FOR POINTLY PRESSURE TRANSFER TO A FINGER
EP0024863B1 (en) 1979-08-31 1983-05-25 Fujitsu Limited A tantalum thin film capacitor and process for producing the same
WO1992007968A1 (en) * 1990-10-26 1992-05-14 International Business Machines Corporation STRUCTURE AND METHOD OF MAKING ALPHA-Ta IN THIN FILMS
JPH04356728A (en) * 1991-04-04 1992-12-10 Hiroyasu Fujimori Production of magnetic recording medium
JP2741814B2 (en) * 1991-12-26 1998-04-22 シャープ株式会社 Method for producing tantalum metal thin film
US6005600A (en) * 1996-10-18 1999-12-21 Silcon Graphics, Inc. High-performance player for distributed, time-based media
US6114719A (en) * 1998-05-29 2000-09-05 International Business Machines Corporation Magnetic tunnel junction memory cell with in-stack biasing of the free ferromagnetic layer and memory array using the cell
JP2000031494A (en) * 1998-07-08 2000-01-28 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacture thereof
US6242770B1 (en) * 1998-08-31 2001-06-05 Gary Bela Bronner Diode connected to a magnetic tunnel junction and self aligned with a metallic conductor and method for forming the same
US6372301B1 (en) * 1998-12-22 2002-04-16 Applied Materials, Inc. Method of improving adhesion of diffusion layers on fluorinated silicon dioxide
US6541371B1 (en) * 1999-02-08 2003-04-01 Novellus Systems, Inc. Apparatus and method for depositing superior Ta(N)/copper thin films for barrier and seed applications in semiconductor processing
JP3562628B2 (en) * 1999-06-24 2004-09-08 日本電気株式会社 Diffusion barrier film, multilayer wiring structure, and method of manufacturing the same
US6205052B1 (en) * 1999-10-21 2001-03-20 Motorola, Inc. Magnetic element with improved field response and fabricating method thereof
US6473336B2 (en) * 1999-12-16 2002-10-29 Kabushiki Kaisha Toshiba Magnetic memory device
JP2001303240A (en) * 2000-04-26 2001-10-31 Toshiba Corp Sputtering target
US6580140B1 (en) * 2000-09-18 2003-06-17 International Business Machines Corporation Metal oxide temperature monitor
US6714387B1 (en) * 2001-01-08 2004-03-30 Headway Technologies, Inc. Spin valve head with reduced element gap
JP2002314166A (en) * 2001-04-16 2002-10-25 Nec Corp Magnetoresistance effect element and its manufacturing method
US6614630B2 (en) * 2001-04-23 2003-09-02 Headway Technologies, Inc. Top spin valve heads for ultra-high recording density
KR100403313B1 (en) * 2001-05-22 2003-10-30 주식회사 하이닉스반도체 Magnetic random access memory using bipolar junction transistor and Method for forming the same
DE10128964B4 (en) * 2001-06-15 2012-02-09 Qimonda Ag Digital magnetic memory cell device
JP4329505B2 (en) * 2001-06-19 2009-09-09 パナソニック株式会社 Magnetic memory device using magnetic memory
FR2829868A1 (en) * 2001-09-20 2003-03-21 Centre Nat Rech Scient Magnetic memory with spin-polarized current writing for storage and reading of data in electronic systems includes a free magnetic layer made from an amorphous or nanocrystalline alloy of a rare earth and a transition metal
WO2003036734A2 (en) * 2001-10-12 2003-05-01 Sony Corp Magnetoresistance effect element, magetic memory element, magnetic memory device, and their manufacturing method
JP2003124541A (en) * 2001-10-12 2003-04-25 Nec Corp Exchange coupling film, magnetoresistive effect element, magnetic head, and magnetic random access memory
US6518588B1 (en) * 2001-10-17 2003-02-11 International Business Machines Corporation Magnetic random access memory with thermally stable magnetic tunnel junction cells
JP3588093B2 (en) * 2001-10-25 2004-11-10 Tdk株式会社 Magnetoresistive element, magnetic head using the same, and head suspension assembly
JP2003183838A (en) * 2001-12-13 2003-07-03 Hitachi Ltd Oxide film-forming apparatus and magnetic recording and reproducing device
JP2003198002A (en) * 2001-12-25 2003-07-11 Fujitsu Ltd Magnetoresistive effect film and ferromagnetic laminated structure
US6548849B1 (en) * 2002-01-31 2003-04-15 Sharp Laboratories Of America, Inc. Magnetic yoke structures in MRAM devices to reduce programming power consumption and a method to make the same
JP2003258335A (en) * 2002-03-04 2003-09-12 Matsushita Electric Ind Co Ltd Manufacturing method for tunneling magneto resistive effect device
JP4100025B2 (en) * 2002-04-09 2008-06-11 ソニー株式会社 Magnetoresistive element and magnetic memory device
JP2003318461A (en) * 2002-04-22 2003-11-07 Matsushita Electric Ind Co Ltd Magnetoresistance effect element, magnetic head, magnetic memory and magnetic recorder employing it
US6794695B2 (en) * 2002-04-29 2004-09-21 Hewlett-Packard Development Company, L.P. Magneto resistive storage device having a magnetic field sink layer
JP2003324187A (en) 2002-05-01 2003-11-14 Sony Corp Method for manufacturing magnetic memory device and magnetic memory device
US6704220B2 (en) * 2002-05-03 2004-03-09 Infineon Technologies Ag Layout for thermally selected cross-point MRAM cell
US6744608B1 (en) * 2002-05-14 2004-06-01 Western Digital (Fremont), Inc. Method and system for making TMR junctions
JP2003332650A (en) * 2002-05-16 2003-11-21 Sony Corp Tunnel magnetoresistive element, its manufacturing method, magnetic memory device, and its manufacturing method
US6635546B1 (en) * 2002-05-16 2003-10-21 Infineon Technologies Ag Method and manufacturing MRAM offset cells in a damascene structure
JP2003335520A (en) * 2002-05-21 2003-11-25 Japan Science & Technology Corp METHOD FOR PRODUCING TITANIUM OXIDE WHISKER BY OXIDIZING Ti-V ALLOY FILM OR Ti-Mo ALLOY FILM
GB0213420D0 (en) * 2002-06-12 2002-07-24 Koninkl Philips Electronics Nv In-Pixel memory for display devices
US20030231437A1 (en) * 2002-06-17 2003-12-18 Childress Jeffrey R. Current-perpendicular-to-plane magnetoresistive device with oxidized free layer side regions and method for its fabrication
JP2004079936A (en) * 2002-08-22 2004-03-11 Fujitsu Ltd Laminated film having ferromagnetic tunnel junction, manufacturing method thereof, magnetic sensor, magnetic recorder, and magnetic memory unit
JP4065787B2 (en) * 2002-08-30 2008-03-26 株式会社日立グローバルストレージテクノロジーズ Magnetic head and magnetic recording / reproducing apparatus
US6831312B2 (en) * 2002-08-30 2004-12-14 Freescale Semiconductor, Inc. Amorphous alloys for magnetic devices
US6838740B2 (en) * 2002-09-27 2005-01-04 Grandis, Inc. Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6703654B1 (en) * 2003-02-20 2004-03-09 Headway Technologies, Inc. Bottom electrode for making a magnetic tunneling junction (MTJ)
US6952364B2 (en) * 2003-03-03 2005-10-04 Samsung Electronics Co., Ltd. Magnetic tunnel junction structures and methods of fabrication
US7189583B2 (en) * 2003-07-02 2007-03-13 Micron Technology, Inc. Method for production of MRAM elements
KR100548997B1 (en) * 2003-08-12 2006-02-02 삼성전자주식회사 Magnetic tunnel junction structures having a laminated free layer and magnetic random access memory cells employing the same
US7602000B2 (en) * 2003-11-19 2009-10-13 International Business Machines Corporation Spin-current switched magnetic memory element suitable for circuit integration and method of fabricating the memory element
US7083988B2 (en) * 2004-01-26 2006-08-01 Micron Technology, Inc. Magnetic annealing sequences for patterned MRAM synthetic antiferromagnetic pinned layers
US6992359B2 (en) * 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US7122852B2 (en) 2004-05-12 2006-10-17 Headway Technologies, Inc. Structure/method to fabricate a high performance magnetic tunneling junction MRAM
US6960480B1 (en) 2004-05-19 2005-11-01 Headway Technologies, Inc. Method of forming a magnetic tunneling junction (MTJ) MRAM device and a tunneling magnetoresistive (TMR) read head
US7372116B2 (en) * 2004-06-16 2008-05-13 Hitachi Global Storage Technologies Netherlands B.V. Heat assisted switching in an MRAM cell utilizing the antiferromagnetic to ferromagnetic transition in FeRh

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI447726B (en) * 2010-04-02 2014-08-01 Ind Tech Res Inst Magnetic random access memory

Also Published As

Publication number Publication date
US20060002184A1 (en) 2006-01-05
TW200614232A (en) 2006-05-01
US8673654B2 (en) 2014-03-18
US7611912B2 (en) 2009-11-03
EP1615226A3 (en) 2010-08-18
JP2013058768A (en) 2013-03-28
US7999360B2 (en) 2011-08-16
US20100047929A1 (en) 2010-02-25
US20100044680A1 (en) 2010-02-25
KR101166356B1 (en) 2012-07-23
JP5153061B2 (en) 2013-02-27
JP2006019743A (en) 2006-01-19
EP1615226B1 (en) 2012-11-14
EP1615226A2 (en) 2006-01-11
KR20060049265A (en) 2006-05-18
JP5674744B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
TWI275092B (en) A novel underlayer for high performance magnetic tunneling junction MRAM
JP5069034B2 (en) Magnetic tunnel junction element and method for forming the same
US7497007B2 (en) Process of manufacturing a TMR device
KR101142820B1 (en) A novel capping structure for enhancing dR/R of the MTJ device
KR100875844B1 (en) New buffer (seed) layer for fabricating high performance magnetic tunneling junction MRM
JP5750211B2 (en) TMR element and method for forming the same
EP2366199B1 (en) Magnetic memory cells with radial barrier
US8339754B2 (en) TMR or CPP structure with improved exchange properties
JP5100403B2 (en) Magnetic tunnel junction element and manufacturing method thereof
KR20010050902A (en) Magnetic element with improved field response and fabricating method thereof
JP4560847B2 (en) Magnetoresistive random access memory

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees