200411115 (1) 玖、發明說明 【發明所屬之技術領域】 本發明是關於引擎的燃料噴射控制裝置,特%胃關於 在以人力轉動曲軸來將引擎啓動的引擎的燃料喧射·控制裝 置。 【先前技術】 第7圖是顯示機車的燃料供給系統的主要部分的構造 的方塊圖,從油箱1 2經過過濾器1 3以燃料泵浦1 4加壓 的燃料,會再通過過濾器1 5被輸送到燃料噴射閥(噴油 器)8。設置有用來將進氣岐管24的燃料壓力保持爲一定 的壓力調節器(穩壓器)1 6。爲了將燃料壓力保持爲一 定,從燃料泵浦1 4所排出的燃料中的多餘部分,會經過 壓力調節器1 6回流到油箱1 2。 被供給到進氣岐管24的燃料,會通過空氣濾淸器】7 及節流閥1 8而與導入的空氣混合,在進氣閥〗9開啓時被 吸入到引擎的燃燒室20。而且,當活塞21越過壓縮上死 點時會使火星塞22點火來使混合氣體燃燒。 伴隨著燃燒會讓活塞2 1往復運動,曲軸(沒有圖 示)會旋轉。在燃料泵浦1 4,則是從沒有圖示的電池經 由ECU23來供給電源電壓。噴油器8的燃料噴射量,則 是根據引擎轉數或節流閥開度或引擎的各種參數而以 ECU23來決定。 習知的具備有腳踩啓動裝置的機車的燃料噴射裝置, -4 - (2) (2)200411115 爲了使引擎的啓動性提昇,有時會在曲軸基準位置確定之 前進行燃料噴射。例如,當計算預定數量在每個預定的曲 軸角所產生的曲軸脈衝時,噴射一次燃料,之後在將曲軸 基準位置作爲基準的設定位置進行燃料的噴射。而在啓動 時先踩腳踩踏板來驅動燃料泵浦,將燃料壓力提高來使燃 料噴射的啓動裝置(日本特開平3 - 18659號公報)。 【發明內容】 〔發明欲解決的課題〕 在腳踩啓動裝置中,踩踏力較小,或是初期的活塞位 置距離壓縮上死點較遠的情況,活塞會無法越過摩擦力較 大的壓縮行程的上死點。另一方面,由於噴油器的燃料噴 射會在進氣行程進行,所以如果活塞沒有超過壓縮上死點 的話,所噴射的燃料就不會燃燒而殘留在氣缸內。因此, 會產生燃料覆蓋於火星塞且會有引擎啓動性降低的情形。 本發明的目的,就是要解決上述以往的技術課題,要 提供一種引擎的燃料噴射控制裝置,即使是由於錯誤腳踏 操作而讓活塞沒有越過壓縮上死點的情況,在下一次啓動 操作,不會讓啓動性降低。 〔用以解決課題的手段〕 爲了達成上述目的,第1發明,是要用人力使引擎啓 動的機車的燃料噴射控制裝置,其特徵爲:具備有:設定 能夠讓活塞越過壓縮上死點的曲軸的基準角速度的手段、 -5- (3) (3)200411115 以及在啓動開始後的進氣行程的曲軸角速度超過上述基準 角速度時,則進行燃料噴射,另一方面,當上述曲軸角速 度小於上述基準角速度時則停止燃料噴射的控制手段。 第2發明,是要用人力使引擎啓動的機車的燃料噴射 控制裝置,其特徵爲:具備有:用來檢測活塞的上死點的 曲軸脈衝感應器、用來判斷所檢測出的上述上死點是否爲 進氣行程的上死點的手段、藉由預定曲軸角的旋轉時間來 檢測曲軸角速度的手段、用來設定讓活塞能越過壓縮上死 點的曲軸的基準角速度的手段、當上述所檢測出的上死點 是進氣行程的上死點時用來判斷上述曲軸角速度是否超過 基準角速度的角速度判斷手段、以及藉由上述角速度判斷 手段,當上述曲軸角速度超過上述基準角速度時則進行燃 料噴射,另一方面,上述曲軸角速度小於上述基準角速度 時則停止燃料噴射的控制手段。 藉由第1及第2發明,在用人力啓動也就是腳踩啓動 時,只要沒有超過能夠讓曲軸角速度越過壓縮上死點的基 準角速度就不會噴射燃料。於是,在錯誤的踩踏動作時就 不會無謂地噴射燃料,也不會產生由於尙未燃燒的燃料而 覆蓋火星塞的現象。 第3發明,上述控制手段,是由:燃料噴射量計算手 段、以及用因應於藉由該計算手段所計算出的燃料噴射量 的功率來驅動燃料噴射手段的驅動手段所構成,藉由上述 角速度判斷手段,當判斷上述曲軸角速度小於上述基準角 速度時,會將上述功率設定爲〇而實際停止燃料噴射。 -6 - (4) (4)200411115 藉由第3發明,即使是在啓動的曲軸角速度超過基準 角速度的情況,或是沒有超過的情況,都是同樣地控制燃 料噴射閥的驅動部,只要噴射量的設定爲0就停止燃料噴 射。 第4發明’是使用在具備有以共通電源來驅動的燃料 噴射閥以及燃料供給泵浦的引擎。 藉由第4發明,由於能夠節省使用在多餘燃料噴射的 電力’所以可以將節省下來的電力使用在燃料泵浦的驅 動。於是,即使一次啓動失敗,在下一次啓動就可將足夠 的電力供給到燃料泵浦而可得到高燃料壓力。 【實施方式】 以下參照圖面針對本發明的較佳實施方式來詳細說 明。第2圖,是包含本發明的一種實施方式的燃料噴射控 制裝置的具有腳踩啓動裝置的機車的主要構造的方塊圖。 在這裡雖然沒有圖示,該機車,是包含有由第7圖所示的 相同的硬體構造所構成的燃料供給系統。 在引擎的曲軸1是經由腳踩齒輪或棘輪(沒有圖示) 而連結著用來進行腳踩啓動的踏板(腳踩啓動踏板)2。 在曲軸1是結合著將多數的齒部(變磁阻轉子)設置在外 周的圓板3。變磁阻轉子是以預定間隔(例如3 0度)酉己 置。 轉數感應器4,例如是以光遮斷器所構成,檢測出上 述變磁阻轉子然後將曲軸角訊號5輸出至Fi - ECU (燃料 (5) (5)200411115 噴射控制裝置)6。曲軸角訊號5是因應變磁阻轉子的配 置間隔而代表每個角度的曲軸角的訊號’根據該曲軸角訊 號5,以Fi — ECU6來計算出引擎的轉數。 並且,在圓板3的圓周上的特定位置,也就是上死點 對應位置,安裝磁鐵(例如以埋入的方式)。由磁性拾取 感應器所構成的曲軸脈衝感應器7,會檢測該磁鐵然後將 曲軸脈衝訊號9輸出到Fi - ECU6。噴油器8,會依照表 示對應於Fi - ECU6所決定的燃料噴射量的開閥功率的驅 動訊號10而被驅動。以下在更詳細地敘述Fi - ECU 6的 動作。 第3圖、第4圖,是燃料噴射控制的時序圖。這裡是 將曲軸角3 0度限定爲一階段,將引擎的一次旋轉限定爲 3 60度的12階段。於是,將由進氣、壓縮、燃燒 '排氣 所構成的引擎的一行程限定爲720度的24階段。曲軸角 訊號5的數量是表示階段數,曲軸脈衝訊號9,是引擎的 每一次旋轉輸出一次。 在第3圖中,在時機11使用踩踏踏板2開始踩踏啓 動時’會以結合於曲軸1的發電機發電,Fi - ECU的電源 電壓會上升。在時機t2進行Fi - ECU6的重設則開始初始 化。該重設與初始化在時機t3結束之後,則驅動燃料供 給泵浦(FFP ) 14。在時機t4檢測曲軸脈衝訊號9,檢測 之後的階段也就是第1 7階段的脈衝寬度(時間)。在時 機15,根據第1 7階段的脈衝寬度,判斷是否要執行燃料 噴射。藉由該判斷,在執行燃料噴射時,進行燃料噴射量 -8 - (6) (6)200411115 的計算,在時機t6來驅動噴油器(INJ ) 8。在沒有執行 燃料噴射時,不進行燃料噴射量的計算與燃料噴射。 第5圖,是燃料噴射判斷處理的流程圖。該處理,是 在每次檢測曲軸脈衝訊號所執行的。在步驟S 1,判斷是 否決定了曲軸基準位置,也就是在燃燒行程及進氣行程中 所檢測的曲軸脈衝訊號9之中,判斷是否檢測出進氣行 程。例如,可以根據當檢測出曲軸脈衝訊號9時的進氣管 負壓Pb來加以判斷。在步驟S2,會判斷現在的階段是否 爲第1 8階段。曲軸基準位置決定的話,之後的階段會決 定爲第1 7階段,下一個階段是第1 8階段。 步驟S2肯定的話,在步驟S3,會判斷對應於第1 7 階段的曲軸角訊號的脈衝寬度(時間)T 1 7是否較用來判 斷燃料供給切斷的基準時間Tref更長。基準時間 Tref, 是用來判斷曲軸是否以讓活塞能越過壓縮上死點的充分的 速度來旋轉的基準値。 當曲軸角訊號的脈衝寬度T17較基準時間Tref更長 時,判斷曲軸角速度較小(低旋轉),則進入到步驟 S4。另一方面,在曲軸角訊號的脈衝寬度T17較基準時間 Tref更短時’曲軸角速度較大(高旋轉),則判斷活塞會 超過壓縮上死點,則進入到步驟S 5。在步驟S 4,會設定 燃料噴射停止標誌Ffc ( = i )。在步驟S 5,會淸除燃料 噴射停止標誌Ffc ( = 〇 )。在步驟S6,根據燃料噴射量 的計算與其結果來執行進行燃料噴射的燃料噴射程序。 第6圖’是燃料噴射程序(步驟S 6 )的詳細流程 (7) 圖。在步驟s 6 1 ’會判斷燃料噴射停止標誌F f c。該標誌 F f c是「〇」時’會進入到步驟S 6 2,來計算燃料噴射量。 燃料噴射量是根據節流閥開度、引擎轉數、引擎水溫等的 引擎參數所計算出來的,會以噴油器8的開閥功率所表 示。在步驟S 6 3,是根據所計算的燃料噴射量來驅動噴油 器8來供給燃料。當燃料噴射標誌Ffc是「1」時,會進 入到步驟S 64,會將噴油器8的開閥功率設定爲「〇」然 後進入到步驟S63。 第1圖,是顯示Fi - ECU6的主要部分機能的方塊 圖。曲軸基準位置檢測部2 5,會回應曲軸脈衝訊號進行 行程判斷。行程判斷例如會判斷進氣管負壓P b是否對應 於進氣行程的負壓。在進氣行程中,進氣管負壓Pb與其 他行程相比是較大。如果在進氣行程中檢測出曲軸脈衝訊 號的話,藉由曲軸角速度檢測部26,可根據曲軸角訊號 檢測出曲軸角速度。曲軸角速度是藉由曲軸角訊號的脈衝 寬度,也就是藉由曲軸角基準位置決定之後的1階段的時 間所代表。曲軸角速度較大時則1階段的時間會較短。代 表曲軸角速度的1階段的時間T1 7會被輸入到比較部 2 7 ’與判斷基準時間T r e f進行比較。比較的結果會輸入 到燃料噴射量計算部2 8。當曲軸角速度大於預定値時, 會根據引擎參數來計算燃料噴射量,更具體則是計算開閥 功率。另一方面’如果判斷曲軸角速度小於預定値的話, 則將燃料噴射量(功率)設定爲〇。所計算的或是被設定 爲0的燃料噴射量也就是開閥功率會被輸入到噴油器驅動 -10- (8) (8)200411115 部29。噴油器驅動部29,會根據所輸出的開閥功率來驅 動噴油器8。 在上述的實施方式中,雖然是將開閥功率設定爲0來 停止燃料噴射’而並不是將全部的燃料噴射量設定爲〇, 實際上是減少到會停止燃料噴射的程度即可。 以上是根據適用於機車用引擎的燃料噴射控制裝置的 例子來說明本發明。而本發明並不限於該實施方式,對於 機車用以外的引擎,例如具備有以人力啓動的引擎的引擎 驅動式的發電機也同樣適用。 〔發明效果〕 藉由第1〜第4發明,當判斷以人力踩踏無法得到能 讓活塞越過壓縮上死點的充分的曲軸角速度時,會停止燃 料噴射。於是,可以防止燃料覆蓋到火星塞,而可提高啓 動性。 特別是,藉由第3發明,不管是在執行燃料供給的情 況,或是使其停止的情況,都能以同樣的控制機能來驅動 燃料噴射閥,所以控制會很簡單。 並且,藉由第4發明,能節省使用在燃料噴射的電 力,藉由在啓動失敗後的下一次啓動的充足的燃料壓力, 可確實地使引擎啓動。 【圖式簡單說明】 第1圖是顯示本發明的一實施方式的燃料噴射控制裝 -11 - (9) (9)200411115 置的主要部分機能的方塊圖。 第2圖是包含本發明的一實施方式的燃料噴射控制裝 置的機車的主要部分構造圖。 第3圖是本發明的實施方式的燃料噴射控制裝置的時 序圖(之一)。 第4圖是本發明的實施方式的燃料噴射控制裝置的時 序圖(之二)。 第5圖是燃料噴射判斷的流程圖。 第6圖是燃料噴射的流程圖。 第7圖是引擎的燃料供給系統的、例的顯示圖。 【圖號說明】 1 :曲軸 2 :踩踏踏板 4 :轉數感應器 5 :曲軸角訊號200411115 (1) 发明. Description of the invention [Technical field to which the invention belongs] The present invention relates to a fuel injection control device for an engine, and particularly relates to a fuel noise control device for an engine that starts the engine by manually turning a crankshaft. [Prior Art] FIG. 7 is a block diagram showing the structure of a main part of a fuel supply system for a locomotive. Fuel pressurized from a fuel tank 12 through a filter 13 and a fuel pump 14 is passed through the filter 1 5 It is delivered to the fuel injection valves (injectors) 8. There is provided for the intake manifold pressure in the fuel pipe 24 to maintain a constant pressure regulator (regulator) 16. In order to keep the fuel pressure constant, an excess portion of the fuel discharged from the fuel pump 14 is returned to the fuel tank 12 through the pressure regulator 16. The fuel supplied to the intake manifold 24 passes through the air filter 7 and the throttle valve 18 to mix with the introduced air, and is sucked into the combustion chamber 20 of the engine when the intake valve 9 is opened. Further, when the piston 21 beyond the CTDC causes ignition spark plug 22 to burn the mixed gas. With the combustion piston 21 will reciprocate, a crankshaft (not shown) will rotate. In the fuel pump 14, a power source voltage is supplied from a battery (not shown) via the ECU 23. The fuel injection amount of the injector 8 is determined by the ECU 23 based on the number of engine revolutions, the throttle opening degree, or various parameters of the engine. In a conventional fuel injection device for a locomotive equipped with a foot starter, -4-(2) (2) 200411115 In order to improve the startability of the engine, fuel injection may be performed before the crankshaft reference position is determined. For example, when a predetermined number of crank pulse is calculated at every predetermined crank angle generated by the primary fuel injection, after the injection of fuel crankshaft reference position as a reference position is set. In the first step on the foot pedal when starting to drive the fuel pump, the fuel pressure is increased to make the start of the fuel injection apparatus (Japanese Unexamined Patent Publication 3 - Publication No. 18659). Case top dead center farther SUMMARY OF THE INVENTION [invention] problem to be solved in the foot starter, the stepping force is small, or the initial position of the piston from the compression piston will not get past the friction larger compression stroke the top dead center. On the other hand, since the injection of the fuel injector in the intake stroke will be performed, so if the piston does not exceed the compression top dead point, then, the injected fuel would not burn and remains in the cylinder. Therefore, the case will have to cover fuel and reducing the spark plug of the engine will start. Object of the present invention, to solve the above conventional technical problems, to provide a fuel injection control apparatus for an engine, even if an error is due to the pedal-operated piston and so does not cross the top dead center of the compression, the next starting operation, not let start is reduced. [Solution to Problem] To achieve the above object, a first aspect of the invention, is to use human power locomotive engine start fuel injection control apparatus, characterized by: comprising: configuring to allow compression top dead center of the piston beyond a crankshaft angular reference means, 5- (3) (3) 200 411 115 and the crank angular velocity when the intake stroke after starting the start angular velocity exceeds the reference, the fuel injection, on the other hand, when the angular velocity of the crankshaft is smaller than the reference fuel injection control means is stopped when the angular velocity. The second invention is the use of human power locomotive engine start fuel injection control apparatus, wherein: there are provided: means for detecting dead center of the piston a crank pulse sensor, for determining the detected the upper dead whether the point of the intake stroke top dead center means, by a predetermined crank angle rotation time of the crank angular velocity detecting means, means for setting a reference so that the piston can cross CTDC crankshaft angular velocity, when the above for determining whether the angular velocity of the crank angular velocity exceeds the reference angular velocity determination means, and when the detected top dead center is the intake top dead center of the intake stroke by the angular velocity determination means, when said crank angular velocity is an angular velocity exceeds the reference fuel injection, on the other hand, the angular velocity of the crankshaft is smaller than the fuel injection control means is stopped when the reference angular velocity. With the first and second invention, when the foot is to start with human start, as long as no more than allow the crankshaft angular velocity over the compression top dead center reference angular velocity will not inject fuel. Thus, when the error of the stepping operation of the fuel injection will not be unnecessarily, it does not yet have a phenomenon due to the unburned fuel and the spark plug cover. Third invention, wherein the control means is determined by: means for calculating a fuel injection amount, and a drive means to be used by the calculating means by the calculated fuel injection amount of the power to drive the fuel injection means is constituted by the angular velocity determination means, when the determined angular velocity of the crankshaft is smaller than the reference angular velocity, said power will be set square and the actual fuel injection is stopped. -6 - (4) (4) 200 411 115 By the third invention, even in the start angular velocity exceeds the reference crankshaft angular velocity, or not exceeded, are similarly controls the driving of the fuel injection valve just injected amount is set to 0 to stop the fuel injection. Fourth invention 'is to use a common power supply equipped with a fuel injection valve is driven and the fuel supply pump of the engine. By the fourth invention, since the surplus power can be saved for use in the fuel injection apos be saved can be used in a fuel pump of the power drive. Thus, even once failed to start the next startup sufficient power can be supplied to the fuel pump and the high fuel pressure is obtained. DESCRIPTION OF EMBODIMENTS The following preferred embodiments with reference to the drawings for the embodiment of the present invention will be detailed description. FIG 2 is a main configuration of the locomotive apparatus having a foot starting fuel injection control device according to an embodiment of the present invention comprises a block in FIG. Although not shown here, the locomotive, comprising a fuel supply system of the same hardware configuration shown in FIG. 7 constituted. In the engine crankshaft via a gear or a ratchet foot (not shown) connected to the foot pedal used to start (boot foot pedal) 2. In conjunction with the crank shaft 1 is most tooth portion (variable reluctance rotors) provided on the outer periphery of the disc 3. Variable reluctance rotor at a predetermined interval (e.g., 30 degrees) has a unitary set. The rotation speed sensor 4 is, for example, a photo interrupter, detects the variable reluctance rotor, and outputs a crank angle signal 5 to the Fi-ECU (fuel (5) (5) 200411115 injection control device) 6. 5 is a crank angle signal due to the configuration of the rotor reluctance strain interval representing each crank angle signal of the angle 'information based on the crank angle 5 to Fi - ECU6 to calculate the number of revolutions of the engine. Further, a specific position on the circumference of the circular plate 3, i.e. the top dead center corresponding position, the magnet is mounted (e.g., in embedded manner). A magnetic pickup sensor crank pulse sensor 7 constituted, then detects the magnet 9 to the output of the crank pulse signal Fi - ECU6. Injector 8 will be shown in accordance with the table corresponding to Fi - is driven in the valve opening driving signal of power injection quantity of fuel determined ECU6 10. The following description Fi in more detail - ECU 6 operates. FIG. 3, FIG. 4 is a timing chart of fuel injection control. Here the crank angle is defined as a 30 degree phase rotation of the engine is defined as one stage of 12,360 degrees. Thus, by the intake, compression, combustion 'of a stroke of the engine exhaust gas constituted 24 is defined as 720 degrees phase. The number of crank angle signal 5 is the number of stages, the crank pulse signal 9, is each rotation output of the engine once. In Fig. 3, a pedal depression timing 112 starts at the beginning of pedaling 'will bind to the power generation of the crankshaft 1, Fi - ECU supply voltage will rise. Fi performed at the time t2 - ECU6 reset the start initialization. After the reset and initialization are completed at the timing t3, the fuel supply pump (FFP) 14 is driven. The crankshaft pulse signal 9 is detected at the timing t4, and the pulse width (time) of the stage after the detection is the 17th stage. At timing 15, based on the pulse width in the 17th stage, it is determined whether or not fuel injection is to be performed. Based on this judgment, the fuel injection amount -8-(6) (6) 200411115 is calculated when the fuel injection is performed, and the injector (INJ) 8 is driven at the timing t6. In the fuel injection is not performed, the fuel injection amount is not performed and the fuel injection is calculated. FIG 5 is a flowchart of the fuel injection determination process. This processing is executed each time the crank pulse signal is detected. In step S 1, a decision is determined whether the reference position of the crankshaft, the crank pulse signal is in the combustion stroke and the intake stroke among the 9 detected, determines whether or not the detected intake stroke. For example, according to when the intake pipe negative pressure Pb 9 when the crank pulse signal is detected to be judged. In step S2, it is determined whether the current stage is the eighteenth stage. If the reference position of the crankshaft is determined, the subsequent stages will be determined as the 17th stage, and the next stage will be the 18th stage. If step S2 is affirmative, in step S3, it is judged whether the pulse width (time) T 1 7 of the crank angle signal corresponding to the 17th stage is longer than the reference time Tref used to judge the fuel supply cutoff. The reference time Tref is a reference value used to determine whether the crankshaft is rotating at a sufficient speed to allow the piston to pass the compression top dead center. When the pulse width T17 of the crankshaft angle signal is longer than the reference time Tref, it is determined that the crankshaft angular velocity is small (low rotation), and the process proceeds to step S4. On the other hand, when the pulse width T17 of the crankshaft angle signal is shorter than the reference time Tref, the crankshaft angular velocity is large (high rotation). If it is determined that the piston will exceed the compression top dead center, the process proceeds to step S5. In step S4, the fuel injection stop flag Ffc (= i) is set. In step S5, the fuel injection stop flag Ffc (= 〇) is erased. In step S6, the fuel injection amount is calculated according to the results of its program to perform fuel injection of the fuel injection. FIG. 6 "is a fuel injection process (step S 6) of the detailed flow (7) in FIG. At step s 6 1 ', the fuel injection stop flag F f c is judged. The flag F f c is' square '' will proceeds to step S 6 2, the fuel injection amount is calculated. The fuel injection amount is calculated according to the throttle opening degree, the number of engine revolutions, engine parameters such as engine coolant temperature, as will be shown in a table the power injector valve opening 8. In step S 6 3, the fuel injection amount is calculated according to the drive of the fuel supplied to the injector 8. When the fuel injection flag Ffc is "1", the process proceeds to step S64, the valve opening power of the injector 8 is set to "0", and then the process proceeds to step S63. Figure 1 is a block diagram showing the main functions of Fi-ECU6. The crankshaft reference position detection unit 25 judges the stroke in response to the crankshaft pulse signal. E.g. stroke determination determines whether the intake pipe negative pressure P b corresponding to the negative pressure in the intake stroke. In the intake stroke, the intake pipe negative pressure Pb is larger compared with other stroke. If it is detected crank pulse number information in the intake stroke, then, by the crank angular velocity detecting section 26, it may be a crank angular velocity detection signal in accordance with the crank angle. It is the angular velocity of the crankshaft by the crank angle signal pulse width, that is, by the time the stage 1 after the reference crank angle position determining represented. A crank angular velocity of the larger stage of the time will be shorter. A period of time T1 7 representing the angular velocity of the crankshaft is input to the comparison unit 2 7 ′ and compared with the judgment reference time T r e f. The comparison results input to the fuel injection amount calculation unit 28. When the crank angular velocity is greater than a predetermined Zhi, the fuel injection quantity will be calculated according to the engine parameters, and more particularly the power is calculated valve opening. On the other hand 'it is determined if the crank angular velocity is smaller than a predetermined Zhi, then, of the fuel injection quantity (power) set square. The fuel injection quantity calculated or set to 0, that is, the valve opening power, is input to the injector drive -10- (8) (8) 200411115 Section 29. Injector driving unit 29, will drive the injector 8 to open the valve according to the output power. In the above-mentioned embodiment, although the valve opening power is set to 0 to stop fuel injection ', instead of setting the entire fuel injection amount to 0, it is actually necessary to reduce the fuel injection to a level at which fuel injection is stopped. The above is an example of the present invention will be described applied to a locomotive engine fuel injection control apparatus. The invention is not limited to this embodiment, other than the locomotive engine, for example, a human have to start the engine of the engine-driven generator is also applicable. [Effects of the Invention] According to the first to fourth inventions, when it is judged that a sufficient crank angular velocity that allows the piston to pass the compression top dead center cannot be obtained by stepping on the human body, fuel injection is stopped. Thus, it is possible to prevent the fuel to cover the spark plug, but may start of increase. In particular, by the third invention, whether in the case of performing the fuel supply, or it is stopped, the same control functions can be used to drive the fuel injection valve, the control will be very simple. And, by the fourth invention can be used in the power save fuel injection, by a sufficient fuel pressure at the start of a start failure, so that the engine can be surely started. [Brief Description of the Drawings] Fig. 1 is a block diagram showing the main functions of a fuel injection control device according to an embodiment of the present invention. Figure 2 is a main part configuration diagram of a fuel to an embodiment of the present invention comprising injection control means of the locomotive. Figure 3 is a timing chart (one) embodiment of the fuel control apparatus of the present embodiment of the invention the injection. FIG 4 is an embodiment of the present invention, a fuel injection timing control apparatus of FIG. (2). Fig. 5 is a flowchart of fuel injection determination. Fig. 6 is a flowchart of fuel injection. Fig. 7 is a diagram showing an example of a fuel supply system of an engine. [Illustration of drawing number] 1: crankshaft 2: step on the pedal 4: revolution number sensor 5: crankshaft angle signal
6 : Fi — ECU 7 :曲軸脈衝感應器 8 :噴油器 9 :曲軸脈衝訊號 1 〇 :噴油器驅動訊號 1 2 :油箱 1 4 :燃料泵浦 2 5 :曲軸基準位置 12- (10) 200411115 26 :曲軸角速度檢測部 2 7 :比較部 2 8 :燃料噴射量計算部 2 9 :噴油器驅動部 -13-6: Fi — ECU 7: Crankshaft pulse sensor 8: Injector 9: Crankshaft pulse signal 1 〇: Injector drive signal 1 2: Fuel tank 1 4: Fuel pump 2 5: Crankshaft reference position 12- (10) 200411115 26: Crankshaft angular velocity detection section 2 7: Comparison section 2 8: Fuel injection amount calculation section 2 9: Injector drive section-13-