JPH075181A - Atomic force microscope - Google Patents

Atomic force microscope

Info

Publication number
JPH075181A
JPH075181A JP16832593A JP16832593A JPH075181A JP H075181 A JPH075181 A JP H075181A JP 16832593 A JP16832593 A JP 16832593A JP 16832593 A JP16832593 A JP 16832593A JP H075181 A JPH075181 A JP H075181A
Authority
JP
Japan
Prior art keywords
cantilever
reflection
detection light
atomic force
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP16832593A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuda
宏 松田
Yuuko Morikawa
有子 森川
Toshihiko Takeda
俊彦 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16832593A priority Critical patent/JPH075181A/en
Publication of JPH075181A publication Critical patent/JPH075181A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To provide an optical lever type atomic force microscope which can detect the movement of a cantilever at a specific position accurately. CONSTITUTION:The incident angle of a detection light 203 impinging on a cantilever 102 having a probe 103 is set such that the reflection loss of p- polarized component on the reflective surface 109 of the cantilever is substantially maximized. A reflector 204 having the reflectance of p-polarized component at such incident angle higher than that of the reflective surface 109 of the cantilever is provided at the forward end of the cantilever. A polarizing plate 202 for producing p-polarized light from the detection light impinging on the reflective surface 109 of the cantilever is also provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料表面を高分解で観
察可能な原子間力顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomic force microscope capable of observing a sample surface with high resolution.

【0002】[0002]

【従来の技術】近年において、試料表面の原子の電子構
造を直接観察できる走査型トンネル顕微鏡(以下、「S
TM」と称す)が開発され(G. Binnigら、P
hysical Review Letters誌、第
49巻57頁(1982年)参照)、単結晶,非晶質を
問わず実空間像を著しく高い分解能(ナノメートル以
下)で測定できるようになった。
2. Description of the Related Art In recent years, a scanning tunneling microscope (hereinafter referred to as "S
"TM") was developed (G. Binnig et al., P.
Physical Review Letters, Vol. 49, p. 57 (1982)), real-space images can be measured with extremely high resolution (nanometer or less) regardless of single crystal or amorphous.

【0003】係るSTMは、金属の探針と導電性物質と
の間に電圧を加えて両者を1nm程度の距離まで近づけ
ると、その間にトンネル電流が流れることを利用してい
る。この電流は両者の距離変化に非常に敏感で指数関数
的に変化するので、トンネル電流を一定に保つ様に探針
を試料表面で走査することにより、実空間の表面構造を
原子オーダーの分解能で観察することができる。
Such an STM utilizes that a tunnel current flows when a voltage is applied between a metallic probe and a conductive substance to bring them close to a distance of about 1 nm. This current is very sensitive to changes in the distance between the two and changes exponentially.Therefore, by scanning the sample surface with the probe so as to keep the tunnel current constant, the surface structure in real space can be resolved with atomic order resolution. Can be observed.

【0004】しかし、このSTMによる解析は、試料が
導電性のものに限られ、絶縁性の試料観察は困難であ
る。そこで、2つの物質間に働く力を検出して、試料表
面の形状を観察する原子間力顕微鏡(以下、「AFM」
と称す)が開発された(G.Binnigら、Phys
ical Review Letters誌、第56巻
930頁(1986年)参照)。
However, the STM analysis is limited to conductive samples, and it is difficult to observe insulating samples. Therefore, an atomic force microscope (hereinafter referred to as “AFM”) that detects the force acting between two substances and observes the shape of the sample surface
Has been developed (G. Binnig et al., Phys.
ical Review Letters, Vol. 56, p. 930 (1986)).

【0005】係るAFMは、先端径の小さな探針を有す
るカンチレバー部と、係る探針を試料に近づけた際に該
探針と試料表面との間に発生する原子間力によってもた
らされるカンチレバーの曲りを測定する部分から構成さ
れる。この探針は、カンチレバーの自由端にカンチレバ
ー本体とは別個に作成される場合や、カンチレバー自体
の自由端を探針として用いる場合等がある。
Such an AFM has a cantilever portion having a probe having a small tip diameter, and a bending of the cantilever caused by an atomic force generated between the probe and the sample surface when the probe is brought close to a sample. It consists of the part to measure. This probe may be formed at the free end of the cantilever separately from the cantilever body, or the free end of the cantilever itself may be used as the probe.

【0006】一般に物質表面間には、比較的遠距離にお
いては分散力による微弱な引力が、一方、近距離では斥
力が働く。カンチレバーの曲がりはその作用する力に比
例するので、この曲がりの程度を測定することによっ
て、探針先端とこれに数nm以内に近接する試料表面間
に働く微弱で局所的な力を検出することが可能となる。
更に探針を試料表面上で相対的に2次元走査させること
で、試料表面の力の2次元的情報が得られる。
Generally, between the material surfaces, a weak attractive force due to the dispersion force is exerted at a relatively long distance, while a repulsive force is exerted at a short distance. Since the bending of the cantilever is proportional to the acting force, it is necessary to detect the weak and local force acting between the tip of the probe and the sample surface that is close to it within a few nm by measuring the degree of this bending. Is possible.
Further, by relatively two-dimensionally scanning the sample surface on the sample surface, two-dimensional information of the force on the sample surface can be obtained.

【0007】またカンチレバーの曲がりを一定にする様
にフィードバックをかけながら走査させることにより、
試料表面の微小な凹凸形状を観察できる。ここで、カン
チレバーの曲がりを検出する方法を列挙すると、STM
を応用する方式,試料とカンチレバーとの間の静電容量
を検出する方式,光の干渉を用いる方式,カンチレバー
に光を入射し、その反射角の変化から曲がりを検出する
光てこ方式等があるが、操作性,検出感度等の観点か
ら、光てこ方式が一般的である。
Further, by scanning while feeding feedback so that the bending of the cantilever is constant,
It is possible to observe minute irregularities on the sample surface. Here, when enumerating the methods for detecting the bending of the cantilever, STM
, A method of detecting the electrostatic capacitance between the sample and the cantilever, a method of using the interference of light, an optical lever method of detecting the bend from the change in the reflection angle by injecting light into the cantilever. However, the optical lever method is generally used from the viewpoint of operability, detection sensitivity, and the like.

【0008】AFMによる分解能は試料面内方向で1n
m以下であるので、例えば、試料表面に10nm程度の
間隔で微細な凹凸を形成し、それをAFMを用いて読み
だすことによって、1012ビット/cm2に近い超高密
度のメモリを作製することも可能である。
The resolution by AFM is 1n in the in-plane direction of the sample.
Since it is less than or equal to m, for example, minute irregularities are formed on the sample surface at intervals of about 10 nm, and the fine irregularities are read by using the AFM to manufacture an ultrahigh-density memory close to 10 12 bits / cm 2. It is also possible.

【0009】[0009]

【発明が解決しようとする課題】しかし、光てこ方式の
AFMには、以下に示すような問題点がある。
However, the optical lever type AFM has the following problems.

【0010】図1に従来の光てこ方式のAFMのカンチ
レバー部を示す。支持体となる基板101から、カンチ
レバー102(長さL1)が突き出ており、係るカンチ
レバー102の先端に探針103が設けられている。一
方、検出光106がカンチレバー102の先端(通常、
図1に示す如く裏面に探針103が配置されている位置
付近)に照射されている。係る検出光106が照射され
ているカンチレバー102の面をカンチレバー反射面1
09と呼ぶことにする。
FIG. 1 shows a cantilever portion of a conventional optical lever type AFM. A cantilever 102 (length L 1 ) projects from a substrate 101 that serves as a support, and a probe 103 is provided at the tip of the cantilever 102. On the other hand, the detection light 106 causes the tip of the cantilever 102 (usually,
As shown in FIG. 1, the back surface is irradiated with light (around the position where the probe 103 is arranged). The surface of the cantilever 102 on which the detection light 106 is irradiated is the cantilever reflecting surface 1
I will call it 09.

【0011】ここで、探針103を試料104表面に原
子間力が発生する程度に近づけた上で、試料表面上を2
次元面内方向に相対的に走査させれば、試料表面の凹凸
105(高さh)によってカンチレバー102は曲げら
れる。この曲がりによってカンチレバー反射面109で
反射された反射光107に反射角の変化、 Δθ=2h/L1 式(1) がもたらされる。カンチレバー反射面109で反射され
た反射光107を、カンチレバー反射面109から距離
2の位置に設置された光検出器108を用いて検出す
ると、先程の反射角の変化に伴って、光検出器108に
入射する反射光107の位置は、 d=L2Δθ =2L2h/L1 式(2) だけずれる。このずれ量は、光検出器108として例え
ば、2分割光検出器(以下、BPD;Bi−cell
Photo Detector)を用いて検出すること
ができる。
Here, the probe 103 is brought close to the surface of the sample 104 to such an extent that an atomic force is generated, and then the surface of the sample is moved to 2
When scanning is relatively performed in the in-plane direction, the cantilever 102 is bent by the unevenness 105 (height h) on the sample surface. Due to this bending, the reflected light 107 reflected by the cantilever reflecting surface 109 has a change in the reflection angle, Δθ = 2h / L 1 Formula (1). When the reflected light 107 reflected by the cantilever reflection surface 109 is detected by using the photodetector 108 installed at a position at a distance L 2 from the cantilever reflection surface 109, the photodetector is detected according to the change in the reflection angle. The position of the reflected light 107 incident on 108 is shifted by d = L 2 Δθ = 2L 2 h / L 1 formula (2). This shift amount is calculated by the photodetector 108, for example, a two-division photodetector (hereinafter, BPD; Bi-cell).
It can be detected using a Photo Detector).

【0012】以上の挙動は最も理想的な場合であって、
カンチレバー全体が反っていたり、カンチレバーが曲げ
られる時に反りが生じたりすると、反射光107はカン
チレバー102上、様々な反射角で反射されることにな
り、光検出器108で検出される上記ずれ量に誤差が含
まれるようになる。この様な影響をできるだけ小さくし
て測定精度を高めるために、検出光を十分に絞ってカン
チレバー反射面109上への検出光入射面積を小さくす
るとともに、探針103の動きを最も敏感に反映する位
置、すなわち図1の場合ではカンチレバー102先端
(探針103の位置するカンチレバー102の裏面)に
検出光106を入射させてやる必要がある。しかしなが
ら、通常数100μm程度の長さのカンチレバーの先端
に、例えば数μm径に検出光を集光出来るように光学系
を調整することには多大な労力と時間を要する。
The above behavior is the most ideal case,
If the entire cantilever is warped or warped when the cantilever is bent, the reflected light 107 is reflected on the cantilever 102 at various reflection angles, and the amount of deviation detected by the photodetector 108 is exceeded. The error will be included. In order to reduce such an influence as much as possible and improve the measurement accuracy, the detection light is sufficiently narrowed to reduce the incident area of the detection light on the cantilever reflection surface 109, and the movement of the probe 103 is most sensitively reflected. It is necessary to make the detection light 106 incident on the position, that is, in the case of FIG. 1, the tip of the cantilever 102 (the back surface of the cantilever 102 where the probe 103 is located). However, it takes a lot of labor and time to adjust the optical system so that the detection light can be condensed to a diameter of several μm, for example, at the tip of a cantilever having a length of several hundred μm.

【0013】係る問題を解決するために、カンチレバー
反射面に光反射部と係る光反射部の周囲に反射障壁を設
け、例え検出光のビーム径が光反射部の面積以上であっ
ても、光反射部以外の部分で反射された検出光が光検出
器に到達することのないようにする方式が、特開平4−
285810号によって開示されている。係る特開平4
−285810号においては、第1の実施例として、前
記反射障壁として1μmピッチのジグザグ状構造物を構
築している。また第2の実施例においては、窒化シリコ
ンでできたカンチレバー上に、光反射部として直径1μ
mの金を蒸着し、係る金の反射率が窒化シリコンのそれ
よりも大きいことを利用して、光反射部からの反射光を
重点的に検出し、測定感度を向上させようとするものが
開示されている。
In order to solve such a problem, a reflection barrier is provided on the cantilever reflecting surface around the light reflecting portion and the light reflecting portion, and even if the beam diameter of the detection light is equal to or larger than the area of the light reflecting portion, A method for preventing the detection light reflected by a portion other than the reflecting portion from reaching the photodetector is disclosed in Japanese Patent Laid-Open No. 4-206.
No. 285810. Japanese Patent Application Laid-Open No. 4
In No. 285810, as a first embodiment, a zigzag structure having a pitch of 1 μm is constructed as the reflection barrier. In addition, in the second embodiment, a diameter of 1 μm is used as a light reflecting portion on a cantilever made of silicon nitride.
In order to improve the measurement sensitivity, it is possible to vapor-deposit m gold and utilize the fact that the reflectance of the gold is higher than that of silicon nitride to detect the reflected light from the light reflecting portion in a focused manner and improve the measurement sensitivity. It is disclosed.

【0014】以上述べた従来法によった場合、例えば、
上述の第1の実施例のように何らかの反射障壁をカンチ
レバー上に構築するためには、製造工程が増えて複雑に
なり、又、この部分での検出光の反射光が光検出器に到
達しないようにするには、反射障壁の形態設計、その製
造プロセス及びAFM光学系の調整に労力を要するとい
う問題点がある。また第2の実施例に示された方法は簡
便であるが、後述するように、光検出器で検出される反
射光への、光反射部以外の部分で反射された反射光の影
響が、無視できなくなる場合がある。
When the above-mentioned conventional method is used, for example,
In order to construct some kind of reflective barrier on the cantilever as in the first embodiment described above, the number of manufacturing steps is increased and becomes complicated, and the reflected light of the detection light at this portion does not reach the photodetector. In order to do so, there is a problem that labor is required for the morphological design of the reflective barrier, its manufacturing process, and adjustment of the AFM optical system. Further, although the method shown in the second embodiment is simple, as will be described later, the influence of the reflected light reflected by the portion other than the light reflecting portion on the reflected light detected by the photodetector is In some cases, it cannot be ignored.

【0015】以上述べた従来技術の問題点に鑑み、本発
明の目的は、光てこ方式のAFMにおいて、カンチレバ
ーで反射される検出光の内、特に該カンチレバー上の特
定の位置からの反射光の強度を、それ以外の部分で反射
される反射光の強度よりも相対的に著しく大きくするこ
とができ、表面形状測定時のカンチレバーの特定の位置
の動きを精度よく検出し得る装置を提供することにあ
る。
In view of the above-mentioned problems of the prior art, an object of the present invention is to provide, in an optical lever type AFM, a detection light reflected by a cantilever, particularly a reflected light from a specific position on the cantilever. (EN) Provided is a device capable of relatively significantly increasing the intensity of reflected light reflected by other portions, and capable of accurately detecting movement of a specific position of a cantilever during surface shape measurement. It is in.

【0016】[0016]

【課題を解決するための手段及び作用】上記目的を達成
すべく成された本発明は、先鋭な探針を有するカンチレ
バー部と、係る探針と試料表面との間の距離を制御する
手段と、係る探針を試料表面上で相対的に2次元走査さ
せる手段と、係る探針と試料表面との間に発生する原子
間力により生ずる探針の上下動に伴うカンチレバーの曲
がりの変化を検出するために、係るカンチレバーに入射
される検出光のカンチレバー反射面上での反射角の変化
を検出する光検出器を有する、光てこ方式の原子間力顕
微鏡において、前記カンチレバー反射面への検出光入射
角が、該カンチレバー反射面でのp偏光成分の反射損失
が略最大となるように設定されており、また、前記カン
チレバー反射面上での前記探針の動きに対して感度良く
連動することができる位置に、上記のように設定された
検出光入射角におけるp偏光成分の反射率がカンチレバ
ー反射面よりも大きな反射板を有し、さらに、前記カン
チレバー反射面で反射され前記光検出器に入射される検
出光が、p偏光成分であることを特徴とする原子間力顕
微鏡である。
SUMMARY OF THE INVENTION The present invention, which has been made to achieve the above object, provides a cantilever portion having a sharp probe and a means for controlling the distance between the probe and the sample surface. , A means for relatively two-dimensionally scanning the probe on the sample surface, and a change in the bending of the cantilever due to the vertical movement of the probe caused by the atomic force generated between the probe and the sample surface. In order to do so, in an optical lever type atomic force microscope having a photodetector that detects a change in the reflection angle of the detection light incident on the cantilever on the cantilever reflection surface, the detection light to the cantilever reflection surface The incident angle is set so that the reflection loss of the p-polarized light component on the cantilever reflection surface becomes substantially maximum, and it is interlocked with sensitivity to the movement of the probe on the cantilever reflection surface. In A reflection plate having a reflectance of the p-polarized component larger than that of the cantilever reflection surface at the detection light incident angle set as described above, and further reflected by the cantilever reflection surface and incident on the photodetector. The detected light is a p-polarized component, which is an atomic force microscope.

【0017】以下、本発明の機構及び原理について詳述
する。図2は本発明の原子間力顕微鏡を特徴づける主要
部分の一構成例を示す模式図である。
The mechanism and principle of the present invention will be described in detail below. FIG. 2 is a schematic view showing an example of the configuration of the main part that characterizes the atomic force microscope of the present invention.

【0018】本発明においては、カンチレバー反射面1
09で反射され光検出器108に入射される検出光20
5は、後述する理由からp偏光成分としている。そのた
め、本構成例では、光源201から照射された検出光2
03を偏光板202によってp偏光としてカンチレバー
反射面109に入射している。この時のカンチレバー反
射面109での反射率の、入射角(図2中のθ)依存性
を調べると、反射率が最小となるθpが存在する。即ち
この時、カンチレバー反射面109での反射損失が最大
となる。
In the present invention, the cantilever reflecting surface 1
Detection light 20 that is reflected at 09 and enters the photodetector 108
5 is a p-polarized component for the reason described later. Therefore, in the present configuration example, the detection light 2 emitted from the light source 201
03 is incident on the cantilever reflecting surface 109 as p-polarized light by the polarizing plate 202. When the dependence of the reflectance on the cantilever reflecting surface 109 at this time on the incident angle (θ in FIG. 2) is examined, there is θ p at which the reflectance is minimum. That is, at this time, the reflection loss on the cantilever reflection surface 109 becomes maximum.

【0019】本発明では、カンチレバー反射面109へ
の検出光203の入射角を前記θp近傍に設定するもの
であり、一般に誘電体界面において、媒質1から媒質2
にp偏光を入射させる時、媒質1,2の屈折率を各々n
1,n2とすると、前記θpは θB=tan-1(n2/n1) 式(3) で定義されるブリュースター角(θB)となり、この
時、原理的には反射率がゼロになる。但し、カンチレバ
ー反射面109を構成する材料が他の材料上に堆積され
た薄膜であり、その膜厚が検出光203の波長以下(特
に波長の1/4以下)の場合には、式(3)に替えて多
層膜系の式を用いる必要が生じるが、反射損失が最大と
なる入射角θpは存在するから、それを用いれば良い。
尚、上記屈折率には入射光の波長に対する分散があるこ
とから、検出光203としてはレーザー光等の単一波長
光を用いることが望ましい。
In the present invention, the incident angle of the detection light 203 on the cantilever reflecting surface 109 is set to the vicinity of θ p , and generally, at the dielectric interface, the medium 1 to the medium 2 are set.
When p-polarized light is incident on the
Assuming 1 and n 2 , θ p is the Brewster angle (θ B ) defined by the equation (3), where θ B = tan −1 (n 2 / n 1 ). Becomes zero. However, when the material forming the cantilever reflection surface 109 is a thin film deposited on another material and the film thickness is equal to or less than the wavelength of the detection light 203 (particularly, equal to or less than ¼ of the wavelength), the formula (3 It is necessary to use the equation of the multilayer film system instead of), but there is an incident angle θ p that maximizes the reflection loss, so that it can be used.
Since the refractive index has dispersion with respect to the wavelength of incident light, it is desirable to use a single wavelength light such as a laser light as the detection light 203.

【0020】本発明では、上記のようにカンチレバー反
射面109への検出光203の入射角を、反射損失が最
大(反射率が最小)となる入射角θpに設定した上で、
さらに、カンチレバー反射面109上に、検出光203
を入射角θpで入射させた時の反射率がカンチレバー反
射面109でのそれよりも大きくなるような反射板20
4を設けている。以上により、検出光203のビーム径
が前記反射板204の面積より大きい場合においても、
反射板204以外の部分からの反射による検出光205
への影響を最小にすることが可能となる。即ち上述のよ
うな光学系を用いる時、前記反射板204からの反射光
を選択的に検出することができ、試料104の表面状態
の検出精度を上げることができる。更に、係る反射板2
04を探針103の動きに対して最も敏感に連動するよ
うな位置(図2の例においては、裏面に探針103が位
置するカンチレバー反射面109上の位置)に形成する
ことにより、試料104表面の凹凸形状の検出感度を上
げることができる。
In the present invention, as described above, the incident angle of the detection light 203 on the cantilever reflecting surface 109 is set to the incident angle θ p at which the reflection loss becomes maximum (the reflectance is minimum).
Further, on the cantilever reflection surface 109, the detection light 203
Reflection plate as larger than that in the reflectance cantilever reflecting surface 109 when is incident at an incident angle theta p 20
4 is provided. As described above, even when the beam diameter of the detection light 203 is larger than the area of the reflection plate 204,
Detection light 205 due to reflection from a portion other than the reflection plate 204
It is possible to minimize the influence on. That is, when the above optical system is used, the reflected light from the reflection plate 204 can be selectively detected, and the detection accuracy of the surface state of the sample 104 can be improved. Furthermore, the reflector 2
The sample 04 is formed at a position that most interlocks with the movement of the probe 103 (a position on the cantilever reflection surface 109 where the probe 103 is located on the back surface in the example of FIG. 2). It is possible to increase the detection sensitivity of the uneven shape of the surface.

【0021】本発明において、光検出器108に入射さ
れる検出光205をp偏光成分としているのは、上記反
射板204からの反射光をより選択的に検出できるよう
にするためであり、その理由を以下に説明する。
In the present invention, the detection light 205 incident on the photodetector 108 is made to have a p-polarized component so that the reflection light from the reflection plate 204 can be detected more selectively. The reason will be described below.

【0022】無偏光あるいはs偏光は、同一入射角では
p偏光よりも反射率が大きく(入射角が0°または90
°の場合は同一)、この様子を図3に示す。
Unpolarized light or s-polarized light has a higher reflectance than p-polarized light at the same incident angle (incident angle of 0 ° or 90 °).
This is shown in FIG. 3).

【0023】図3にはシリコンに波長6328ÅのHe
−Neレーザー光を入射した時のシリコン面での反射率
を入射角に対してプロットしてある。入射角が0°付近
の時、7つの曲線が描かれているが、これらは、反射率
が小さい方から順に、各々シリコン上に金を0,10
0,200,300,400,500そして700Å堆
積させた場合の関係を示している。また各々の曲線は、
入射角10°付近で2本に分かれているが、堆積した金
の膜厚に拠らず、何れも同一入射角で反射率の大きい方
がs偏光入射に対応し、小さい方がp偏光入射に対応し
ている。
In FIG. 3, He of wavelength 6328Å is added to silicon.
The reflectance on the silicon surface when -Ne laser light is incident is plotted against the incident angle. When the incident angle is around 0 °, seven curves are drawn. These are, in order from the one with the smallest reflectance, gold with 0,10 on silicon.
The relationship is shown when 0, 200, 300, 400, 500 and 700 Å are deposited. Also, each curve is
It is divided into two near the incident angle of 10 °. Regardless of the deposited gold film thickness, the one with the same incident angle has a large reflectance corresponds to the s-polarized light incident, and the smaller one has the p-polarized light incident. It corresponds to.

【0024】図3より、例えば、カンチレバー102が
シリコンで出来ていて、光源201として波長6328
ÅのHe−Neレーザーを用いるとすると、検出光入射
角θが例えば40°の時、反射板204として膜厚70
0Åの金を設けたとしても、反射板204上での反射率
が90〜95%であるのに対して、反射板204を含ま
ないカンチレバー反射面109(即ちシリコン面)上で
の反射率が、p偏光入射時において約25%、s偏光入
射時では約43%もあり、検出光203のビーム径が反
射板204の面積よりも大きい場合には、検出光205
にシリコン面上で反射されたものが相当含まれてしま
う。一方、入射角θを75°付近(75.5°)にもっ
てくると、p偏光入射時において、反射板204(金)
上での反射率は比較的小さいものの、反射板204を含
まないカンチレバー反射面109(シリコン)上での反
射率は略ゼロであり、例えば、反射板204(金)の膜
厚が200Åであっても、反射率は36%であり、反射
板204で反射された検出光のみを選択的に光検出器1
08で検出することが可能となる。但しこの時、検出光
203としてs偏光を用いると、各点からの反射率が7
0%を越えてしまうので、本発明への利用には適さない
ことがわかる。
From FIG. 3, for example, the cantilever 102 is made of silicon, and the light source 201 has a wavelength of 6328.
If a He-Ne laser of Å is used, when the detection light incident angle θ is, for example, 40 °, the film thickness of the reflection plate 204 is 70
Even if 0 Å gold is provided, the reflectance on the reflecting plate 204 is 90 to 95%, whereas the reflectance on the cantilever reflecting surface 109 (that is, the silicon surface) not including the reflecting plate 204 is. , 25% when p-polarized light is incident and about 43% when s-polarized light is incident, and when the beam diameter of the detection light 203 is larger than the area of the reflection plate 204, the detection light 205
Contains a large amount of light reflected on the silicon surface. On the other hand, when the incident angle θ is brought to around 75 ° (75.5 °), the reflecting plate 204 (gold) is incident upon p-polarized light incidence.
Although the reflectance above is relatively small, the reflectance on the cantilever reflecting surface 109 (silicon) that does not include the reflector 204 is substantially zero. For example, the thickness of the reflector 204 (gold) is 200Å. However, the reflectance is 36%, and only the detection light reflected by the reflection plate 204 is selectively detected.
It is possible to detect at 08. However, at this time, if s-polarized light is used as the detection light 203, the reflectance from each point is 7
Since it exceeds 0%, it is understood that it is not suitable for use in the present invention.

【0025】以上の様な理由から本発明では、光検出器
108に入射される検出光205をp偏光成分としてい
るものである。図2に示した例では光源201とカンチ
レバー102との間に偏光板202を設け、検出光20
3自体にp偏光を用いているが、例えば、上記偏光板2
02の替りに、カンチレバー102と光検出器108と
の間に設置した偏光板を用いてp偏光を取り出しても良
い。尚、この場合には検出光203はp偏光成分を含む
光線であっても良い。
For the above reasons, in the present invention, the detection light 205 entering the photodetector 108 is the p-polarized component. In the example shown in FIG. 2, a polarizing plate 202 is provided between the light source 201 and the cantilever 102 to detect the detection light 20.
3 uses p-polarized light itself, for example, the polarizing plate 2
Instead of 02, p-polarized light may be extracted using a polarizing plate installed between the cantilever 102 and the photodetector 108. In this case, the detection light 203 may be a light ray containing a p-polarized component.

【0026】図2に示したような本発明の構成におい
て、光源201から反射板204を含むカンチレバー反
射面109に検出光203が照射された場合、反射板2
04以外の部分に照射された検出光203の反射率は反
射板204上でのそれと比較して無視できるほどに小さ
くできるため、実質的なビームの大きさは反射板204
の大きさである。従って、カンチレバーの先端に検出光
を集光せずとも、検出光を反射板204を含むカンチレ
バー反射面上に照射しさえすれば、感度よくカンチレバ
ーの先端の変位を検出することができる。但し検出光2
03のビーム径が反射板204の大きさに較べて、あま
りにも大きいのは好ましくない。
In the configuration of the present invention as shown in FIG. 2, when the detection light 203 is irradiated from the light source 201 to the cantilever reflection surface 109 including the reflection plate 204, the reflection plate 2
Since the reflectance of the detection light 203 irradiated on the portion other than 04 can be made negligibly smaller than that on the reflection plate 204, the substantial beam size is the reflection plate 204.
Is the size of. Therefore, even if the detection light is not focused on the tip of the cantilever, the displacement of the tip of the cantilever can be detected with high sensitivity as long as the detection light is applied to the reflecting surface of the cantilever including the reflection plate 204. However, detection light 2
It is not preferable that the beam diameter of 03 is too large as compared with the size of the reflection plate 204.

【0027】反射板204としては、上述の金に限定す
ることなく、前述のように設定された検出光入射角にお
けるp偏光成分の反射率が下地のカンチレバー反射面1
09よりも大きな材料であれば何を用いてもよく、金の
他,銀,アルミニウム,プラチナ等の金属やこれらの合
金等を用いることができる。その作製方法は従来公知の
蒸着等の手法に依ればよく、その大きさや位置を限定す
る為には、これも従来公知のマスク蒸着や、フォトリソ
グラフィー技術を利用すれば良い。反射板204の大き
さとしては、1μm〜30μm径程度であることが好ま
しく、より好ましくは、1μm〜10μm径である。そ
の形状は円板状に限定されることなく、他の形状であっ
ても差し支えない。
The reflecting plate 204 is not limited to the above-mentioned gold, but the reflectance of the p-polarized component at the detection light incident angle set as described above has the underlying cantilever reflecting surface 1.
Any material larger than 09 may be used, and in addition to gold, metals such as silver, aluminum and platinum, and alloys thereof can be used. The manufacturing method thereof may be based on a conventionally known method such as vapor deposition, and in order to limit the size and position thereof, also conventionally known mask vapor deposition or photolithography technology may be used. The size of the reflection plate 204 is preferably about 1 μm to 30 μm in diameter, and more preferably 1 μm to 10 μm. The shape is not limited to the disk shape, and may be another shape.

【0028】尚、光源,偏光板や光検出器等の光学部品
の配置も図2に限定されるものではなく、基本的な動作
が同じであれば、これ以外の幾何学的配置を選んでも良
いことはいうまでもない。
The arrangement of the optical components such as the light source, the polarizing plate and the photodetector is not limited to that shown in FIG. 2, and if the basic operation is the same, other geometrical arrangements may be selected. Not to mention good things.

【0029】以上より本発明によれば、常にカンチレバ
ー上の特定の位置(反射板)における検出光の反射角の
変化を正確に求めることができるため、試料表面状態を
精度よく安定に測定することができる。
As described above, according to the present invention, since the change in the reflection angle of the detection light at a specific position (reflector plate) on the cantilever can always be accurately obtained, the sample surface state can be measured accurately and stably. You can

【0030】更には、AFMを利用した情報処理装置に
本発明のAFMを用いることによって、情報の記録/再
生の精度を向上させることが可能である。
Furthermore, by using the AFM of the present invention in an information processing apparatus using the AFM, it is possible to improve the accuracy of recording / reproducing information.

【0031】[0031]

【実施例】以下本発明の実施例について述べる。EXAMPLES Examples of the present invention will be described below.

【0032】実施例1 図5に示す構成を有する本発明の光梃子方式AFMを用
いて実験を行った。尚、探針103を試料表面上に近づ
けたり、相対的に2次元走査させる為の機構について
は、従来公知の方法によるので本図では省略している。
Example 1 An experiment was conducted using the optical leverage AFM of the present invention having the configuration shown in FIG. A mechanism for bringing the probe 103 close to the surface of the sample or relatively two-dimensionally scanning is omitted in this drawing because it is a conventionally known method.

【0033】カンチレバー102として、一辺100μ
mの三角形状のSiカンチレバー(厚さ約1μm)を用
いた。係るカンチレバー102の先端には、Siを異方
性エッチングして作成した探針103が有り、さらにそ
の裏面のカンチレバー先端部には、フォトリソグラフィ
ー技術を用いて、金を約5μm径の大きさで、厚さ20
0Åになるように堆積させて反射板204を形成した。
As the cantilever 102, one side is 100 μ
A triangular Si cantilever (thickness: about 1 μm) of m was used. At the tip of the cantilever 102, there is a probe 103 formed by anisotropically etching Si, and at the tip of the cantilever on the back surface of the cantilever 102, photolithography is used to form gold with a size of about 5 μm. , Thickness 20
The reflection plate 204 was formed by depositing so as to be 0Å.

【0034】検出光光源201としては、波長6328
Å、ビーム径20μmのHe−Neレーザー光を用い
た。偏光子202としてグラン・トムソン偏光プラズム
を用いて、上記レーザー光(検出光203)を、カンチ
レバー反射面109にp偏光入射させた。この時の入射
角が75°付近になるように光源201の位置を粗く調
節した。光検出器108としては、従来公知の2分割光
検出器(BPD)を用いた。探針103と試料との距離
を表面観察に必要な距離にした後、検出光203を反射
板204の近傍のSi面に照射し、この条件で光検出器
108で検出される反射光強度の総量が最も小さくなる
ように入射角を調節した。係る入射角(75.5°)を
保持したまま、検出光203が反射板204全体に入射
する様に、光源201の位置を僅かに調節した。
The detection light source 201 has a wavelength of 6328.
Å, He-Ne laser light with a beam diameter of 20 μm was used. The Glan-Thomson polarization prism was used as the polarizer 202, and the laser light (detection light 203) was incident on the cantilever reflection surface 109 as p-polarized light. The position of the light source 201 was roughly adjusted so that the incident angle at this time was around 75 °. As the photodetector 108, a conventionally known two-split photodetector (BPD) was used. After the distance between the probe 103 and the sample is set to a distance required for surface observation, the detection light 203 is irradiated onto the Si surface in the vicinity of the reflection plate 204, and the reflected light intensity detected by the photodetector 108 under this condition is changed. The incident angle was adjusted so that the total amount was the smallest. The position of the light source 201 was slightly adjusted so that the detection light 203 was incident on the entire reflection plate 204 while maintaining the incident angle (75.5 °).

【0035】係る装置を用いて、高配向グラファイト
(以下、「HOPG」と称す)及びマイカの表面を観察
した所、ノイズの少ない良好な原子配列像を安定に得る
ことができた。
When the surfaces of highly oriented graphite (hereinafter referred to as "HOPG") and mica were observed using such an apparatus, a good atomic arrangement image with less noise could be stably obtained.

【0036】比較例1 実施例1に記した実験を行った後、偏光子202を取り
外した以外は、実施例1と全く同じ装置、同様の手法を
用いて(この時、入射角の再調整は行わず、実施例1と
同一の入射角(75.5°)に設定している)、HOP
G及びマイカの表面を観察した所、実施例1と比較して
画像出力時にやや不安定性がみられ、繰り返し走査時に
おける出力像の再現性に若干の低下が認められた。
Comparative Example 1 After performing the experiment described in Example 1, the same apparatus and the same method as in Example 1 were used except that the polarizer 202 was removed (at this time, the incident angle was readjusted). Is not performed, and the same incident angle (75.5 °) as that of the first embodiment is set), HOP
When the surfaces of G and mica were observed, a slight instability was observed during image output as compared with Example 1, and a slight decrease in the reproducibility of the output image during repeated scanning was observed.

【0037】実施例2 実施例1において、偏光子202を取り外し、かわりに
図5中のAの位置に偏光子としてグラン・トムソン偏光
子を、光検出器108に検出光205のp偏光成分のみ
が入射される様に配置した。
Second Embodiment In the first embodiment, the polarizer 202 is removed, and instead, a Glan-Thompson polarizer is used as a polarizer at the position A in FIG. 5, and only the p-polarized component of the detection light 205 is detected by the photodetector 108. It was arranged so that would be incident.

【0038】係る装置を用いて、HOPG及びマイカの
表面を観察した所、実施例1と同様、ノイズの少ない良
好な原子配列像を安定に得ることができた。
When the surfaces of HOPG and mica were observed using this apparatus, a good atomic array image with less noise could be stably obtained, as in Example 1.

【0039】実施例3 実施例1において、Siに代えてSi34を用いたカン
チレバー102を用いた他は、実施例1と同様の装置、
手法を用いてHOPG及びマイカの表面を観察した所、
実施例1と同様、ノイズの少ない良好な原子配列像を安
定に得ることができた。この時の入射角は76.0°で
あった。
Example 3 An apparatus similar to Example 1 except that the cantilever 102 using Si 3 N 4 in place of Si was used in Example 1.
When the surface of HOPG and mica was observed using the method,
Similar to Example 1, a good atomic array image with less noise could be stably obtained. The incident angle at this time was 76.0 °.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、光
てこ方式のAFMにおいて、検出光に含まれる非本質的
な変動成分に影響されることなくカンチレバー上の特定
の位置の変動量を測定することができるので、試料表面
状態の検出精度、並びに検出感度が向上する効果があ
る。
As described above, according to the present invention, in the optical lever type AFM, the fluctuation amount of a specific position on the cantilever can be controlled without being affected by the non-essential fluctuation component contained in the detection light. Since the measurement can be performed, there is an effect that the detection accuracy of the sample surface state and the detection sensitivity are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の光てこ方式のAFMのカンチレバー周辺
部を示す図である。
FIG. 1 is a view showing a peripheral portion of a cantilever of a conventional optical lever type AFM.

【図2】本発明の光てこ方式のAFMの構成を示す図で
ある。
FIG. 2 is a diagram showing a configuration of an optical lever type AFM of the present invention.

【図3】シリコンおよびその上に金薄膜を堆積した試料
に、波長6328Åのp偏光及びs偏光を入射した時の
入射角と反射率との関係を示す図である。
FIG. 3 is a diagram showing a relationship between an incident angle and reflectance when p-polarized light and s-polarized light having a wavelength of 6328Å are incident on a sample in which silicon and a gold thin film are deposited on the silicon.

【図4】本発明の実施例を説明する図である。FIG. 4 is a diagram illustrating an example of the present invention.

【符号の説明】[Explanation of symbols]

101 基板 102 カンチレバー 103 探針 104 試料 105 試料表面の凹凸 106 検出光(入射光) 107 検出光(反射光) 108 光検出器 109 カンチレバー反射面 201 光源 202 偏光板 203 検出光(入射光) 204 反射板 205 検出光(反射光) 101 substrate 102 cantilever 103 probe 104 sample 105 unevenness of sample surface 106 detection light (incident light) 107 detection light (reflected light) 108 photodetector 109 cantilever reflection surface 201 light source 202 polarizing plate 203 detection light (incident light) 204 reflection Plate 205 Detection light (reflected light)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 先鋭な探針を有するカンチレバー部と、
係る探針と試料表面との間の距離を制御する手段と、係
る探針を試料表面上で相対的に2次元走査させる手段
と、係る探針と試料表面との間に発生する原子間力によ
り生ずる探針の上下動に伴うカンチレバーの曲がりの変
化を検出するために、係るカンチレバーに入射される検
出光のカンチレバー反射面上での反射角の変化を検出す
る光検出器を有する、光てこ方式の原子間力顕微鏡にお
いて、 前記カンチレバー反射面への検出光入射角が、該カンチ
レバー反射面でのp偏光成分の反射損失が略最大となる
ように設定されており、 また、前記カンチレバー反射面上での前記探針の動きに
対して感度良く連動することができる位置に、上記のよ
うに設定された検出光入射角におけるp偏光成分の反射
率がカンチレバー反射面よりも大きな反射板を有し、 さらに、前記カンチレバー反射面で反射され前記光検出
器に入射される検出光が、p偏光成分であることを特徴
とする原子間力顕微鏡。
1. A cantilever portion having a sharp probe,
Means for controlling the distance between the probe and the sample surface, means for relatively two-dimensionally scanning the probe on the sample surface, and atomic force generated between the probe and the sample surface In order to detect the change in the bending of the cantilever due to the vertical movement of the probe caused by the optical lever, an optical lever having a photodetector that detects the change in the reflection angle of the detection light incident on the cantilever on the cantilever reflecting surface is detected. In the atomic force microscope of the method, the detection light incident angle on the cantilever reflection surface is set so that the reflection loss of the p-polarized light component on the cantilever reflection surface becomes substantially maximum, and the cantilever reflection surface. The reflection of the p-polarized light component at the detection light incident angle set as described above is larger than that of the cantilever reflection surface at a position where it can be interlocked with the movement of the probe with high sensitivity. The has further the cantilever is reflected by the reflecting surface detection light incident on the light detector, atomic force microscope, which is a p-polarized light component.
【請求項2】 前記光検出器に入射される検出光がp偏
光成分のみになるように、前記カンチレバー反射面に入
射される検出光をp偏光光線としたことを特徴とする請
求項1に記載の原子間力顕微鏡。
2. The detection light incident on the cantilever reflection surface is a p-polarized light beam so that the detection light incident on the photodetector is a p-polarized component only. The atomic force microscope described.
【請求項3】 前記光検出器に入射される検出光がp偏
光成分のみになるように、前記カンチレバー反射面と光
検出器との間に偏光板を有することを特徴とする請求項
1に記載の原子間力顕微鏡。
3. A polarizing plate is provided between the cantilever reflection surface and the photodetector so that the detection light incident on the photodetector has only a p-polarized component. The atomic force microscope described.
【請求項4】 前記カンチレバーに入射される検出光
が、単一波長光であることを特徴とする請求項1〜3い
ずれかに記載の原子間力顕微鏡。
4. The atomic force microscope according to claim 1, wherein the detection light incident on the cantilever is a single wavelength light.
【請求項5】 前記反射板が金,プラチナ,アルミニウ
ム,銀いずれかの金属あるいはこれらの合金からなり、
該反射板を除く前記カンチレバー反射面の構成材料がシ
リコン,酸化シリコンあるいは窒化シリコンであること
を特徴とする請求項1〜4いずれかに記載の原子間力顕
微鏡。
5. The reflection plate is made of a metal of gold, platinum, aluminum, silver, or an alloy thereof,
5. The atomic force microscope according to claim 1, wherein a constituent material of the cantilever reflecting surface excluding the reflecting plate is silicon, silicon oxide or silicon nitride.
【請求項6】 前記カンチレバー反射面への検出光入射
角が、前記反射板を除くカンチレバー反射面の構成材料
に対するブリュースター角付近にあることを特徴とする
請求項1〜5いずれかに記載の原子間力顕微鏡。
6. The incident light incident angle on the cantilever reflection surface is in the vicinity of Brewster's angle with respect to the constituent material of the cantilever reflection surface excluding the reflection plate, according to any one of claims 1 to 5. Atomic force microscope.
JP16832593A 1993-06-16 1993-06-16 Atomic force microscope Withdrawn JPH075181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16832593A JPH075181A (en) 1993-06-16 1993-06-16 Atomic force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16832593A JPH075181A (en) 1993-06-16 1993-06-16 Atomic force microscope

Publications (1)

Publication Number Publication Date
JPH075181A true JPH075181A (en) 1995-01-10

Family

ID=15865951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16832593A Withdrawn JPH075181A (en) 1993-06-16 1993-06-16 Atomic force microscope

Country Status (1)

Country Link
JP (1) JPH075181A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328969B1 (en) * 1999-01-20 2002-03-20 송순달 Detector for direct imaging and resolution of the atom
JP2008051556A (en) * 2006-08-22 2008-03-06 Sii Nanotechnology Inc Optical displacement detecting mechanism, and surface information measuring device using the same
JP2011247899A (en) * 2011-07-22 2011-12-08 Sii Nanotechnology Inc Displacement detection method of scanning probe microscope
WO2022115398A1 (en) * 2020-11-30 2022-06-02 Applied Materials, Inc. Surface topography measurement apparatus and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328969B1 (en) * 1999-01-20 2002-03-20 송순달 Detector for direct imaging and resolution of the atom
JP2008051556A (en) * 2006-08-22 2008-03-06 Sii Nanotechnology Inc Optical displacement detecting mechanism, and surface information measuring device using the same
JP2011247899A (en) * 2011-07-22 2011-12-08 Sii Nanotechnology Inc Displacement detection method of scanning probe microscope
WO2022115398A1 (en) * 2020-11-30 2022-06-02 Applied Materials, Inc. Surface topography measurement apparatus and method
US11422096B2 (en) 2020-11-30 2022-08-23 Applied Materials, Inc. Surface topography measurement apparatus and method
US11604151B2 (en) 2020-11-30 2023-03-14 Applied Materials, Inc. Surface topography measurement apparatus and method

Similar Documents

Publication Publication Date Title
JP3000492B2 (en) Information processing device
Bozhevolnyi et al. Near-field microscopy of surface-plasmon polaritons: Localization and internal interface imaging
US5272330A (en) Near field scanning optical microscope having a tapered waveguide
US5288998A (en) Manufacturing method including photoresist processing using a near-field optical probe
US6156215A (en) Method of forming a projection having a micro-aperture, projection formed thereby, probe having such a projection and information processor comprising such a probe
US5288999A (en) Manufacturing method including near-field optical microscopic examination of a semiconductor wafer
US6229138B1 (en) Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images
JP3793430B2 (en) Optical device using near-field light
US6643012B2 (en) Apertureless near-field scanning raman microscopy using reflection scattering geometry
Sun et al. Near‐field scanning Raman microscopy using apertureless probes
EP0487233B1 (en) Near field scanning optical microscope and applications thereof
US5288997A (en) Manufacturing method, including near-field optical microscopic examination of a magnetic bit pattern
US6265711B1 (en) Scanning probe microscope assembly and method for making spectrophotometric near-field optical and scanning measurements
JP3264824B2 (en) Light propagating probe, scanning near-field microscope, and method of forming through hole in light propagating probe
De Hollander et al. Near field plasmon and force microscopy
Van Hulst et al. High resolution imaging of dielectric surfaces with an evanescent field optical microscope
JP3069923B2 (en) Cantilever probe, atomic force microscope, information recording / reproducing device
Cline et al. Scanned-tip reflection-mode near-field scanning optical microscopy
JP3439645B2 (en) Pickup for photon scanning tunneling microscope
JPH06267408A (en) Manufacture of detection probe for very small displacement, detection probe for very small displacement, and scanning probe microscope and information processor using these
JPH075181A (en) Atomic force microscope
JP3290358B2 (en) How to bring out the physical properties of the workpiece
JP3015980B2 (en) Atomic force microscope, recording / reproducing device and reproducing device
Pollock et al. The use of near-field probes for vibrational spectroscopy and photothermal imaging
JPH0949849A (en) Device suitable for measuring near field of work piece

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905