JP2003183838A - Oxide film-forming apparatus and magnetic recording and reproducing device - Google Patents

Oxide film-forming apparatus and magnetic recording and reproducing device

Info

Publication number
JP2003183838A
JP2003183838A JP2001379545A JP2001379545A JP2003183838A JP 2003183838 A JP2003183838 A JP 2003183838A JP 2001379545 A JP2001379545 A JP 2001379545A JP 2001379545 A JP2001379545 A JP 2001379545A JP 2003183838 A JP2003183838 A JP 2003183838A
Authority
JP
Japan
Prior art keywords
sample
oxide film
thin film
metal thin
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001379545A
Other languages
Japanese (ja)
Inventor
Kazuhiro Ueda
和浩 上田
Hideto Momose
秀人 百生
Tatsumi Hirano
辰巳 平野
Takao Imagawa
尊雄 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001379545A priority Critical patent/JP2003183838A/en
Publication of JP2003183838A publication Critical patent/JP2003183838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide film-forming apparatus for forming and controlling an oxide film having a thickness on the order of nanometer, which is the main element of a magnetoresistive sensor. <P>SOLUTION: The metal oxide film-forming apparatus having at least one metal thin film-forming chamber and at least one metal thin film-oxidizing chamber has an infrared source, a sample-supporting board, a spectroscope, an infrared detector, an infrared spectrum-treating means, a system for vacuum- transporting the sample from the metal thin film-oxidizing chamber to the sample-supporting board, a means for applying an infrared ray at an angle of incidence of 0.5-20° against the surface of the sample on the sample-supporting board wherein the sample is obtained by oxidizing in the metal thin film- oxidizing chamber, a metal thin film formed in the metal thin film-forming camber, and a means for measuring the infrared reflectance of the sample. Based on the measured reflectance, the thickness and/or the binding state of the oxide film on the metal thin film is controlled. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に1層以上
形成された金属薄膜を酸化し、赤外光の反射率を測定
し、金属酸化膜の膜厚や金属原子と酸素原子の結合状態
を管理する酸化膜形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention oxidizes a metal thin film having one or more layers formed on a substrate, measures the reflectance of infrared light, and measures the film thickness of the metal oxide film and the bond between metal atoms and oxygen atoms. The present invention relates to an oxide film forming device for managing the state.

【0002】[0002]

【従来の技術】磁気ファイルの分野では、絶縁層、金属
層を積層しパターン形成により素子を作成している。素
子の高機能、高性能化を目指して、形成される膜は極薄
膜化と共に積層される膜数も増加している。さらに、多
数積層膜中にnm膜厚の酸化膜を形成することによる高性
能化が検討されている。このようなnm酸化膜の膜厚や金
属原子と酸素原子の結合は素子の特性に大きく影響する
ため、nm酸化膜の膜厚管理、制御方法が必要となってい
る。
2. Description of the Related Art In the field of magnetic files, an element is formed by laminating an insulating layer and a metal layer and forming a pattern. Aiming at higher performance and higher performance of the device, the number of films to be formed is increasing as the film to be formed becomes extremely thin. Further, improvement of performance by forming an oxide film having a thickness of nm in a multi-layered film is being studied. Since the thickness of the nm oxide film and the bond between metal atoms and oxygen atoms greatly affect the characteristics of the device, a method of controlling and controlling the thickness of the nm oxide film is required.

【0003】「固体表面−微小領域の解析・評価技術」
に記載されているように、赤外光の吸収スペクトルは有
機物等の結合状態を知る有力な手法である。特に高感度
反射吸収法は平滑な金属基版上の有機薄膜の赤外吸収ス
ペクトルを測定する有効な方法である。高感度反射(吸
収)法は、光の電場ベクトルの振動方向が入射面に対し
平行なP偏光を用いる。P偏光の光が基板表面で反射する
と、入射光と反射光の電場ベクトルが合成され、強い定
在波が形成されるため、S偏光(光の電場ベクトルの振
動方向が入射面に対して垂直な光)が反射した場合と比
較して、感度が増大する。P偏光とS偏光とでは最大で5
桁程度、吸光度に差が生じる。またP偏光は透過法と比
較しても1桁から2桁程度の感度増大が得られる。
"Solid surface-micro area analysis / evaluation technology"
As described in, the absorption spectrum of infrared light is a powerful method to know the binding state of organic substances and the like. Particularly, the high-sensitivity reflection absorption method is an effective method for measuring the infrared absorption spectrum of an organic thin film on a smooth metal substrate. The high-sensitivity reflection (absorption) method uses P-polarized light in which the vibration direction of the electric field vector of light is parallel to the incident surface. When P-polarized light is reflected on the substrate surface, the electric field vectors of the incident light and the reflected light are combined to form a strong standing wave, so S-polarized light (the oscillation direction of the electric field vector of light is perpendicular to the incident surface). The sensitivity is increased as compared with the case where the light is reflected. Maximum of 5 for P-polarized light and S-polarized light
There is a difference in absorbance by several orders of magnitude. In addition, P-polarized light can increase sensitivity by about one to two digits compared to the transmission method.

【0004】しかしながら、nm薄膜の吸収を測定するこ
とは薄膜の吸収が非常に小さいことから、前記反射吸収
法を用いても困難と考えられていた。最近になって、Ap
plied Physics Letters Vol.78 pp.3103で、nm酸化膜を
赤外光を用いて評価した結果が報告された。この論文
は、シリコン基板上に約50nmのコバルトを成膜し、その
上に膜厚0.5〜2.5nmのアルミニウムを積層した後、アル
ミニウムをプラズマ酸化し、最後に4nmのチタンをキャ
ップ膜として成膜した試料に、放射光を照射し、試料か
らの赤外光の反射率を測定し、酸化アルミニウムの膜厚
を求めている。
However, it has been considered difficult to measure the absorption of a nm thin film even by using the above-mentioned reflection absorption method because the absorption of the thin film is very small. Recently, Ap
In plied Physics Letters Vol.78 pp.3103, the result of evaluating the nm oxide film using infrared light was reported. In this paper, about 50 nm cobalt is deposited on a silicon substrate, 0.5-2.5 nm thick aluminum is stacked on top of it, then aluminum is plasma-oxidized, and finally 4 nm titanium is deposited as a cap film. The sample is irradiated with radiant light and the reflectance of infrared light from the sample is measured to determine the film thickness of aluminum oxide.

【0005】[0005]

【発明が解決しようとする課題】Applied Physics Lett
ers Vol.78 pp.3103に記載された従来技術は放射光を用
いているため、酸化膜形成装置に組み込むことは困難で
ある。また、従来技術は測定する金属酸化膜の下に約50
nmのコバルト膜を置くことで、金属酸化膜より下に金属
基板があるのと同じ状態にして測定している。しかし、
実際の素子を作るプロセスでは、50nmのコバルト膜のよ
うな厚い金属膜を成膜するプロセスを追加することはで
きない。
[Problems to be Solved by the Invention] Applied Physics Lett
The prior art described in ers Vol.78 pp.3103 uses synchrotron radiation, so it is difficult to incorporate it into an oxide film forming apparatus. In addition, the conventional technique has about 50 below the metal oxide film to be measured.
By placing a cobalt film of nm, the measurement is performed in the same state as when the metal substrate is below the metal oxide film. But,
It is not possible to add a process of forming a thick metal film such as a 50 nm cobalt film in the process of making an actual device.

【0006】さらに、前記従来技術では金属酸化膜形成
後、酸化が進行しないようにキャップ膜を形成する必要
が有る。キャップ膜の酸化の影響なく金属酸化膜を測定
することは困難である。また、金属酸化膜の膜厚測定
後、再度酸化する等のプロセスの追加は不可能である。
Further, in the above-mentioned conventional technique, after forming the metal oxide film, it is necessary to form a cap film so that the oxidation does not proceed. It is difficult to measure a metal oxide film without being affected by the oxidation of the cap film. Further, it is impossible to add a process such as re-oxidizing after measuring the thickness of the metal oxide film.

【0007】そのうえ、磁気記録再生装置に用いる磁気
抵抗型センサは、酸化膜を用いて高性能化しているの
で、酸化膜の膜厚や結合状態が性能に大きく影響する。
このため酸化膜形成過程において、酸化膜の膜厚や結合
状態の制御、管理をすることが重要である。
In addition, since the magnetoresistive sensor used in the magnetic recording / reproducing apparatus has been improved in performance by using an oxide film, the film thickness of the oxide film and the coupling state greatly affect the performance.
Therefore, it is important to control and manage the thickness of the oxide film and the bonding state in the oxide film formation process.

【0008】そこで、本発明の目的は、金属酸化膜の膜
厚と結合状態の評価をオンプロセスで可能とする酸化膜
形成装置を提供することにある。また、該酸化膜形成装
置によって製造される磁気抵抗型センサを用いた磁気記
録再生装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an oxide film forming apparatus which enables on-process evaluation of the film thickness and bonding state of a metal oxide film. Another object of the present invention is to provide a magnetic recording / reproducing apparatus using a magnetoresistive sensor manufactured by the oxide film forming apparatus.

【0009】[0009]

【課題を解決するための手段】本発明の金属酸化膜形成
装置は、1つ以上の金属薄膜成膜室と1つ以上の金属薄
膜酸化室を有する成膜装置において、赤外光源、試料支
持台、分光器、赤外光検出器、赤外光スペクトルを処理
する手段、及び前記金属薄膜酸化室から前記試料支持台
に試料を真空搬送する機構、前記金属薄膜成膜室で成膜
した金属薄膜を前記金属薄膜酸化室で酸化した試料を、
前記試料支持台において、該試料表面に対して赤外光を
0.5゜から20゜の角度範囲で入射する手段、及び試料か
らの赤外光の反射率を測定する手段を有し、その反射率
から金属薄膜上の酸化膜の膜厚及び/又は酸化膜の結合
状態を管理することを特徴とする。
An apparatus for forming a metal oxide film according to the present invention is an apparatus for forming an infrared light source and a sample, which comprises one or more metal thin film forming chambers and one or more metal thin film oxidizing chambers. Table, spectroscope, infrared light detector, means for processing infrared light spectrum, mechanism for vacuum-transporting sample from the metal thin film oxidation chamber to the sample support, metal deposited in the metal thin film deposition chamber A sample obtained by oxidizing a thin film in the metal thin film oxidation chamber,
In the sample support table, infrared light is applied to the sample surface.
It has means for incidence in the angle range of 0.5 ° to 20 °, and means for measuring the reflectance of infrared light from the sample. From the reflectance, the thickness of the oxide film on the metal thin film and / or the oxide film It is characterized by managing the combined state.

【0010】本発明において、赤外光を試料表面に対し
て、0.5゜から20゜の角度範囲で入射する理由は、0.5゜
から20゜の角度範囲はP偏光の吸収が大きく、透過法と比
較して1桁から2桁の感度増大の効果があることによ
る。特に0.5゜から2゜の角度範囲はP偏光の吸収が最大
となるためより好ましい。このように、反射吸収法で薄
膜を評価する場合、試料からの吸収は入射角度に大きく
依存する。このため、赤外吸収量を定量評価するために
は、試料と入射赤外光とのなす角度を高精度に制御する
必要がある。
In the present invention, the reason why infrared light is incident on the surface of the sample in the angle range of 0.5 ° to 20 ° is that absorption of P-polarized light is large in the angle range of 0.5 ° to 20 °, which is different from the transmission method. This is due to the effect of increasing the sensitivity by one to two digits in comparison. Particularly, the angle range of 0.5 ° to 2 ° is more preferable because the absorption of P-polarized light is maximized. Thus, when a thin film is evaluated by the reflection absorption method, the absorption from the sample largely depends on the incident angle. Therefore, in order to quantitatively evaluate the infrared absorption amount, it is necessary to control the angle between the sample and the incident infrared light with high accuracy.

【0011】また、測定される赤外光の反射率は500/cm
〜1200/cmの波数領域であることが好ましい。一般に、50
0/cmより低波数側に窓材の吸収があり、信号強度が減少
するため、試料の吸収を測定することが困難になる。ま
た、金属酸化膜の吸収はおおよそ1200/cmより低波数側に
見られる。但し、酸化する金属によって、吸収の位置がシ
フトする。以上のことから、500/cm〜1200/cmの波数領域
としている。また、金属薄膜として、アルミニウム、
鉄、ニッケル、コバルト、及びそれらの合金が好ましく
例示される。
The reflectance of infrared light measured is 500 / cm.
It is preferably in the wave number region of ˜1200 / cm. Generally, 50
The absorption of the window material on the lower wave number side than 0 / cm reduces the signal intensity, making it difficult to measure the absorption of the sample. Further, the absorption of the metal oxide film is found on the lower wave number side than about 1200 / cm. However, the position of absorption shifts depending on the metal that oxidizes. From the above, the wave number region is set to 500 / cm to 1200 / cm. In addition, as a metal thin film, aluminum,
Iron, nickel, cobalt, and alloys thereof are preferably exemplified.

【0012】前記酸化膜形成装置は、更に、レーザー発
振器とレーザー光を試料に入射するための光学系、試料
支持台上に置かれた試料で反射したレーザー光を検出す
る検出器、試料支持台の角度と位置を調整するゴニオメ
ーターと試料ステージ、検出器の信号を処理し、ゴニオ
メーターを駆動する手段を有し、前記レーザー光と試料
表面で反射したレーザー光を用い、試料と入射赤外光の
なす角度を調整するものであることが好ましい。
The oxide film forming apparatus further includes a laser oscillator, an optical system for making laser light incident on a sample, a detector for detecting laser light reflected by the sample placed on the sample support, and a sample support. The sample and incident infrared rays have a goniometer for adjusting the angle and position of the sample stage, a means for processing the signal from the detector and a means for driving the goniometer, and using the laser beam and the laser beam reflected on the sample surface. It is preferable to adjust the angle formed by the light.

【0013】また、本発明の磁気記録再生装置は、磁気
記録媒体と、前記媒体に書き込まれた磁気信号を読み出
す磁気抵抗型センサ、磁気信号を書き込むライトヘッ
ド、前記磁気抵抗型センサとライトヘッドを先端部に搭
載して前記磁気記録媒体の半径方向に駆動させるアー
ム、前記磁気記録媒体とアーム駆動手段を制御する制御
部、磁気信号の読み出しおよび書き込み信号を処理する
信号処理手段を備えた磁気記録再生装置において、請求
項1ないし4に記載の金属酸化膜形成装置により、酸化
膜の膜厚と結合状態を制御、管理された磁気抵抗型セン
サが搭載されていることを特徴とする。
Further, the magnetic recording / reproducing apparatus of the present invention comprises a magnetic recording medium, a magnetoresistive sensor for reading a magnetic signal written in the medium, a write head for writing a magnetic signal, the magnetoresistive sensor and a write head. Magnetic recording equipped with an arm mounted on the tip end to drive the magnetic recording medium in the radial direction, a control unit for controlling the magnetic recording medium and arm driving means, and signal processing means for processing read and write signals of magnetic signals. In the reproducing apparatus, a magnetoresistive sensor in which the film thickness and the bonding state of the oxide film are controlled and managed by the metal oxide film forming apparatus according to any one of claims 1 to 4 is mounted.

【0014】[0014]

【発明の実施の形態】以下、図に従って本発明の実施例
を説明する。 (実施例1)図1に、本発明の実施例の一つを示す。成
膜室1内部の成膜試料支持台2上に置かれた基板にDCスパ
ッタ法で金属薄膜を試料上に成膜する。次にゲートバル
ブ39を開き、試料移動用ロボット4のアームを用いて、
試料を成膜試料支持台2上から試料移動室3に移動し、ゲ
ートバルブ39を閉じる。その後、ゲートバルブ40を開
き、試料を酸化室試料支持台6上に移動し、ゲートバル
ブ40を閉じる。酸化室5は酸素雰囲気に試料を曝すこと
や、酸素を導入しながらプラズマを立て、試料表面をプ
ラズマ酸化することができる。試料を酸化した後、再
度、ゲートバルブ40を開き、試料を試料移動室3に移
動、ゲートバルブ40を閉じ、ゲートバルブ41を開き、試
料支持台8上に試料9を移動する。この作業により、試料
9は酸化の目的以外で大気には曝されない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 shows one embodiment of the present invention. A metal thin film is formed on a sample by a DC sputtering method on a substrate placed on a film formation sample support base 2 inside the film formation chamber 1. Next, open the gate valve 39, and using the arm of the sample moving robot 4,
The sample is moved from the film formation sample support base 2 to the sample moving chamber 3 and the gate valve 39 is closed. After that, the gate valve 40 is opened, the sample is moved onto the oxidation chamber sample support base 6, and the gate valve 40 is closed. The oxidizing chamber 5 can expose the sample to an oxygen atmosphere, or can generate plasma while introducing oxygen to oxidize the sample surface by plasma. After oxidizing the sample, the gate valve 40 is opened again, the sample is moved to the sample moving chamber 3, the gate valve 40 is closed, the gate valve 41 is opened, and the sample 9 is moved onto the sample support 8. By this work, the sample
9 is not exposed to the atmosphere except for the purpose of oxidation.

【0015】成膜室1で成膜する金属薄膜はアルミニウ
ム以外に、鉄、ニッケル、コバルト、およびそれらの合
金の場合もある。また、成膜手段としてはDCスパッタ法
の他に、RFスパッタ法、真空蒸着、分子線エピタキシー
(MBE)、CVD法等を用いることも出来る。
The metal thin film formed in the film forming chamber 1 may be iron, nickel, cobalt, or an alloy thereof, in addition to aluminum. In addition to the DC sputtering method, RF sputtering method, vacuum deposition, molecular beam epitaxy can be used as film forming means.
(MBE), CVD method, etc. can also be used.

【0016】次に反射吸収法を用いた、赤外光反射率計
測器の構成について説明する。Wフィラメントを光源し
た赤外光源10で発生した赤外光をスリット11で整形し、
コリメータ鏡12で平行光線にする。前置鏡13で試料への
入射角が4゜程度になるように光路を変え、偏光素子14
でP偏光だけが試料に入射するように偏光を調整する。
試料9で反射した赤外光は後置鏡15で反射されビームス
プリッター16に入射する。ビームスプリッター16で分け
られた赤外光の一方は固定鏡17で反射されビームスプリ
ッター16に戻る。他方の赤外光は可動鏡18で反射されビ
ームスプリッター16に戻る。固定鏡17と可動鏡18で反射
された赤外光はビームスプリッター16で干渉し、集光鏡
19を経由して検出器20に入る。可動鏡18の位置を変えな
がら、検出器20の強度を測定し、計算機(図示せず)でフ
ーリエ変換することで、反射率の波長依存性を導出す
る。後置鏡より下流の光学系はマイケルソン干渉光学系
と呼ばれ、赤外高感度分光法の光学系として一般的であ
る。分析前室42から分析室7に赤外光を導入する窓、お
よび反射光を分析後室42に導入する窓に用いる窓材とし
ては、赤外光の実験で一般的なKBr、NaCl、CaF2、LiF等
を用いた。また、空気中の炭酸ガスや水分の赤外光吸収
の影響を少なくするため、分析前室42および分析後室43
内部を真空ポンプ(図示せず)で真空にして実験を行え
るようになっている。
Next, the structure of the infrared light reflectance measuring instrument using the reflection absorption method will be described. Infrared light generated by the infrared light source 10 that uses a W filament is shaped by the slit 11,
The collimator mirror 12 collimates the light. The front mirror 13 changes the optical path so that the incident angle to the sample is about 4 °, and the polarization element 14
Adjust the polarization so that only P-polarized light is incident on the sample.
The infrared light reflected by the sample 9 is reflected by the rear-end mirror 15 and enters the beam splitter 16. One of the infrared rays split by the beam splitter 16 is reflected by the fixed mirror 17 and returns to the beam splitter 16. The other infrared light is reflected by the movable mirror 18 and returns to the beam splitter 16. The infrared light reflected by the fixed mirror 17 and the movable mirror 18 interferes with each other by the beam splitter 16, and
Enter detector 20 via 19. The wavelength dependency of the reflectance is derived by measuring the intensity of the detector 20 while changing the position of the movable mirror 18 and performing a Fourier transform with a calculator (not shown). The optical system downstream from the rear-view mirror is called a Michelson interference optical system and is generally used as an optical system for infrared sensitive spectroscopy. As a window material used for a window for introducing infrared light from the pre-analysis chamber 42 into the analysis chamber 7 and a window for introducing reflected light into the post-analysis chamber 42, KBr, NaCl, and CaF that are common in infrared light experiments are used. 2 , LiF, etc. were used. In addition, in order to reduce the influence of infrared light absorption of carbon dioxide and moisture in the air, the pre-analysis chamber 42 and post-analysis chamber 43
The inside of the chamber is evacuated by a vacuum pump (not shown) so that the experiment can be performed.

【0017】赤外光反射率計測器で酸化膜を評価した試
料9の酸化が不十分である場合、再度ゲートバルブ41を
開き、試料移動用ロボット4のアームを用いて試料移動
室3に試料9を移動し、ゲートバルブ41を閉じる。次にゲ
ートバルブ40を開き、酸化室試料支持台6上に試料を移
動する。最後にゲートバルブ40を閉じ、酸化室5で試料
に追加の酸化を施す。前述の手順に従って、試料を計測
室7の試料支持台8に移動し、赤外光反射率を計測し、酸
化膜を再度評価する。試料の酸化が目的の状態になるま
で、同様の作業を繰り返す。所望の酸化膜が形成された
ら、試料9を試料移動室3を経由して、成膜室1に移動
し、新たな金属薄膜を形成する。
When the sample 9 whose oxide film has been evaluated by the infrared reflectance measuring instrument is not sufficiently oxidized, the gate valve 41 is opened again, and the sample transfer chamber 3 is moved to the sample transfer chamber 3 by using the arm of the sample transfer robot 4. 9 is moved and the gate valve 41 is closed. Next, the gate valve 40 is opened, and the sample is moved onto the sample support base 6 for the oxidation chamber. Finally, the gate valve 40 is closed and the sample is subjected to additional oxidation in the oxidation chamber 5. According to the procedure described above, the sample is moved to the sample support base 8 in the measurement chamber 7, the infrared light reflectance is measured, and the oxide film is evaluated again. The same operation is repeated until the oxidation of the sample reaches the desired state. When the desired oxide film is formed, the sample 9 is moved to the film forming chamber 1 via the sample moving chamber 3 to form a new metal thin film.

【0018】次に、図2を用いて計測室7での試料の調
整方法を説明する。従来技術で説明したようにP偏光の
赤外光の吸光度(反射率)は入射角に非常に敏感であ
る。そこで、本実施例ではレーザー光を用いた試料調節
機構を付加した。レーザー発振器21で発生したレーザー
光をプリズム素子22を用いて試料9に入射する。試料9表
面で反射されたレーザー光をプリズム素子22を透過して
2次元検出器23で検出する。プリズム素子22はレーザー
光の一部を直接2次元検出器23の方向に反射している。
この反射光と試料で反射されて戻ってきたレーザー光が
一致すれば、試料に対してレーザー光が垂直に入射する
ことになる。Xスイベルステージ25とYスイベルステージ
24を、2次元検出器23上のレーザー光が1つになるよう
に調整する。次に可動アパーチャー26を赤外光の光路上
に入れる。Zステージ27を上下させ、検出器20の出力が
最大になるようにZステージ27の位置を決める。このと
き可動鏡18は移動させない。調整が完了したら、可動ア
パーチャー26を光路上から取り除く。この機能により簡
単に試料9に対して1度以下の角度精度で赤外光を入射す
ることが可能となった。
Next, a method of adjusting the sample in the measuring chamber 7 will be described with reference to FIG. As described in the prior art, the absorbance (reflectance) of P-polarized infrared light is very sensitive to the incident angle. Therefore, in this embodiment, a sample adjusting mechanism using laser light is added. The laser light generated by the laser oscillator 21 is incident on the sample 9 using the prism element 22. The laser light reflected on the surface of the sample 9 is transmitted through the prism element 22 and detected by the two-dimensional detector 23. The prism element 22 directly reflects a part of the laser light toward the two-dimensional detector 23.
If the reflected light and the laser light reflected and returned by the sample match, the laser light will enter the sample vertically. X swivel stage 25 and Y swivel stage
24 is adjusted so that the number of laser beams on the two-dimensional detector 23 becomes one. Next, the movable aperture 26 is put in the optical path of infrared light. The Z stage 27 is moved up and down, and the position of the Z stage 27 is determined so that the output of the detector 20 becomes maximum. At this time, the movable mirror 18 is not moved. When the adjustment is completed, remove the movable aperture 26 from the optical path. With this function, infrared light can be easily incident on the sample 9 with an angle accuracy of 1 degree or less.

【0019】赤外光反射率の測定では光学系の赤外光吸
収を除去するため、リファレンス測定を行う必要が有
る。酸化膜下の金属膜が厚い場合は通常、金鏡を試料支
持台9に置き、赤外光反射率を測定し、リファレンスと
する。酸化膜下の金属膜が薄い場合や、積層膜の場合、
その影響を除去する必要がある。本実施例では成膜後、
酸化する前に、試料を計測室7に移動し、赤外光反射率
を測定しリファレンスとすることで、薄い金属膜や、積
層膜の影響を除去した赤外光反射率を測定することが可
能となった。
In measuring the infrared light reflectance, it is necessary to perform reference measurement in order to remove infrared light absorption of the optical system. When the metal film under the oxide film is thick, a gold mirror is usually placed on the sample support 9 and the infrared light reflectance is measured and used as a reference. If the metal film under the oxide film is thin or if it is a laminated film,
The effect needs to be removed. In this embodiment, after film formation,
Before oxidation, the sample is moved to the measurement chamber 7 and the infrared light reflectance is measured and used as a reference, whereby it is possible to measure the infrared light reflectance without the influence of a thin metal film or a laminated film. It has become possible.

【0020】(成膜例1)図3を用いて実施例1を用い
て測定したアルミニウム酸化膜の事例を説明する。図3
は、成膜室1他でSi基板上にTa(5nm)/NiFe(5nm)/MnPt
(25nm)/CoFe(3nm)を成膜した後、アルミニウムを膜厚
0.4nm成膜した試料28、0.6nm成膜した試料29、0.8nm成
膜した試料30、1.0nm成膜した試料31をそれぞれ酸化室5
でプラズマ酸化した試料の赤外光反射率の測定結果であ
る。縦軸は得られた赤外光反射率の自然対数をとって表
示した。この試料はアルミニウムが全て酸化されるよう
にプラズマ酸化の条件を調整してある。酸化アルミニウ
ムが厚くなるに従って、950/cm付近の吸収が大きくなっ
ている。このことから、950/cm付近のピークが酸化アル
ミニウムの赤外吸収ピークであることが分かる。
(Film Forming Example 1) An example of an aluminum oxide film measured by using Example 1 will be described with reference to FIG. Figure 3
Is Ta (5nm) / NiFe (5nm) / MnPt on the Si substrate in the deposition chamber 1 etc.
(25nm) / CoFe (3nm) film, then aluminum film
A sample 28 having a 0.4 nm film thickness, a sample 29 having a 0.6 nm film thickness, a sample 30 having a 0.8 nm film thickness, and a sample 31 having a 1.0 nm film thickness are respectively provided in the oxidation chamber 5
It is a measurement result of infrared light reflectance of the sample plasma-oxidized by. The vertical axis represents the natural logarithm of the obtained infrared light reflectance. In this sample, the conditions of plasma oxidation are adjusted so that all aluminum is oxidized. The absorption near 950 / cm increases as the thickness of aluminum oxide increases. From this, it can be seen that the peak around 950 / cm is the infrared absorption peak of aluminum oxide.

【0021】図4にピーク強度(赤外吸収量)と成膜した
アルミニウムの膜厚の関係を示す。成膜したアルミニウ
ムの膜厚と酸化アルミニウムのピーク強度に良い相関が
見られる。図4が完全な直線関係にないのは、酸化によ
り膜厚が増加したためと考えれる。理論的には、自然対
数プロットした赤外吸収のピークの大きさは膜厚と比例
関係にあるので、本実施例を用いれば酸化アルミニウム
の膜厚を求めることが出来る。
FIG. 4 shows the relationship between the peak intensity (infrared absorption amount) and the film thickness of the formed aluminum film. There is a good correlation between the thickness of the formed aluminum film and the peak intensity of aluminum oxide. The reason that Fig. 4 does not have a perfect linear relationship is probably because the film thickness increased due to oxidation. Theoretically, the size of the infrared absorption peak plotted in natural logarithm is proportional to the film thickness, so that the film thickness of aluminum oxide can be obtained by using this example.

【0022】(成膜例2)次に、図5を用いて酸化方法
を変えた試料の赤外光反射率を調べた事例を説明する。
図5はSi基板上にTa(5nm)/NiFe(5nm)/MnPt(25nm)/Co
Fe(3nm)を成膜した後、アルミニウムを1.0nm成膜し、酸
化無し32、低酸素濃度下での自然酸化(自然酸化弱33)、
高酸素濃度下での自然酸化を追加(自然酸化強34)、プラ
ズマ酸化35した試料の赤外光反射率である。図3と比較
してピークの深さ以外に、ピークの位置が移動している
ことが分かる。図4に示したように、ピーク強度(吸収
量)は酸化アルミニウム膜厚を示している。そこで図6
にピーク位置と試料の違いを示した。自然酸化によりピ
ーク位置が高波数(高エネルギー)側に移動している。赤
外吸収では原子間の結合が強くなるに従ってピークは高
波数側に移動する。この結果、自然酸化は表面付近のア
ルミニウム原子だけが酸化するため、酸化膜の膜厚があ
まり厚くはならないが、アルミニウム原子と酸素原子の
結合が強くなることが分かる。また、プラズマ酸化で成
膜した酸化膜は高酸素濃度下で自然酸化した試料より内
部のアルミニウムまで酸化されるが、プラズマ酸化で形
成した酸化アルミニウムは高酸素濃度下で自然酸化した
酸化アルミニウムより結合が弱いと考えられる。このよ
うに赤外光反射率のピーク位置から酸素原子と金属原子
の結合に関する情報が得られる。
(Film Forming Example 2) Next, an example of examining the infrared light reflectance of a sample obtained by changing the oxidation method will be described with reference to FIG.
Figure 5 shows Ta (5nm) / NiFe (5nm) / MnPt (25nm) / Co on Si substrate.
After depositing Fe (3 nm), aluminum is deposited to 1.0 nm without oxidation 32, natural oxidation under low oxygen concentration (natural oxidation weak 33),
This is the infrared light reflectance of a sample that has been subjected to plasma oxidation 35 by adding natural oxidation under high oxygen concentration (natural oxidation strength 34). It can be seen that the position of the peak is moved in addition to the depth of the peak as compared with FIG. As shown in FIG. 4, the peak intensity (absorption amount) indicates the aluminum oxide film thickness. Therefore, FIG.
Shows the difference between the peak position and the sample. The peak position has moved to the high wave number (high energy) side due to natural oxidation. In infrared absorption, the peak moves to the higher wavenumber side as the bond between atoms becomes stronger. As a result, it is found that the natural oxidation oxidizes only the aluminum atoms near the surface, so that the thickness of the oxide film does not become so thick, but the bonding between the aluminum atoms and the oxygen atoms becomes strong. In addition, the oxide film formed by plasma oxidation oxidizes up to the aluminum inside the sample that is naturally oxidized under high oxygen concentration, but the aluminum oxide formed by plasma oxidation is more bonded than the aluminum oxide naturally oxidized under high oxygen concentration. Is considered to be weak. Thus, information on the bond between the oxygen atom and the metal atom can be obtained from the peak position of the infrared light reflectance.

【0023】図5中の自然酸化強34は、自然酸化弱33に
ついて、高酸素濃度下での自然酸化を追加した試料であ
る。本発明の酸化膜形成装置を用いれば、酸化が不十分
な自然酸化弱33の試料を、追加で酸化することにより、
自然酸化強34の状態にすることが可能である。
Strong natural oxidation 34 in FIG. 5 is a sample in which natural oxidation weak 33 is added with natural oxidation under a high oxygen concentration. By using the oxide film forming apparatus of the present invention, the sample of natural oxidation weak 33 which is insufficiently oxidized is additionally oxidized,
It is possible to make it a state of strong natural oxidation of 34.

【0024】(実施例2)図7に本発明の別の実施例を
示した。前述の実施例1では赤外光反射率の測定にマイ
ケルソン干渉計を用いたFT-IRを用いていた。図7は分
光素子36を用い、波長スキャンをしながら反射率を測定
する光学系である。赤外光源10で発生した赤外光をスリ
ット11で整形し、分光素子36で波長を選択する。前置鏡
13で試料への入射角が4゜程度になるように光路を変
え、偏光素子14でP偏光だけが試料に入射するように偏
光を調整する。試料9で反射した赤外光は後置鏡15で反
射し、集光鏡19を経由して検出器20に入る。分光素子36
で選択波長を変えながら検出器20の強度を測定すること
で、反射率の波長依存性を測定する。成膜室(図示せ
ず)、酸化室(図示せず)、試料移動室(図示せず)は図1
に示した実施例と同様である。基板への成膜、酸化、分
析室での試料調整の手順は前述の実施例と同じである。
赤外光反射率を波長分散法で測定することに違いが有る
が、計測された赤外光反射率は前述の同じなので、酸化
膜の膜厚や結合状態の解析についても前述の実施例と同
じである。
(Embodiment 2) FIG. 7 shows another embodiment of the present invention. In Example 1 described above, FT-IR using a Michelson interferometer was used for measuring the infrared light reflectance. FIG. 7 shows an optical system that uses the spectroscopic element 36 to measure the reflectance while scanning the wavelength. The infrared light generated by the infrared light source 10 is shaped by the slit 11, and the wavelength is selected by the spectroscopic element 36. Front mirror
At 13, the optical path is changed so that the incident angle to the sample is about 4 °, and at the polarizing element 14, the polarization is adjusted so that only P-polarized light enters the sample. The infrared light reflected by the sample 9 is reflected by the rear-end mirror 15 and enters the detector 20 via the condenser mirror 19. Spectroscopic element 36
The wavelength dependence of the reflectance is measured by measuring the intensity of the detector 20 while changing the selected wavelength with. The film forming chamber (not shown), the oxidation chamber (not shown), and the sample transfer chamber (not shown) are shown in FIG.
It is similar to the embodiment shown in FIG. The procedures for film formation on the substrate, oxidation, and sample preparation in the analysis chamber are the same as those in the above-mentioned embodiment.
Although there is a difference in measuring the infrared light reflectance by the wavelength dispersion method, since the measured infrared light reflectance is the same as described above, the thickness of the oxide film and the analysis of the bonding state are also different from those of the above-mentioned examples. Is the same.

【0025】(実施例3)図8に更に本発明の別の実施
例を示した。本実施例では、赤外光反射率の入射光学系
にマイケルソン干渉計を用いた。赤外光源10で発生した
赤外光をスリット11で整形し、コリメータ鏡12で平行光
線に変え、ビームスプリッター16に入射する。ビームス
プリッター16で分けられた赤外光の一方は固定鏡17で反
射されビームスプリッター16に戻る。他方の赤外光は可
動鏡18で反射されビームスプリッター16に戻る。固定鏡
17と可動鏡18で反射された赤外光はビームスプリッター
16で干渉し、前置鏡13に入射する。前置鏡13で試料への
入射角が4゜程度になるように光路を変え、偏光素子14
でP偏光だけが試料に入射するように偏光を調整する。
試料9で反射した赤外光は後置鏡15で反射され集光鏡19
を経由して検出器20に入る。可動鏡18の位置を変えなが
ら、検出器20の強度を測定し、計算機(図示せず)でフー
リエ変換することで、反射率の波長依存性を導出する。
成膜室1、酸化室5、試料移動室3での、基板への成膜、
酸化、分析室での試料調整の手順、酸化膜の膜厚や結合
状態の解析についても前述の実施例と同じである。
(Embodiment 3) FIG. 8 shows another embodiment of the present invention. In this example, a Michelson interferometer was used for the incident optical system with infrared reflectance. The infrared light generated by the infrared light source 10 is shaped by the slit 11, converted into parallel rays by the collimator mirror 12, and incident on the beam splitter 16. One of the infrared rays split by the beam splitter 16 is reflected by the fixed mirror 17 and returns to the beam splitter 16. The other infrared light is reflected by the movable mirror 18 and returns to the beam splitter 16. Fixed mirror
Infrared light reflected by 17 and movable mirror 18 is beam splitter
It interferes at 16 and enters the front mirror 13. The front mirror 13 changes the optical path so that the incident angle to the sample is about 4 °, and the polarization element 14
Adjust the polarization so that only P-polarized light is incident on the sample.
The infrared light reflected by the sample 9 is reflected by the rear-end mirror 15 and is focused by the condenser mirror 19.
Enter detector 20 via. The wavelength dependency of the reflectance is derived by measuring the intensity of the detector 20 while changing the position of the movable mirror 18 and performing a Fourier transform with a calculator (not shown).
Film formation on the substrate in the film formation chamber 1, the oxidation chamber 5, and the sample transfer chamber 3,
The procedures for oxidation, sample preparation in the analysis room, and analysis of the oxide film thickness and bonding state are the same as those in the above-described embodiment.

【0026】(磁気記録再生装置の実施例)最後に、本
発明の酸化膜形成装置により酸化膜を成膜、管理した磁
気抵抗型センサを搭載した磁気記録再生装置について説
明する。磁気抵抗型センサは本発明の酸化膜形成装置で
基板上にTa(5nm)/NiFe(5nm)/MnPt(25nm)/CoFe(3nm)
成膜した後、アルミニウムを0.5nm成膜、プラズマ酸化
し、所望の酸化膜の膜厚に対応する赤外ピークの強度と
位置になるように酸化膜を成膜、管理した後、CoFe(1n
m)/NiFe(5nm)/Ta(5nm)/Ru(10nm)を成膜した。得られ
たウエハをヘッド加工にまわした。本センサを組み込ん
だ各磁気記録再生装置は磁気抵抗センサのnm酸化膜の膜
厚、結合状態が制御されているために、各センサの感度
が安定しており、記録装置として良好な歩留まりを示し
た。本発明によれば、磁気抵抗センサの主要素であるnm
酸化膜を成膜し、膜厚、結合状態をインプロセスで管理
できるので、各センサの性能を許容範囲内に押さえるこ
とができ、性能が安定した磁気記録再生装置を生産でき
るという効果がある。
(Example of Magnetic Recording / Reproducing Apparatus) Finally, a magnetic recording / reproducing apparatus equipped with a magnetoresistive sensor in which an oxide film is formed and controlled by the oxide film forming apparatus of the present invention will be described. The magnetoresistive sensor is Ta (5nm) / NiFe (5nm) / MnPt (25nm) / CoFe (3nm) on the substrate by the oxide film forming apparatus of the present invention.
After forming the film, aluminum is formed to a thickness of 0.5 nm, plasma-oxidized, and the oxide film is formed and controlled so that the intensity and position of the infrared peak corresponding to the desired oxide film thickness are obtained.
m) / NiFe (5 nm) / Ta (5 nm) / Ru (10 nm) was deposited. The obtained wafer was subjected to head processing. Since each magnetic recording / reproducing device incorporating this sensor controls the thickness of the nm oxide film of the magnetoresistive sensor and the coupling state, the sensitivity of each sensor is stable and shows a good yield as a recording device. It was According to the invention, nm, which is the main element of the magnetoresistive sensor
Since the oxide film can be formed and the film thickness and the coupling state can be controlled in-process, the performance of each sensor can be suppressed within an allowable range, and a magnetic recording / reproducing device with stable performance can be produced.

【0027】[0027]

【発明の効果】本発明によれば、1つ以上の金属薄膜成
膜室と1つ以上の金属薄膜酸化室を持ち、赤外光反射率
を測定する手段を有する成膜装置において、基板上に金
属薄膜成膜室で金属薄膜を成膜した後、金属薄膜酸化室
で酸化し、大気中に出すことなく、試料からの赤外光反
射率を測定し、金属薄膜上の酸化膜の膜厚、結合状態を
評価が可能となり、キャップ膜やキャップ膜の酸化の影
響を受けることなく金属薄膜上の酸化膜の膜厚、結合状
態を評価できるという効果がある。
According to the present invention, in a film forming apparatus having one or more metal thin film forming chambers and one or more metal thin film oxidizing chambers, and a means for measuring infrared light reflectance After depositing a metal thin film in the metal thin film deposition chamber, oxidize it in the metal thin film oxidation chamber, measure the infrared light reflectance from the sample without exposing it to the atmosphere, and measure the oxide film on the metal thin film. The thickness and the bonding state can be evaluated, and the film thickness and the bonding state of the oxide film on the metal thin film can be evaluated without being affected by the oxidation of the cap film or the cap film.

【0028】また、酸化が不十分な試料を再度酸化する
ことが可能となる効果がある。更に、酸化していない同
じ膜構成の試料の赤外光反射率をリファレンスとするこ
とで、酸化膜以外の積層膜の影響を除去した赤外光反射
率を計測することが可能となる効果が有る。
Further, there is an effect that it becomes possible to oxidize a sample which is insufficiently oxidized again. Furthermore, by using the infrared light reflectance of a sample having the same film structure that is not oxidized as a reference, it is possible to measure the infrared light reflectance without the influence of the laminated film other than the oxide film. There is.

【0029】次に、赤外反射吸収法の持つ吸収量が入射
角に大きく依存する問題を試料と入射赤外光の角度をレ
ーザー光を用い高精度に制御することにより、吸収量の
角度依存を小さく押さえ、吸収量を定量化と酸化膜の膜
厚評価を可能にする効果がある。最後に、本発明によれ
ば、磁気抵抗センサに主要素であるnm酸化膜の成膜、管
理がオンプロセスで可能となるので、各センサの性能を
許容範囲内に押さえることができ、性能が安定した磁気
記録再生装置を生産できるという効果がある。
Next, the problem that the absorption amount of the infrared reflection absorption method largely depends on the incident angle is solved by controlling the angle between the sample and the incident infrared light with high precision by using laser light. Has the effect of suppressing the amount of absorption to a small value and allowing the amount of absorption to be quantified and the oxide film thickness to be evaluated. Finally, according to the present invention, since the formation and management of the nm oxide film, which is the main element of the magnetoresistive sensor, can be performed on-process, the performance of each sensor can be suppressed within the allowable range, and the performance is improved. There is an effect that a stable magnetic recording / reproducing apparatus can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示す平面図FIG. 1 is a plan view showing an embodiment of the present invention.

【図2】本発明の赤外光反射率計測部の説明図FIG. 2 is an explanatory diagram of an infrared light reflectance measuring unit of the present invention.

【図3】酸化アルミニウム膜厚の計測例FIG. 3 Example of measurement of aluminum oxide film thickness

【図4】酸化アルミニウムの膜厚とピーク強度の関係[Fig. 4] Relation between film thickness of aluminum oxide and peak intensity

【図5】酸化条件を変えた試料の測定例FIG. 5: Example of measurement of samples with different oxidation conditions

【図6】酸化条件とピーク位置の関係FIG. 6 Relationship between oxidation conditions and peak position

【図7】他の実施例の赤外光反射率計測部の説明図FIG. 7 is an explanatory diagram of an infrared light reflectance measuring unit according to another embodiment.

【図8】本発明の他の実施例FIG. 8 is another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:成膜室、2:成膜試料支持台、3:試料移動室、
4:試料移動用ロボット、5:酸化室、6:酸化室試料
支持台、7:計測室、8:試料支持台、9:試料、10:
赤外光源、11:スリット、12:コリメーター鏡、13:前
置鏡、14:偏光素子、15:後置鏡、16:ビームスプリッ
ター、17:固定鏡、18:可動鏡、19:集光鏡、20:検出
器、21:レーザー発振器、22:プリズム、23:2次元検
出器、24:Yスイベルステージ、25:Xスイベルステー
ジ、26:可動アパーチャー、27:Zステージ、28:膜厚
0.4nm成膜した試料、29:膜厚0.6nm成膜した試料、30:
膜厚0.8nm成膜した試料、31:膜厚1.0nm成膜した試料、
32:酸化なし、33:自然酸化弱、34:自然酸化強、35:
プラズマ酸化、36:分光素子、39:ゲートバルブ、40:
ゲートバルブ、41:ゲートバルブ、42:分析前室、43:
分析後室
1: film forming chamber, 2: film forming sample support, 3: sample moving chamber,
4: Robot for sample movement, 5: Oxidation chamber, 6: Oxidation chamber sample support, 7: Measurement chamber, 8: Sample support, 9: Sample, 10:
Infrared light source, 11: slit, 12: collimator mirror, 13: front mirror, 14: polarizing element, 15: rear mirror, 16: beam splitter, 17: fixed mirror, 18: movable mirror, 19: condensing Mirror, 20: Detector, 21: Laser oscillator, 22: Prism, 23: Two-dimensional detector, 24: Y swivel stage, 25: X swivel stage, 26: Movable aperture, 27: Z stage, 28: Film thickness
Sample with a film thickness of 0.4 nm, 29: Sample with a film thickness of 0.6 nm, 30:
Sample with a film thickness of 0.8 nm, 31: Sample with a film thickness of 1.0 nm,
32: No oxidation, 33: Weak natural oxidation, 34: Strong natural oxidation, 35:
Plasma oxidation, 36: Spectroscopic element, 39: Gate valve, 40:
Gate valve, 41: Gate valve, 42: Pre-analytical chamber, 43:
Post analysis room

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平野 辰巳 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 今川 尊雄 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 Fターム(参考) 4K029 BA03 BA06 BA09 BA12 BA23 BA24 BA25 BA26 BD11 EA00 EA01 GA01 KA01 KA09 4K030 BA02 BA05 BA07 BA14 DA09 GA12 JA01 KA39 LA20 5D034 BA03 DA04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tatsumi Hirano             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Takao Imagawa             2880 Kozu, Odawara City, Kanagawa Stock Association             Storage Systems Division, Hitachi, Ltd. F-term (reference) 4K029 BA03 BA06 BA09 BA12 BA23                       BA24 BA25 BA26 BD11 EA00                       EA01 GA01 KA01 KA09                 4K030 BA02 BA05 BA07 BA14 DA09                       GA12 JA01 KA39 LA20                 5D034 BA03 DA04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 1つ以上の金属薄膜成膜室と1つ以上の
金属薄膜酸化室を有する成膜装置において、赤外光源、
試料支持台、分光器、赤外光検出器、赤外光スペクトル
を処理する手段、及び前記金属薄膜酸化室から前記試料
支持台に試料を真空搬送する機構、前記金属薄膜成膜室
で成膜した金属薄膜を前記金属薄膜酸化室で酸化した試
料を、前記試料支持台において、該試料表面に対して赤
外光を0.5゜から20゜の角度範囲で入射する手段、及び
試料からの赤外光の反射率を測定する手段を有し、その
反射率から金属薄膜上の酸化膜の膜厚及び/又は酸化膜
の結合状態を管理することを特徴とする金属酸化膜形成
装置。
1. A film forming apparatus having one or more metal thin film deposition chambers and one or more metal thin film oxidation chambers, wherein an infrared light source,
Sample support base, spectroscope, infrared light detector, means for processing infrared light spectrum, mechanism for vacuum transfer of sample from the metal thin film oxidation chamber to the sample support base, film formation in the metal thin film deposition chamber A sample obtained by oxidizing the metal thin film formed in the metal thin film oxidation chamber on the sample support table with infrared light incident on the sample surface in an angle range of 0.5 ° to 20 °, and infrared light from the sample. An apparatus for forming a metal oxide film, comprising a means for measuring the reflectance of light, and managing the film thickness of the oxide film on the metal thin film and / or the bonding state of the oxide film from the reflectance.
【請求項2】 測定される赤外光の反射率は500/cm〜12
00/cmの波数領域であることを特徴とする請求項1に記
載の金属酸化膜形成装置。
2. The measured infrared light reflectance is 500 / cm to 12
The metal oxide film forming apparatus according to claim 1, wherein the wave number region is 00 / cm.
【請求項3】 金属薄膜は、アルミニウム、鉄、ニッケ
ル、コバルト、及びそれらの合金から選択されることを
特徴とする請求項1または2に記載の金属酸化膜形成装
置。
3. The metal oxide film forming apparatus according to claim 1, wherein the metal thin film is selected from aluminum, iron, nickel, cobalt, and alloys thereof.
【請求項4】 前記酸化膜形成装置は、レーザー発振器
とレーザー光を試料に入射するための光学系、試料支持
台上に置かれた試料で反射したレーザー光を検出する検
出器、試料支持台の角度と位置を調整するゴニオメータ
ーと試料ステージ、検出器の信号を処理し、ゴニオメー
ターを駆動する手段を有し、前記レーザー光と試料表面
で反射したレーザー光を用い、試料と入射赤外光のなす
角度を調整するものであることを特徴とする請求項1な
いし3に記載の金属酸化膜形成装置。
4. The oxide film forming apparatus comprises a laser oscillator, an optical system for making laser light incident on a sample, a detector for detecting laser light reflected by the sample placed on the sample support, and a sample support. The sample and incident infrared rays have a goniometer for adjusting the angle and position of the sample stage, a means for processing the signal from the detector and a means for driving the goniometer, and using the laser beam and the laser beam reflected on the sample surface. The metal oxide film forming apparatus according to claim 1, wherein the angle formed by the light is adjusted.
【請求項5】 磁気記録媒体と、前記媒体に書き込まれ
た磁気信号を読み出す磁気抵抗型センサ、磁気信号を書
き込むライトヘッド、前記磁気抵抗型センサとライトヘ
ッドを先端部に搭載して前記磁気記録媒体の半径方向に
駆動させるアーム、前記磁気記録媒体とアーム駆動手段
を制御する制御部、磁気信号の読み出しおよび書き込み
信号を処理する信号処理手段を備えた磁気記録再生装置
において、請求項1ないし4に記載の金属酸化膜形成装
置により、酸化膜の膜厚と結合状態を制御、管理された
磁気抵抗型センサが搭載されていることを特徴とする磁
気記録再生装置。
5. A magnetic recording medium, a magnetoresistive sensor for reading a magnetic signal written in the medium, a write head for writing a magnetic signal, and the magnetic recording by mounting the magnetoresistive sensor and the write head at a tip portion. 5. A magnetic recording / reproducing apparatus comprising an arm for driving in a radial direction of a medium, a control unit for controlling the magnetic recording medium and an arm driving means, and a signal processing means for processing a read / write signal of a magnetic signal. A magnetic recording / reproducing apparatus having a magnetoresistive sensor in which the film thickness and bonding state of an oxide film are controlled and controlled by the metal oxide film forming apparatus described in 1.
JP2001379545A 2001-12-13 2001-12-13 Oxide film-forming apparatus and magnetic recording and reproducing device Pending JP2003183838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001379545A JP2003183838A (en) 2001-12-13 2001-12-13 Oxide film-forming apparatus and magnetic recording and reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001379545A JP2003183838A (en) 2001-12-13 2001-12-13 Oxide film-forming apparatus and magnetic recording and reproducing device

Publications (1)

Publication Number Publication Date
JP2003183838A true JP2003183838A (en) 2003-07-03

Family

ID=27591065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001379545A Pending JP2003183838A (en) 2001-12-13 2001-12-13 Oxide film-forming apparatus and magnetic recording and reproducing device

Country Status (1)

Country Link
JP (1) JP2003183838A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203701A (en) * 2004-01-19 2005-07-28 Sony Corp Magnetoresistive effect element and magnetic memory device
JP2006005356A (en) * 2004-06-15 2006-01-05 Headway Technologies Inc Magnetic tunnel junction element and method of forming the same, magnetic memory structure and tunnel magnetoresistance effect type reproducing head
JP2006019743A (en) * 2004-06-30 2006-01-19 Headway Technologies Inc Magnetic memory structure, tunnel magneto-resistance effect type reproducing head, and their manufacturing method
US7241514B2 (en) 2003-07-07 2007-07-10 Tdk Corporation Magneto-resistive device, and magnetic head, head suspension assembly and magnetic disk apparatus using magneto-resistive device
US7312958B2 (en) * 2002-12-05 2007-12-25 Matsushita Electric Industrial Co., Ltd Method for manufacturing magnetic disk apparatus
JP2008270456A (en) * 2007-04-19 2008-11-06 Mitsubishi Electric Corp Tunnel magnetoresistance effect element manufacturing apparatus and manufacturing method
JP2013112867A (en) * 2011-11-30 2013-06-10 Kojima Press Industry Co Ltd Vapor deposition polymerized film-forming apparatus and method for forming vapor deposition polymerized film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312958B2 (en) * 2002-12-05 2007-12-25 Matsushita Electric Industrial Co., Ltd Method for manufacturing magnetic disk apparatus
US7463458B2 (en) 2002-12-05 2008-12-09 Panasonic Corporation Magnetoresistive-effect device with a multi-layer magnetoresistive-effect film
US7542247B2 (en) 2002-12-05 2009-06-02 Panasonic Corporation Magnetic disk apparatus
US7733613B2 (en) 2002-12-05 2010-06-08 Panasonic Corporation Method for manufacturing a magnetoresistive-effect device
US7241514B2 (en) 2003-07-07 2007-07-10 Tdk Corporation Magneto-resistive device, and magnetic head, head suspension assembly and magnetic disk apparatus using magneto-resistive device
JP2005203701A (en) * 2004-01-19 2005-07-28 Sony Corp Magnetoresistive effect element and magnetic memory device
JP2006005356A (en) * 2004-06-15 2006-01-05 Headway Technologies Inc Magnetic tunnel junction element and method of forming the same, magnetic memory structure and tunnel magnetoresistance effect type reproducing head
JP2006019743A (en) * 2004-06-30 2006-01-19 Headway Technologies Inc Magnetic memory structure, tunnel magneto-resistance effect type reproducing head, and their manufacturing method
US8673654B2 (en) 2004-06-30 2014-03-18 Headway Technologies, Inc. Underlayer for high performance magnetic tunneling junction MRAM
JP2008270456A (en) * 2007-04-19 2008-11-06 Mitsubishi Electric Corp Tunnel magnetoresistance effect element manufacturing apparatus and manufacturing method
JP2013112867A (en) * 2011-11-30 2013-06-10 Kojima Press Industry Co Ltd Vapor deposition polymerized film-forming apparatus and method for forming vapor deposition polymerized film

Similar Documents

Publication Publication Date Title
JP3337252B2 (en) Method and apparatus for determining thin film thickness
JP3021643B2 (en) Optical device
US5442448A (en) Device for the laterally resolved investigation of a laterally heterogeneous ultrathin object layer
US20040013077A1 (en) Optical pickup device and recording/reproducing device
Bouhelier et al. Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy
JPH11304728A (en) X-ray measuring device
JPH02285205A (en) Method for measuring refractive index of thin layer and layer thickness
Manera et al. Functional magneto-plasmonic biosensors transducers: Modelling and nanoscale analysis
JPH02503115A (en) differential ellipsometer
JP2003183838A (en) Oxide film-forming apparatus and magnetic recording and reproducing device
Hinrichs et al. Brilliant mid-infrared ellipsometry and polarimetry of thin films: Toward laboratory applications with laser based techniques
Cantwell et al. Optical coatings for improved contrast in longitudinal magneto-optic Kerr effect measurements
US7224462B2 (en) Beam shifting surface plasmon resonance system and method
JP2016053503A (en) Optic chemical sensor
JP3478969B2 (en) Light head
JPS60120235A (en) Oblique incidence and reflection type spectroscope
JP3389115B2 (en) Stacked structure inspection method and X-ray reflectivity device
US6243327B1 (en) Magneto-optical disk system having a relation between a numerical aperture of an objective lens and the thickness of a cover layer
KR101000675B1 (en) Optical nanometer scale gap sensing device based on Surface Plasmon Resonance and optical nanometer scale gap sensing method using the same
JP2002286632A (en) Method for optically evaluating sample to be measured and device therefor
Gao et al. In situ ellipsometric diagnostics of multilayer thin film deposition during sputtering
JP2001520744A (en) Apparatus and method for measuring air gap while correcting birefringence effect of measurement path
JPH07208937A (en) Equipment and method for measuring film thickness and permittivity
JPH075181A (en) Atomic force microscope
JP3474833B2 (en) Near-field light detection optical system, near-field optical device, near-field optical microscope, optical information reproducing device, and optical information detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327