TWI261362B - Fabrication of schottky barrier diode - Google Patents

Fabrication of schottky barrier diode Download PDF

Info

Publication number
TWI261362B
TWI261362B TW94138616A TW94138616A TWI261362B TW I261362 B TWI261362 B TW I261362B TW 94138616 A TW94138616 A TW 94138616A TW 94138616 A TW94138616 A TW 94138616A TW I261362 B TWI261362 B TW I261362B
Authority
TW
Taiwan
Prior art keywords
xiaoji
wafer
diode according
polycrystalline
ring
Prior art date
Application number
TW94138616A
Other languages
Chinese (zh)
Other versions
TW200719484A (en
Inventor
Bor-Wen Liou
Original Assignee
Wu Feng Inst Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wu Feng Inst Of Technology filed Critical Wu Feng Inst Of Technology
Priority to TW94138616A priority Critical patent/TWI261362B/en
Application granted granted Critical
Publication of TWI261362B publication Critical patent/TWI261362B/en
Publication of TW200719484A publication Critical patent/TW200719484A/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

In this invention, Schottky barrier diode (SBD) with sophisticated edge termination (ET) structures including p<+>-poly-Si guard ring, p<+>-poly-Si floating ring, and RESURF-type lateral super-junction (LSJ) is disclosed. The ET schemes employed in this work are aimed at reducing the surface electric field to have a breakdown voltage approaching the ideal value. Also, it was found that the device could suppress the leakage current, and adjust the forward voltage drop and Schottky barrier height (SBH). Thus, the disclosed device will be successfully applicable to the field of the microwave and high power devices.

Description

1261362 九、發明說明: 【發明所屬之技術領域】 : 本發明是有關於一種蕭基二極體(Schottky Barrier1261362 IX. Description of the invention: [Technical field to which the invention pertains]: The present invention relates to a Schottky Barrier (Schottky Barrier)

Diode; SBD)及其製造方法,且特別是有關於一種高崩潰 電壓、低漏電流密度及低順向壓降之高功率蕭基二極體及 其製造方法。 0 【先前技術】 現今的電子工業中,整流二極體為一般電子產品必備 之基本主動元件,由金屬與半導體所構成的蕭基二極體即 為其中之-,蕭基二極體具有多數載子傳導的高速反應及 低切入電壓等特性,使其較P型與η型半導體所構成之整 抓一極體更適用於需快速切換的高頻電路。習知的蕭基二 極體中接面的一側使用金、銀或鉑等金屬,另一側使用摻 入雜質㈣(通常形成η型半導體),#沒有外加偏壓時,η • 型半導體區所含自由電子的親和力能量較金屬區所含自 由電子的功函數為小(即能階較低),此能量大小(即能階高 低)的差異稱為蕭基位障(Sch〇ttky;sbh)。 施加順向偏堡於蕭基二極體時,n型半導體區的自由 , 1子可獲得足夠的能量而躍遷至較高_,因而能跨越接 、進入盃屬區’形成順向電流。施加逆向偏壓時,因金屬 、、’未3有V數載子’故無電荷儲存,逆向恢復時間也極為 短暫。因此應用市場對高功率蕭基二極體的需求為高崩潰 電C低讀及低順向偏壓,其中崩潰電壓係取決 1261362 於石夕基材的電阻值與厚度,矽基材的厚度越厚,電阻值越 π ’朋潰電壓也相對增加。然而,電阻值越高表示操作所 品的順向偏壓也越大,相對地降低順向電流之驅動能力。 另外,於大面積蕭基二極體的金屬與半導體的接面終端外 圍處’因接面之屈曲效應(Junction Curvature Effect)而導致 電力線易集中於元件邊緣處,使整體之崩潰電壓降低。而 蕭基位障的高度決定了漏電流與順向偏壓的大小,較高的 位障高度形成較低的漏電流,而較低的位障高度形成較低 的順向偏壓,故需在兩者間取得適當的平衡。 面對現今高頻通訊器材與高功率元件的廣泛應用,蕭 基二極體的各項物理特性亟待進一步的提升,以上問題均 可由本發明所改善。 【發明内容】 為解決上述和其他的問題,並且達到本發明所主張的 技術優點,本發明提供一種蕭基二極體及其製造方法,以 改善習知蕭基二極體之性能。因此本發明的目的就是在提 供種蕭基二極體,擁有更佳的各項物理特性,以運用於 需求日增之各類高頻與高功率裝置。 本發明的另一目的是在提供一種蕭基二極體之製造 方法,同時結合側超接面結構、複晶矽護環與複晶矽浮接 裱等結構以提升蕭基二極體之各項物理特性。根據本發明 ^上述目的,提出一種高功率蕭基二極體,具備高崩潰電 壓、低漏電流密度及低順向偏壓等物理特性。依照本發明 1261362 一較佳實施例,此蕭基二極體主要包含磊晶矽基材、場氧 化石夕層、降低表面電場(REduce SURface Field ; RESURF1) 型的側超接面(Lateral Super Junction ; LSJ)結構、複晶石夕 護環(Poly-Si Guard Ring)、複晶矽浮接環(poly_Si F1〇ating Ring)及蕭基接觸(Schottky Contact)之金屬電極。 根據本發明之目的,提出一種蕭基二極體之製造方 法,以調整元件尺寸、摻雜濃度與離子佈植深度等各參數 進行性能改善以獲得較佳之崩潰電壓及漏電流特性。依照 本發明一較佳實施例,此方法主要包含控制複晶矽護環的 寬度可調變順向電壓值與蕭基位障之高度等物理特性;增 加複晶矽護環的深度以加強崩潰電壓值;控制複晶矽浮接 環的寬度可提升崩潰電壓與降低漏電流密度。 【實施方式】 參照第1圖,其繪示依照本發明一較佳實施例的一種 蕭基二極體100之剖面圖,此蕭基二極體1〇〇係由磊晶矽 曰曰片110、側超接面結構丨20、場氧化石夕層13〇、複晶矽護 環140、複晶矽浮接環15〇、第一金屬電極16〇與第二金 屬電極Π0組合而成。 猫日日夕日日片110可使用結晶方位(Wafer 〇rientati〇n)為 &lt;100&gt;或&lt;111&gt;,且摻雜型態為η的矽晶圓,此 磊晶矽晶片11〇由兩部分組成,第一部份為高濃度11型(11+) 摻雜的基材111’第二部分為位於基材⑴上之低濃度η 型(η_)摻雜的磊晶層112。 1261362 降低表面電場型的側超接面結構120為二敦化删離子 (BF/)佈植入磊晶矽晶片11〇上的氧化層後,所擴散形成 之低?辰度p型(p )摻雜區域與低濃度n型(η·)摻雜區域相間 隔(p7rT)的接面結構。 場氧化矽層130為形成於磊晶矽晶片11〇上方約5〇〇 至600奈米(nm)之氧化矽層。 • i晶石夕晶片110内所形成之高濃度P型(P+)摻雜區域與 複晶矽護環140與複晶矽浮接環15〇為硼離子擴散至 型磊晶矽摻雜區域的接面結構(p+/n)。 第一金屬電極160與第二金屬電極17〇係使用電子搶 (E-gUn)或蒸鍍機(EvaP〇rati〇n)於蕭基二極體1〇〇之蕭基接 觸陽極與歐姆接觸陰極兩端所形成之金屬電極。土Diode; SBD) and its manufacturing method, and in particular, a high power Schottky diode with high breakdown voltage, low leakage current density and low forward voltage drop and a method of manufacturing the same. 0 [Prior Art] In today's electronics industry, the rectifying diode is the basic active component necessary for general electronic products. The Xiaoji diode consisting of metal and semiconductor is one of them. The Xiaoji diode has a majority. The high-speed reaction of the carrier conduction and the low cut-in voltage make it more suitable for the high-frequency circuit that needs to be switched quickly than the P-type and n-type semiconductor. In the conventional Schottky diode, one side of the junction is made of metal such as gold, silver or platinum, the other side is doped with impurities (four) (usually forming an n-type semiconductor), # when there is no external bias, the η • type semiconductor The affinity energy of the free electrons contained in the region is smaller than the work function of the free electrons contained in the metal region (ie, the energy level is lower), and the difference in the magnitude of the energy (ie, the energy level) is called the Xiaoji barrier (Sch〇ttky; Sbh). When the forward-directed Fortune is applied to the Xiaoji diode, the freedom of the n-type semiconductor region, 1 can obtain sufficient energy to transition to a higher _, and thus can form a forward current across the junction region. When a reverse bias is applied, there is no charge storage due to metal, 'no 3 V-number carriers', and the reverse recovery time is extremely short. Therefore, the demand for high-power Schottky diodes in the application market is high-crash electric C low reading and low forward bias, wherein the breakdown voltage depends on the resistance value and thickness of the 12671362 substrate, and the thickness of the crucible substrate is Thick, the more the resistance value is π 'the voltage of the neck is relatively increased. However, the higher the resistance value, the greater the forward bias of the operating product, and the lower the forward current driving capability. In addition, in the outer periphery of the junction of the metal and the semiconductor of the large-area Schottky diode, the power line is easily concentrated at the edge of the element due to the Junction Curvature Effect, and the overall breakdown voltage is lowered. The height of the Xiaoji barrier determines the magnitude of the leakage current and the forward bias. The higher barrier height forms a lower leakage current, while the lower barrier height forms a lower forward bias. Get the right balance between the two. In view of the wide application of today's high-frequency communication equipment and high-power components, the physical characteristics of the Xiaoji diode are in need of further improvement, and the above problems can be improved by the present invention. SUMMARY OF THE INVENTION To solve the above and other problems and to attain the technical advantages of the present invention, the present invention provides a Schottky diode and a method of manufacturing the same to improve the performance of a conventional Schottky diode. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a Schottky diode having better physical properties for use in a variety of high frequency and high power devices requiring increased demand. Another object of the present invention is to provide a method for manufacturing a Xiaoji diode, which is combined with a side super junction structure, a polycrystalline ruthenium ring and a polycrystalline floating raft to enhance the base of the Xiaoji diode. Item physical characteristics. According to the above object of the present invention, a high power Schottky diode having physical characteristics such as high breakdown voltage, low leakage current density, and low forward bias is proposed. According to a preferred embodiment of the invention 1261362, the Schottky diode mainly comprises an epitaxial germanium substrate, a field oxide layer, and a surface super-contact surface of the REDuce SURface Field (RESURF1) type (Lateral Super Junction). ; LSJ) structure, Poly-Si Guard Ring, poly_Si F1〇ating Ring and Schottky Contact metal electrodes. In accordance with the purpose of the present invention, a method for manufacturing a Schottky diode is proposed to adjust the performance of various parameters such as component size, doping concentration, and ion implantation depth to obtain better breakdown voltage and leakage current characteristics. According to a preferred embodiment of the present invention, the method mainly comprises controlling physical properties such as a width-adjustable forward voltage value of the polysilicon guard ring and a height of the Xiaoji barrier; increasing the depth of the polysilicon guard ring to enhance the collapse Voltage value; controlling the width of the polysilicon floating ring can increase the breakdown voltage and reduce the leakage current density. [Embodiment] Referring to Figure 1, there is shown a cross-sectional view of a Schottky diode 100 according to a preferred embodiment of the present invention. The Schottky diode 1 is made of an epitaxial wafer 110. The side super-junction structure 丨20, the field oxide oxide layer 13〇, the polycrystalline germanium guard ring 140, the polysilicon floating ring 15〇, the first metal electrode 16〇 and the second metal electrode Π0 are combined. The cat day and day sun piece 110 can use a wafer wafer having a crystal orientation (Wafer 〇rientati〇n) of &lt;100&gt; or &lt;111&gt;, and having a doped type of η, the epitaxial wafer 11 is composed of two Partially composed, the first portion is a high concentration 11 type (11+) doped substrate 111'. The second portion is a low concentration n-type (n-) doped epitaxial layer 112 on the substrate (1). 1261362 The surface super-contact structure 120 of the reduced surface electric field type is a low-density p-type (p) doped diffusion formed by the diffusion of the TB/) cloth into the oxide layer on the epitaxial germanium wafer 11 The junction structure of the impurity region spaced apart from the low concentration n-type (η·) doped region (p7rT). The field yttrium oxide layer 130 is a ruthenium oxide layer formed on the epitaxial germanium wafer 11 about 5 Å to 600 nm (nm). • The high-concentration P-type (P+) doped region formed in the i-Crystal wafer 110 and the polycrystalline germanium guard ring 140 and the polysilicon floating ring 15 are diffused into the epitaxial germanium doped region. Junction structure (p+/n). The first metal electrode 160 and the second metal electrode 17 are electrically connected (E-gUn) or vapor-deposited (EvaP〇rati〇n) to the Xiaoji contact anode and the ohmic contact cathode of the Xiaoji diode 1〇〇. a metal electrode formed at both ends. earth

姆接觸之材料,其材料係選自 合所組成之群組。 兩1興矽晶片形成歐 、錯合金及其各種組 其材料係選自於由鋁、The material in contact with the material is selected from the group consisting of. Two 1 矽 矽 wafers form ohmic, faulty alloys and various groups thereof. The materials are selected from aluminum,

下方為分別為擴散形成之複晶矽浮 1261362 接環150及複晶矽護環140的一部份,複晶矽護環i4〇的 - 寬度141增加時,崩潰電壓會稍微提高,漏電流值降低, - 蕭基位障之南度增加,進而使蕭基位障有可調變之適當範 圍;而複晶矽護環140的深度142增加時,崩潰電壓也會 隨之提高。第一金屬電極160與蟲晶石夕晶片11〇的接面^ 含複晶石夕護;裒140部份外,其餘即為蕭基接面區域 (SCh〇ttkyRegion)19〇,可定義第一金屬電極ΐό〇為蕭基二 • 極體1〇0的陽極,而位於磊晶矽晶片110下方的第二金屬 電極170則定義為蕭基二極體1〇〇的陰極。 參照第3圖,其緣示依照本發明一較佳實施例的一種 部分元件俯視圖。由此圖可知側超接面結構12〇、複晶矽 護環140與複晶矽浮接環15〇的分佈狀況,在此實施例中 寬度m與寬度151均約為30微米(//叫,而寬度141的 範圍則約為18到50微米。側超接面結構12〇為低濃度1) 型摻雜區域與低濃度η型摻雜區域相間隔之接面結構,與 • 複晶矽護環和複晶矽浮接環間隔寬度分別為4微米,而複 晶矽護環140的内徑則約為5〇0至1000微米。 上述之第1圖至第3圖為本發明結構組成之較佳實施 - 例而本發明製造方法之較佳實施例則請參照下列第4圖 至弟9圖之敎述。 參照第4圖,其繪示依照本發明一較佳實施例的一種 蕭基_極體製造方法之第一步驟。磊晶矽晶片由高濃 度η型摻雜的基材211,和位於基材211上之低濃度η型 摻雜的磊晶層212所組成,將磊晶矽晶片21〇清洗完畢 1261362 置於高溫爐内以濕氧方法形成一層厚度約為⑽夺米 的—乳化矽(Sl〇2)薄膜22〇 ”、 定義出-窗口,接著於窗…専膜上用倣影、钕刻技術 植如,其佈植能量約為 離子之離子佈 11 1丁黾子伏特(keV),備插制旦 約為ίο個離子/平方公分(i〇ns/cm2)。 月里 參照第5圖,:i:絡+ /六B;a i n 4 /、、,日不依知本發明一較佳實施例的一種 蕭基二極體製造方法之第-牛 丄从 德/石…, 驟。經由佈植二氟化硼離子Below is a part of the polycrystalline halo 126132 ring 150 and the polysilicon guard ring 140 respectively formed by diffusion. When the width 141 of the polysilicon guard ring i4〇 is increased, the breakdown voltage is slightly increased, and the leakage current value is increased. Lowering - The increase in the south of the Xiaoji barrier, which in turn makes the Xiaoji barrier difficult to adjust; and the depth 142 of the polysilicon retaining ring 140 increases, the breakdown voltage also increases. The junction of the first metal electrode 160 and the smectite wafer 11 ^ contains the polycrystalline stone shi shi; the 裒 140 portion, the rest is the Xiaoji junction area (SCh〇ttkyRegion) 19 〇, can define the first The metal electrode ΐό〇 is the anode of the Xiaoji 2 pole body, and the second metal electrode 170 located below the epitaxial wafer 110 is defined as the cathode of the Xiaoji diode 1 。. Referring to Figure 3, there is shown a top plan view of a partial component in accordance with a preferred embodiment of the present invention. The figure shows the distribution of the side super-junction structure 12〇, the polycrystalline 矽 guard ring 140 and the polysilicon floating ring 15〇. In this embodiment, the width m and the width 151 are both about 30 micrometers (//called The width 141 ranges from about 18 to 50 microns. The side super junction structure 12 is a junction structure with a low concentration 1) doped region and a low concentration n-doped region, and a polysilicon The guard ring and the polysilicon floating ring are spaced apart by a width of 4 microns, and the polysilicon retaining ring 140 has an inner diameter of about 5 to 1000 microns. 1 to 3 are a preferred embodiment of the structural composition of the present invention - and a preferred embodiment of the manufacturing method of the present invention will be described with reference to the following Figures 4 through 9. Referring to Figure 4, there is shown a first step of a method of manufacturing a Xiaoji_polar body in accordance with a preferred embodiment of the present invention. The epitaxial wafer is composed of a high concentration n-type doped substrate 211 and a low concentration n-doped epitaxial layer 212 on the substrate 211, and the epitaxial germanium wafer 21 is cleaned and placed at a high temperature. In the furnace, a layer of emulsified sputum (Sl〇2) film 22〇 with a thickness of about 10 mils is formed by wet oxygen method, and a window is defined, followed by embossing and engraving on the ruthenium film. The planting energy is about the ion ion cloth 11 1 黾 黾 volt (keV), and the preparation is about ίο ions/cm 2 (i〇ns/cm 2 ). In the month, refer to Figure 5, i:络+ /六六;ain 4 /,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Boron ion

:;播編層:12中擴散形成降低表面電場型的侧超接面 、、、σ冓222。再,月洗晶片過後,置於高溫爐内以約1050。。及 濕氧方㈣成-層厚度約為400至5〇〇奈米之場氧化石夕層 230,再於場氧化矽層23〇 上用斂衫、蝕刻技術定義出後 、”驟中,形成場氧切、複晶料環與複 結構所需的形狀與窗口。 務衣寺 參照第6圖,其緣示依照本發明一較佳實施例的一種 :基二極體製造方法之第三步驟。清洗晶片後,以低壓化:; broadcast layer: 12 to diffuse to form a surface super-contact surface, σ 222. Then, after the wafer is washed monthly, it is placed in a high temperature furnace at about 1050. . And the wet oxygen side (four) into a layer thickness of about 400 to 5 nanometers of the field of oxidized stone layer 230, and then on the field of yttrium oxide layer 23 用 with a blouse, etching technology defined after, "in the middle, formed Shape and window required for field oxygen cutting, compound ring and complex structure. Fig. 6 is a diagram showing a third step of the method for manufacturing a base diode according to a preferred embodiment of the present invention. After cleaning the wafer, it is reduced in pressure

Pressure Chemical Vap〇r Deposition; l—pcvd)形成厚度約為·奈米之複晶♦薄膜謂,接著於 m晶石夕薄m 24G中央處進行二氟化硼離子之離子佈植 241’其佈植能量約為1〇〇仟電子伏特,佈植劑量約為⑺丨6 個離子/平方公分。 #參照第7圖,其緣示依照本發明一較佳實施例的一種 蕭基二極體製造方法之第时驟。將晶片置於高溫爐中, 以溫度約為95(TC、時間則為20至8〇分鐘,使蝴離子由 複晶石夕薄膜240擴散至蟲晶層212中,分別形成高濃度p 1261362 型換雜區域與η型蠢晶砍播雜區域之接面結構的複晶碎護 環242與複晶矽浮接環243。 參照第8圖,其繪示依照本發明一較佳實施例的一種 蕭基二極體製造方法之第五步驟。以微影和蝕刻技術將不 必要的場氧化矽層230與複晶矽薄膜240去除,以定義出 此蕭基二極體200之主動層250與由複晶矽薄膜所形成之 複晶矽護環244與複晶矽浮接環245,而複晶矽護環244 的寬度246增加至一定範圍(請參照表一)内,將使蕭基二 極體200的崩潰電壓稍微提高,漏電流值降低,蕭基位障 之高度增加,進而使蕭基位障有可調變之範圍。 表一 複晶砍護環 之寬度 (β m) 順向電流密度 為1 A/cm2時 之順向偏壓 ⑺ 蕭基位障 (eV) 逆向偏壓為 100V時之漏 電流密度 (&quot;A/cm2) 崩潰電壓 (V) 18 0.45 0.764 3.5 155.1 26 0.48 0.771 3.3 156.4 34 0.52 0.776 3.2 158.5 50 0.56 0.784 2.9 160.7 參照第9圖,其繪示依照本發明一較佳實施例的一種 蕭基二極體製造方法之第六步驟。將晶片清洗乾淨後,以 電子槍或蒸鍍機在主動層250鍍上一金屬層後,以微影、 蝕刻技術定義出第一金屬電極260為蕭基二極體200之陽 極,另外,於磊晶矽晶片210底部鍍上第二金屬電極270 定義為蕭基二極體200之陰極,第一金屬電極160為足以 11 1261362 形成蕭基位障之材料,其材料係選自於由金、鋁、白金、 白金石夕化物及其各種組合所組成之群組;而第二金屬電極 170為可與矽晶片形成歐姆接觸之材料,其材料係選自於 由銘、合金及其各種組合所組成之群組。 參照第10圖,其繪示依照本發明一較佳實施例的一 種蕭基一極體之電流-電壓特性曲線圖,此樣品經由95〇。〇 退火,20分鐘的高溫爐管反應時間,製程參數為複晶矽護 環寬度為50//m,側超接面寬度為30 ,複晶矽浮接環 寬度為30//m,發現(a)資料線在順向偏壓的特性中,其理 想因子(Ideal Factor)約為1·〇7,同時存在有7個對數刻度 之工作範圍;而(b)資料線則為此樣品崩潰電壓之特性,發 現樣ασ之朋潰電壓約為1 60伏特,此時反向飽和電流約為 5.6微安培/平方公分(# A/cm2)。 另外’當改變複晶石夕護環寬度時,將對蕭基二極體之 反向朋潰電壓與漏電流密度有所影響,也就是說當寬度愈 寬時,崩潰電壓會稍微提高,同時反向漏電流也變小,蕭 基位障高度也增加,進而可調變蕭基位障之高度。 參照第11圖,其繪示依照本發明一較佳實施例的一種 蕭基二極體物理特性對爐管反應時間(Drive-in Time)之曲 線圖’由圖中可知崩潰電壓隨爐管反應時間增長而變大, 複晶石夕護環的接面深度亦同樣加深。(a)資料線係繪示崩潰 電壓與爐管反應時間之關係,而(b)資料線係繪示複晶石夕護 環接面深度對爐管反應時間之關係,換言之,複晶矽護環 接面深度愈深,崩潰電壓則有愈高之趨勢,對可接受之爐 12 I261362 管反應時間而言,是一項不錯之製程選擇。 參照第12圖,其緣示依照本發明_較佳實施例的一 種蕭基二極體崩潰„值的統計圖形,其為取Μ組樣品 所測得之平均值,由圖中可知樣品的崩潰電絲大約集令 於150至160伏特之間,有—定程度之製程可靠度。Pressure Chemical Vap〇r Deposition; l-pcvd) forms a polycrystalline film with a thickness of about nanometer, and then carries out the ion implantation of arsenic difluoride ion at the center of m-small m 24G. The planting energy is about 1 〇〇仟 electron volt, and the implantation dose is about (7) 丨 6 ions / cm ^ 2 . Reference is made to Fig. 7, which illustrates a first step of a method for fabricating a Xiaoji diode according to a preferred embodiment of the present invention. The wafer is placed in a high-temperature furnace at a temperature of about 95 (TC, time is 20 to 8 minutes, and the butterfly ions are diffused from the polycrystalline quartz film 240 into the insect layer 212 to form a high concentration p 1261362 type. The polycrystalline shredded ring 242 and the polycrystalline floating ring 243 of the junction structure of the modified region and the n-type doped crystal cut-and-seeded region. Referring to FIG. 8, a first embodiment of the present invention is illustrated in accordance with a preferred embodiment of the present invention. The fifth step of the Xiaoji diode manufacturing method is to remove the unnecessary field oxide layer 230 and the germanium film 240 by lithography and etching techniques to define the active layer 250 of the Schottky diode 200 and The polycrystalline germanium guard ring 244 and the polycrystalline germanium floating ring 245 formed by the polycrystalline germanium film are increased, and the width 246 of the polycrystalline germanium guard ring 244 is increased to a certain range (refer to Table 1), which will make Xiao Jiji The breakdown voltage of the polar body 200 is slightly increased, the leakage current value is lowered, and the height of the Xiaoji barrier is increased, so that the Xiaoji barrier has a variable range. Table 1 The width of the polycrystalline chopping ring (β m) Forward bias at current density of 1 A/cm2 (7) Xiaoji barrier (eV) leakage current with reverse bias of 100V Degree (&quot;A/cm2) Crash voltage (V) 18 0.45 0.764 3.5 155.1 26 0.48 0.771 3.3 156.4 34 0.52 0.776 3.2 158.5 50 0.56 0.784 2.9 160.7 Referring to Figure 9, a preferred embodiment of the present invention is illustrated in accordance with a preferred embodiment of the present invention. A sixth step of the manufacturing method of the Xiaoji diode. After the wafer is cleaned, after the metal layer is plated on the active layer 250 by an electron gun or an evaporation machine, the first metal electrode 260 is defined by lithography and etching technology. The anode of the Xiaoji diode 200 is additionally plated with a second metal electrode 270 defined on the bottom of the epitaxial wafer 210 as the cathode of the Xiaoji diode 200, and the first metal electrode 160 is sufficient for the formation of the Xiaoji barrier of 11 1261362. The material is selected from the group consisting of gold, aluminum, platinum, platinum platinum and various combinations thereof; and the second metal electrode 170 is a material capable of forming an ohmic contact with the germanium wafer, the material of which is A group selected from the group consisting of: an alloy, and various combinations thereof. Referring to FIG. 10, a current-voltage characteristic diagram of a Schottky diode according to a preferred embodiment of the present invention is shown. Via 95〇. Annealing, 20-minute high temperature furnace tube reaction time, the process parameters are the width of the polycrystalline ring guard ring is 50 / / m, the side super junction width is 30, the width of the polycrystalline floating ring is 30 / / m, found (a In the characteristics of the forward bias voltage, the ideal factor (Ideal Factor) is about 1·〇7, and there are 7 logarithmic scale working ranges; and (b) the data line is the breakdown voltage of the sample. Characteristic, it is found that the voltage of the sample ασ is about 1 60 volts, and the reverse saturation current is about 5.6 μA/cm 2 (# A/cm 2 ). In addition, when the width of the polycrystalline stone guard ring is changed, the reverse voltage and leakage current density of the Xiaoji diode will be affected, that is, when the width is wider, the breakdown voltage will be slightly increased, and at the same time The reverse leakage current is also reduced, and the height of the Xiaoji barrier is also increased, which in turn can be adjusted to the height of the Xiaoji barrier. Referring to FIG. 11 , there is shown a graph of the physical characteristics of the Schottky diode to the drive-in time of the furnace tube according to a preferred embodiment of the present invention. As the time grows, it becomes larger, and the joint depth of the Fusedite Guard Ring is also deepened. (a) The data line shows the relationship between the breakdown voltage and the reaction time of the tube, and (b) the data line shows the relationship between the depth of the joint of the polycrystalline stone and the reaction time of the tube, in other words, the complex crystal The deeper the junction surface, the higher the breakdown voltage, which is a good process choice for the acceptable furnace 12 I261362 tube reaction time. Referring to Figure 12, there is shown a statistical graph of the value of the Xiaoji diode collapse according to the preferred embodiment of the present invention, which is the average value measured by taking the sample of the group, and the collapse of the sample is known from the figure. The wire is approximately between 150 and 160 volts, with a certain degree of process reliability.

因此結合複晶石夕護環,複晶石夕浮接環與降低表面電場 ,之側超接面結構的蕭基二極體,不僅可防止元件之邊緣 朋/貝’更可抑制元件表面之漏電流。 藉由上述之結構組成及實施例,本發明所製作的蕭基 二極體與習用相較具有下列較佳之物理特性··高崩潰電壓 值大於160伏特(V);順向電流大於!安培/平方公分 (A/cm2);漏電流密度小於5·6微安培/平方公分A/cm2”順 向電流為1安培/平方公分時,順向偏壓的範圍可為〇·45到 〇·56伏特;而蕭基位障之高度可調範圍為〇·764到〇·784電 子伏特(eV)。Therefore, in combination with the polycrystalline stone yoke ring, the double crystal bridge ring and the reduced surface electric field, the Xiaoji diode of the side super-contact structure not only prevents the edge of the component from being able to suppress the surface of the component. Leakage current. With the above structural composition and examples, the Xiaoji diode produced by the present invention has the following preferred physical characteristics as compared with the conventional ones. The high breakdown voltage is greater than 160 volts (V); the forward current is greater than! Ampere / square centimeter (A / cm2); leakage current density is less than 5.6 microamperes / square centimeter A / cm2" When the forward current is 1 amp / cm ^ 2, the forward bias can range from 〇 · 45 to 〇 · 56 volts; and the height of the Xiaoji barrier is adjustable from 764·764 to 784·784 eV.

雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖係繪示依照本發明一較佳實施例的一種蕭基二 13 1261362 極體之剖面圖。 示依照本發明一較佳實施例的一種降低表 局部立體分解圖。 示依照本發明另一較佳實施例的一種部分 弟4圖係格 極體製i 、&quot;依照本發明另一較佳實施例的一種蕭基 ° 、以方法之第一階段示意圖。Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A section of a polar body of the Xiaoji II 13 1261362 example. A partial exploded perspective view of a reduced watch in accordance with a preferred embodiment of the present invention. A schematic diagram of a first stage of a method according to another preferred embodiment of the present invention is shown in accordance with another preferred embodiment of the present invention.

第5圖係!會+ , 不依妝本發明另一較佳實施例的一種蕭基 二極體製造方沐4 μ 土 去之弟二階段示意圖。 β人、、曰示依知本發明另一較佳實施例的一種 二極體製造方法之第三階段示意圖。 肅基 第7圖係繪示依照本發明另一較佳實施例的一種蕭基 二極體製造方法之第四階段示意圖。 &quot; 第8圖係繪示依照本發明另一較佳實施例的一種蕭基 二極體製造方法之第五階段示意圖。Figure 5 is! Will +, not according to another preferred embodiment of the present invention, a Xiaoji diode manufacturing square Mu 4 μ soil to the second phase of the schematic diagram. A third stage schematic diagram of a method of fabricating a diode according to another preferred embodiment of the present invention is shown. 7 is a schematic diagram showing a fourth stage of a method for manufacturing a Xiaoji diode according to another preferred embodiment of the present invention. &lt; Fig. 8 is a view showing a fifth stage of a method for manufacturing a Xiaoji diode according to another preferred embodiment of the present invention.

弟2圖係|會 面電場型結構之 第3圖係聲 兀件俯視圖。 第9圖係繪示依照本發明另一較佳實施例的一種蕭基 二極體製造方法之第六階段示意圖。 第10圖係繪示依照本發明另一較佳實施例的一種對 蕭基一極體分別施加順向偏壓((a)資料線所繪示)與逆向偏 壓((b)資料線所繪示)時,電流密度之特性曲線圖。 第11圖係繪示依照本發明另一較佳實施例的一種蕭 基二極體的崩潰電壓((a)資料線所繪示),複晶矽護環接面 深度((b)資料線所緣示)分別與爐管反應時間之關係圖。 第12圖係繪示依照本發明另一較佳實施例的一種蕭 1261362 基二極體崩潰電壓值之比例分佈圖 【主要元件符號說明】Brother 2 picture system|Meeting electric field type structure Fig. 3 is a top view of the sound element. Figure 9 is a schematic view showing the sixth stage of a method for manufacturing a Xiaoji diode according to another preferred embodiment of the present invention. FIG. 10 is a diagram showing a forward bias ((a) data line) and a reverse bias ((b) data line respectively applied to a Xiaoji body according to another preferred embodiment of the present invention. When plotted), the characteristic curve of current density. Figure 11 is a diagram showing the breakdown voltage of a Xiaoji diode according to another preferred embodiment of the present invention ((a) data line), the depth of the junction of the polysilicon ring ((b) data line Diagram of the relationship between the reaction time and the furnace tube. Figure 12 is a diagram showing the proportional distribution of the breakdown voltage of the Xiao 1261362 base diode according to another preferred embodiment of the present invention.

100 :蕭基二極體 110 : 111 :基材 112 : 120 :側超接面結構 121 : 130 :場氧化矽層 140 : 141 :寬度 142 : 15 0 .複晶砍浮接ί哀 151 : 160 :第一金屬電極 170 : 180 :複晶矽層 190 : 200 :蕭基二極體 210 : 211 :基材 212 : 220 :二氧化矽薄膜 221 : 222 :側超接面結構 230 : 240 :複晶矽薄膜 241 : 242 :複晶矽護環 243 : 244 :複晶矽護環 245 : 246 :寬度 250 : 260 :第一金屬電極 270 : 蠢晶砍晶片 蠢晶層 寬度 複晶矽護環 深度 寬度 第二金屬電極 蕭基接面區域 蟲晶碎晶片 蠢晶層 離子佈植 場氧化石夕層 離子佈植 複晶砍浮接壞 複晶碎浮接壞 主動層 弟二金屬電極 15100: Xiaoji diode 110: 111: substrate 112: 120: side super junction structure 121: 130: field oxide layer 140: 141: width 142: 15 0. polycrystalline chopping float 151: 160 : first metal electrode 170 : 180 : polycrystalline germanium layer 190 : 200 : Xiaoji diode 210 : 211 : substrate 212 : 220 : ruthenium dioxide film 221 : 222 : side super junction structure 230 : 240 : complex Crystal film 241 : 242 : Polycrystalline ring 243 : 244 : Polycrystalline ring 245 : 246 : Width 250 : 260 : First metal electrode 270 : Stupid crystal cut wafer width Crystallized 矽 矽 depth Width second metal electrode Xiaoji junction area insect crystal broken wafer stray layer ion cloth plant field oxidized stone layer ion cloth planting compound crystal chopping floating bad compound crystal broken floating connection active layer brother two metal electrode 15

Claims (1)

1261362 十、申請專利範圍: ' 丨.一種蕭基二極體,包含: # 一磊晶矽晶片,為特定結晶定位之一矽晶圓; 一側超接面結構,形成於一場氧化石夕層下; 一複晶矽護環,由一複晶矽層與佈植於其中之硼離子 形成於該降低表面電場型的側超接面結構内側; 一複晶矽浮接環,由該複晶矽層與佈植於其中之該些 • 硼離子形成於該降低表面電場型的側超接面結構外側 複數個電極’該些電極可為該蕭基二極體蕭基接觸之 一陽極與歐姆接觸之一陰極。 2·如申請專利範圍第丨項所述之蕭基二極體,其中該 蠢晶石夕晶片之特定結晶方位為&lt;1〇〇&gt;。 • 3·如申請專利範圍第1項所述之蕭基二極體,其中該 蠢晶石夕晶片之特定結晶方位為&lt;111&gt;。 • 4·如申請專利範圍第1項所述之蕭基二極體,其中該 麻日日夕日日片由向濃度n型摻雜之一基材,和位於該基材上 低濃度η型摻雜之一磊晶層所組成。 5.如申睛專利範圍第1項所述之蕭基二極體,其中該 側超接面結構為低濃度Ρ型摻雜與低濃度η型摻雜相間隔 16 1261362 之結構,與該複晶矽護環和該複晶矽浮接環間隔寬度分別 ' 為4微米。 6·如申請專利範圍第1項所述之蕭基二極體,其中該 複晶矽護環之一寬度增加,使該蕭基二極體之崩潰電壓提 高,漏電流值降低,蕭基位障增加。 • 7·如申請專利範圍第1項所述之蕭基二極體,其中該 複晶矽護環之一深度增加,使該蕭基二極體之崩潰電壓提 8·如申請專利範圍第1項所述之蕭基二極體,其中該 複晶石夕護環的内徑約為500至1〇〇〇微米。 9·如申請專利範圍第1項所述之蕭基二極體,其中該 # ^金屬電極為可形成蕭基位障之材料,該些材料係選自於 由金、鋁、白金、白金矽化物及其各種組合所組成之群組。 1G·如中請專利範圍帛1項所述之蕭基二極體,其中該 :至屬電極為可與矽晶片形成歐姆接觸之材料,該些材料 係選自於由鋁、鋁合金及其各種組合所組成之群組。 11·-種蕭基二極體之製造方法,該製造方法包含: ⑷在猫晶矽晶片上形成一二氧化矽薄膜,於該二氧 17 1261362 並於該窗口處進行一二氟化硼 化矽薄膜上定義出一窗口 離子之離子佈植; ^清洗該後,置於—高溫爐㈣成一場氧 =,再於該場氧切層定義出一場氧化石夕、一複晶石夕 產%與一複晶矽浮接環的形狀; (C)〉月洗5亥蟲晶梦晶片後,於兮揚备 ^ 段於該%虱化矽層上形成一複 晶石夕薄膜,於該複晶矽薄膜上 -A 7 /寻膜上進仃一一鼠化硼離子之離子1261362 X. Patent application scope: ' 丨. A Xiaoji diode, including: #一磊晶矽 wafer, one of the specific crystals for the positioning of the wafer; one side of the super junction structure, formed in a layer of oxidized stone a polycrystalline germanium retaining ring formed by a polycrystalline germanium layer and boron ions implanted therein on the side of the side surface super-junction structure of the reduced surface electric field; a polycrystalline floating ring, from which the polycrystalline crystal The ruthenium layer and the implanted therein are: • boron ions are formed on the outer surface of the reduced surface electric field type side super junction structure; the electrodes may be one of the anodes and ohms of the Schottky diode dipole contact Contact one of the cathodes. 2. The Schottky diode according to the scope of claim 2, wherein the specific crystal orientation of the stupid crystal wafer is &lt;1〇〇&gt;. 3. The Schottky diode according to claim 1, wherein the specific crystal orientation of the stray crystal wafer is &lt;111&gt;. • 4) The Xiaoji diode according to item 1 of the patent application scope, wherein the day of the day is made of a substrate having a concentration of n-type doping, and a low concentration of n-type dopant on the substrate One of the impurity layers of the epitaxial layer. 5. The Xiaoji diode according to claim 1, wherein the side super junction structure is a structure having a low concentration Ρ type doping and a low concentration η type doping interval 16 1261362, and the complex The spacing between the wafer guard ring and the polysilicon floating ring is '4 microns, respectively. 6. The Xiaoji diode according to claim 1, wherein the width of one of the polysilicon guard rings is increased, so that the breakdown voltage of the Xiaoji diode is increased, and the leakage current value is lowered. The barrier increased. • 7· The Xiaoji diode described in the first paragraph of the patent application, wherein one of the depths of the polycrystalline ring is increased, so that the breakdown voltage of the Xiaoji diode is increased. The Schottky diode of the above, wherein the polycrystalline spine has an inner diameter of about 500 to 1 micron. 9. The Xiaoji diode according to claim 1, wherein the #^ metal electrode is a material capable of forming a Xiaoji barrier, and the materials are selected from the group consisting of gold, aluminum, platinum, and platinum. a group of objects and their various combinations. 1G. The Xiaoji diode according to claim 1, wherein the genus electrode is a material capable of forming an ohmic contact with the ruthenium wafer, and the materials are selected from the group consisting of aluminum, aluminum alloy and A group of various combinations. 11. A method for producing a Schottky diode, the method comprising: (4) forming a hafnium oxide film on a cat wafer wafer, and performing a diboronation on the dioxygen 17 1261362 at the window An ion implantation of a window ion is defined on the ruthenium film; ^ After cleaning, it is placed in a high temperature furnace (4) to form an oxygen =, and then an oxygen oxide layer is defined in the oxygen cleavage layer, and a polycrystalline stone is produced. And a shape of a polycrystalline floating ring; (C)> after washing the 5th worm crystal wafer, forming a polycrystalline stone film on the % bismuth layer on the 兮 备 ^ On the crystal film, the -A 7 / film is etched into the ion of the boron ion 佈植; ⑷將該|晶_晶片置於―高溫爐内’使該些硼離子由 該複晶矽薄膜擴散至該蟲晶石夕晶片之一蟲晶層中,分別形 成該複晶矽護環與該複晶矽浮接環; ()將不必要之該場氧化矽層與該複晶矽薄膜去除,以 定^該f基二極體之-主動層、由該複㈣薄膜所形成 之複晶石夕護環與一複晶矽浮接環;以及 (f) π洗該磊晶矽晶片後,於該主動層鍍上一金屬層 後’於4金屬層定義出—第一金屬電極;3外,於該蟲晶 矽晶片底部鍍上一第二金屬電極。 12·如申晴專利範圍第1丨項所述之蕭基二極體之製造 、、卜 y '’,、中步驟(a)之該離子佈植之一佈植能量約為20仟 電子伏特。 13·如申請專利範圍第U項所述之蕭基二極體之製造 、’,、中步驟(a)之該離子佈植之一佈植劑量約為ίο11 18 1261362 個離子/平方公分。 14·&quot;請專職圍第η項所述之f基二極體之製造 法’其中步驟⑻之該高溫爐的環境設定約為溫度難 及以濕氧方法形成該場氧化矽層。 如申明專利範圍第1 J項所述之蕭基二 , 形成4稷日曰矽薄膜之方法為低壓化學汽相沈積 方法 16·如申料利範圍帛11項所述之蕭基二極體之製造 其中該複晶矽薄膜之厚度約為300奈米。 方、、17.如申請專利範圍第u項所述之蕭基二極體之製造(4) placing the crystal wafer in a "high temperature furnace" to diffuse the boron ions from the polycrystalline germanium film into one of the crystal layers of the crystallized wafer, respectively forming the double crystal a ring and the polysilicon floating ring; () removing the unnecessary field oxide layer and the polysilicon film to define the active layer of the f-based diode, formed by the complex (four) film a double-crystallized ring and a polysilicon floating ring; and (f) π after washing the epitaxial wafer, after the metal layer is plated on the active layer, the first metal is defined in the 4 metal layer Outside the electrode; 3, a second metal electrode is plated on the bottom of the wafer wafer. 12. The manufacture of the Xiaoji diode according to the first paragraph of the Shenqing patent scope, and the implantation energy of the ion implant of step (a) is about 20 angstrom electron volts. . 13. The manufacture of the Schottky diode according to the U of the U.S. patent application, the implantation of the ion implant in step (a) is about ίο11 18 1261362 ions/cm 2 . 14·&quot;Please refer to the manufacturing method of the f-based diode described in item n]. The environment setting of the high-temperature furnace in the step (8) is about temperature and it is difficult to form the field yttrium oxide layer by wet oxygen method. For example, according to the Xiaoji II described in Item 1 of the patent scope, the method of forming a 4稷 day film is a low-pressure chemical vapor deposition method. 16. The Xiaoji diode according to the scope of claim 11 The thickness of the polycrystalline germanium film was about 300 nm. Fang, 17. The manufacture of Xiaoji diode as described in the scope of patent application =法’其中步驟⑷之該離子佈植之—佈植能量約為⑽件 電子伏特。 、、18·如申請專利範圍第u項所述之蕭基二極體之製造 、,其中步驟(c)之該離子佈植之一佈植劑量約為1〇16 個離子/平方公分。 、、19·如申請專利範圍第n項所述之蕭基二極體之製造 方法,其中步驟(d)之該高溫爐溫度設定約為950°C。 19 1261362 20.如申請專利範圍第11項所述之蕭基二極體之製造 方法,其中該步驟(d)之該高溫爐加熱時間約為20至80分 鐘。 21.如申請專利範圍第11項所述之蕭基二極體之製造 方法,其中該步驟(e)之該複晶矽護環寬度約為18至50微 米0 22. 如申請專利範圍第11項所述之蕭基二極體之製造 方法,其中該第一金屬電極為該蕭基二極體蕭基接觸之一 陽極。 23. 如申請專利範圍第11項所述之蕭基二極體之製造 方法,其中該第二金屬電極為該蕭基二極體歐姆接觸之一 陰極。 20= Method 'where the ion implanted in step (4) - the implant energy is about (10) electron volts. 18. The manufacture of the Xiaoji diode according to the scope of claim 5, wherein one of the ion implantations of the step (c) is about 1 〇16 ions/cm 2 . 19. The method of manufacturing the Xiaoji diode according to item n of the patent application, wherein the temperature of the high temperature furnace in the step (d) is set to about 950 °C. The method of manufacturing the Schottky diode according to claim 11, wherein the high temperature furnace heating time of the step (d) is about 20 to 80 minutes. 21. The method of manufacturing a Schottky diode according to claim 11, wherein the polysilicon ring of the step (e) has a width of about 18 to 50 micrometers. The method for manufacturing a Schottky diode according to the invention, wherein the first metal electrode is an anode of the Schottky diode. 23. The method of manufacturing a Schottky diode according to claim 11, wherein the second metal electrode is a cathode of the Schottky diode ohmic contact. 20
TW94138616A 2005-11-03 2005-11-03 Fabrication of schottky barrier diode TWI261362B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94138616A TWI261362B (en) 2005-11-03 2005-11-03 Fabrication of schottky barrier diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94138616A TWI261362B (en) 2005-11-03 2005-11-03 Fabrication of schottky barrier diode

Publications (2)

Publication Number Publication Date
TWI261362B true TWI261362B (en) 2006-09-01
TW200719484A TW200719484A (en) 2007-05-16

Family

ID=37876162

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94138616A TWI261362B (en) 2005-11-03 2005-11-03 Fabrication of schottky barrier diode

Country Status (1)

Country Link
TW (1) TWI261362B (en)

Also Published As

Publication number Publication date
TW200719484A (en) 2007-05-16

Similar Documents

Publication Publication Date Title
JP6104575B2 (en) Semiconductor device
TWI376752B (en) Mos pn junction schottky diode and method for manufacturing the same
US9922838B2 (en) Selective, electrochemical etching of a semiconductor
JP2008529285A (en) Boron-doped diamond semiconductor
JP5537525B2 (en) Semiconductor device and manufacturing method of semiconductor device
US20070096167A1 (en) Trench IGBT with depletion stop layer
US20100032686A1 (en) Bipolar Semiconductor Device, Method for Producing the Same, and Method for Controlling Zener Voltage
TW200901462A (en) High efficiency rectifier
WO2019009021A1 (en) Schottky barrier diode
CN111490097A (en) Method for manufacturing power semiconductor device
CN111801804A (en) Trench MOS type Schottky diode and manufacturing method thereof
WO2002075817A2 (en) Improved schottky device
TWI260778B (en) A semiconductor device and method for manufacturing the same, a zener diode, a consumer electronic product
JPH0982663A (en) Manufacture of silicon carbide semiconductor device
CN116487445B (en) Silicon carbide power device with P+ gradual change ring surrounded by N-region and preparation method thereof
CN112951905A (en) SiC reverse conducting type insulated gate bipolar transistor device and manufacturing method thereof
CN110931571A (en) Vertical GaN-based groove junction barrier Schottky diode and manufacturing method thereof
TWI261362B (en) Fabrication of schottky barrier diode
JP2000049363A (en) Schottky diode and its manufacture
US20100327314A1 (en) Insulated Gate Bipolar Transistor (IGBT) Collector Formed with Ge/A1 and Production Method
JP4000927B2 (en) Semiconductor device and manufacturing method thereof
TWI433322B (en) Fabrication of double-metal schottky-barrier diode
JP5269015B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3635956B2 (en) Method for manufacturing silicon carbide Schottky barrier diode
US6787816B1 (en) Thyristor having one or more doped layers

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees