JP3582264B2 - Fuel injection control device and control method for direct injection spark ignition type internal combustion engine - Google Patents

Fuel injection control device and control method for direct injection spark ignition type internal combustion engine Download PDF

Info

Publication number
JP3582264B2
JP3582264B2 JP31573496A JP31573496A JP3582264B2 JP 3582264 B2 JP3582264 B2 JP 3582264B2 JP 31573496 A JP31573496 A JP 31573496A JP 31573496 A JP31573496 A JP 31573496A JP 3582264 B2 JP3582264 B2 JP 3582264B2
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
piston
spray
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31573496A
Other languages
Japanese (ja)
Other versions
JPH10159621A (en
Inventor
徹 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP31573496A priority Critical patent/JP3582264B2/en
Publication of JPH10159621A publication Critical patent/JPH10159621A/en
Application granted granted Critical
Publication of JP3582264B2 publication Critical patent/JP3582264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
この発明は、燃料を燃料噴射弁によりシリンダ内に直接噴射し、かつ点火栓により着火させる直噴型火花点火式内燃機関の燃料噴射制御装置および制御方法に関する。
【0002】
【従来の技術】
従来から、電磁式燃料噴射弁の噴孔をシリンダ内に臨ませて設置し、該燃料噴射弁によって燃料をシリンダ内に直接噴射する構成の直噴型火花点火式内燃機関が知られている(例えば、特開昭57一62915号公報、特開平8−35429号公報等参照)。この種の直噴型火花点火式内燃機関においては、混合気の成層化を実現するために、ピストン冠面に凹部を備えているものが多い。
【0003】
この直噴型火花点火式内燃機関によれば、内燃機関の低負荷時には、主に圧縮行程中に、ピストン冠面に形成された凹部に向かって燃料を噴射することにより、混合気を成層化させて形成することができ、超希薄燃焼が可能となる。そのため、低負荷時における燃料消費率を低減できる。また、機関の高負荷時には、主に吸気行程中に燃料を噴射することで、均質な混合気を形成することができ、高いトルクを確保することできる、という利点がある。
【0004】
【発明が解決しようとする課題】
しかしながら、上記直噴型火花点火式内燃機関にあっては、均質な混合気を生成すべく主に吸気行程中に燃料噴射を行う場合に、噴射された燃料液滴がピストン冠面に形成された凹部内に進入してしまうと、ピストン凹部内にその燃料が滞留し、吸気行程から圧縮行程にかけてシリンダ全体に十分に拡散混合されないため、結果として圧縮上死点における燃焼室内の混合気分布に濃淡が生じ、燃焼が悪化してトルクが低減してしまう、という問題があった。
【0005】
この問題を回避するためには、燃料がピストン凹部内に進入せずに良好な燃焼が得られる噴射開始時期を実験的に求める必要があり、時間的にも費用的にも大きな負担となる。特に、吸気行程中の燃料噴射における燃料噴射時期を固定的に設定したのでは、機関運転条件が変化したときに、燃料がピストン凹部内に進入してしまう恐れがあり、それだけ大きな余裕を見込まねばならないので、燃料噴射開始が過度に遅くなってしまう可能性がある。
【0006】
【課題を解決するための手段】
この発明は、このような従来の問題点に着目してなされたもので、機関運転条件に応じた最適な燃料噴射開始時期を実験的手法によらずに得ることを目的とする。すなわち、この発明に係る直噴型火花点火式内燃機関の燃料噴射制御装置は、図1に示すように、ピストン冠面に燃焼室の一部となる凹部を有し、かつ燃料噴射弁4によりシリンダ内に燃料を直接噴射する直噴型火花点火式内燃機関において、機関の運転状態を検出する手段1と、吸気行程中に燃料噴射を行う場合に、燃料噴射弁4の取付位置および取付角度と噴霧の速度から噴霧の先端の位置を求めるとともに、クランクピン半径、コンロッド長さおよびピストン冠面の形状から、ピストン冠面凹部における燃料噴射弁と向かい合う外縁部の位置を求め、上記噴霧の先端が上記ピストン冠面凹部の外縁部よりピストン冠面凹部の内側に入らないように燃料噴射開始時期を設定する手段2と、この燃料噴射開始時期設定手段で設定された噴射開始時期に応じて前記燃料噴射弁4による燃料噴射を制御する燃料噴射制御手段3と、を備えていることを特徴としている。
【0007】
すなわち、吸気行程中に燃料が噴射される場合には、下降していくピストン冠面へ向けて燃料噴射弁4から燃料が噴射されることになるが、その噴霧の先端位置は、燃料噴射弁4の取付位置および取付角度と噴霧の速度から、噴射後の経過時間に対応して一義的に定まる。また、ピストンの下降位置はクランクピン半径とコンロッド長さとによってクランク角に対応して一義的に定まるので、この噴霧が向かおうとするピストン冠面凹部の外縁部の位置は、このピストン位置とピストン冠面の形状からクランク角に対応して定まる。取付角度に沿って進む燃料噴霧の先端がピストン冠面に到達したときに、噴霧の先端のピストン径方向の位置が、すでにピストン凹部より外側に位置していれば、燃料の少なくとも大部分はピストン凹部へ進入しない。従って、燃料噴射開始時期設定手段2では、噴霧の先端位置とピストン冠面凹部の外縁部位置との関係から、燃料噴霧がピストン凹部に進入しない燃料噴射開始時期を、機関運転状態に応じて逐次設定するのである。
【0008】
より具体的には、請求項の発明においては、機関の回転速度を検出する手段と、ピストンが下降する吸気行程中に燃料噴射を行う場合に、燃料噴射弁の取付位置および取付角度と噴霧の速度から定まる噴霧の先端の位置と、クランク角により定まるピストン冠面凹部における燃料噴射弁と向かい合う外縁部の位置との関係から、上記噴霧の先端が上記ピストン冠面凹部の外縁部より該凹部の内側に入らないように機関回転速度に対応して燃料噴射開始時期を設定する手段と、この燃料噴射開始時期設定手段で設定された噴射開始時期に応じて前記燃料噴射弁による燃料噴射を制御する燃料噴射制御手段と、を備えている。
【0009】
すなわち、前述のパラメータの中で、燃料噴射弁4の取付位置および取付角度と噴霧の速度、ならびに、クランク半径、コンロッド長さおよびピストン冠面の形状はいずれも内燃機関によって既知の値となり、また時間とクランク角との関係は、機関回転速度によって定まるので、機関回転速度に応じた最適燃料噴射開始時期を予め求めておけば、これから機関回転速度に対応する値を直ちに求めることができる。
【0010】
また請求項は、ピストン冠面に燃焼室の一部となる凹部を有し、かつ燃料噴射弁によりピストンが下降する吸気行程中にシリンダ内に燃料を直接噴射する直噴型火花点火式内燃機関の燃料噴射制御方法に関するものであり、
機関の回転速度を検出し、
燃料噴射弁の取付位置および取付角度と噴霧の速度から噴射開始後の経過時間に対応する噴霧の先端の位置を求め、
クランクピン半径、コンロッド長さおよびピストン冠面の形状から、ピストン冠面凹部における燃料噴射弁と向かい合う外縁部のクランク角に対応する位置を求め、
上記噴霧の先端が上記ピストン冠面凹部の外縁部より該凹部の内側に入らないように、機関回転速度に対応して燃料噴射開始時期を設定し、
この設定された噴射開始時期に応じて前記燃料噴射弁による燃料噴射を制御することを特徴としている。
【0011】
【発明の効果】
この発明に係る直噴型火花点火式内燃機関の燃料噴射制御装置および方法によれば、時間の関数となる噴霧の先端位置とクランク角の関数となるピストン冠面凹部の外縁部位置との相対関係に基づいて、噴霧がピストン冠面凹部内に進入しないように燃料噴射開始時期を設定するので、主に機関高負荷時等において、燃焼室内の混合気の濃淡に起因する燃焼の悪化ならびにトルクの低下を防止できる。特に、このような最適な燃料噴射開始時期を、実験的手法によらずに設定することが可能となり、かつ機関運転条件の変化に拘わらず常に最適時期に維持することができる。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面に基づいて詳細に説明する。
【0013】
図2は、本発明が適用される直噴型火花点火式内燃機関の機械的構成を示すもので、この内燃機関は、主にシリンダヘッド11およびシリンダブロック12から構成されており、かつシリンダブロック12内に複数のシリンダ13が形成されている。上記シリンダ13にはピストン14が摺動可能に嵌合しており、またシリンダ13を覆うシリンダヘッド11下面には、燃焼室の一部となる凹部が形成されているとともに、ここに一対の吸気ポート15および一対の排気ポート16が接続され、かつそれぞれを吸気弁17および排気弁18が開閉している。これらの4つの吸気弁17,排気弁18の中央つまりシリンダ13の中心位置には、点火栓19が配置されている。
【0014】
またシリンダ13の上端の吸気弁17側の外周部には、噴射パルス信号によって開閉する電磁式燃料噴射弁20が直接シリンダ13内に臨んで配設されている。この燃料噴射弁20は、先端の噴孔から該燃料噴射弁20の中心軸線に沿って燃料を噴射するものであって、図示するように、斜め下方へ向けて傾斜した姿勢で取り付けられている。そのシリンダ水平面に対する取付角度はθinjである。
【0015】
ピストン14の冠面には、燃焼室の一部となる凹部21が形成されている。この凹部21は、ピストン14の冠面の一方に偏った範囲、詳しくは燃料噴射弁20側に偏った範囲に部分的に形成されており、ピストン14の外周部付近からピストン14中心を含むように形成されている。そして、この凹部21の排気弁18側の外縁部21aが燃料噴射弁20の噴孔と対向するようになっている。
【0016】
上記の燃料噴射弁20や点火栓19を制御する制御装置22は、いわゆるマイクロコンピュータシステムとして、CPU,ROM,RAM,I/O等から構成ざれている。この制御装置22には、内燃機関の吸入空気量を検出するエアフロメータ23、機関クランク角位置を検出するクランク角センサ24、スロットル開度を検出するスロットル開度センサ25等の機関運転状態を検出するセンサ類からの検出信号が入力されている。そして、後述するように、検出した機関運転状態に応じて燃料噴射開始時期を設定し、燃料噴射弁20を駆動するようになっている。
【0017】
次に、燃料噴霧をピストン14冠面の凹部21に進入させないように燃料噴射開始時期を設定する具体的手段について説明する。なお、基本的に、機関低負荷時には、燃料は主に圧縮行程中にピストン14の凹部21へ入るように噴射され、機関高負荷時には、均質な混合気を得るべく吸気行程中に噴射されるようになっている。吸気行程中に燃料噴射を行う場合には、クランク角に従って下降するピストン14を、燃料噴射弁20から噴射された燃料噴霧が追いかける形になる。
【0018】
図2中に示すようにシリンダ13の軸線方向をY軸、これと直交し、かつ燃料噴射弁20を通る面に沿った方向をX軸とした座標軸に従って、燃料噴霧Fの先端の位置を(Xspray,Yspray)とし、ピストン凹部21の噴射弁に対向する側の外縁部21aの位置を(Xpis,Ypis)とすると、燃料噴霧Fの先端がピストン凹部21内に進入しない条件は、Yspray>Ypisのとき、Xspray>Xpisとなることである。
【0019】
すなわち、燃料噴霧Fの先端がピストン14冠面に到達したときに、噴霧Fの先端のX座標がすでにピストン凹部21の外縁部21aより外側つまり排気弁18側に位置していれば、燃料の少なくとも大部分は、ピストン凹部21へ進入しない。
【0020】
ここで、上記の各座標Xspray,Yspray,Xpis,Ypisは、それぞれ以下のように計算することができる。
【0021】
燃料噴霧の速度をVspray、燃料が噴射開始されてからの経過時間をTspray、燃料噴射弁20の取付位置の座標を(Xinj,Yinj)、取付角度を上述のようにθinjとすると、噴霧の先端の座標(Xspray,Yspray)は、下記の式でそれぞれ示される。
【0022】
【数1】
Xspray=Xinj十Vspray・Tspray・sin(θinj)
【0023】
【数2】
Yspray=Yinj十Vspray・Tspray・cos(θinj)
また、ビストン凹部21の燃料噴射弁20に対向する側の外縁部21aの位置の座標は、ビストン14の形状、クランク半径R、コンロッド長さCONLおよび上死点からのクランク角度CAを用いて、下記の式によりそれぞれ示される。
【0024】
【数3】
Xpis(=const.)
【0025】
【数4】
Ypis=Ypis1+Ypis2=(R+CONL−R・cos(CA)−sqrt(CONL−(R・sin(CA))))+Ypis2
ここでYpis1はシリンダ3上端からピストン14上面までの距離、Ypis2はピストン14上面から外縁部21a先端までの距離である。なお、sqrtは平方根である。
【0026】
燃料噴射を開始するクランク角度をCAinjとすると、TsprayとCAinjとの間には、次式の関係がある。
【0027】
【数5】
Tspray=(60/Ne)・1000・(1/360)・(CA‐CAinj)
ここで、Neは機関回転速度(rpm)である。
【0028】
以上の式より、Yspray>Ypisのときに、Xspray>Xpisとなる燃料噴射開始クランク角度CAinjの範囲を求めることができる。この演算は、制御装置22によって逐次行うことも可能ではあるが、機関回転速度Ne以外は予め知り得るパラメータであるため、各機関回転速度Neに対応する燃料噴射開始クランク角CAinjを予め計算により求めて、制御装置22内に記憶させておき、機関運転状態に応じてこれを引用する手法が現実的である。なお、燃料噴霧の速度Vsprayは、燃料噴射弁20の特性と燃圧とによって定まる。
【0029】
次に、図3および図4を用いて本発明の作用を説明する。図3は、本発明によらない燃料噴射開始時期の設定方法において発生する現象を説明するものである。吸気行程初期に燃料噴射弁20から噴射された燃料は、ピストン14が上死点に近い位置に存在するため、その多くがピストン14冠面の凹部21に進入してしまう。その後、ピストン14の下降に伴い燃料噴霧はシリンダ13内全体に拡散するようになるが、ピストン14の凹部21内に捉えられた燃料は、吸気〜圧縮行程にかけても、ほとんど拡散・混合が進まず、圧縮上死点まで凹部21内に留まり続ける。その結果、圧縮上死点において、燃焼室内の混合気は、点火栓19近傍がリーンでピストン凹部21内がリッチとなった濃淡のある分布となり、これが原因で燃焼が悪化し、トルクの低下等を生じることがある。
【0030】
これに対して、本発明によって設定された燃料噴射開始時期CAinjによれば、図4に示すように、下降するピストン14を追うように燃料が噴射されるが、燃料噴霧の先端はピストン14の凹部21に達することがない。仮に噴霧先端がピストン14に追いついたとしても、噴霧中心は凹部21よりも排気弁18側の冠面に衝突することになり、燃料は殆ど凹部21内に進入しない。従って、燃料噴霧はシリンダ3内全体に拡散・混合する。その結果、圧縮上死点において均質な混合気が形成され、良好な燃焼が得られる。そのためトルク低下等を生じることがない。
【0031】
図2に示した各部の寸法等に具体的な数値を入れて、上記計算を行ってみると、Xinj=−40(mm)、Yinj=−8(mm)、Xpis=7(mm)、Ypis2=−6(mm)、Vspray=20(mm/ms)、R=43(mm)、CONL=136(mm)、θinj=33(deg.)、Ne=1600(rpm)のときに、燃料噴霧がピストン14冠面の凹部21に進入しない燃料噴射開始時期CAinjは、CAinj≧80deg.ATDCとなる。
【0032】
図5は、燃料噴射開始時期(クランク角)をパラメータとする軸トルクの変化を、上記の寸法を有する実機を用いた実験によって測定した結果を示している。なお、機関回転速度は1600rpmである。この場合、図示するように、燃料噴射開始クランク角度がおよそ80deg.ATDC以前においてはトルクの低下が見られる。これは上述した混合気の不均一に起因するものと考えられる。これに対し、およそ80deg.ATDC以降では、トルク低下は発生しておらず、良好な燃焼が行われている。
【図面の簡単な説明】
【図1】本発明の構成を示す機能ブロック図。
【図2】本発明の一実施例の構成を示す構成説明図。
【図3】本発明によらない燃料噴射開始時期による混合気形成の状態を示す説明図。
【図4】本発明による燃料噴射開始時期による混合気形成の状態を示す説明図。
【図5】本発明の効果を示す実験結果を示した特性図。
【符号の説明】
1…運転状態検出手段
2…燃料噴射開始時期設定手段
3…燃料噴射制御手段
4…燃料噴射弁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel injection control device and a control method for a direct injection spark ignition type internal combustion engine in which fuel is directly injected into a cylinder by a fuel injection valve and ignited by an ignition plug.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known a direct injection type spark ignition type internal combustion engine in which an injection hole of an electromagnetic fuel injection valve is installed facing a cylinder and fuel is directly injected into the cylinder by the fuel injection valve ( For example, see JP-A-57-162915 and JP-A-8-35429. Many of such direct-injection spark ignition type internal combustion engines are provided with a concave portion on the piston crown surface in order to realize stratification of the air-fuel mixture.
[0003]
According to this direct injection type spark ignition type internal combustion engine, when the internal combustion engine is under a low load, the mixture is stratified by injecting fuel toward the concave portion formed on the piston crown surface mainly during the compression stroke. It can be formed by super-lean combustion. Therefore, the fuel consumption rate at low load can be reduced. In addition, when the engine is under a high load, there is an advantage that a homogeneous air-fuel mixture can be formed by injecting fuel mainly during the intake stroke, and a high torque can be secured.
[0004]
[Problems to be solved by the invention]
However, in the direct injection type spark ignition type internal combustion engine, when fuel injection is performed mainly during the intake stroke in order to generate a homogeneous mixture, the injected fuel droplets are formed on the piston crown surface. When the fuel enters the recess, the fuel stagnates in the piston recess and is not sufficiently diffused and mixed in the entire cylinder from the intake stroke to the compression stroke. There is a problem that shading occurs, combustion deteriorates, and torque decreases.
[0005]
In order to avoid this problem, it is necessary to experimentally determine the injection start timing at which good combustion can be obtained without fuel entering the piston concave portion, which imposes a heavy burden on time and cost. In particular, if the fuel injection timing in the fuel injection during the intake stroke is fixedly set, when the engine operating conditions change, the fuel may enter the piston recess, so that a large margin must be provided. Therefore, the start of fuel injection may be excessively delayed.
[0006]
[Means for Solving the Problems]
The present invention has been made in view of such a conventional problem, and has as its object to obtain an optimum fuel injection start timing according to an engine operating condition without using an experimental method. That is, the fuel injection control device for a direct injection spark ignition type internal combustion engine according to the present invention has, as shown in FIG. In a direct-injection spark ignition type internal combustion engine in which fuel is directly injected into a cylinder, means 1 for detecting an operating state of the engine, and a mounting position and a mounting angle of a fuel injection valve 4 when performing fuel injection during an intake stroke And the position of the outer edge facing the fuel injection valve in the recess of the piston crown surface from the crankpin radius, connecting rod length and the shape of the piston crown surface. 2 for setting the fuel injection start timing so that the fuel injection does not enter the inside of the piston crown recess from the outer edge of the piston crown recess, and the injection set by the fuel injection start timing setting means. And fuel injection control means 3 for controlling the fuel injection by the fuel injection valve 4 in accordance with the start timing, it is characterized in that it comprises a.
[0007]
That is, when the fuel is injected during the intake stroke, the fuel is injected from the fuel injection valve 4 toward the descending piston crown surface. It is uniquely determined from the mounting position and mounting angle of No. 4 and the speed of spraying, corresponding to the elapsed time after injection. Further, since the lowering position of the piston is uniquely determined according to the crank angle by the crankpin radius and the connecting rod length, the position of the outer edge of the piston crown concave portion to which the spray is directed is determined by the piston position and the piston position. It is determined according to the crank angle from the shape of the crown. When the tip of the fuel spray that proceeds along the mounting angle reaches the piston crown surface, at least the majority of the fuel is injected into the piston if the tip of the spray in the radial direction of the piston is already located outside the piston recess. Do not enter the recess. Therefore, the fuel injection start timing setting means 2 sequentially determines the fuel injection start timing at which the fuel spray does not enter the piston concave portion according to the engine operating state, based on the relationship between the tip position of the spray and the outer edge position of the piston crown concave portion. Set it.
[0008]
More specifically, according to the first aspect of the present invention, when the fuel is injected during the intake stroke in which the piston descends , the means for detecting the rotational speed of the engine, From the relationship between the position of the tip of the spray determined from the speed of the fuel injection valve and the position of the outer edge facing the fuel injection valve in the piston crown recess determined by the crank angle, the tip of the spray is more recessed than the outer edge of the piston crown recess. Means for setting the fuel injection start timing corresponding to the engine rotation speed so as not to enter the inside of the engine, and controlling the fuel injection by the fuel injection valve according to the injection start timing set by the fuel injection start timing setting means. Fuel injection control means.
[0009]
That is, among the above-mentioned parameters, the mounting position and the mounting angle of the fuel injection valve 4 and the spray speed, and the crank radius, the connecting rod length, and the shape of the piston crown are all known values by the internal combustion engine, and Since the relationship between the time and the crank angle is determined by the engine speed, a value corresponding to the engine speed can be immediately obtained from the optimum fuel injection start timing according to the engine speed.
[0010]
According to a second aspect of the present invention, there is provided a direct injection type spark ignition type internal combustion engine having a concave portion which becomes a part of a combustion chamber on a piston crown surface, and directly injecting fuel into a cylinder during an intake stroke in which a piston descends by a fuel injection valve. The present invention relates to a fuel injection control method for an engine,
Detects engine speed,
From the mounting position and mounting angle of the fuel injection valve and the spray speed, the position of the tip of the spray corresponding to the elapsed time after the start of the injection is obtained,
From the crankpin radius, the connecting rod length and the shape of the piston crown surface, the position corresponding to the crank angle of the outer edge portion facing the fuel injection valve in the piston crown recess,
The fuel injection start timing is set in accordance with the engine speed so that the tip of the spray does not enter the inside of the recess from the outer edge of the piston crown recess,
The fuel injection by the fuel injection valve is controlled according to the set injection start timing.
[0011]
【The invention's effect】
According to the fuel injection control device and method for a direct injection spark ignition type internal combustion engine according to the present invention, the relative position between the tip position of the spray as a function of time and the outer edge position of the piston crown concave portion as a function of the crank angle is determined. Based on the relationship, the fuel injection start timing is set so that the spray does not enter into the recess of the piston crown surface.Therefore, mainly at the time of a high engine load, etc., the deterioration of combustion and the torque caused by the concentration of the mixture in the combustion chamber are reduced. Can be prevented from decreasing. In particular, it is possible to set such an optimum fuel injection start timing without using an experimental method, and it is possible to always maintain the optimum fuel injection start timing irrespective of changes in engine operating conditions.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 2 shows a mechanical configuration of a direct injection type spark ignition type internal combustion engine to which the present invention is applied. This internal combustion engine mainly comprises a cylinder head 11 and a cylinder block 12, A plurality of cylinders 13 are formed in 12. A piston 14 is slidably fitted to the cylinder 13, and a lower portion of the cylinder head 11 that covers the cylinder 13 is formed with a concave portion that is a part of a combustion chamber. A port 15 and a pair of exhaust ports 16 are connected, and an intake valve 17 and an exhaust valve 18 open and close, respectively. An ignition plug 19 is arranged at the center of these four intake valves 17 and exhaust valves 18, that is, at the center position of the cylinder 13.
[0014]
An electromagnetic fuel injection valve 20 that opens and closes by an injection pulse signal is provided directly on the cylinder 13 on the outer peripheral portion on the intake valve 17 side at the upper end of the cylinder 13. The fuel injection valve 20 is for injecting fuel along the central axis of the fuel injection valve 20 from the injection hole at the tip, and is attached in a posture inclined obliquely downward as shown in the figure. . The mounting angle with respect to the horizontal plane of the cylinder is θinj.
[0015]
A recess 21 which is a part of the combustion chamber is formed in the crown surface of the piston 14. The concave portion 21 is partially formed in a range deviated to one of the crown surfaces of the piston 14, specifically, in a range deviated to the fuel injection valve 20 side, and includes the center of the piston 14 from the vicinity of the outer peripheral portion of the piston 14. Is formed. The outer edge 21 a of the recess 21 on the exhaust valve 18 side faces the injection hole of the fuel injection valve 20.
[0016]
The control device 22 for controlling the fuel injection valve 20 and the spark plug 19 is a so-called microcomputer system, which includes a CPU, a ROM, a RAM, an I / O, and the like. The control device 22 detects an engine operation state such as an air flow meter 23 for detecting an intake air amount of the internal combustion engine, a crank angle sensor 24 for detecting an engine crank angle position, and a throttle opening sensor 25 for detecting a throttle opening. The detection signal from the sensor which performs it is input. Then, as described later, the fuel injection start timing is set according to the detected engine operating state, and the fuel injection valve 20 is driven.
[0017]
Next, specific means for setting the fuel injection start timing so that the fuel spray does not enter the concave portion 21 of the crown surface of the piston 14 will be described. Basically, at low engine load, fuel is injected mainly into the recess 21 of the piston 14 during the compression stroke, and at high engine load, fuel is injected during the intake stroke to obtain a homogeneous mixture. It has become. When performing fuel injection during the intake stroke, the fuel spray injected from the fuel injection valve 20 follows the piston 14 descending according to the crank angle.
[0018]
As shown in FIG. 2, the position of the tip of the fuel spray F is set according to a coordinate axis in which the axis direction of the cylinder 13 is the Y axis and the direction orthogonal to the Y axis and the direction along the plane passing through the fuel injection valve 20 is the X axis. Xspray, Yspray), and assuming that the position of the outer edge 21a of the piston recess 21 facing the injection valve is (Xpis, Ypis), the condition that the tip of the fuel spray F does not enter the piston recess 21 is as follows: Yspray> Ypis In this case, Xspray> Xpis.
[0019]
That is, when the tip of the fuel spray F reaches the crown surface of the piston 14, if the X coordinate of the tip of the spray F is already located outside the outer edge 21 a of the piston recess 21, that is, on the exhaust valve 18 side, the fuel At least most do not enter the piston recess 21.
[0020]
Here, the coordinates Xspray, Yspray, Xpis, and Ypis can be calculated as follows.
[0021]
Assuming that the speed of the fuel spray is Vspray, the elapsed time from the start of fuel injection is Tspray, the coordinates of the mounting position of the fuel injection valve 20 is (Xinj, Yinj), and the mounting angle is θinj as described above, (Xspray, Yspray) are represented by the following equations, respectively.
[0022]
(Equation 1)
Xspray = Xinj tens Vspray · Tspray · sin (θinj)
[0023]
(Equation 2)
Yspray = Yinj tens Vspray · Tspray · cos (θinj)
The coordinates of the position of the outer edge 21a on the side of the biston recess 21 facing the fuel injection valve 20 are calculated using the shape of the piston 14, the crank radius R, the connecting rod length CONL, and the crank angle CA from the top dead center. It is shown by the following equations, respectively.
[0024]
(Equation 3)
Xpis (= const.)
[0025]
(Equation 4)
Ypis = Ypis1 + Ypis2 = (R + CONL-R · cos (CA) -sqrt (CONL 2 - (R · sin (CA)) 2)) + Ypis2
Here, Ypis1 is the distance from the upper end of the cylinder 3 to the upper surface of the piston 14, and Ypis2 is the distance from the upper surface of the piston 14 to the tip of the outer edge 21a. Note that sqrt is a square root.
[0026]
Assuming that the crank angle at which fuel injection starts is CAinj, there is a relationship between Tspray and CAinj as follows.
[0027]
(Equation 5)
Tspray = (60 / Ne) · 1000 · (1/360) · (CA-CAinj)
Here, Ne is the engine speed (rpm).
[0028]
From the above expression, when Yspray> Ypis, the range of the fuel injection start crank angle CAinj satisfying Xspray> Xpis can be obtained. Although this calculation can be performed sequentially by the control device 22, since the parameters other than the engine speed Ne are parameters that can be known in advance, the fuel injection start crank angle CAinj corresponding to each engine speed Ne is calculated in advance. Therefore, a method of storing the information in the control device 22 and referring to the stored information in accordance with the operating state of the engine is practical. The fuel spray speed Vspray is determined by the characteristics of the fuel injection valve 20 and the fuel pressure.
[0029]
Next, the operation of the present invention will be described with reference to FIGS. FIG. 3 illustrates a phenomenon that occurs in the method for setting the fuel injection start timing not according to the present invention. Most of the fuel injected from the fuel injection valve 20 in the early stage of the intake stroke enters the recess 21 in the crown surface of the piston 14 because the piston 14 is located near the top dead center. Thereafter, as the piston 14 descends, the fuel spray begins to diffuse throughout the cylinder 13. However, the fuel captured in the recess 21 of the piston 14 hardly spreads and mixes even during the intake stroke to the compression stroke. , Stays in the recess 21 until the compression top dead center. As a result, at the compression top dead center, the air-fuel mixture in the combustion chamber has a dark and light distribution in which the vicinity of the spark plug 19 is lean and the inside of the piston recess 21 is rich, which causes the combustion to deteriorate and the torque to decrease. May occur.
[0030]
On the other hand, according to the fuel injection start timing CAinj set by the present invention, as shown in FIG. 4, the fuel is injected so as to follow the descending piston 14, but the tip of the fuel spray is It does not reach the recess 21. Even if the spray tip catches up with the piston 14, the center of the spray collides with the crown surface on the exhaust valve 18 side with respect to the recess 21, and almost no fuel enters the recess 21. Therefore, the fuel spray is diffused and mixed throughout the cylinder 3. As a result, a homogeneous air-fuel mixture is formed at the compression top dead center, and good combustion is obtained. Therefore, a decrease in torque or the like does not occur.
[0031]
When a specific numerical value is put in the dimensions of each part shown in FIG. 2 and the above calculation is performed, Xinj = −40 (mm), Yinj = −8 (mm), Xpis = 7 (mm), Ypis2 = -6 (mm), Vspray = 20 (mm / ms), R = 43 (mm), CONL = 136 (mm), θinj = 33 (deg.), Ne = 1600 (rpm) The fuel injection start timing CAinj at which the fuel does not enter the concave portion 21 of the crown surface of the piston 14 is CAinj ≧ 80 deg. It becomes ATDC.
[0032]
FIG. 5 shows the result of measuring the change in the shaft torque using the fuel injection start timing (crank angle) as a parameter by an experiment using an actual machine having the above dimensions. The engine speed is 1600 rpm. In this case, as shown, the fuel injection start crank angle is approximately 80 deg. Before ATDC, a decrease in torque is observed. This is considered to be due to the non-uniformity of the mixture described above. In contrast, about 80 deg. After ATDC, torque reduction has not occurred, and good combustion is being performed.
[Brief description of the drawings]
FIG. 1 is a functional block diagram showing a configuration of the present invention.
FIG. 2 is a configuration explanatory diagram showing the configuration of an embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a state of air-fuel mixture formation at a fuel injection start timing not according to the present invention.
FIG. 4 is an explanatory diagram showing a state of air-fuel mixture formation at a fuel injection start timing according to the present invention.
FIG. 5 is a characteristic diagram showing experimental results showing the effects of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Operating state detection means 2 ... Fuel injection start timing setting means 3 ... Fuel injection control means 4 ... Fuel injection valve

Claims (2)

ピストン冠面に燃焼室の一部となる凹部を有し、かつ燃料噴射弁によりシリンダ内に燃料を直接噴射する直噴型火花点火式内燃機関において、
機関の回転速度を検出する手段と、
ピストンが下降する吸気行程中に燃料噴射を行う場合に、燃料噴射弁の取付位置および取付角度と噴霧の速度から定まる噴霧の先端の位置と、クランク角により定まるピストン冠面凹部における燃料噴射弁と向かい合う外縁部の位置との関係から、上記噴霧の先端が上記ピストン冠面凹部の外縁部より該凹部の内側に入らないように機関回転速度に対応して燃料噴射開始時期を設定する手段と、
この燃料噴射開始時期設定手段で設定された噴射開始時期に応じて前記燃料噴射弁による燃料噴射を制御する燃料噴射制御手段と、
を備えていることを特徴とする直噴型火花点火式内燃機関の燃料噴射制御装置。
In a direct-injection spark-ignition internal combustion engine having a concave portion that becomes a part of a combustion chamber in a piston crown surface, and injecting fuel directly into a cylinder by a fuel injection valve,
Means for detecting the rotational speed of the engine;
When performing fuel injection during the intake stroke in which the piston descends, the position of the tip of the spray determined from the mounting position and the mounting angle of the fuel injection valve and the speed of the spray, and the fuel injection valve in the piston crown recess determined by the crank angle Means for setting the fuel injection start timing in accordance with the engine speed so that the tip of the spray does not enter inside the recess from the outer edge of the piston crown recess from the relationship with the position of the facing outer edge,
Fuel injection control means for controlling fuel injection by the fuel injection valve according to the injection start timing set by the fuel injection start timing setting means,
A fuel injection control device for a direct injection spark ignition type internal combustion engine, comprising:
ピストン冠面に燃焼室の一部となる凹部を有し、かつ燃料噴射弁によりピストンが下降する吸気行程中にシリンダ内に燃料を直接噴射する直噴型火花点火式内燃機関の燃料噴射制御方法において、
機関の回転速度を検出し、
燃料噴射弁の取付位置および取付角度と噴霧の速度から噴射開始後の経過時間に対応する噴霧の先端の位置を求め、
クランク半径、コンロッド長さおよびピストン冠面の形状から、ピストン冠面凹部における燃料噴射弁と向かい合う外縁部のクランク角に対応する位置を求め、
上記噴霧の先端が上記ピストン冠面凹部の外縁部より該凹部の内側に入らないように、機関回転速度に対応して燃料噴射開始時期を設定し、
この設定された噴射開始時期に応じて前記燃料噴射弁による燃料噴射を制御することを特徴とする直噴型火花点火式内燃機関の燃料噴射制御方法。
Fuel injection control method for a direct-injection spark ignition type internal combustion engine having a concave portion that becomes a part of a combustion chamber on a piston crown surface and directly injecting fuel into a cylinder during an intake stroke in which a piston is lowered by a fuel injection valve At
Detects engine speed,
From the mounting position and mounting angle of the fuel injection valve and the spray speed, the position of the tip of the spray corresponding to the elapsed time after the start of the injection is obtained,
From the crank radius, the connecting rod length and the shape of the piston crown, the position corresponding to the crank angle of the outer edge facing the fuel injection valve in the piston crown recess,
The fuel injection start timing is set in accordance with the engine speed so that the tip of the spray does not enter the inside of the recess from the outer edge of the piston crown recess,
A fuel injection control method for a direct-injection spark ignition type internal combustion engine, comprising controlling fuel injection by the fuel injection valve according to the set injection start timing.
JP31573496A 1996-11-27 1996-11-27 Fuel injection control device and control method for direct injection spark ignition type internal combustion engine Expired - Lifetime JP3582264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31573496A JP3582264B2 (en) 1996-11-27 1996-11-27 Fuel injection control device and control method for direct injection spark ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31573496A JP3582264B2 (en) 1996-11-27 1996-11-27 Fuel injection control device and control method for direct injection spark ignition type internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10159621A JPH10159621A (en) 1998-06-16
JP3582264B2 true JP3582264B2 (en) 2004-10-27

Family

ID=18068900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31573496A Expired - Lifetime JP3582264B2 (en) 1996-11-27 1996-11-27 Fuel injection control device and control method for direct injection spark ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JP3582264B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067514A1 (en) 1998-06-22 1999-12-29 Hitachi, Ltd. Cylinder-injection type internal combustion engine, method of controlling the engine, and fuel injection nozzle
JP4136613B2 (en) * 2002-11-11 2008-08-20 本田技研工業株式会社 Engine fuel injection control device

Also Published As

Publication number Publication date
JPH10159621A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
US6681739B2 (en) Control device for direct-injection spark-ignition engine and method of setting fuel injection timing of the same
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
EP1559889B1 (en) Direct fuel injection/spark ignition engine control device
EP1559897A2 (en) Direct fuel injection/spark ignition engine control device
JP6784214B2 (en) Internal combustion engine control device
US20090025682A1 (en) Controller for spray-guide type direct injection internal combustion engine
US6722342B2 (en) Fuel injection control system and method for internal combustion engine as well as engine control unit
US5870992A (en) Combustion control device for internal combustion engine
JPS60230544A (en) Fuel injector for engine
KR19980064653A (en) Combustion control device of internal combustion engine
JP3514083B2 (en) In-cylinder direct injection spark ignition engine
JP3582264B2 (en) Fuel injection control device and control method for direct injection spark ignition type internal combustion engine
JPH11173180A (en) Cylinder injection type spark ignition engine
EP0520833B1 (en) Laminar burning internal combustion engine with fuel injection time controlling function
JP4046055B2 (en) In-cylinder internal combustion engine
JP2003106186A (en) Control system for spark ignition type direct injection engine
JP3572372B2 (en) Fuel injection control device for direct injection spark ignition engine
JP6747460B2 (en) Control device for internal combustion engine
JPH0121180Y2 (en)
JP4078894B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP4192633B2 (en) Direct-injection spark ignition internal combustion engine
JP4045671B2 (en) Direct injection spark ignition internal combustion engine
JPH1037769A (en) Two-cycle engine of intra-cylinder injection type
JPH04103855A (en) Fuel injection control device for two cycle engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140806

Year of fee payment: 10

EXPY Cancellation because of completion of term