JP3498392B2 - Electronic control fuel injection device - Google Patents

Electronic control fuel injection device

Info

Publication number
JP3498392B2
JP3498392B2 JP31363094A JP31363094A JP3498392B2 JP 3498392 B2 JP3498392 B2 JP 3498392B2 JP 31363094 A JP31363094 A JP 31363094A JP 31363094 A JP31363094 A JP 31363094A JP 3498392 B2 JP3498392 B2 JP 3498392B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
correction coefficient
fuel injection
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31363094A
Other languages
Japanese (ja)
Other versions
JPH08170557A (en
Inventor
匂坂  康夫
英彦 朝熊
康仁 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP31363094A priority Critical patent/JP3498392B2/en
Publication of JPH08170557A publication Critical patent/JPH08170557A/en
Application granted granted Critical
Publication of JP3498392B2 publication Critical patent/JP3498392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子制御燃料噴射装置に
より始動時及び始動直後のエンジン回転数を安定させ、
始動性及びアイドル安定性を向上させる制御に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an electronically controlled fuel injection device to stabilize the engine speed at start and immediately after start.
The present invention relates to control for improving startability and idle stability.

【0002】[0002]

【従来の技術】特開平3ー61644号公報に示すよう
に予め設定された燃料の種類とエンジン冷却水温により
決定される目標エンジン回転数と実際のエンジン回転数
を比較し、実際のエンジン回転数が目標エンジン回転数
を下回った場合、各々エンジン水温とエンジン回転数に
対応させた補正係数で燃料噴射量を増量するようにして
おり、その補正係数はエンジン回転数またはエンジン水
温の上昇により減衰される。
2. Description of the Related Art As shown in Japanese Patent Laid-Open No. 3-61644, a target engine speed determined by a preset fuel type and engine cooling water temperature is compared with an actual engine speed, and the actual engine speed is compared. When the engine speed falls below the target engine speed, the fuel injection amount is increased by the correction coefficient corresponding to the engine water temperature and the engine speed, respectively, and the correction coefficient is attenuated by the increase of the engine speed or the engine water temperature. It

【0003】[0003]

【発明が解決しようとする課題】従来技術のように始動
後の燃料噴射量を単純にエンジン回転数により増減する
と、揮発性の悪い重質燃料を使用した場合、目標エンジ
ン回転数以上では増量されない為、理想空燃比に対し燃
料の割合が空気と比較し過少状態であるリーンとなって
もリーン状態を克服できず、エンジンのもたつき、息付
き等の運転性不良となる。また、始動後増量終了後にお
いてはエンジン回転数によらず増量されない為、同様な
不具合が発生する。
When the fuel injection amount after starting is simply increased or decreased by the engine speed as in the prior art, when heavy fuel with poor volatility is used, the fuel injection amount is not increased above the target engine speed. Therefore, even if the ratio of fuel to the ideal air-fuel ratio is lean compared to air, which is too small, the lean condition cannot be overcome, and the engine wobbles, breathing, and other drivability deteriorates. Further, after the completion of the increase in the amount after the start, the amount is not increased irrespective of the engine speed, so that the same problem occurs.

【0004】また、揮発性の良い軽質燃料を使用した場
合には、上述の現象とは逆に、エンジン回転数低下時に
理想空燃比に対し燃料の割合が空気と比較し、過多状態
であるオーバーリッチとなった時はリッチ状態を助長す
ることになり、これもまた運転性不良となる。一方、エ
ンジン停止中において燃料はインジェクタから洩れるこ
とが知られており、この洩れ燃料の量は気筒毎に異なる
ため、始動時の燃料噴射量と始動時間には相関関係がな
くなる。
Further, when a light fuel having good volatility is used, contrary to the above-mentioned phenomenon, the ratio of fuel to the ideal air-fuel ratio is excessive when compared with air when the engine speed is reduced. When it becomes rich, it promotes the rich state, which also leads to poor drivability. On the other hand, it is known that fuel leaks from the injector while the engine is stopped, and the amount of the leaked fuel differs for each cylinder, so that the fuel injection amount at the time of starting and the starting time have no correlation.

【0005】いずれの場合も、エンジン回転数低下が復
帰できないといったことが発生するため、最適なエンジ
ン始動及び始動後アイドル安定性が得られないという問
題がある。そこで、本発明は前記問題点の少なくとも一
つを解決し、最適なエンジン始動性を得ることを目的と
する。
In either case, the decrease in the engine speed cannot be recovered, so that there is a problem that the optimum engine starting and post-starting idle stability cannot be obtained. Then, this invention solves at least one of the said problems, and aims at obtaining optimal engine startability.

【0006】[0006]

【0007】[0007]

【課題を解決するための手段】 本発明は、前記問題点を
解決するために、 内燃機関の燃料噴射量を空燃比フィー
ドバック制御する空燃比フィードバック制御手段と、内
燃機関の最適始動状態を検出する始動状態検出手段と、
この始動状態検出手段により検出された始動状態により
燃料噴射量の補正係数を演算する補正係数演算手段と、
この補正係数を減衰させる減衰手段とを備え、前記始動
状態検出手段は内燃機関始動から内燃機関が所定回転速
度以上となる時間を計測する始動時間計測手段と、内燃
機関始動直後の最初の最大回転速度を検出する最大回転
速度検出手段と、内燃機関が前記所定回転速度以上とな
ってから始動直後の最初の最大回転速度に達するまでの
回転速度変化率を演算する回転速度変化率演算手段と、
機関始動後の所定時間内において、前記最大回転速度後
の最低回転速度を検出する最低回転速度検出手段の少な
くとも1つの手段を含む内燃機関の最適でない始動を検
出する始動性検出手段とを含み、前記補正係数演算手段
は前記始動性検出手段により最適でない始動を検出する
と燃料噴射量を増量する方向に前記補正係数を設定する
手段を含む電子制御燃料噴射装置を提供するものであ
る。また、内燃機関の燃料噴射量を空燃比フィードバッ
ク制御する空燃比フィードバック制御手段と、内燃機関
の最適始動状態を検出する始動状態検出手段と、この始
動状態検出手段により検出された始動状態により燃料噴
射量の補正係数を演算する補正係数演算手段と、この補
正係数を減衰させる減衰手段とを備え、前記始動状態検
出手段は内燃機関の気筒毎に燃料噴射量の補正係数を設
定し、内燃機関始動中の気筒毎の所定工程が終了する時
間を計測し、計測された最短時間から始動性を判定する
最適始動状態判定手段を備え、前記補正係数設定手段
、前記気筒毎の所定工程が終了する時間のうち、該時
間が最短である気筒の燃料噴射量の補正係数を、前記始
動状態により演算される補正係数として設定する手段
含む電子制御燃料噴射装置を提供するものである。
た、前記補正係数演算手段による燃料噴射量を増量する
方向への補正係数の設定時に、吸入空気量の増加と点火
時期の遅角禁止と内燃機関により駆動される発電機の発
電停止または発電量減少との少なくとも1つを実行する
出力向上手段を備えるようにしても良い。 また、前記補
正係数演算手段による修正された補正係数を所定回数毎
に不揮発性メモリに記憶し、学習する手段とを含んでも
よい。
The present invention solves the above problems.
In order to solve, an air-fuel ratio feedback control means for performing an air-fuel ratio feedback control of the fuel injection amount of the internal combustion engine, and a starting state detecting means for detecting an optimal starting state of the internal combustion engine,
Correction coefficient calculating means for calculating a correction coefficient of the fuel injection amount based on the starting state detected by the starting state detecting means,
A damping means for damping the correction coefficient is provided, and the starting state detecting means is a starting time measuring means for measuring a time during which the internal combustion engine is at a predetermined rotational speed or more after the internal combustion engine is started, and a first maximum rotation immediately after the internal combustion engine is started. A maximum rotation speed detecting means for detecting the speed, and a rotation speed change rate calculating means for calculating the rotation speed change rate from when the internal combustion engine is equal to or higher than the predetermined rotation speed to when it reaches the first maximum rotation speed immediately after starting,
Within a predetermined time after the engine has been started , including startability detection means for detecting a non-optimal start of the internal combustion engine, including at least one means of minimum rotation speed detection means for detecting the minimum rotation speed after the maximum rotation speed, The correction coefficient calculation means provides an electronically controlled fuel injection device including means for setting the correction coefficient in a direction of increasing the fuel injection amount when the startability detection means detects a non-optimal start.
It Further, air-fuel ratio feedback control means for performing air-fuel ratio feedback control of the fuel injection amount of the internal combustion engine, starting state detecting means for detecting an optimum starting state of the internal combustion engine, and fuel injection based on the starting state detected by the starting state detecting means. A correction coefficient calculation means for calculating a correction coefficient for the amount and a damping means for attenuating the correction coefficient are provided, and the starting state detection means sets a correction coefficient for the fuel injection amount for each cylinder of the internal combustion engine to start the internal combustion engine. An optimum starting state determining means is provided for measuring the time for which the predetermined process is completed for each of the cylinders, and determining the startability from the measured shortest time. The correction coefficient setting means is for completing the predetermined process for each cylinder. That time out of time
The correction coefficient for the fuel injection amount of the cylinder with the shortest interval is
A means to set as a correction coefficient calculated by the motion state
An electronically controlled fuel injection device including the same is provided. Well
Further, when the correction coefficient is set by the correction coefficient calculation means to increase the fuel injection amount, the intake air amount is increased, the ignition timing is prohibited from being retarded, and the power generation of the generator driven by the internal combustion engine is stopped or generated. It may be provided with an output improving means for performing at least one of the reduction . Further, the correction coefficient calculated by the correction coefficient calculating means may be stored in a non-volatile memory every predetermined number of times and may be learned.

【0008】[0008]

【作用及び発明の効果】本発明は内燃機関(エンジン)
の始動時間とエンジン始動直後の最高エンジン回転速度
となった後のエンジン回転速度の低下といった運転状態
を検出し、この運転状態に最適な燃料噴射量、吸入空気
量等の補正係数の増量補正によりエンジン出力を向上さ
せられるため、始動性及び始動後アイドル安定性がさら
に向上できる効果がある。
OPERATION AND EFFECT OF THE INVENTION The present invention is an internal combustion engine (engine).
The operating conditions such as the starting time of the engine and the decrease in the engine speed after the maximum engine speed immediately after the engine start are detected, and the correction coefficient increase correction of the fuel injection amount, intake air amount, etc. that is optimal for this operating condition is performed. Since the engine output can be improved, there is an effect that the startability and the idle stability after start can be further improved.

【0009】[0009]

【実施例】以下、本発明を適用した電子燃料噴射制御装
置の第一実施例を図2〜7、第二実施例を図8、9、第
三実施例を図10を用いて説明する。図1に電子燃料噴
射制御装置にて制御するエンジン構成を示す。エンジン
1には吸気管2と排気管3とが接続されている。吸気管
2の最上流部にはエアクリーナ4が設けられ、そのエア
クリーナ4から空気は吸気管2、サージタンク5を介し
て吸入される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of an electronic fuel injection control device to which the present invention is applied will be described below with reference to FIGS. 2 to 7, a second embodiment will be described with reference to FIGS. 8 and 9, and a third embodiment will be described with reference to FIG. FIG. 1 shows an engine configuration controlled by the electronic fuel injection control device. An intake pipe 2 and an exhaust pipe 3 are connected to the engine 1. An air cleaner 4 is provided in the most upstream part of the intake pipe 2, and the air is sucked from the air cleaner 4 through the intake pipe 2 and the surge tank 5.

【0010】また、燃料タンク7内の燃料が燃料ポンプ
8により吸い上げられ、燃料フィルタ9を通してプレッ
シャレギュレータ10に供給され、このプレッシャレギ
ュレータ10にて調圧された燃料は各気筒毎の吸気管2
に配置されているインジェクタ6に供給される。そし
て、インジェクタ6はバッテリ15からの電力供給によ
り開弁された結果、燃料が噴射され、吸入空気と混合さ
れて混合気となり、吸気弁11を介してシリンダ12に
供給される。
Further, the fuel in the fuel tank 7 is sucked up by the fuel pump 8 and supplied to the pressure regulator 10 through the fuel filter 9, and the fuel whose pressure is adjusted by the pressure regulator 10 is taken in by the intake pipe 2 for each cylinder.
Is supplied to the injector 6 arranged at. Then, as a result of the injector 6 being opened by the power supply from the battery 15, the fuel is injected and mixed with the intake air to form an air-fuel mixture, which is supplied to the cylinder 12 via the intake valve 11.

【0011】また、各気筒のシリンダ12にはスパーク
プラグ13がそれぞれ配置されており、バッテリ15の
電圧からイグナイタ14は高電圧を生成し、ディストリ
ビュータ16は各気筒毎のスパークプラグ13に分配す
る。また、バイパス通路18は吸気管2の途中にスロッ
トルバルブ17を迂回するように形成され、同バイパス
通路18にはアイドルスピードコントロールバルブ19
が配設されている。そして、エンジンアイドル時にはア
イドルスピードコントロールバルブ19の開度調整によ
りエンジン回転数が調整される。
A spark plug 13 is arranged in each cylinder 12 of each cylinder. The igniter 14 generates a high voltage from the voltage of the battery 15 and the distributor 16 distributes the spark plug 13 to each spark plug 13. Further, the bypass passage 18 is formed in the middle of the intake pipe 2 so as to bypass the throttle valve 17, and the bypass passage 18 has an idle speed control valve 19
Is provided. When the engine is idle, the engine speed is adjusted by adjusting the opening of the idle speed control valve 19.

【0012】吸気温センサ20は吸気管2の最上流部に
設けられ、同センサ20により吸気温が検出できるよう
になっている。また、スロットル開度センサ21は吸気
管2のスロットルバルブ17の近傍に設けられ、スロッ
トルバルブ17の開度が検出できるようになっている。
また、吸気管内圧力センサ22によりサージタンク5内
の吸気管内圧力が検出できるようになっている。また、
酸素濃度センサ26は排気管3に設けられ、排気ガス中
の酸素濃度が検出できるようになっている。
The intake air temperature sensor 20 is provided at the most upstream part of the intake pipe 2, and the intake air temperature can be detected by the sensor 20. Further, the throttle opening sensor 21 is provided near the throttle valve 17 of the intake pipe 2 so that the opening of the throttle valve 17 can be detected.
Further, the intake pipe internal pressure sensor 22 can detect the intake pipe internal pressure in the surge tank 5. Also,
The oxygen concentration sensor 26 is provided in the exhaust pipe 3 so that the oxygen concentration in the exhaust gas can be detected.

【0013】さらに、水温センサ23はエンジン1に設
けられており、気筒判別センサ24とクランク角センサ
25はディストリビュータ16内に配置されている。ク
ランク角センサ25は、エンジン1のクランク軸または
カム軸の回転に伴う所定のクランク角度毎にクランク角
信号を発生する。また、気筒判別センサ24はエンジン
1のクランク軸またはカム軸の回転に伴う特定気筒の特
定位置毎に気筒判別信号を発生する。
Further, the water temperature sensor 23 is provided in the engine 1, and the cylinder discrimination sensor 24 and the crank angle sensor 25 are arranged in the distributor 16. The crank angle sensor 25 generates a crank angle signal for each predetermined crank angle associated with the rotation of the crank shaft or the cam shaft of the engine 1. The cylinder discrimination sensor 24 also generates a cylinder discrimination signal for each specific position of a specific cylinder associated with the rotation of the crankshaft or camshaft of the engine 1.

【0014】尚、気筒判別信号は特定気筒の特定位置
(例えば、第一気筒の圧縮TDC)を少なくともクラン
ク軸720℃Aに一回は検出する信号であり、クランク
角信号はクランク軸360℃A中に複数個発生し、少な
くとも30℃A以下の周期で発生する信号である。マイ
クロコンピュータを中心に構成されている電子制御燃料
噴射装置(以下ECUと記す)27には、スタータスイ
ッチ28、吸気温センサ20、スロットル開度センサ2
1、吸気管内圧力センサ22、水温センサ23、気筒判
別センサ24、及びクランク角度センサ25等が接続さ
れ、それぞれのスイッチ、センサから図示しないスター
タモータ駆動に伴う信号、吸気温、スロットルバルブ1
7の開度、吸気管内圧力、エンジン冷却水温、排気ガス
の酸素濃度等の信号が入力される。 また、ECU27
は接続されているバッテリ15の電圧を検知する。さら
に、同エンジン1はスタータモータがバッテリ15から
の電力供給をうけて駆動してエンジン1を始動するよう
になっている。
The cylinder discriminating signal is a signal for detecting the specific position of the specific cylinder (for example, the compression TDC of the first cylinder) at least once in the crankshaft 720 ° C, and the crank angle signal is the crankshaft 360 ° C. It is a signal that is generated a plurality of times and that is generated at a cycle of at least 30 ° C. or less. An electronically controlled fuel injection device (hereinafter referred to as ECU) 27 mainly including a microcomputer includes a starter switch 28, an intake air temperature sensor 20, a throttle opening sensor 2
1, an intake pipe pressure sensor 22, a water temperature sensor 23, a cylinder discrimination sensor 24, a crank angle sensor 25, etc. are connected, and signals from the respective switches and sensors associated with starter motor drive (not shown), intake air temperature, throttle valve 1
Signals such as the opening degree of 7, the intake pipe internal pressure, the engine cooling water temperature, and the exhaust gas oxygen concentration are input. In addition, the ECU 27
Detects the voltage of the connected battery 15. Further, in the engine 1, the starter motor is driven by the electric power supplied from the battery 15 to start the engine 1.

【0015】図2にECU27にて8ms実行される燃
料及び空気を増量補正するための補正係数を決定する処
理を示す。マニュアルトランスミッション車では発進時
などのクラッチ接続によりエンジン回転数が低下する。
このエンジン回転数低下により本発明の処理が誤作動す
る可能性があるため、クラッチが接続されたことを示す
クラッチ信号、エンジン回転数、吸入空気量またはスロ
ットル開度等からクラッチ接続を検出し、クラッチ接続
検出後、所定時間は本処理の実行を禁止する(ステップ
109)。そして、所定時間経過後、以下のステップ1
01、102に移る。
FIG. 2 shows a process executed by the ECU 27 for 8 ms to determine a correction coefficient for increasing and correcting the amount of fuel and air. In a manual transmission vehicle, the engine speed decreases due to the clutch connection when starting the vehicle.
Since the process of the present invention may malfunction due to this engine speed reduction, the clutch connection is detected from the clutch signal indicating that the clutch is connected, the engine speed, the intake air amount, the throttle opening, etc., After the clutch connection is detected, execution of this process is prohibited for a predetermined time (step 109). Then, after a lapse of a predetermined time, the following step 1
Move to 01 and 102.

【0016】揮発性の悪い重質ガソリンを使用した場
合、空燃比リーンによりエンジン回転数低下が発生する
領域があり、その領域に本処理を実行するためにエンジ
ン始動時の水温(ステップ101)と始動後経過時間
(ステップ102)から前記領域に実行条件を限定して
いる。まず、エンジン始動時の水温(以下TWSTと記
す)が所定範囲内であるKTW1(例えば−5℃)から
KTW2(例えば+50℃)の間であるか判定し(ステ
ップ101)、上記所定範囲外であれば、本処理を抜け
る。
When heavy gasoline with poor volatility is used, there is a region where the engine speed decreases due to lean air-fuel ratio. In this region, the water temperature at the engine start (step 101) is set in order to execute this process. Execution conditions are limited to the above region from the elapsed time after start (step 102). First, it is determined whether the water temperature at engine start (hereinafter referred to as TWST) is between KTW1 (for example, -5 ° C) and KTW2 (for example + 50 ° C), which is within a predetermined range (step 101), and outside the predetermined range. If there is, exit this process.

【0017】ステップ101にて上記所定範囲内であれ
ば、ステップ102に進み、始動後経過時間が所定時間
KCAST(例えば180秒)未満であるか判定し、K
CAST未満の場合は次のステップに進み、エンジン回
転数(以下NEと記す)が所定値KNE0(例えば、T
WST=−5℃の時1000rpm)未満に落ち込んだ
か判定する(ステップ107)。ステップ107にてN
Eが落ち込んでいた場合、エンジンにより駆動される発
電機による発電をその界磁電流とカットすることにより
中止し(ステップ110)、触媒暖機のため点火の遅角
を禁止するフラグXINRETを”1”とし(ステップ
108)、このフラグにより図示しない処理により点火
遅角を禁止する。
If it is within the above predetermined range at step 101, the routine proceeds to step 102, where it is judged whether the elapsed time after start is less than a predetermined time KCAST (for example, 180 seconds), and K
If it is less than CAST, the process proceeds to the next step, and the engine speed (hereinafter referred to as NE) is a predetermined value KNE0 (for example, T
It is determined whether the speed has dropped below 1000 rpm when WST = −5 ° C. (step 107). N in step 107
If E falls, the power generation by the generator driven by the engine is stopped by cutting it with the field current (step 110), and the flag XINRET for prohibiting the ignition retard is set to "1" for catalyst warm-up. "(Step 108), and the ignition retard is prohibited by a process not shown by this flag.

【0018】次に実行されるステップでは、燃料噴射量
及び吸入空気量の増量を決定するものであり、まず、N
EがKNE0よりも低い所定値であるKNE1(例え
ば、TWST=−5℃の時900rpm)未満になった
か判定し(ステップ103)、NEがKNE1未満の場
合、次のステップに進む。次に、ステップ103、10
4にてNEがKNE1未満でKNE1よりも低い所定値
KNE2(例えば、TWST=−5℃の時850rp
m)以上と判断された場合は、燃料噴射量の増量補正係
数KFUPをKFUP1(%)(例えば、TWST=−
5℃の時5%)、吸入空気量の増量補正係数KCUPを
KCUP1(%)(例えば、TWST=−5℃の時10
%)とし、それぞれ学習値として不揮発性メモリである
バックアップRAMにストアする。
The next step to be executed is to determine the increase of the fuel injection amount and the intake air amount. First, N
It is determined whether E is less than KNE1 which is a predetermined value lower than KNE0 (for example, 900 rpm when TWST = −5 ° C.) (step 103), and when NE is less than KNE1, the process proceeds to the next step. Next, steps 103 and 10
4, NE is less than KNE1 and is lower than KNE1 by a predetermined value KNE2 (for example, when TWST = −5 ° C., 850 rp).
m) or more, the fuel injection amount increase correction coefficient KFUP is set to KFUP1 (%) (for example, TWST =-
At 5 ° C., 5%), the intake air amount increase correction coefficient KCUP is set to KCUP1 (%) (for example, when TWST = −5 ° C., 10).
%), And stored as learning values in a backup RAM which is a non-volatile memory.

【0019】また、ステップ103、104にてNEが
KNE2未満と判断された場合は、燃料噴射量の増量補
正係数KFUPをKFUP2(%)(例えば、TWST
=−5℃の時10%)、吸入空気量の増量補正係数KC
UPをKCUP2(%)(例えば、TWST=−5℃の
時20%)とし、上記バックアップRAMにストアし、
本処理を終了する。
When it is determined in steps 103 and 104 that NE is less than KNE2, the fuel injection amount increase correction coefficient KFUP is set to KFUP2 (%) (eg, TWST).
= 10% at -5 ° C), increase correction coefficient KC of intake air amount
UP is set to KCUP2 (%) (for example, 20% when TWST = -5 ° C.) and stored in the backup RAM,
This process ends.

【0020】ステップ109、101、102、10
7、103にて各条件に該当しない場合はステップ11
1に進み内燃機関により駆動される発電機の発電を開始
し、本処理を抜ける。尚、上記エンジン回転数の所定
値、KNE0、KNE1、KNE2はそれぞれ始動時の
エンジン水温が高い程、小さくなるように設定されてお
り、前記燃料噴射量の増量は水温補正係数、始動後補正
係数、加速補正パルス等の係数をさらに補正することに
より実施し、前記吸入空気量の増量はアイドルスピード
コントロールバルブの開度を補正することにより実施す
る。
Steps 109, 101, 102, 10
If the conditions are not met in steps 7 and 103, step 11
The process proceeds to 1 to start the power generation of the generator driven by the internal combustion engine, and the process ends. The predetermined values of the engine speed, KNE0, KNE1, and KNE2, are set to be smaller as the engine water temperature at the time of starting is higher, and the increase in the fuel injection amount is the water temperature correction coefficient and the post-starting correction coefficient. The correction is performed by further correcting the coefficient such as the acceleration correction pulse, and the intake air amount is increased by correcting the opening degree of the idle speed control valve.

【0021】また、ステップ111はステップ110に
ともない実行されるが、ステップ110及び111は実
行しなくてもよい。次に、燃料噴射量、吸入空気量を時
間により減衰する処理をそれぞれ図3、4に示す。上述
の通り、図3はECU27により8ms毎に実行される
時間による燃料噴射量増量補正係数の減衰処理を示して
おり、まず、燃料噴射量の増量補正係数KFUPが0よ
り大であるか、判定し(ステップ201)、0以下の場
合、現在のKFUPi=0とし(ステップ203)、本
処理を終了する。
Although step 111 is executed along with step 110, steps 110 and 111 may not be executed. Next, processes for attenuating the fuel injection amount and the intake air amount with time are shown in FIGS. As described above, FIG. 3 shows the decay process of the fuel injection amount increase correction coefficient depending on the time executed by the ECU 27 every 8 ms. First, it is determined whether the fuel injection amount increase correction coefficient KFUP is greater than 0. If it is 0 or less (step 201), the current KFUPi = 0 is set (step 203), and this processing ends.

【0022】ステップ201にてKFUPが0より大の
場合、現在が空燃比フィードバック中であるか判定し
(ステップ202)、空燃比フィードバック中であれ
ば、増量補正係数を急速に減衰する減衰係数ΔKFUP
Lを、空燃比フィードバック中でなければ、増量補正係
数を緩やかに減衰する減衰係数ΔKFUPを選択し(ス
テップ204、205)、増量補正を減衰させる。
If KFUP is greater than 0 in step 201, it is determined whether or not air-fuel ratio feedback is currently being performed (step 202). If air-fuel ratio feedback is in progress, a damping coefficient ΔKFUP that rapidly attenuates the increase correction coefficient.
When L is not in the air-fuel ratio feedback, the damping coefficient ΔKFUP that gently attenuates the boost correction coefficient is selected (steps 204 and 205), and the boost correction is attenuated.

【0023】ここで、ΔKFUPLは図2で設定したK
FUPを例えば約5秒で0にする減衰係数で、ΔKFU
Pは図2で設定したKFUPを例えば約180秒で0に
する減衰係数である。尚、上記の180秒はエンジン始
動時の吸気マニホルド、シリンダ壁温は不安定であるこ
とから、燃料の壁面付着量がばらつき、空燃比リーンに
よる失火が発生しやすい時間であり、上述180秒はエ
ンジンにより異なるため、各エンジンにより変更しても
よい。。
Here, ΔKFUPL is K set in FIG.
An attenuation coefficient that makes FUP 0, for example, in about 5 seconds, ΔKFU
P is an attenuation coefficient that sets KFUP set in FIG. 2 to 0 in about 180 seconds, for example. Since the intake manifold and the cylinder wall temperature at engine startup are unstable, the above 180 seconds is a time period in which the amount of fuel adhering to the wall surface varies and misfiring due to lean air-fuel ratio is likely to occur. Since it differs depending on the engine, it may be changed depending on each engine. .

【0024】図4はECU27にて8ms毎に実行され
る時間による吸入空気量の減衰処理を示しており、ま
ず、吸入空気量の増量補正係数KCUPが0より大であ
るか判定し(ステップ301)、0以下の場合、現在の
KCUPi=0とし(ステップ303)、本処理を終了
する。ステップ301にてKCUPが0より大の場合、
増量補正係数を減衰させる係数ΔKCUPにより増量補
正を減衰し(ステップ302)、本処理を終了する。
FIG. 4 shows the intake air amount attenuation processing executed by the ECU 27 every 8 ms. First, it is judged whether the intake air amount increase correction coefficient KCUP is greater than 0 (step 301). ), And 0 or less, the current KCUPi is set to 0 (step 303), and this processing ends. If KCUP is greater than 0 in step 301,
The increase correction is attenuated by the coefficient ΔKCUP that attenuates the increase correction coefficient (step 302), and this processing ends.

【0025】ここで、ΔKFUPは図2で設定したKF
UPを例えば約180秒で0にする減衰係数である。図
2〜4にて設定された増量補正係数を使用してECU2
7にて8ms毎に実行される燃料噴射量の演算処理を図
5に示す。まず、ECU27は今回のNEが400rp
mより小さいか判定し(ステップ601)、NEが40
0rpmより小さい場合、ステップ602に移行する。
そして、ステップ602で前回のNEが400rpm以
上か判定し、400rpm未満ならば今回のNEが20
0rpm未満か否か判定する(ステップ603)。
Here, ΔKFUP is the KF set in FIG.
It is an attenuation coefficient that makes UP to 0 in about 180 seconds, for example. ECU2 using the increase correction coefficient set in FIGS.
FIG. 5 shows the calculation process of the fuel injection amount executed every 7 ms in 7. First, the ECU 27 has a NE of 400 rp
It is determined whether it is smaller than m (step 601), and NE is 40.
If it is smaller than 0 rpm, the process proceeds to step 602.
Then, in step 602, it is determined whether the previous NE is 400 rpm or more, and if it is less than 400 rpm, the current NE is 20.
It is determined whether it is less than 0 rpm (step 603).

【0026】ECU27はステップ602の処理後、あ
るいは、ステップ603で今回のNEが200rpm未
満(エンジン始動時)ならば、水温TWSTを検出し
(ステップ604)、水温TWSTに基づき始動噴射パ
ルスTSTA を算出する(ステップ605)。そして、ス
テップ606で始動噴射パルスTSTA に増量補正係数
(KFUP+1)を乗算し、有効噴射パルスTAUE とす
る。
The ECU 27 detects the water temperature TWST (step 604) after step 602 or if the current NE is less than 200 rpm (at engine start) in step 603, and calculates the start injection pulse TSTA based on the water temperature TWST. (Step 605). Then, in step 606, the starting injection pulse TSTA is multiplied by the increase correction coefficient (KFUP + 1) to obtain the effective injection pulse TAUE.

【0027】さらに、ECU27はバッテリ電圧BAT
を検出し(ステップ607)、そのバッテリ電圧BAT
に応じて無効噴射パルスTVを算出する(ステップ60
8)。そして、有効噴射パルスTAUE に無効噴射パルス
TVを加算して最終噴射パルスTAU(=TSTA +TAU
E )を算出する(ステップ609)。一方、ECU27
はステップ601で今回のNEが400rpm以上また
は、ステップ603で今回のNEが200rpm以上
(エンジン始動後)であると、図6のステップ610に
移行する。
Further, the ECU 27 controls the battery voltage BAT.
Is detected (step 607), and the battery voltage BAT is detected.
The invalid injection pulse TV is calculated according to (step 60)
8). Then, the final injection pulse TAU (= TSTA + TAU) is obtained by adding the invalid injection pulse TV to the effective injection pulse TAUE.
E) is calculated (step 609). On the other hand, the ECU 27
If the current NE is 400 rpm or more in step 601 or the current NE is 200 rpm or more in step 603 (after engine startup), the process proceeds to step 610 in FIG.

【0028】ECU27はNEと吸気圧PMを検出し
(ステップ610、611)、その結果に基づき、吸気
圧変化量DLPMを算出する(ステップ612)。ま
た、吸気温THAを検出する(ステップ613)。さら
に、ECU27は水温TWST、スロットル開度TA及
び排気ガス中の酸素濃度を検出し(ステップ614〜6
16)、NEと吸気圧PMから基本噴射パルスTP を算
出する(ステップ617)。そして、ECU27は水温
TWSTから水温補正係数FWLを算出し(ステップ61
8)、水温TWSTと始動後経過時間に応じて始動補正
係数FASE を算出する(ステップ619)。
The ECU 27 detects the NE and the intake pressure PM (steps 610 and 611), and calculates the intake pressure change amount DLPM based on the results (step 612). Further, the intake air temperature THA is detected (step 613). Further, the ECU 27 detects the water temperature TWST, the throttle opening TA, and the oxygen concentration in the exhaust gas (steps 614 to 6).
16), basic injection pulse TP is calculated from NE and intake pressure PM (step 617). Then, the ECU 27 calculates the water temperature correction coefficient FWL from the water temperature TWST (step 61).
8) The start correction coefficient FASE is calculated according to the water temperature TWST and the elapsed time after start (step 619).

【0029】さらに、ECU27は吸気温THAに応じ
て吸気温補正係数FTHA を算出し(ステップ620)、
スロットル開度TAとNEと吸気圧PMに応じて高負荷
補正係数FOTP を算出する(ステップ621)。次に、
排気ガス中の酸素濃度に応じて空燃比フィードバック補
正係数FA/F を算出し(ステップ622)、吸気圧変化
量DLPMに応じて加速補正パルスFMWを算出する(ス
テップ623)。そして、ECU27は数式1を用いて
有効噴射パルスTAUE 算出する(ステップ624)。
Further, the ECU 27 calculates an intake air temperature correction coefficient FTHA according to the intake air temperature THA (step 620),
A high load correction coefficient FOTP is calculated according to the throttle opening TA, NE and the intake pressure PM (step 621). next,
The air-fuel ratio feedback correction coefficient FA / F is calculated according to the oxygen concentration in the exhaust gas (step 622), and the acceleration correction pulse FMW is calculated according to the intake pressure change amount DLPM (step 623). Then, the ECU 27 calculates the effective injection pulse TAUE using Equation 1 (step 624).

【0030】[0030]

【数1】TAUE = TP ・FWL・FTHA ・(FASE +T
OTP )・(KFUP+1)・FA/F +FMW ECU27はステップ624でこのように有効噴射パル
スTAUE を算出した後は、図5のステップ607に移行
する。そして、前述したように、ステップ607、60
8でバッテリ電圧BATに応じて無効噴射パルスTVを
算出し、ステップ609で有効噴射パルスTAUE に無効
噴射パルスTVを加算して最終噴射パルスTAUを算出
する。
[Equation 1] TAUE = TP · FWL · FTHA · (FASE + T
OTP) · (KFUP + 1) · FA / F + FMW The ECU 27 calculates the effective injection pulse TAUE in this way in step 624, and then proceeds to step 607 in FIG. Then, as described above, steps 607 and 60
In step 8, the invalid injection pulse TV is calculated according to the battery voltage BAT, and in step 609, the invalid injection pulse TV is added to the effective injection pulse TAUE to calculate the final injection pulse TAU.

【0031】図2〜6に示す処理を実行した時のタイミ
ングチャートを図7に示す。NEが一度ピークを過ぎ、
第一の所定値KNE0以下となった時、点火遅角禁止フ
ラグXINRETが1に設定され、点火遅角が禁止され
る。そして、第二の所定値KNE1以下となった時、燃
料噴射量及び吸入空気量の増量補正係数がそれぞれ、K
FUP1、KCUP1に設定され、第三の所定値KNE
2以下となった時、燃料噴射量及び吸入空気量の増量補
正係数がそれぞれ、KFUP2、KCUP2に設定され
る。その後、燃料噴射量及び吸入空気量の増量補正係数
はそれぞれ、減衰係数に従い減衰する。
FIG. 7 shows a timing chart when the processes shown in FIGS. 2 to 6 are executed. NE passed the peak once,
When it becomes less than the first predetermined value KNE0, the ignition retard angle prohibition flag XINRET is set to 1, and the ignition retard angle is prohibited. Then, when the second predetermined value KNE1 or less is reached, the fuel injection amount and the intake air amount increase correction coefficient are respectively K
Set to FUP1 and KCUP1 and set to a third predetermined value KNE
When it becomes 2 or less, the increase correction coefficients of the fuel injection amount and the intake air amount are set to KFUP2 and KCUP2, respectively. Then, the fuel injection amount and the intake air amount increase correction coefficient are attenuated according to the attenuation coefficient.

【0032】図8は本発明の第二実施例を示す処理で、
図2の第一実施例に代わり8ms毎に実行され、始動時
間、始動後の回転上昇割合、始動後回転速度の最大回転
速度の最大値の3つのパラメータから始動時噴射量の過
不足によるエンジン始動性を判定する処理である。ステ
ップ701は図2のステップ101と同一処理で、TW
STが所定範囲内であるKTW1(例えば−5℃)から
KTW2(例えば+50℃)の間であるか判定し、上記
所定範囲外であれば、本処理を抜ける。
FIG. 8 shows the process of the second embodiment of the present invention.
The engine is executed every 8 ms instead of the first embodiment of FIG. This is a process for determining startability. Step 701 is the same process as step 101 of FIG.
It is determined whether ST is between KTW1 (for example, −5 ° C.) and KTW2 (for example, + 50 ° C.) that are within the predetermined range. If the ST is outside the predetermined range, the present process is exited.

【0033】ステップ701にて所定範囲内であれば、
スタータ駆動に伴いスタータオン信号が入力されて、N
Eが400rpm以上となる始動時間CSTAを図示し
ない別の割込みルーチンで計測し、その計測したCST
Aが所定時間KCSTA(例えば1秒)を越えているか
判定し(ステップ702)、CSTAがKCSTA以下
の場合、本処理を終了する。
If it is within the predetermined range in step 701,
When the starter on signal is input with the starter drive,
The start time CSTA when E becomes 400 rpm or more is measured by another interrupt routine not shown, and the measured CST
It is determined whether A exceeds a predetermined time KCSTA (for example, 1 second) (step 702), and if CSTA is less than or equal to KCSTA, this processing ends.

【0034】ステップ702にてCSTAがKCSTA
を越えていた場合、図示しない他の処理にて、エンジン
始動後のエンジン回転数上昇率ΔNEにより(エンジン
始動性)を判定し、エンジン始動不良と判定した場合
は”0”に、良好なエンジン始動性が得られた時に”
1”に設定されるフラグXFDNELを判定する(ステ
ップ703)。
In step 702, CSTA is KCSTA.
If it is over, the other engine (not shown) determines the (engine startability) by the engine speed increase rate ΔNE after the engine is started. When startability is obtained ”
The flag XFDNEL set to 1 "is determined (step 703).

【0035】ステップ703にてXFDNEL≠0つま
り良好なエンジン始動性が得られたと判定された場合
は、本処理を抜け、XFDNEL=0つまり良好なエン
ジン始動性が得られなかったと判定された場合は、次の
ステップ704に進む。ステップ704ではエンジンの
発生トルクが充分であるかを検出するため、始動直後の
回転速度の最大値NEPが所定値KNEP以上であるか
を判定する。この結果、NEPがKNEP以上でエンジ
ントルクは充分であり、良好なエンジン始動が得られた
と判定された時は本処理を抜け、NEPがKNEP未満
の時は次のステップ705に進む。
If it is determined in step 703 that XFDNEL ≠ 0, that is, good engine startability is obtained, this processing is skipped, and if it is determined that XFDNEL = 0, that is, good engine startability is not obtained. , And proceeds to the next step 704. In step 704, in order to detect whether the engine generated torque is sufficient, it is determined whether the maximum value NEP of the rotation speed immediately after the start is equal to or higher than the predetermined value KNEP. As a result, when NEP is equal to or higher than KNEP, the engine torque is sufficient, and when it is determined that a good engine start is obtained, the process is exited, and when NEP is less than KNEP, the process proceeds to the next step 705.

【0036】ステップ705では始動時の燃料噴射量の
増量補正係数KFUPをKFUP3(%)(例えば10
%)に増量し、バックアップRAMにストアする。前記
スタータ信号、エンジン回転数のタイミングチャートを
図9に示す。図10は本発明の第三実施例を示すもの
で、図2または図8に示す第一実施例、第二実施例の処
理に代わりECU27にて8ms毎に実行される処理
で、燃料交換を検知して始動時噴射量を変更し、空燃比
をリッチ及びリーンに切り替え、各気筒の爆発工程に要
する時間を比較することで最適な始動時噴射量を求める
ものである。
In step 705, the increase correction coefficient KFUP of the fuel injection amount at the time of starting is set to KFUP3 (%) (for example, 10
%) And store in backup RAM. FIG. 9 shows a timing chart of the starter signal and the engine speed. FIG. 10 shows a third embodiment of the present invention. Instead of the processing of the first embodiment and the second embodiment shown in FIG. 2 or FIG. The optimum injection amount at startup is obtained by detecting and changing the injection amount at startup, switching the air-fuel ratio to rich and lean, and comparing the time required for the explosion process of each cylinder.

【0037】まず、燃料タンク内のフューエルゲージま
たはフューエルフィラースイッチ等により新規燃料が給
油されたか判定し(ステップ901)、給油されていな
ければ、本処理を終了する。ステップ901にて新規燃
料が給油されたと判定さた場合はエンジン水温により決
定される始動時噴射パルスを気筒毎に異なる燃料噴射量
補正係数により補正し、その補正された気筒毎の始動時
燃料噴射量に基づき噴射タイミングに燃料を噴射する
(ステップ902)。その後、図示しない割込み処理に
より気筒毎に最初の爆発工程の所要時間を検出、記憶す
る(ステップ903)。
First, it is judged by the fuel gauge or the fuel filler switch in the fuel tank whether or not new fuel is supplied (step 901). If not, the present process is terminated. If it is determined in step 901 that new fuel has been refueled, the start-time injection pulse determined by the engine water temperature is corrected by the fuel injection amount correction coefficient that is different for each cylinder, and the corrected start-time fuel injection for each cylinder is performed. Fuel is injected at the injection timing based on the amount (step 902). After that, the time required for the first explosion process for each cylinder is detected and stored by interrupt processing (not shown) (step 903).

【0038】次に、ステップ903にて求めた爆発工程
の所要時間のうち、最短の所要時間が得られた燃料噴射
量補正係数を最適値とし、補正係数値KFUPとしてバ
ックアップRAMに記憶しする。尚、本発明は上記した
実施例に限定されるものではなく、次のような変形また
は拡張が可能である。
Next, of the time required for the explosion process obtained in step 903, the fuel injection amount correction coefficient that gives the shortest time required is set as an optimum value and stored as a correction coefficient value KFUP in the backup RAM. The present invention is not limited to the above-described embodiment, but the following modifications or expansions are possible.

【0039】第一実施例において燃料噴射量及び吸入空
気量の補正係数を同時に設定しているが、前記補正係数
の設定は独立した別の処理で設定してもよく、燃料噴射
量及び吸入空気量の補正係数の内どちらか一方のみ実行
してもよい。また、第三実施例では最適と判定された補
正係数を以後、全気筒で使用することにしたが、気筒毎
においてインジェクタ洩れ量が異なることが考えられる
場合、気筒毎に本実施例を数回の始動で実行し、気筒毎
の最適値を求めるようにしてもよい。
In the first embodiment, the correction coefficients for the fuel injection amount and the intake air amount are set at the same time, but the correction coefficient may be set by another independent process. Only one of the correction coefficients for quantity may be executed. Further, in the third embodiment, the correction coefficient determined to be optimal is used in all the cylinders thereafter. However, when it is considered that the injector leakage amount is different in each cylinder, this embodiment is performed several times in each cylinder. Alternatively, the optimum value may be obtained for each cylinder.

【0040】また、吸入空気量についても第二、三実施
例に記載している燃料噴射量の補正係数を設定する処理
と同一の処理を適用してもよい。また、各実施例は8m
s周期にて実行されているが、各システムにマッチした
周期にて実行してもよく、上記実施例の組み合わせによ
り補正してもよい。また、実施例中の減衰係数による減
衰とは増量補正係数、減量補正係数がそれぞれ基本値に
復帰することを示す。
Further, the same process as the process for setting the correction coefficient of the fuel injection amount described in the second and third embodiments may be applied to the intake air amount. In addition, each example is 8 m
Although it is executed in the s cycle, it may be executed in a cycle that matches each system, or may be corrected by a combination of the above embodiments. Further, the attenuation by the attenuation coefficient in the embodiment means that the increase correction coefficient and the decrease correction coefficient are respectively returned to the basic values.

【0041】さらに、各実施例において処理の実行条件
の制限または補正係数を設定する所定値または減衰係数
は上記値に限定されるものではなく、各システムに応じ
て変更してもよい。
Further, in each embodiment, the predetermined value or the attenuation coefficient for setting the restriction of the execution condition of the processing or the correction coefficient is not limited to the above value, and may be changed according to each system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した電子制御燃料噴射装置の一実
施例の構成図である。
FIG. 1 is a configuration diagram of an embodiment of an electronically controlled fuel injection device to which the present invention has been applied.

【図2】第一実施例における燃料噴射量及び吸入空気量
の補正係数を設定する処理流れ図である。
FIG. 2 is a process flow chart for setting correction coefficients for a fuel injection amount and an intake air amount in the first embodiment.

【図3】本発明により設定された燃料噴射量の補正係数
を減衰させる処理流れ図である。
FIG. 3 is a process flow chart of attenuating a correction coefficient of a fuel injection amount set according to the present invention.

【図4】本発明により設定された吸入空気量の補正係数
を減衰させる処理流れ図である。
FIG. 4 is a process flow chart for attenuating a correction coefficient for the intake air amount set according to the present invention.

【図5】燃料噴射量を演算する処理流れ図である。FIG. 5 is a process flow chart for calculating a fuel injection amount.

【図6】図5に関連する燃料噴射量を演算する処理流れ
図である。
6 is a process flow chart for calculating a fuel injection amount related to FIG.

【図7】第一実施例の動作を示すタイミングチャートで
ある。
FIG. 7 is a timing chart showing the operation of the first embodiment.

【図8】第二実施例における燃料噴射量の補正係数を設
定する処理流れ図である。
FIG. 8 is a process flow chart for setting a correction coefficient for the fuel injection amount in the second embodiment.

【図9】第二実施例の動作を示すタイミングチャートで
ある。
FIG. 9 is a timing chart showing the operation of the second embodiment.

【図10】第三実施例における燃料噴射量の補正係数を
設定する処理流れ図である。
FIG. 10 is a process flow chart for setting a correction coefficient for the fuel injection amount in the third embodiment.

【符号の説明】[Explanation of symbols]

6 インジェクタ 17 スロットルバルブ 23 水温センサ 26 酸素濃度センサ 27 電子制御燃料噴射装置 6 injectors 17 Throttle valve 23 Water temperature sensor 26 Oxygen concentration sensor 27 Electronically controlled fuel injection device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F02P 5/15 H02P 9/08 B H02P 9/08 F02P 5/15 E (56)参考文献 特開 平8−14080(JP,A) 特開 平4−109044(JP,A) 特開 昭62−121844(JP,A) 実開 平2−3035(JP,U) 実開 昭52−4925(JP,U) (58)調査した分野(Int.Cl.7,DB名) F02D 41/00 - 41/40 F02D 43/00 F02N 17/08 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI F02P 5/15 H02P 9/08 B H02P 9/08 F02P 5/15 E (56) Reference JP-A-8-14080 (JP, A) Japanese Patent Laid-Open No. 4-109044 (JP, A) Japanese Patent Laid-Open No. 62-121844 (JP, A) Actual Opening 2-3035 (JP, U) Actual Opening Sho 52-4925 (JP, U) (58) Survey Fields (Int.Cl. 7 , DB name) F02D 41/00-41/40 F02D 43/00 F02N 17/08

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内燃機関の燃料噴射量を空燃比フィード
バック制御する空燃比フィードバック制御手段と、 内燃機関の最適始動状態を検出する始動状態検出手段
と、 この始動状態検出手段により検出された始動状態により
燃料噴射量の補正係数を演算する補正係数演算手段と、 この補正係数を減衰させる減衰手段とを備え、 前記始動状態検出手段は内燃機関始動から内燃機関が所
定回転速度以上となる時間を計測する始動時間計測手段
と、内燃機関始動直後の最初の最大回転速度を検出する
最大回転速度検出手段と、内燃機関が前記所定回転速度
以上となってから始動直後の最初の最大回転速度に達す
るまでの回転速度変化率を演算する回転速度変化率演算
手段と、機関始動後の所定時間内において、前記最大回
転速度後の最低回転速度を検出する最低回転速度検出手
段の少なくとも1つの手段を含む内燃機関の最適でない
始動を検出する始動性検出手段とを含み、 前記補正係数演算手段は前記始動性検出手段により最適
でない始動を検出すると燃料噴射量を増量する方向に前
記補正係数を設定する手段を含む電子制御燃料噴射装
置。
1. An air-fuel ratio feedback control means for performing an air-fuel ratio feedback control of a fuel injection amount of an internal combustion engine, a starting state detecting means for detecting an optimum starting state of the internal combustion engine, and a starting state detected by the starting state detecting means. A correction coefficient calculating means for calculating a correction coefficient of the fuel injection amount by means of and a damping means for attenuating the correction coefficient are provided, and the starting state detecting means measures the time during which the internal combustion engine reaches a predetermined rotational speed or more after the internal combustion engine is started. Starting time measuring means, maximum rotation speed detecting means for detecting the first maximum rotation speed immediately after the start of the internal combustion engine, and until the internal combustion engine reaches the first maximum rotation speed immediately after the start up from the predetermined rotation speed or more. a rotational speed variation rate calculating means for calculating a rotational speed variation rate, within a predetermined time after engine start, a minimum rotational speed after the maximum rotational speed And a startability detecting means for detecting a non-optimal starting of the internal combustion engine including at least one of the minimum rotation speed detecting means for outputting the fuel when the non-optimal starting is detected by the startability detecting means. An electronically controlled fuel injection device including means for setting the correction coefficient in the direction of increasing the injection amount.
【請求項2】2. 前記補正係数演算手段による燃料噴射量Fuel injection amount by the correction coefficient calculation means
を増量する方向への補正係数の設定時に、吸入空気量のWhen setting the correction coefficient in the direction of increasing
増加と点火時期の遅角禁止と内燃機関により駆動されるIncreased and retarded ignition timing prohibited and driven by internal combustion engine
発電機の発電停止または発電量減少との少なくとも1つAt least one of stopping the power generation of the generator or reducing the amount of power generation
を実行する出力向上手段を含む請求項1に記載の電子制The electronic control according to claim 1, further comprising output improving means for executing
御燃料噴射装置。Your fuel injector.
【請求項3】 内燃機関の燃料噴射量を空燃比フィード
バック制御する空燃比フィードバック制御手段と、 内燃機関の最適始動状態を検出する始動状態検出手段
と、 この始動状態検出手段により検出された始動状態により
燃料噴射量の補正係数を演算する補正係数演算手段と、 この補正係数を減衰させる減衰手段とを備え、 前記始動状態検出手段は内燃機関の気筒毎に燃料噴射量
の補正係数を設定し、内燃機関始動中の気筒毎の所定工
程が終了する時間を計測し、計測された最短時間から始
動性を判定する最適始動状態判定手段を備え、 前記補正係数設定手段は、前記気筒毎の所定工程が終了
する時間のうち、該時間が最短である気筒の燃料噴射量
の補正係数を、前記始動状態により演算される補正係数
として設定する手段を含む電子制御燃料噴射装置。
3. An air-fuel ratio feedback control means for performing air-fuel ratio feedback control of a fuel injection amount of the internal combustion engine, a starting state detecting means for detecting an optimum starting state of the internal combustion engine, and a starting state detected by the starting state detecting means. A correction coefficient calculation means for calculating a correction coefficient of the fuel injection amount by means of: and a damping means for attenuating the correction coefficient, wherein the starting state detection means sets the correction coefficient of the fuel injection amount for each cylinder of the internal combustion engine, The internal combustion engine is equipped with an optimum starting state determining means for measuring the time when a predetermined process is completed for each cylinder and determining startability from the measured shortest time, and the correction coefficient setting means is a predetermined process for each cylinder. Ends
Fuel injection amount of the cylinder whose time is shortest
Correction coefficient calculated by the above-mentioned starting state
Controllable fuel injection device including means for setting.
【請求項4】 前記所定工程は爆発工程であることを特
徴とする請求項に記載の電子制御燃料噴射装置。
4. The electronically controlled fuel injection device according to claim 3 , wherein the predetermined process is an explosion process.
【請求項5】 前記補正係数演算手段による修正された
補正係数を所定回数毎に不揮発性メモリに記憶し、学習
する手段を含む請求項1〜4のうち1つに記載の電子制
御燃料噴射装置。
Wherein said correction coefficient correction factors that have been modified by the computing means and stored in the nonvolatile memory every predetermined number of times, the electronic control fuel injection device according to one of claims 1 to 4 including means for learning .
【請求項6】 内燃機関始動から内燃機関が所定回転数
以上となる時間を計測すること、または、内燃機関始動
直後の最初の最大回転速度を検出すること、または、内
燃機関が前記所定回転速度以上となってから始動直後の
最初の最大回転速度に達するまでの回転速度変化率を演
算すること、または、機関始動後の所定時間内におい
て、前記最大回転速度後の最低回転速度を検出すること
の少なくとも1つにより内燃機関の始動不良を検出し、
燃料噴射量を増量すると共に、吸入空気量の増加と点火
時期の遅角禁止と内燃機関により駆動される発電機の発
電量の停止または発電量減少との少なくとも1つを実行
する内燃機関の制御方法。
6. An internal combustion engine measures the time from when the internal combustion engine starts up to a predetermined rotational speed or more, or detects the first maximum rotational speed immediately after the internal combustion engine starts up, or the internal combustion engine outputs the predetermined rotational speed. Calculate the rotational speed change rate from when the above reaches the first maximum rotational speed immediately after the engine is started , or within a predetermined time after the engine is started.
And detecting a starting failure of the internal combustion engine by at least one of detecting the minimum rotation speed after the maximum rotation speed,
Control of internal combustion engine for increasing fuel injection amount and at least one of increasing intake air amount, prohibiting ignition timing retard, and stopping or reducing power generation amount of a generator driven by the internal combustion engine Method.
JP31363094A 1994-12-16 1994-12-16 Electronic control fuel injection device Expired - Fee Related JP3498392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31363094A JP3498392B2 (en) 1994-12-16 1994-12-16 Electronic control fuel injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31363094A JP3498392B2 (en) 1994-12-16 1994-12-16 Electronic control fuel injection device

Publications (2)

Publication Number Publication Date
JPH08170557A JPH08170557A (en) 1996-07-02
JP3498392B2 true JP3498392B2 (en) 2004-02-16

Family

ID=18043639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31363094A Expired - Fee Related JP3498392B2 (en) 1994-12-16 1994-12-16 Electronic control fuel injection device

Country Status (1)

Country Link
JP (1) JP3498392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448360B2 (en) 2005-09-07 2008-11-11 Denso Corporation Controller of internal combustion engine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6505594B1 (en) * 1999-08-23 2003-01-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine and method of controlling internal combustion engine
JP2002130014A (en) 2000-10-18 2002-05-09 Denso Corp Fuel supply quantity controller for internal combustion engine
JP4371027B2 (en) * 2004-09-29 2009-11-25 日産自動車株式会社 Engine air-fuel ratio control device
JP4371028B2 (en) * 2004-09-29 2009-11-25 日産自動車株式会社 Engine air-fuel ratio control device
JP2006097513A (en) * 2004-09-29 2006-04-13 Nissan Motor Co Ltd Air-fuel ratio control device of engine
JP4816264B2 (en) * 2006-06-06 2011-11-16 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP4808583B2 (en) * 2006-10-17 2011-11-02 三菱自動車工業株式会社 VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP5012583B2 (en) * 2008-03-06 2012-08-29 トヨタ自動車株式会社 Internal combustion engine and fuel supply control device for internal combustion engine
JP2010007523A (en) * 2008-06-25 2010-01-14 Fuji Heavy Ind Ltd Air-fuel ratio control device for engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982519A (en) * 1975-05-27 1976-09-28 Ford Motor Company Electronic-fuel-injection-system enrichment circuit for use during engine cranking
JPS62121844A (en) * 1985-11-21 1987-06-03 Toyota Motor Corp Controller for air-fuel ratio of internal combustion engine
JP2551378Y2 (en) * 1988-06-17 1997-10-22 株式会社ユニシアジェックス Electronically controlled fuel injection device for internal combustion engine
JPH04109044A (en) * 1990-08-24 1992-04-10 Mazda Motor Corp Fuel control device for engine
JPH0814080A (en) * 1994-06-24 1996-01-16 Nissan Motor Co Ltd Fuel injection volume control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448360B2 (en) 2005-09-07 2008-11-11 Denso Corporation Controller of internal combustion engine

Also Published As

Publication number Publication date
JPH08170557A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
US7661403B2 (en) Start controller for internal combustion engine
JPH09158774A (en) Fuel property detecting device of internal combustion engine
JP3498392B2 (en) Electronic control fuel injection device
JPS6338537B2 (en)
US6598588B2 (en) Controlling of ignition timing of an internal combustion engine
JP3859733B2 (en) Fuel injection control device for internal combustion engine
JPH06330788A (en) Fuel injection control device for multicylinder internal combustion engine
JP3494516B2 (en) Fuel property detection device for internal combustion engine
JP3413965B2 (en) Fuel injection control device for internal combustion engine
JP3533989B2 (en) Fuel injection control device for in-cylinder injection spark ignition internal combustion engine
JP3152024B2 (en) Fuel injection control device for starting internal combustion engine
JPH06317228A (en) Fuel supply device for internal combustion engine
JP2000291467A (en) Controller for internal combustion engine
JP2712429B2 (en) Control device for internal combustion engine
JPH11270386A (en) Fuel injection control device of internal combustion engine
US6705288B2 (en) Starting control apparatus for internal combustion engine
JP2551378Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP6153342B2 (en) Control device for internal combustion engine
JPH06185387A (en) Fuel injection controller for internal combustion engine
JP4258113B2 (en) Misfire detection device for internal combustion engine
JP4147932B2 (en) Engine ignition timing control device
JPH05312068A (en) Starting time fuel injection controller
JPS63106340A (en) Starting fuel injection quantity control method for internal combustion engine
JPH0510492B2 (en)
JPS6013945A (en) Method of increasing fuel after starting of electronically controlled fuel injection type engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees