1270612 (1) 玖、發明說明 【發明所屬之技術領域】 裝® ’特別是關於 的燃料噴射控制裝 本發明是關於引擎的燃料噴射控制 在以人力轉動曲軸來將引擎啓動的引擎 置。 【先前技術】 第7圖是顯示機車的燃料供給系統的主要部分的構造 的方塊圖’從油箱1 2經過過濾器1 3以燃料泵浦1 4加壓 的燃料’會再通過過濾器1 5被輸送到燃料噴射閥(噴油 器)8。設置有用來將進氣岐管24的燃料壓力保持爲一定 的壓力調節器(穩壓器)1 6。爲了將燃料壓力保持爲一 定’從燃料泵浦1 4所排出的燃料中的多餘部分,會經過 壓力調節器1 6回流到油箱1 2。 被供給到進氣岐管2 4的燃料,會通過空氣濾淸器j 7 及節流閥18而與導入的空氣混合,在進氣閥19開啓時被 吸入到引擎的燃燒室20。而且,當活塞21越過壓縮上死 點時會使火星塞22點火來使混合氣體燃燒。 伴隨著燃燒會讓活塞2 1往復運動,曲軸(沒有圖 示)會旋轉。在燃料泵浦1 4,則是從沒有圖示的電池經 由E C ϋ 2 3來供給電源電壓。噴油器8的燃料噴射量,則 是根據引擎轉數或節流閥開度或引擎的各種參數而以 ECU23來決定。 習知的具備有腳踩啓動裝置的機車的燃料噴射裝置, -4- (2) 1270612 爲了使引擎的啓動性提昇,有時會在曲軸基準位置確定之 前進行燃料噴射。例如,當計算預定數量在每個預定的曲 軸角所產生的曲軸脈衝時,噴射一次燃料,之後在將曲軸 基準位置作爲基準的設定位置進行燃料的噴射。而在啓動 時先踩腳踩踏板來驅動燃料泵浦,將燃料壓力提高來使燃 料噴射的啓動裝置(日本特開平3一 18659號公報)。 【發明內容】 〔發明欲解決的課題〕 在腳踩啓動裝置中,踩踏力較小,或是初期的活塞位 置距離壓縮上死點較遠的情況,活塞會無法越過摩擦力較 大的壓縮行程的上死點。另一方面,由於噴油器的燃料噴 射會在進氣行程進行,所以如果活塞沒有超過壓縮上死點 的話,所噴射的燃料就不會燃燒而殘留在氣缸內。因此, 會產生燃料覆蓋於火星塞且會有引擎啓動性降低的情形。 本發明的目的,就是要解決上述以往的技術課題,要 提供一種引擎的燃料噴射控制裝置,即使是由於錯誤腳踏 操作而讓活塞沒有越過壓縮上死點的情況,在下一次啓動 操作,不會讓啓動性降低。 〔用以解決課題的手段〕 爲了達成上述目的,第1發明,是要用人力使引擎啓 動的機車的燃料噴射控制裝置,其特徵爲:具備有:設定 能夠讓活塞越過壓縮上死點的曲軸的基準角速度的手段、 -5- (3) 1270612 以及在啓動開始後的進氣行程的曲軸角速度超過上述基準 角速度時》則進行燃料噴射’另一方面’當上述曲軸角速 度小於上述基準角速度時則停止燃料噴射的控制手段。 第2發明,是要用人力使引擎啓動的機車的燃料噴射 控制裝置,其特徵爲:具備有:用來檢測活塞的上死點的 曲軸脈衝感應器、用來判斷所檢測出的上述上死點是否爲 進氣行程的上死點的手段、藉由預定曲軸角的旋轉時間來 檢測曲軸角速度的手段、用來設定讓活塞能越過壓縮上死 點的曲軸的基準角速度的手段、當上述所檢測出的上死點 是進氣行程的上死點時用來判斷上述曲軸角速度是否超過 基準角速度的角速度判斷手段、以及藉由上述角速度判斷 手段,當上述曲軸角速度超過上述基準角速度時則進行燃 料噴射,另一方面’上述曲軸角速度小於上述基準角速度 時則停止燃料噴射的控制手段。 藉由第1及第2發明,在用人力啓動也就是腳踩啓動 時’只要沒有超過能夠讓曲軸角速度越過壓縮上死點的基 準角速度就不會噴射燃料。於是,在錯誤的踩踏動作時就 不會無謂地噴射燃料’也不會產生由於尙未燃燒的燃料而 覆蓋火星塞的現象。 第3發明,上述控制手段,是由:燃料噴射量計算手 段、以及用因應於藉由該計算手段所計算出的燃料噴射量 的功率來驅動燃料噴射手段的驅動手段所構成,藉由上述 角速度判斷手段’當判斷上述曲軸角速度小於上述基準角 速度時,會將上述功率設定爲〇而實際停止燃料噴射。 -6 - (4) !27〇612 藉由第3發明,即使是在啓動的曲軸角速度超過基準 角速度的情況,或是沒有超過的情況,都是同樣地控制燃 料噴射閥的驅動部,只要噴射量的設定爲〇就停止燃料噴 射。 第4發明,是使用在具備有以共通電源來驅動的燃料 噴射閥以及燃料供給泵浦的引擎。 藉由第4發明,由於能夠節省使用在多餘燃料噴射的 電力’所以可以將節省下來的電力使用在燃料泵浦的驅 動。於是,即使一次啓動失敗,在下一次啓動就可將足夠 的電力供給到燃料泵浦而可得到高燃料壓力。 【實施方式】 以下參照圖面針對本發明的較佳實施方式來詳細說 明。第2圖’是包含本發明的一種實施方式的燃料噴射控 制裝置的具有腳踩啓動裝置的機車的主要構造的方塊圖。 在這裡雖然沒有圖示,該機車,是包含有由第7圖所示的 相同的硬體構造所構成的燃料供給系統。 在引擎的曲軸1是經由腳踩齒輪或棘輪(沒有圖示) 而連結著用來進行腳踩啓動的踏板(腳踩啓動踏板)2。 在曲軸1是結合著將多數的齒部(變磁阻轉子)設置在外 周的圓板3。變磁阻轉子是以預定間隔(例如3 〇度)配 置。 轉數感應器4,例如是以光遮斷器所構成,檢測出上 述變fei阻轉子然後將曲軸角訊號5輸出至F i — E C U (燃料 (5) 1270612 噴射控制裝置)6。曲軸角訊號5是因應變 置間隔而代表每個角度的曲軸角的訊號,根 號5,以Fi— ECU6來計算出引擎的轉數。 並且,在圓板3的圓周上的特定位置’ 對應位置,安裝磁鐵(例如以埋入的方式) 感應器所構成的曲軸脈衝感應器7,會檢測 曲軸脈衝訊號9輸出到Fi — ECU6。噴油器 示對應於Fi — ECU6所決定的燃料噴射量的 動訊號1 0而被驅動。以下在更詳細地敘述 動作。 第3圖、第4圖,是燃料噴射控制的時 將曲軸角3 0度限定爲一階段,將引擎的一 360度的12階段。於是,將由進氣、壓縮 所構成的引擎的一行程限定爲720度的24 訊號5的數量是表示階段數,曲軸脈衝訊號 每一次旋轉輸出一次。 在第3圖中,在時機11使用踩踏踏板 動時,會以結合於曲軸1的發電機發電,Fi 電壓會上升。在時機t2進行Fi - ECU6的重 化。該重設與初始化在時機t3結束之後, 給泵浦(FFP ) 14。在時機t4檢測曲軸脈衝 之後的階段也就是第1 7階段的脈衝寬度( 機t5,根據第1 7階段的脈衝寬度,判斷是 噴射。藉由該判斷,在執行燃料噴射時,進 磁阻轉子的配 據該曲軸角訊 也就是上死點 。由磁性拾取 該磁鐵然後將 8,會依照表 開閥功率的驅 F i - E C U 6 的 序圖。這裡是 次旋轉限定爲 、燃燒、排氣 階段。曲軸角 9,是引擎的 2開始踩踏啓 —ECU的電源 設則開始初始 則驅動燃料供 訊號9,檢測 時間)。在時 否要執行燃料 行燃料噴射量 -8- (6) 1270612 的計算,在時機t6來驅動噴油器(IN】)8。在沒有執行 燃料噴射時,不進行燃料噴射量的計算與燃料噴射。 第5圖,是燃料噴射判斷處理的流程圖。該處理,是 在每次檢測曲軸脈衝訊號所執行的。在步驟S 1,判斷是 否決定了曲軸基準位置,也就是在燃燒行程及進氣行程中 所檢測的曲軸脈衝訊號9之中,判斷是否檢測出進氣行 程。例如,可以根據當檢測出曲軸脈衝訊號9時的進氣管 負壓Pb來加以判斷。在步驟S 2,會判斷現在的階段是否 爲第1 8階段。曲軸基準位置決定的話,之後的階段會決 定爲第1 7階段,下一個階段是第1 8階段。 步驟S 2肯定的話,在步驟S 3,會判斷對應於第1 7 階段的曲軸角訊號的脈衝寬度(時間)T 1 7是否較用來判 斷燃料供給切斷的基準時間Tref更長。基準時間Tref, 是用來判斷曲軸是否以讓活塞能越過壓縮上死點的充分的 速度來旋轉的基準値。 當曲軸角訊號的脈衝寬度T1 7較基準時間Tref更長 時’判斷曲軸角速度較小(低旋轉),則進入到步驟 S4。另一方面,在曲軸角訊號的脈衝寬度T17較基準時間 Tref更短時,曲軸角速度較大(高旋轉),則判斷活塞會 超過壓縮上死點,則進入到步驟S5。在步驟S4,會設定 燃料噴射停止標誌F fc ( = 1 )。在步驟S 5,會淸除燃料 噴射停止標誌Ffc ( = 〇 )。在步驟S6,根據燃料噴射量 的計算與其結果來執行進行燃料噴射的燃料噴射程序。 第6圖,是燃料噴射程序(步驟S6 )的詳細流程 -9 - 1270612 圖。在步驟S61,會判斷燃料噴射停止標誌Ffc。該標誌 F f c是「0」時,會進入到步驟s 6 2,來計算燃料噴射量。 燃料噴射量是根據節流閥開度、引擎轉數、引擎水溫等的 引擎爹數所計算出來的,會以噴油器.8的開閥功率所表 示。在步驟S 6 3,是根據所計算的燃料噴射量來驅動噴油 器8來供給燃料。當燃料噴射標誌ρ fc是「1」時,會進 入到步驟S 64,會將噴油器8的開閥功率設定爲「〇」然 後進入到步驟S 6 3。 第1圖,是顯示 Fi - ECU6的主要部分機能的方塊 圖。曲軸基準位置檢測部2 5,會回應曲軸脈衝訊號進行 行程判斷。行程判斷例如會判斷進氣管負壓P b是否對應 於進氣行程的負壓。在進氣行程中,進氣管負壓Pb與其 他行程相比是較大。如果在進氣行程中檢測出曲軸脈衝訊 號的話,藉由曲軸角速度檢測部2 6,可根據曲軸角訊號 檢測出曲軸角速度。曲軸角速度是藉由曲軸角訊號的脈衝 寬度,也就是藉由曲軸角基準位置決定之後的1階段的時 間所代表。曲軸角速度較大時則1階段的時間會較短。代 表曲軸角速度的1階段的時間 T1 7會被輸入到比較部 27,與判斷基準時間Tref進行比較。比較的結果會輸入 到燃料噴射量計算部2 8。當曲軸角速度大於預定値時, 會根據引擎參數來計算燃料噴射量,更具體則是計算開閥 功率。另一方面,如果判斷曲軸角速度小於預定値的話, 則將燃料噴射量(功率)設定爲〇。所計算的或是被設定 爲〇的燃料噴射量也就是開閥功率會被輸入到噴油器驅動 -10- (8) 1270612 部29。噴油器驅動部29,會根據所輸出的開閥功率來驅 動噴油器8。 在上述的實施方式中’雖然是將開閥功率設定爲0來 停止燃料噴射,而並不是將全部的燃料噴射量設定爲0, 實際上是減少到會停止燃料噴射的程度即可。 以上是根據適用於機車用引擎的燃料噴射控制裝置的 例子來說明本發明。而本發明並不限於該實施方式,對於 機車用以外的引擎,例如具備有以人力啓動的引擎的引擎 驅動式的發電機也同樣適用。 〔發明效果〕 藉由第1〜第4發明,當判斷以人力踩踏無法得到能 讓活塞越過壓縮上死點的充分的曲軸角速度時,會停止燃 料噴射。於是,可以防止燃料覆蓋到火星塞,而可提高啓 動性。 特別是’藉由第3發明,不管是在執行燃料供給的情 況’或是使其停止的情況,都能以同樣的控制機能來驅動 燃料噴射閥,所以控制會很簡單。 並且’藉由第4發明,能節省使用在燃料噴射的電 力’藉由在啓動失敗後的下一次啓動的充足的燃料壓力, 可確實地使引擎啓動。 【圖式簡單說明】 第1圖是顯示本發明的一實施方式的燃料噴射控制裝 -11 - (9) 1270612 貝施方式的燃料噴射控制裝 置的主要部分機能的方塊圖 第2圖是包含本發明的 置的機車的主要部分構造圖 桌3 Η 7E本發明的貝施方式的燃料噴射控制裝置的時 序圖(之一^ )。 第4圖是本發明的實施方式的燃料噴射控制裝置的時 序圖(之二)。 第5圖是燃料噴射判斷的流程圖。 % 6圖是燃料噴射的流程圖。 第7圖是引擎的燃料供給系統的一例的顯示圖。 【圖號說明】 1 :曲軸 2 :踩踏踏板 4 :轉數感應器 5 :曲軸角訊號1270612 (1) Description of the Invention [Technical Field] The present invention relates to a fuel injection control device for an engine. The present invention relates to a fuel injection control of an engine. [Prior Art] Fig. 7 is a block diagram showing the configuration of a main portion of a fuel supply system of a locomotive. 'The fuel that has been pressurized by the fuel pump 14 from the fuel tank 1 2 through the filter 13' will pass through the filter 15 It is sent to a fuel injection valve (injector) 8. A pressure regulator (regulator) 16 for maintaining the fuel pressure of the intake manifold 24 is set. In order to maintain the fuel pressure at a certain 'excess portion of the fuel discharged from the fuel pump 14, it is returned to the tank 12 via the pressure regulator 16. The fuel supplied to the intake manifold 24 is mixed with the introduced air through the air filter j 7 and the throttle valve 18, and is sucked into the combustion chamber 20 of the engine when the intake valve 19 is opened. Moreover, when the piston 21 passes over the compression top dead center, the spark plug 22 is ignited to burn the mixed gas. As the combustion causes the piston 2 1 to reciprocate, the crankshaft (not shown) will rotate. In the fuel pump 14 , the power supply voltage is supplied from the battery (not shown) via E C ϋ 2 3 . The fuel injection amount of the injector 8 is determined by the ECU 23 in accordance with the number of engine revolutions, the throttle opening degree, or various parameters of the engine. A conventional fuel injection device for a locomotive equipped with a foot-starting device, -4- (2) 1270612 In order to improve the startability of the engine, fuel injection may be performed before the crankshaft reference position is determined. For example, when a predetermined number of crankshaft pulses generated at each predetermined crank angle is calculated, the fuel is injected once, and then the fuel is injected at the set position at which the crank reference position is used as a reference. In the case of starting, the pedal is stepped on to drive the fuel pump, and the fuel pressure is increased to activate the fuel injection device (JP-A No. 3-18659). SUMMARY OF THE INVENTION [Problem to be Solved by the Invention] In the foot starting device, when the pedaling force is small, or the initial piston position is far from the compression top dead center, the piston cannot pass the compression stroke with a large frictional force. The top dead center. On the other hand, since the fuel injection of the injector is performed during the intake stroke, if the piston does not exceed the compression top dead center, the injected fuel does not burn and remains in the cylinder. Therefore, there is a case where the fuel covers the spark plug and the engine startability is lowered. An object of the present invention is to solve the above-mentioned conventional technical problem, and to provide a fuel injection control device for an engine that does not cause a piston to cross the compression top dead center due to an erroneous pedal operation, and does not start the next operation. Let startability decrease. [Means for Solving the Problem] In order to achieve the above object, a first aspect of the invention provides a fuel injection control device for a locomotive that is activated by a human power, and is characterized in that: a crankshaft that sets a piston to pass a compression top dead center is provided The means of the reference angular velocity, -5-(3) 1270612, and the crank angular velocity of the intake stroke after the start of the start exceeds the reference angular velocity, then the fuel injection is performed. On the other hand, when the crank angular velocity is less than the reference angular velocity, Control means to stop fuel injection. According to a second aspect of the invention, a fuel injection control device for a locomotive that is activated by a human power is provided with a crank pulse sensor for detecting a top dead center of a piston, and for determining the detected dead end. Whether the point is a top dead center of the intake stroke, a means for detecting the crank angular velocity by a predetermined crank angle rotation time, a means for setting a reference angular velocity of the crankshaft that allows the piston to pass the compression top dead center, The detected top dead center is an angular velocity determining means for determining whether the crank angular velocity exceeds the reference angular velocity at the top dead center of the intake stroke, and the angular velocity determining means performs fuel when the crank angular velocity exceeds the reference angular velocity The injection, on the other hand, is a control means for stopping the fuel injection when the crank angular velocity is less than the reference angular velocity. According to the first and second inventions, when the manual start, that is, the foot start, is performed, the fuel is not injected as long as it does not exceed the reference angular velocity at which the angular velocity of the crankshaft can exceed the compression top dead center. As a result, the fuel is not injected unnecessarily during the wrong stepping action, and the phenomenon of covering the spark plug due to the unburned fuel is not generated. According to a third aspect of the invention, the control means includes: a fuel injection amount calculation means, and a drive means for driving the fuel injection means in accordance with the power of the fuel injection amount calculated by the calculation means, and the angular velocity is The judging means 'when it is judged that the crank angular velocity is less than the reference angular velocity, the power is set to 〇 and the fuel injection is actually stopped. -6 - (4) !27〇612 According to the third aspect of the invention, even when the crank angular velocity of the crankshaft exceeds the reference angular velocity or does not exceed, the drive portion of the fuel injection valve is controlled in the same manner as long as the injection When the amount is set to 〇, the fuel injection is stopped. According to a fourth aspect of the invention, there is provided an engine provided with a fuel injection valve that is driven by a common power source and a fuel supply pump. According to the fourth aspect of the invention, since the electric power used for the excess fuel injection can be saved, the saved electric power can be used for the driving of the fuel pump. Thus, even if one start fails, sufficient power can be supplied to the fuel pump at the next start to obtain a high fuel pressure. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. Fig. 2 is a block diagram showing the main structure of a locomotive having a foot starting device including a fuel injection control device according to an embodiment of the present invention. Although not shown here, the locomotive is a fuel supply system including the same hardware structure as shown in Fig. 7. The crankshaft 1 of the engine is connected to a pedal (foot start pedal) 2 for performing foot activation via a foot gear or a ratchet (not shown). The crankshaft 1 is coupled to a circular plate 3 in which a plurality of teeth (variable reluctance rotors) are disposed on the outer circumference. The variable reluctance rotor is configured at a predetermined interval (e.g., 3 degrees). The number-of-revolution sensor 4 is constituted, for example, by a photo interrupter, and detects the above-described variable fei-resistance rotor and then outputs the crank angle signal 5 to F i - E C U (fuel (5) 1270612 injection control device) 6. The crank angle signal 5 is a signal representing the crank angle of each angle due to the strain interval, and the root number 5 is calculated by the Fi-ECU 6 to calculate the number of revolutions of the engine. Further, a crank pulse sensor 7 composed of a magnet (for example, embedded) is attached to a position corresponding to a specific position on the circumference of the circular plate 3, and the crank pulse signal 9 is detected to be output to the Fi-ECU 6. The injector is driven in response to the signal 10 of the fuel injection amount determined by the Fi-ECU 6. The operation will be described in more detail below. Fig. 3 and Fig. 4 show the timing of the fuel injection control. The crank angle of 30 degrees is limited to one stage, and the engine is one step of 360 degrees. Therefore, the number of 24 signals 5 which limits the stroke of the engine constituted by the intake and compression to 720 degrees indicates the number of stages, and the crank pulse signal is output once per rotation. In Fig. 3, when the pedal 11 is used by the timing 11, the generator coupled to the crankshaft 1 generates electric power, and the Fi voltage rises. At the timing t2, the Fi-ECU 6 is reset. This reset and initialization is given to the pump (FFP) 14 after the end of the timing t3. The stage after the detection of the crank pulse at the timing t4 is the pulse width of the seventh stage (the machine t5, based on the pulse width of the seventh stage, it is judged to be the injection. By this judgment, when the fuel injection is performed, the reluctance rotor is entered. The distribution of the crankshaft angle is also the top dead center. The magnetic pickup picks up the magnet and then 8, will follow the table to open the valve power of the drive F i - ECU 6 sequence diagram. Here is the secondary rotation defined, combustion, exhaust Stage. The crank angle 9 is the start of the engine 2 and the power supply of the ECU starts to drive the fuel supply signal 9, the detection time. At the time, the fuel injection amount -8- (6) 1270612 is calculated, and the injector (IN) is driven at timing t6. When the fuel injection is not performed, the calculation of the fuel injection amount and the fuel injection are not performed. Fig. 5 is a flowchart of the fuel injection determination process. This processing is performed each time the crank pulse signal is detected. In step S1, it is judged whether or not the crank reference position is determined, that is, among the crank pulse signals 9 detected in the combustion stroke and the intake stroke, it is judged whether or not the intake stroke is detected. For example, it can be judged based on the intake pipe negative pressure Pb when the crank pulse signal 9 is detected. At step S2, it is judged whether or not the current stage is the 18th stage. If the crankshaft reference position is determined, the subsequent phase will be determined as the 17th phase, and the next phase will be the 18th phase. If the step S2 is affirmative, in step S3, it is judged whether or not the pulse width (time) T1 7 corresponding to the crank angle signal of the seventh stage is longer than the reference time Tref for judging the fuel supply cut. The reference time Tref is a reference 用来 used to determine whether or not the crankshaft is rotated at a sufficient speed to allow the piston to pass the compression top dead center. When the pulse width T1 7 of the crank angle signal is longer than the reference time Tref, it is judged that the angular velocity of the crankshaft is small (low rotation), and the process proceeds to step S4. On the other hand, when the pulse width T17 of the crank angle signal is shorter than the reference time Tref, the crank angular velocity is large (high rotation), and it is judged that the piston exceeds the compression top dead center, and the process proceeds to step S5. At step S4, the fuel injection stop flag F fc ( = 1 ) is set. At step S5, the fuel injection stop flag Ffc (= 〇 ) is eliminated. In step S6, the fuel injection program for performing the fuel injection is executed based on the calculation of the fuel injection amount and the result thereof. Fig. 6 is a detailed flow of the fuel injection program (step S6) -9 - 1270612. At step S61, the fuel injection stop flag Ffc is judged. When the flag F f c is "0", the process proceeds to step s 6 2 to calculate the fuel injection amount. The fuel injection amount is calculated based on the number of engine turns such as the throttle opening degree, the number of engine revolutions, and the engine water temperature, and is expressed by the valve opening power of the injector 8. In step S63, the fuel injector 8 is driven to supply fuel based on the calculated fuel injection amount. When the fuel injection flag ρ fc is "1", the process proceeds to step S 64, and the valve opening power of the injector 8 is set to "〇", and then proceeds to step S63. Fig. 1 is a block diagram showing the main functions of the Fi-ECU 6. The crankshaft reference position detecting unit 25 responds to the crank pulse signal to determine the stroke. The stroke judgment determines, for example, whether or not the intake pipe negative pressure P b corresponds to the negative pressure of the intake stroke. In the intake stroke, the intake pipe negative pressure Pb is larger than other strokes. When the crank pulse signal is detected during the intake stroke, the crank angular velocity detecting unit 2 6 can detect the crank angular velocity based on the crank angle signal. The angular velocity of the crankshaft is represented by the pulse width of the crank angle signal, that is, the time of one phase after the crank angle reference position is determined. When the crankshaft angular velocity is large, the time in one phase will be shorter. The time T1 7 representing the one-step angular velocity of the crankshaft is input to the comparing portion 27 and compared with the determination reference time Tref. The result of the comparison is input to the fuel injection amount calculating unit 28. When the angular velocity of the crankshaft is greater than the predetermined enthalpy, the fuel injection amount is calculated based on the engine parameters, and more specifically, the valve opening power is calculated. On the other hand, if it is judged that the crank angular velocity is less than the predetermined enthalpy, the fuel injection amount (power) is set to 〇. The fuel injection amount calculated or set to 〇, that is, the valve opening power, is input to the injector drive -10- (8) 1270612 section 29. The injector drive unit 29 drives the injector 8 in accordance with the output of the valve opening power. In the above-described embodiment, the fuel injection is stopped by setting the valve opening power to 0, and the fuel injection amount is not set to 0. Actually, it is reduced to the extent that the fuel injection is stopped. The above is illustrative of the present invention based on an example of a fuel injection control device applied to a locomotive engine. The present invention is not limited to this embodiment, and an engine other than a locomotive, for example, an engine-driven generator including an engine that is manually activated can be applied. [Effect of the Invention] According to the first to fourth inventions, when it is judged that a sufficient crank angular velocity at which the piston can pass the compression top dead center cannot be obtained by manpower stepping, the fuel injection is stopped. Thus, the fuel can be prevented from covering the spark plug, and the startability can be improved. In particular, by the third invention, the fuel injection valve can be driven by the same control function regardless of whether or not the fuel supply is executed or stopped, so that the control is simple. Further, with the fourth invention, it is possible to save the electric power used in the fuel injection, and the engine can be surely started by a sufficient fuel pressure for the next start after the failure of the start. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a main part of a fuel injection control device according to an embodiment of the present invention. (2) 1270612 Main part configuration table of the locomotive of the invention 3 Η 7E A timing chart (1) of the fuel injection control device of the Beth mode of the present invention. Fig. 4 is a timing chart (2) of the fuel injection control device according to the embodiment of the present invention. Figure 5 is a flow chart of fuel injection determination. The %6 diagram is a flow chart of fuel injection. Fig. 7 is a view showing an example of an engine fuel supply system. [Description of the figure] 1 : Crankshaft 2 : Stepping on the pedal 4 : Revolving sensor 5 : Crank angle signal
6 : Fi - ECU 7 :曲軸脈衝感應器 8 :噴油器 9 :曲軸脈衝訊號 1 〇 :噴油器驅動訊號 1 2 :油箱 1 4 :燃料泵浦 2 5 :曲軸基準位置 -12- (10) 1270612 2 6 :曲軸角速度檢測部 2 7 :比較部 2 8 :燃料噴射量計算部 2 9 :噴油器驅動部 -13-6 : Fi - ECU 7 : Crankshaft pulse sensor 8 : Injector 9 : Crankshaft pulse signal 1 〇: Injector drive signal 1 2 : Fuel tank 1 4 : Fuel pump 2 5 : Crankshaft reference position -12- (10 1270612 2 6 : Crankshaft angular velocity detecting unit 2 7 : Comparison unit 2 8 : Fuel injection amount calculating unit 2 9 : Injector driving unit - 13 -