TWI229954B - III-V nitride compound LED flip-chip structure having multiple layers of reflective film and manufacturing method thereof - Google Patents

III-V nitride compound LED flip-chip structure having multiple layers of reflective film and manufacturing method thereof Download PDF

Info

Publication number
TWI229954B
TWI229954B TW93119053A TW93119053A TWI229954B TW I229954 B TWI229954 B TW I229954B TW 93119053 A TW93119053 A TW 93119053A TW 93119053 A TW93119053 A TW 93119053A TW I229954 B TWI229954 B TW I229954B
Authority
TW
Taiwan
Prior art keywords
layer
light
nitride
multilayer film
emitting diode
Prior art date
Application number
TW93119053A
Other languages
Chinese (zh)
Other versions
TW200601585A (en
Inventor
Chien-Jen Wang
Nai-Wen Chang
Wei-Jen Wang
Kuo-Chun Chiang
Chuan-Ming Chang
Original Assignee
Ledarts Opto Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ledarts Opto Corp filed Critical Ledarts Opto Corp
Priority to TW93119053A priority Critical patent/TWI229954B/en
Application granted granted Critical
Publication of TWI229954B publication Critical patent/TWI229954B/en
Publication of TW200601585A publication Critical patent/TW200601585A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

The present invention provides a III-V nitride compound LED flip-chip structure having multiple layers of reflective film and manufacturing method thereof, in which plural alternative layers of reflective film made mainly of different dielectric materials are added onto the front surface of the LED and epitaxy structure for forming a reflective layer, which reflects the light originally emitting toward the front side into the back side (transparent substrate) direction, thereby forming the flip-chip structure for capturing light from the transparent substrate on the back surface, so that the efficiency of capturing light is increased.

Description

1229954 玖、發明說明: 【發明所屬之技術領域】 本發明有關於發光二極體(Light Emitting Diode,LED) 結構與製法,尤其是關於一種具有多層膜光反射層的 瓜- V族氮化物發光二極體覆晶結構及其製造方法。 【先前技術】 m -V族氮化物半導體材料是以氮元素為主要V族元 素,材料系統包含,但不限於GaN、InGaN、AlGaN、A1N、 AlGalnN、InN 、GalnAsN及GalnPN等,適合製作頻譜範 圍由紫外到紅光波長的發光裝置,包括發光二極體及雷射 二極體。πι -v族氮化物發光二極體系列,自1 995年發表 以來,製造良率及效益隨著近年來技術不斷地改善,補足 了之刖發光二極體在可見光頻譜上缺少三原色中的藍色 缺憾,更進而衍生出混色白光發光二極體的問世,其中藍 光發光二極體更是現今白光發光二極體中不可或缺的重 要元件’不論是藍光加黃光的擬似白光,或是以紅光加綠 光及藍光所混合而成的白光,都是皿-V族氮化物發光二 極艘的重要應用’目前更是發展紫外光發光二極体。 第一 A和第一 B圖為習知技術的瓜-V族氮化物發光 二極體中P、N電極相對位置俯視圖,第一 a圖中?、{^間 距最遠,效果最佳,並已取得專利,而第一 B圖為業界常 1229954 用的方式。 第二圖為習用的皿-v族氮化物發光二極體的一個剖 面示意圖,一般Μ-V族氮化物發光二極體的結構為: 一基板11,並在基板11上成長氮化錁磊晶層,即光 發射層12,此光發射層12包含有緩衝層(buffer layer) 或凝核層(nucleation layer)121、N型氮化鎵下包覆層 (cladding layer) 122、氮化銦鎵(inGaN)多重量子井 (multiple quantum well) 123與P型氮化鎵上包覆層 1 2 4,蠢晶成長完成後,晶粒製作流程包含先以姓刻方法 至露出N型氮化鎵122,定義出主要發光元件區,再於發 光元件區上沉積形成一光透明導電膜(TCL,Transparent Conductive Layer) 13,且在經蝕刻露出的N型氮化鎵下 包覆層121上製作一歐姆接觸層14,接下來在透明導電膜 13與歐姆接觸層14分別成長N型電極15與P型電極16, 最後再成長一鈍化(passivation)保護層17。最後,再 將透明基板磨薄,切割以形成各別獨立的發光二極艘晶 粒。在封裝上,則分別打線在N型電極1 5及P型電極1 6 , 形成導電通路。 當光由光發射層12發射時,光並無一定方向傳播, 發光方向是四面八方,故只有一部分光經透明導電膜i 3 射出,即一般正面取光結構造成發光取出效率低,因發光 二極體的發光方向為四面八方,故傳統的]Π-V族氮化物 7 1229954 發光二極體約只能從表面釋出不到一半的光其中還有一 4伤會文到p型電極15的不透光而犧牲掉。因此,在發 光一極體的使用效益上,還有許多課題有向上提升的空 間其中在發光效率的改善上,亮度的提升也一直是重要 的發展方向,因為發光亮度直接影響到其應用層面。 【發明内容】 為解決上述習用發光二極體取光效率低的問題,因此 本發明的主要目的在提供一種有效提升發光二極體取光 效率之具有多層膜光反射層的發光二極體覆晶結構及其 製造方法。 本發明的另一目的在提供一種由背面透明基板取光 之具有多層膜光反射層的皿-V族氮化物發光二極體覆晶 結構及其製造方法。 本發明的又一目的在提供一種具有多層膜光反射層 的瓜-V族氮化物發光二極體覆晶結構及其製造方法,設 有以兩種不同折射率係數的材料交錯排列所形成的多層 膜光反射層’將原朝向透明導電膜之光反射到透吸基板 處。 本發明的另一目的在提供一種具有多層膜光反射層 的瓜-V族氮化物發光二極體覆晶結構及其製造方法,可 使用既有製程,無須花費另外研發新製程的成本。 1229954 為達本發明上述的目的,此具有多層膜光反射層的 皿- v族氮化物發光二極體覆晶結構,主要包含一透明基 板、一光發射層、一透明導電膜、一 P型電極、一 N型歐 姆接觸層、一 N型電極以及一多層膜光反射層。此覆晶結 構的最下層為透明基板,其上為光發射層,光發射層結構 由下而上為分別為一凝核層、一 N型氮化鎵下包覆層、一 氮化銦鎵多重量子井以及一 p型氮化鎵上包覆層,形成發 光二極體的光發射層並定義出主要元件區。 又’光發射層的上方為透明導電膜,而透明導電膜的 上方則是P型電極。至於N型歐姆接觸層則形成在N型氮 化鎵下包覆層的上方,而N型電極形成在N型歐姆接觸層 的上方。 根據本發明,利用一蝕刻方式,部份蝕刻光發射層 時,因蝕刻程度的不同,而有結構上的差異。第一種結構 是蝕刻至露出N型氮化鎵下包覆層,而多層膜光反射層是 以兩種不同折射率係數的材質連續交錯沉積及披覆在N型 氮化鎵下包覆層和透明導電膜的上方,與p型電極的一部 分接觸’並與N型電極和N型歐姆接觸層的一部分g觸。 至於第二種結構是把光發射層完全蝕刻光至露出透 明基板,而多層膜光反射層是以兩種不同折射率係數的材 質連續交錯沉積及彼覆在N型氮化鎵下包覆層、透明導電 膜和透明基板的上方,與P型電極的一部分接觸,並與n 1229954 型電極和N型歐姆接觸層的一部分接觸。 封裝時將晶粒翻轉,使p 合形成導電通路,形成覆 ’光取出方向為經由此透 最後,經切割分開的晶粒, 型及N型電極直接與封裝基板結 晶結構的發光二極體。此結構中 明基板而發射出外界。 此具有多層膜光反射層之M-V族氮化物發光二極體 覆晶結構之製造方法為:(a)利用—標準程序清洗一透明 基板,(b)在透明基板上磊晶成長光發射層,(幻利用一蝕 刻方式,部份蝕刻此光發射層,(d)製作一透明導電膜於 光發射層上,(e)製作N型歐姆金屬層在蝕刻露出的n型 氮化鎵下包覆層上,(f)最後,交錯沉積兩種不同介電係 數的介電材料,形成多層膜光反射層並做為保護層並分 別在透明導電膜與N型歐姆金屬層的上方製作p型及1^型 電極。 在步驟(C)中,部份蝕刻光發射層時,因蝕刻程度的 不同’而有兩種結果,第一種結果:蝕刻直到露出光發射 層之N型氮化鎵下包覆層。延續步驟,在步驟(f)中, 多層膜光反射層會彼覆在N型氮化鎵下包覆層和透明。導電 膜的上方。 第二種結果:把光發射層完全蝕刻光,直接露出透明 基板。延續步驟(c),在步驟(f)中,多層膜光反射層會 彼覆在透明導電膜、N型氮化鎵下包覆層、N型歐姆接觸 1229954 層及透明基板的上方。 一般先前技術之發光二極體的光取出方向為經過透 明導電膜,再經鈍化保護層而發射出外界的正向取光結 構,且只有該方向的光可以發射出外界,其餘的光皆會被 吸收或損耗,無法利用’造成發光亮度低。本發明之光取 出方向為經過透明基板發射,並於透明導電膜上設有一多 層膜光反射層,將原朝向透明導電膜之光反射到透明基板 處’再加上原先直接發射至透明基板處的光,所以能大幅 增加發光二極體的取光亮度。 以下配合圖式對本發明的實施方式做進一步的說明後 當能明瞭。 【實施方式】 第三圖說明本發明之第一實施例的剖面結構。以下詳 細說明此剖面結構。 如第三圖所示,此結構的最下層為一透明基板21,此 基板21為製造m-v族氮化物發光二極體之磊晶層之一承 載體,同時基板使磊晶層容易成長並減少晶格缺陷、故基 板最佳材質為本身為一相同發光材料,如N型氮化鎵基 板,但是,大尺寸且可應用於製作瓜-v族氮化物發光二 極體基板之氮化鎵基板製造相當不容易,因此類基板容易 產生缺陷,而一般選擇基板之條件須考慮晶體結構、晶格 11 1229954 常數、熱傳導率、熱膨脹係數及熱穩定性,因此一般常用 之材質為藍寶石(sapphire,Al2〇3)、ZnO與SiC等。且本 發明其光發射方向為經由基板而發射出外界,故必需選用 可透光良好之材質做為基板,而一般可透光且又合適當做 氮化鎵蠢晶層之材質為藍寶石材質來當做透明基板。 在基板21之上為一厚度範圍200-500 A的低溫氮化 鎵的凝核層221 ’其上為2-5//m的N型氮化鎵下包覆層 222,在N型氮化鎵下包覆層Η上為一厚度範圍為 0·05-0·07/ζπι之氮化銦鎵多重量子井223,而在氮化銦鎵 多重量子井222上為為一厚度範圍為〇·卜〇7//111的ρ型 氮化鎵上包覆層224。 上述在基板21上之凝核層221、Ν型氮化鎵下包覆層 222、氮化銦鎵多重量子井223與ρ型氮化鎵上包覆層224 形成了光發射層22。 在光發射層22上設有一透明導電膜23,本發明使用 材料為一般習用的Ni/Au,並經高溫(5〇〇一550°C )退火形 成。 在N型氮化鎵下包覆層221上,為一 N型歐姆‘觸層 24, 一般N型歐姆接觸層24使用材質為鈦(Ti)、鋁(A1)、 金(An)、鎳(Ni)、銦(In)、錫(Sn)、鋅(Zn)、鉻(Cr)、 銅(Cu )、鎢(W )、鉑(pt)、鈀(Pd )及氧化銦錫、氧化 銦、氧化錫、氧化鋁鋅等。 12 1229954 然後在透明導電膜23、光發射層22之N型氮化鎵下 包覆層221與N型歐姆接觸層24上係披覆一多層膜光反 射層25’當光由光發射層22所產生發射出後,並不會朝 同方向發射,故本發明將原本朝向正向光線,經由光反 射層將光反射朝向透明基板,此一多層膜光反射層25利 用兩種具高折射率(H)與低折射率(L)之介質材料對,每層 光學厚度都是四分之一波長(1/4)λ,依(hl)(hl)…(hl)h 連續交替沉積,可獲得極佳的反射率,其多層膜光反射層 厚度為U/4)x(2xN+l),其中λ為發光二極體的 波長,Ν為(HL)對數5〜15對。因此,多層膜光反射層厚度 為(11/4)λ〜(31/4)又。本發明之多層膜光反射層25之材 料有 Ti〇2/Si〇2、Al2〇3/Si〇2、Si3N4/Si〇2 等材料。 最後,於透明導電膜23與N型歐姆接觸層的上方 分別為P型電極27與N型電極26,而多層膜光反射層託 與P型電極27的一部分接觸,並與N型電極26和N型歐 姆接觸層24的一部分接觸。一般當作電極之材料為鈦、 銘、金、鉻、鎳、鉑等。 根據本發明,其光發射方向為經由透明基板2厂發射 出外界,且在發光二極體磊晶層加上一多層膜反射層,以 反射由上述光發射層22所產生之光以增加出光效率。 第四A〜第四F圖說明本發明之第一實施例的製造方 13 1229954 法0 先利用標準程序清洗基板,在已清洗之基板21上成 長氮化鎵磊晶層,以形成一光發射層。首先先成長低溫氮 化鎵作為一凝核層221,接著於凝核層上再成長一氮化嫁 下包覆層222,成長氮化物,大都採用有機金屬氣相磊晶 法(Organometallic Vapor Phase Epitaxy, OMVPE),搭 配即時量測(in-situ measurement),以控制蠢晶層之成 長率與厚度。 在氮化鎵下包覆層222上再成長一氮化姻鎵多重量子 井223,因氮化銦鎵磊晶層及相關異質接面磊晶層在氮化 鎵的發光體中佔相當重要的地位,而成長高品質的氮化銦 鎵比氣化鎵來的因難,故成長的優劣影響發光效果甚鉅。 然後在氮化銦鎵多重量子井223上再成長一 p型氮化 鎵上包覆層224,同N型氮化鎵下包覆層222,不同的是 摻雜源不同,利用沈積N型氮化鎵下包覆層222之方式而 形成P型氮化鎵上包覆層224。 上述在基板21上所成長的凝核層221、N型氮化鎵下 包覆層222、氮化銦鎵多重量子井223與P型氮化鎵上包 覆層224形成了光發射層22,如第四A圖所示。 接下來參考第四B圖利用蝕刻方式部份蝕刻光發射層 22,直到露出N型氮化鎵下包覆層222,蝕刻係為乾蝕刻 (dry etch )方式,如活性離子姓刻(ReachVe j〇n 12299541229954 发明 Description of the invention: [Technical field to which the invention belongs] The present invention relates to a light emitting diode (Light Emitting Diode, LED) structure and manufacturing method, and more particularly to a melon-V-nitride light-emitting device having a multilayer film light reflection layer Diode flip-chip structure and manufacturing method thereof. [Previous technology] The m-V group nitride semiconductor material uses nitrogen as the main group V element. The material system includes, but is not limited to, GaN, InGaN, AlGaN, A1N, AlGalnN, InN, GalnAsN, and GalnPN, etc., which is suitable for making a spectrum range. A light emitting device with a wavelength from ultraviolet to red light includes a light emitting diode and a laser diode. The π-v group nitride nitride light-emitting diode series has been produced since 1995. With the continuous improvement of technology in recent years, the complementary light-emitting diodes lack blue in the three primary colors in the visible light spectrum. The lack of color has led to the advent of mixed-color white light-emitting diodes. Blue light-emitting diodes are an indispensable element in today's white light-emitting diodes. Whether it is quasi-white light with blue light and yellow light, or White light, which is a mixture of red light, green light, and blue light, is an important application of D-V nitride nitride light-emitting diode vessels. At present, it is the development of ultraviolet light-emitting diodes. The first A and the first B are top views of the relative positions of P and N electrodes in the guar-V nitride nitride light-emitting diode of the conventional technology. In the first a? , {^ Space is the farthest, the best effect, and has been patented, and the first B picture is the method often used in the industry 1229954. The second figure is a schematic cross-sectional view of a conventional dish-v-nitride light-emitting diode. A general structure of a group-V-nitride light-emitting diode is: a substrate 11, and a nitride nitride is grown on the substrate 11. Crystal layer, that is, light emitting layer 12, the light emitting layer 12 includes a buffer layer or a nucleation layer 121, an N-type gallium nitride cladding layer 122, and indium nitride Gallium (inGaN) multiple quantum well 123 and P-type gallium nitride upper cladding layer 1 2 4. After the growth of stupid crystals is completed, the grain fabrication process includes first engraving method to expose N-type gallium nitride. 122, defining a main light-emitting element region, and depositing a light transparent conductive film (TCL, Transparent Conductive Layer) 13 on the light-emitting element region, and forming an N-type gallium nitride lower cladding layer 121 exposed by etching The ohmic contact layer 14 is followed by the growth of an N-type electrode 15 and a P-type electrode 16 on the transparent conductive film 13 and the ohmic contact layer 14, respectively, and finally a passivation protection layer 17 is grown. Finally, the transparent substrate is thinned and cut to form individual light-emitting diodes. On the package, wires are respectively formed on the N-type electrode 15 and the P-type electrode 16 to form a conductive path. When light is emitted by the light emitting layer 12, the light does not travel in a certain direction, and the light emission direction is in all directions, so only a part of the light is emitted through the transparent conductive film i 3, that is, the general light extraction structure results in low light extraction efficiency due to the light emitting diode. The light emission direction of the body is in all directions, so the traditional] Π-V group nitride 7 1229954 light emitting diode can only emit less than half of the light from the surface, and one of them can not pass through to the opacity of the p-type electrode 15 Light sacrificed. Therefore, in terms of the use efficiency of the light emitting body, there is still a lot of room for improvement. Among them, the improvement of luminous efficiency and the improvement of brightness have always been an important development direction, because the luminous brightness directly affects its application level. [Summary of the Invention] In order to solve the above problem of low light extraction efficiency of conventional light emitting diodes, the main object of the present invention is to provide a light emitting diode cover with a multilayer film light reflection layer which can effectively improve the light extraction efficiency of light emitting diodes. Crystal structure and manufacturing method thereof. Another object of the present invention is to provide a plate-V-nitride light-emitting diode flip-chip structure with a multilayer film light reflection layer that takes light from a transparent substrate on the back and a method for manufacturing the same. Still another object of the present invention is to provide a guar-V nitride nitride light-emitting diode flip-chip structure having a multilayer film light reflection layer and a manufacturing method thereof. The multilayer film light reflection layer 'reflects light originally directed to the transparent conductive film to the transmissive substrate. Another object of the present invention is to provide a guar-V nitride nitride light-emitting diode flip-chip structure having a multilayer film light-reflecting layer and a method for manufacturing the same. The existing process can be used without the cost of developing a new process. 1229954 In order to achieve the above-mentioned object of the present invention, this dish-v-nitride light-emitting diode flip-chip structure with a multilayer film light-reflecting layer mainly includes a transparent substrate, a light-emitting layer, a transparent conductive film, and a P-type An electrode, an N-type ohmic contact layer, an N-type electrode, and a multilayer film light reflection layer. The bottom layer of this flip-chip structure is a transparent substrate with a light-emitting layer above it. The structure of the light-emitting layer from bottom to top is a nuclei layer, an N-type gallium nitride lower cladding layer, and an indium gallium nitride layer. Multiple quantum wells and a p-type gallium nitride upper cladding layer form a light emitting layer of a light emitting diode and define a main element region. A transparent conductive film is provided above the light emitting layer, and a P-type electrode is provided above the transparent conductive film. The N-type ohmic contact layer is formed above the N-type gallium nitride lower cladding layer, and the N-type electrode is formed above the N-type ohmic contact layer. According to the present invention, when an etching method is used, when the light emitting layer is partially etched, there are structural differences due to different etching degrees. The first structure is to etch to expose the N-type gallium nitride lower cladding layer, and the multilayer film light reflection layer is continuously staggered and deposited on two types of materials with different refractive index coefficients and coated on the N-type gallium nitride lower cladding layer. It is in contact with a part of the p-type electrode above the transparent conductive film, and is in contact with the n-type electrode and a part g of the n-type ohmic contact layer. As for the second structure, the light-emitting layer is completely etched to expose the transparent substrate, and the multilayer film light-reflective layer is successively staggered and deposited on two types of materials with different refractive index coefficients and covered with an N-type gallium nitride cladding layer. Above the transparent conductive film and the transparent substrate, in contact with a part of the P-type electrode, and in contact with the n 1229954-type electrode and a part of the N-type ohmic contact layer. During the packaging, the crystal grains are flipped, so that the p bonds are combined to form a conductive path, so that the light extraction direction is through this. Finally, the separated crystal grains, the N-type electrode and the N-type electrode are directly connected to the package substrate to form a light-emitting diode. This structure illuminates the substrate and emits the outside world. The manufacturing method of the MV group nitride light-emitting diode flip-chip structure with a multilayer film light reflection layer is: (a) cleaning a transparent substrate using a standard procedure, (b) epitaxially growing a light emitting layer on the transparent substrate, (Using an etching method, the light emitting layer is partially etched, (d) a transparent conductive film is formed on the light emitting layer, and (e) an N-type ohmic metal layer is coated under the exposed n-type gallium nitride. On the layer, (f) Finally, two dielectric materials with different dielectric constants are deposited alternately to form a multi-layered light reflecting layer as a protective layer, and a p-type and a p-type and 1 ^ type electrode. In step (C), when the light emitting layer is partially etched, there are two results due to the difference in the degree of etching. The first result: etching until the N type gallium nitride of the light emitting layer is exposed. Cladding layer. Continuing the step. In step (f), the multilayer film light reflecting layer will be overlaid on the N-type gallium nitride cladding layer and transparent. Above the conductive film. The second result: the light emitting layer is completely Etching light directly exposes the transparent substrate. Continuing step (c), In step (f), the multilayer film light-reflecting layer will be overlaid on the transparent conductive film, the N-type gallium nitride lower cladding layer, the N-type ohmic contact 1229954 layer, and the transparent substrate. The light extraction direction is a positive light extraction structure that emits the outside through the transparent conductive film and then through the passivation protective layer, and only the light in this direction can be emitted from the outside. The rest of the light will be absorbed or lost and cannot be used. The luminous brightness is low. The light extraction direction of the present invention is emitted through a transparent substrate, and a multilayer film light reflection layer is provided on the transparent conductive film to reflect the light originally directed to the transparent conductive film to the transparent substrate 'plus the original direct emission The light to the transparent substrate can greatly increase the light extraction brightness of the light-emitting diode. The following description of the embodiments of the present invention will be made clear with reference to the drawings. [Embodiment] The third figure illustrates the first aspect of the present invention. The cross-sectional structure of an embodiment. The cross-sectional structure is described in detail below. As shown in the third figure, the lowest layer of the structure is a transparent substrate 21, and the substrate 21 is Create a carrier of the epitaxial layer of the mv group nitride light-emitting diode. At the same time, the substrate makes the epitaxial layer easy to grow and reduces lattice defects. Therefore, the best material of the substrate is itself the same light-emitting material, such as N-type nitride. Gallium substrate, however, it is not easy to manufacture a gallium nitride substrate with a large size and can be used to make a melon-v-nitride light-emitting diode substrate, so substrate-like substrates are prone to defects, and the general conditions for selecting a substrate must consider the crystal structure , Lattice 11 1229954 constant, thermal conductivity, thermal expansion coefficient and thermal stability, so the commonly used materials are sapphire (Al2O3), ZnO and SiC, etc., and the light emission direction of the present invention is emitted through the substrate Outside, it is necessary to choose a material that can transmit light well as the substrate, and the material that is generally transparent and suitable as the gallium nitride layer is a sapphire material as the transparent substrate. On the substrate 21 is a low-temperature gallium nitride nuclei layer 221 ′ having a thickness in the range of 200-500 A, and an N-type gallium nitride lower cladding layer 222 having a thickness of 2-5 // m thereon. On the lower gallium cladding layer is an indium gallium nitride multiple quantum well 223 with a thickness ranging from 0.05-0.07 / ζπι, and on the indium gallium nitride multiple quantum well 222 with a thickness ranging from 0 · The p-type gallium nitride upper cladding layer 224 of 07 // 111. The light-emitting layer 22 is formed by the nuclei layer 221, the N-type gallium nitride lower cladding layer 222, the indium gallium nitride multiple quantum well 223, and the p-type gallium nitride upper cladding layer 224 on the substrate 21 described above. A transparent conductive film 23 is provided on the light emitting layer 22. The material used in the present invention is Ni / Au, which is generally used, and is formed by annealing at a high temperature (500 to 550 ° C). On the N-type gallium nitride lower cladding layer 221, there is an N-type ohmic contact layer 24. Generally, the material of the N-type ohmic contact layer 24 is titanium (Ti), aluminum (A1), gold (An), nickel ( Ni), indium (In), tin (Sn), zinc (Zn), chromium (Cr), copper (Cu), tungsten (W), platinum (pt), palladium (Pd), and indium tin oxide, indium oxide, Tin oxide, zinc alumina, etc. 12 1229954 Then a multilayer film light reflection layer 25 'is coated on the N-type gallium nitride cladding layer 221 and the N-type ohmic contact layer 24 of the transparent conductive film 23 and the light emitting layer 22 After the emission generated by 22 does not emit in the same direction, the present invention directs the original light toward the light, and reflects the light toward the transparent substrate through the light reflection layer. This multilayer film light reflection layer 25 uses two kinds of The refractive index (H) and low refractive index (L) of the dielectric material pair, each layer of optical thickness is a quarter wavelength (1/4) λ, according to (hl) (hl) ... (hl) h continuous alternate deposition , Can obtain excellent reflectivity, the thickness of the multilayer film light reflection layer is U / 4) x (2xN + 1), where λ is the wavelength of the light-emitting diode, N is (HL) logarithm 5 to 15 pairs. Therefore, the thickness of the light reflecting layer of the multilayer film is (11/4) λ to (31/4). The material of the multilayer film light reflection layer 25 of the present invention is Ti02 / Si02, Al203 / Si02, Si3N4 / Si02, and the like. Finally, above the transparent conductive film 23 and the N-type ohmic contact layer are a P-type electrode 27 and an N-type electrode 26, respectively, and the multilayer film light reflection layer holder is in contact with a portion of the P-type electrode 27 and is in contact with the N-type electrode 26 and A part of the N-type ohmic contact layer 24 is in contact. Materials commonly used as electrodes are titanium, metal, gold, chromium, nickel, and platinum. According to the present invention, the light emission direction is to be emitted from the outside through the transparent substrate 2 factory, and a light-emitting diode epitaxial layer is added with a multilayer film reflection layer to reflect the light generated by the light-emitting layer 22 to increase Light output efficiency. Figures 4A to 4F illustrate the manufacturer of the first embodiment of the present invention. 13 1229954 Method 0 First clean the substrate using standard procedures, and grow a gallium nitride epitaxial layer on the cleaned substrate 21 to form a light emission. Floor. First, low-temperature gallium nitride is first grown as a nuclei layer 221, and then a nitrided under-cladding layer 222 is grown on the nuclei layer to grow nitrides, most of which are organometallic vapor phase epitaxy (Organometallic Vapor Phase Epitaxy). OMVPE), combined with in-situ measurement to control the growth rate and thickness of the stupid crystal layer. A gallium nitride multiple quantum well 223 is grown on the lower gallium nitride cladding layer 222, because the indium gallium nitride epitaxial layer and the related heterojunction epitaxial layer occupy a very important part of the gallium nitride light emitter. Status, and the growth of high-quality indium gallium nitride is more difficult than gallium carbide, so the quality of growth has a great impact on the luminous effect. Then a p-type gallium nitride upper cladding layer 224 is grown on the indium gallium nitride multiple quantum well 223, which is the same as the N-type gallium nitride lower cladding layer 222, except that the doping source is different. The P-type gallium nitride upper cladding layer 224 is formed in the manner of the gallium nitride lower cladding layer 222. The light-emitting layer 22 formed by the nuclei layer 221, the N-type gallium nitride lower cladding layer 222, the indium gallium nitride multiple quantum well 223, and the P-type gallium nitride upper cladding layer 224 grown on the substrate 21 described above. As shown in the fourth A figure. Next, referring to FIG. 4B, the light-emitting layer 22 is partially etched by an etching method until the N-type gallium nitride lower cladding layer 222 is exposed. The etching system is a dry etch method, such as ReachVe j 〇n 1229954

Etching,RIE )、電子迴轉共振(Electron Cyclotron Resonance,ECR )電漿蝕刻與感應耦合式電漿 (Inductively Coupled Plasma,ICP)等。 在蝕刻完光發射層22後,接下來參考第四C圖,製作 透明導電膜23於光發射層22之P型氮化鎵上包覆層224, 可利用錢鍍(sputtering)方式或蒸著(evaporation) 方式沈積透明導電膜23。 成長元透明導電膜2 3後’參考第四D圖,再成長N型 歐姆接觸層24於光發射層22之N型氮化鎵下包覆層222 上’可利用電子餘蒸鑛(electron beam evaporation) 或熱阻式氣相蒸鍍。 下一步驟為在透明導電膜23、N型氮化鎵下包覆層222 與N型歐姆接觸層24的上方,交錯沉積兩種不同介電係 數的介電材料,形成多層膜光反射層25並做為保護層, 如第四E圖所示。 接著,在透明導電膜23與N型歐姆接觸層24上分別 利用電子鎗蒸鍍方式沈積製作p型電極27與n型電極26, 如第四F圖所示。 产 經由以上步驟,形成一具多層膜光反射層之族 氮化物發光二極體覆晶結構之第一實施例的結構(如第= 圖)。 一 最後’再磨薄透明基板,切割分開晶粒。 15 1229954 又,根據本發明,若將交錯沉積多層膜光反射層的步 驟與製作電極的步驟實施順序交換,即先實施製作電極的 步驟’再實施交錯沉積多層膜光反射層的步驟,則形成具 夕層膜光反射層的IH-V族氮化物發光二極體覆晶结構之 第二實施例的結構(如第五圖所示)。 第六圖為本發明之第三實施例的剖面結構。 第六圖類似於第三圖的結構,差別在於蝕刻時,把磊 晶的光發射層22全部蝕刻光,至露出透明基板21,故多 層膜光反射層25披覆於透明導電膜23、N型氮化鎵下包 覆層222、N型歐姆接觸層24與透明基板21的上方。 第七圖說明本發明之第三實施例的製造方法。 第三實施例與第一實施例的製造方法也類似,差別在 於姓刻步驟中,把磊晶的光發射層22全部蝕刻光,至露 出透明基板21。因此,下一個交錯沉積多層膜光反射層的 步驟中’多層膜光反射層25自然會形成在透明導電膜23、 N型氮化鎵下包覆層?22、N型歐姆接觸層24以及透明基 板21的上方,並做為保護層。其餘步驟與第一實‘例的 製造方法相同。Etching (RIE), Electron Cyclotron Resonance (ECR) plasma etching and Inductively Coupled Plasma (ICP). After the light emitting layer 22 is etched, the next reference is made to the fourth C diagram, and a transparent conductive film 23 is formed on the P-type gallium nitride overcoat layer 224 of the light emitting layer 22, which can be sputtered or evaporated. The transparent conductive film 23 is deposited by an evaporation method. After growing the element transparent conductive film 23, 'refer to the fourth D diagram, and then grow the N-type ohmic contact layer 24 on the N-type gallium nitride cladding layer 222 of the light-emitting layer 22'. evaporation) or thermal resistance vapor deposition. The next step is to deposit two kinds of dielectric materials with different dielectric constants on top of the transparent conductive film 23, the lower N-type gallium nitride cladding layer 222 and the N-type ohmic contact layer 24 to form a multilayer film light reflection layer 25. And as a protective layer, as shown in Figure 4E. Next, p-type electrodes 27 and n-type electrodes 26 are deposited on the transparent conductive film 23 and the N-type ohmic contact layer 24 by electron gun evaporation, as shown in the fourth F diagram. Through the above steps, the structure of the first embodiment of a family of nitride light-emitting diode flip-chip structures with a multilayer film light-reflecting layer is formed (as shown in the figure). -Finally, the transparent substrate is thinned again and cut to separate the dies. 15 1229954 In addition, according to the present invention, if the steps of staggeredly depositing multiple layers of light reflective layers are exchanged with the steps of making electrodes, that is, the steps of making electrodes are first implemented, and then the steps of stably depositing multiple layers of light reflective layers are formed, The structure of the second embodiment of the IH-V group nitride light-emitting diode flip-chip structure with a light-reflective layer of the layer film (as shown in the fifth figure). The sixth figure is a cross-sectional structure of the third embodiment of the present invention. The structure of the sixth figure is similar to that of the third figure. The difference is that during the etching, the epitaxial light emitting layer 22 is completely etched to expose the transparent substrate 21, so the multilayer film light reflection layer 25 is coated on the transparent conductive films 23, N The lower gallium nitride cladding layer 222, the N-type ohmic contact layer 24 and the transparent substrate 21 are above. The seventh figure illustrates the manufacturing method of the third embodiment of the present invention. The manufacturing method of the third embodiment is also similar to that of the first embodiment, except that the epitaxial light-emitting layer 22 is completely etched in the step of engraving until the transparent substrate 21 is exposed. Therefore, in the next step of staggeredly depositing the multi-layer light-reflecting layer, naturally, the multi-layer light-reflecting layer 25 will be formed on the transparent conductive film 23 and the N-type gallium nitride under-cladding layer? 22. The N-type ohmic contact layer 24 and the transparent substrate 21 are provided as protection layers. The remaining steps are the same as those of the first embodiment.

經由以上步驟,形成一具多層膜光反射層的皿一V 族氮化物發光二極體覆晶結構之第三實施例的結構(如第 六圖)。 16 1229954 又’根據本發明,在第三實施例的製造方法中,若 將交錯沉積多層膜光反射層的步驟與沈積電極的步驟實 施順序交換,即先實施製作電極的步驟,再實施交錯沉積 多層膜光反射層的步驟,則形成—具多層膜光反射層的之 羾-v族氮化物發光二極體覆晶結構之第四實施例的結構 (如第八圖所示)。 綜上所述,本發明係在透明基板與磊晶結構加入了一 反射層,以加強相對於透明基板另一面的光反射,將原本 發射方向非朝向透明基板的光,經由反射層而反射到透明 基板,因此增加了光輸出的效益。本發明的製造方法可用 既有的製程來製作,不必花費研發新製程的成本。 惟’以上所述者,僅為本發明之較佳實施例而已,當 不能以此限定本發明實施之範圍。即大凡依本發明申請專 利範圍所作之均等變化與修飾,皆應仍屬本發明專利涵蓋 之範圍内。 产 【圖式簡單說明】 第一 A和第一 B圖係習用的Π-V族氮化物發光二極體P、 Ν電極相對位置俯視圖。 第二圖係習用的ΠΙ-V族氮化物發光二極體的一個剖面示 1229954 意圖。 第二圖為本發明第一實施例的一個剖面結構圖。 第四A〜第四F圖係顯示本發明第一實施例的製程。 第五圖為本發明第二實施例的一個剖面結構圖。 第/、圖係顯示本發明第三實施例的一個剖面結構圖。 第七A〜第七F圖係顯示本發明第三實施例的製程。 第八圖為本發明第四實施例的一個剖面結構圖。 【元件符號說明】 11基板 12光發射層 121凝核層 122 N型氮化嫁下包覆層 123氮化銦鎵多重量子井 124 P型氮化鎵上包覆層 13透明導電膜 14歐姆接觸層 1 5 N型電極 16 P型電極 17鈍化保護層 21透明基板 22光發射層 221凝核層 1229954 222 N型氮化鎵下包覆層 223氮化銦鎵多重量子井 224 P型氮化鎵上包覆層 23 透明導電膜 24 歐姆接觸層 25 多層膜光反射層 26 N型電極 27 P型電極Through the above steps, the structure of the third embodiment (see FIG. 6) of a plate-V-nitride light-emitting diode flip-chip structure with a multilayer film light reflection layer is formed. 16 1229954 According to the present invention, in the manufacturing method of the third embodiment, if the steps of staggeredly depositing the multilayer light-reflective layer and the steps of the sunk electrode are sequentially exchanged, that is, the step of making the electrode is performed first, and then the staggered deposition is performed. In the step of the multilayer film light reflection layer, the structure of the fourth embodiment (as shown in FIG. 8) of the ytterbium-v group nitride light emitting diode flip-chip structure with the multilayer film light reflection layer is formed. In summary, the present invention adds a reflective layer to the transparent substrate and the epitaxial structure to enhance the reflection of light relative to the other side of the transparent substrate, and reflects the light originally emitted in a direction that does not face the transparent substrate to the reflective layer through the reflective layer. The transparent substrate therefore increases the benefit of light output. The manufacturing method of the present invention can be manufactured with an existing manufacturing process, and does not require the cost of developing a new manufacturing process. However, the above are only preferred embodiments of the present invention, and the scope of implementation of the present invention cannot be limited by this. That is to say, all equal changes and modifications made in accordance with the scope of the patent application of the present invention shall still fall within the scope of the patent of the present invention. [Schematic description] The first A and the first B diagrams are top views of the relative positions of the P-N nitride light-emitting diode P and N electrodes of the conventional group. The second figure is a cross-section of a conventional III-V nitride light-emitting diode. The second figure is a sectional structural view of the first embodiment of the present invention. The fourth A to F diagrams show the manufacturing process of the first embodiment of the present invention. The fifth figure is a sectional structural view of the second embodiment of the present invention. Fig. 1 and Fig. 1 are sectional structural views showing a third embodiment of the present invention. The seventh A to seventh F diagrams show the manufacturing process of the third embodiment of the present invention. FIG. 8 is a sectional structural view of a fourth embodiment of the present invention. [Element symbol description] 11 substrate 12 light emitting layer 121 nuclei layer 122 N-type nitrided under cladding layer 123 Indium gallium nitride multiple quantum well 124 P-type gallium nitride upper cladding layer 13 transparent conductive film 14 ohmic contact Layer 1 5 N-type electrode 16 P-type electrode 17 Passivation protective layer 21 Transparent substrate 22 Light-emitting layer 221 Nucleation layer 1229954 222 N-type gallium nitride lower cladding layer 223 Indium gallium nitride Multiple quantum well 224 P-type gallium nitride Upper cladding layer 23 Transparent conductive film 24 Ohmic contact layer 25 Multi-layer film light reflection layer 26 N-type electrode 27 P-type electrode

Claims (1)

1229954 拾、申請專利範圍: L 一種具有多層膜光反射層的M-V族氮化物發光二極體 覆晶結構,包含: 一透明基板,該發光二極體覆晶結構之發光方向為經 由該透明基板發射出外界; 光發射層,形成在該透明基板上,該光發射層的結 構由下而上至少包含一凝核層、一 N型氮化鎵下包覆 層、一氮化銦鎵多重量子井以及一 p型氮化鎵上包覆 層; 一透明導電膜,形成在該光發射層的上方; 一 P型電極,形成在該透明導電膜的上方; N型歐姆接觸層,形成在該n型氮化鎵下包覆層的 上方; 一 N型電極,形成在該n型歐姆接觸層的上方; 以及 多層膜光反射層,以兩種不同折射率係數的材質連 續交錯沉積及披覆在該N型氮化鎵下包覆層和該透明 導電膜的上方,與該p型電極的一部分接觸,並< 與該 N型電極和該N型歐姆接觸層的一部分接觸。 2· *申請專利範圍帛1項所述之具有多層膜光反射層的 族氮化物發光二極體覆晶結構其中該透明基板 為一藍寶石基板。 20 1229954 d•如申請專利範圍第1項所述之具有多層膜光反射層的 瓜v族氮化物發光二極體覆晶結構,其中該多層膜光 反射層更披覆在該透明基板的上方。 4.如申請專利範圍第1項所述之具有多層膜光反射層的 ® 乂族氮化物發光二極體覆晶結構,其中該N型歐姆 接觸層之材質係由鈦、鋁、金、鎳、銦、錫、鋅、鉻、 銅、鎢、鉑、把及氧化銦錫、氧化銦、氧化錫、氧化铭 鋅所組成之族群之其中一·種。 5·如申請專利範圍第1項所述之具有多層膜光反射層的 ΠΙ-ν族氮化物發光二極體覆晶結構,其中該N型電極 之材料係由鈇、is、金、絡、鎳、始所組成之族群之其 中一種。 6·如申請專利範圍第1項所述之具有多層膜光反射層之 瓜- V族氣化物發光二極體覆晶結構,其中該p型電極 為鈦、鋁、金、鉻、鎳、鉑所組成之族群之其中一種。 7·如申請專利範圍第1項所述之具有多層膜光反射層的 m-v族氮化物發光二極體覆晶結構,其中該多層膜光 反射層的厚度為(λ/4)χ(2χΝ + 1),其中入為發 光二極體的波長,Ν為該兩種連續交錯沉積材質的對 數。 21 1229954 8·如申請專利範圍第7項所述之呈右之au π返I,、有多層膜光反射層的 瓜-V族氮化物發光二極體霜晶锋槿 菔復日日、0構,其中Ν的範圍為 5 〜15 〇 9·如申請專利範圍第1項所述之呈右 am述ι兴有多層膜光反射層的 皿-V族氮化物發光二極體覆晶結構,其中該多層膜光 反射層之材質係由 n〇2/Si〇2、Al2〇3/Si()2、Si3N4/Si()2 等材料所組成之族群之其中一種。 10· —種具有多層膜光反射層的m-v族氮化物發光二極 體覆ΒΘ結構之製造方法,包含以下步驟· 利用一標準程序清洗一透明基板; 在該透明基板上磊晶成長一光發射層,該光發射層的 結構由下而上至少包含一凝核層、一 N型氮化鎵下包 覆層、一氮化銦鎵多重量子井以及一 ρ型氮化鎵上包 覆層; 利用一蝕刻方式部份蝕刻該光發射層; 製作一透明導電膜於該光發射層上; 製作一 N型歐姆金屬層於已蝕刻露出的該n型氮化鎵 下包覆層上;以及 交錯沉積兩種不同折射率係數的介電材料,形成一多 層膜光反射層並作為保護層,並分別製作一 P型電極 與一 N型電極於該透明導電膜與該N型歐姆金屬層的 上方。 22 1229954 11.如申請專利範圍第10項所述之具有多層膜光反射層 的πι-ν族氮化物發光二極體覆晶結構之製造方法,其 中該光發射層之形成為在該透明基板上先成長一凝核 層,在該凝核層上再成長一氮化鎵下包覆層,在該氮化 鎵下包覆層上再成長一氮化銦鎵多重量子井,然後在該 氮化銦鎵多重量子井上成長一氮化鎵上包覆層。 12· 如申請專利範圍第10項所述之具有多層膜光反射層 的m-v族氮化物發光二極體覆晶結構之製造方法,其 中於該蝕刻步驟中,部份蝕刻該光發射層,直到露出該 N型氮化鎵下包覆層。 13· 如申請專利範圍第12項所述之具有多層膜光反射層 的之瓜-v族氮化物發光二極體覆晶結構之製造方法, 其中該交錯沉積的步驟,係在該透明導電膜、該N型氮 化鎵下包覆層以及N型歐姆金屬層的上方實施。 14· 如申請專利範圍第1〇項所述之具有多層膜光反射層 的瓜-v族氮化物發光二極體覆晶結構之製造方法,其 中於該蝕刻步驟中,部份蝕刻該光發射層,把磊晶的該 光發射層全部蝕刻光,至露出該透明基板。 15·如申請專利範圍第項所述之具有多層膜光反射層的 瓜-V族氛化物發光二極艘覆晶結構之製造方法,其中 該交錯沉積的步驟,係在該透明導電膜、該N型氮化鎵 下包覆層、N型歐姆金屬層以及該透明基板的上方實 23 12299541229954 Application scope: L A MV group nitride light-emitting diode flip-chip structure with a multilayer film light-reflecting layer, comprising: a transparent substrate, the light-emitting direction of the light-emitting diode flip-chip structure is through the transparent substrate The light emitting layer is formed on the transparent substrate. The structure of the light emitting layer from bottom to top includes at least a core layer, an N-type GaN lower cladding layer, and an indium gallium nitride multiple quantum. Well and a p-type gallium nitride upper cladding layer; a transparent conductive film formed over the light emitting layer; a P-type electrode formed over the transparent conductive film; an N-type ohmic contact layer formed in the Above the n-type gallium nitride lower cladding layer; an N-type electrode is formed over the n-type ohmic contact layer; and a multilayer film light reflection layer is continuously staggered and coated with two materials with different refractive index coefficients Above the N-type gallium nitride cladding layer and the transparent conductive film, it is in contact with a part of the p-type electrode, and < in contact with the N-type electrode and a part of the N-type ohmic contact layer. 2. * The group-nitride light-emitting diode flip-chip structure having a multilayer film light-reflective layer as described in the scope of application patent No. 1 wherein the transparent substrate is a sapphire substrate. 20 1229954 d • The guar v-nitride light-emitting diode chip structure with a multilayer film light reflection layer as described in item 1 of the scope of patent application, wherein the multilayer film light reflection layer is further covered on the transparent substrate . 4. The ® Group III nitride light-emitting diode flip-chip structure with a multilayer film light reflection layer as described in item 1 of the scope of the patent application, wherein the material of the N-type ohmic contact layer is made of titanium, aluminum, gold, nickel , Indium, tin, zinc, chromium, copper, tungsten, platinum, and indium tin oxide, indium oxide, tin oxide, zinc oxide, and one of the groups consisting of zinc oxide. 5. The ΠΙ-ν group nitride light-emitting diode flip-chip structure with a multilayer film light-reflective layer as described in item 1 of the scope of the patent application, wherein the material of the N-type electrode is made of rhenium, is, gold, metal, Nickel, one of the ethnic groups formed by Shi. 6. The melon-V-group gaseous light-emitting diode flip-chip structure with multilayer film light reflection layer as described in item 1 of the scope of patent application, wherein the p-type electrode is titanium, aluminum, gold, chromium, nickel, platinum One of the ethnic groups formed. 7. The mv group nitride light-emitting diode flip-chip structure with a multilayer film light reflection layer as described in item 1 of the scope of the patent application, wherein the thickness of the multilayer film light reflection layer is (λ / 4) χ (2χN + 1), where is the wavelength of the light emitting diode, and N is the logarithm of the two consecutive staggered deposition materials. 21 1229954 8 · As shown in item 7 of the scope of patent application, the right au π return I, melons-V nitride nitride light-emitting diode frost crystal with multi-layer light reflection layer Structure, in which the range of N is 5 to 15 〇9, as described in the scope of the first patent application, the structure of the plate-V nitride nitride light-emitting diode with a multilayer film light reflection layer structure, The material of the light reflecting layer of the multilayer film is one of the groups consisting of materials such as no2 / Si02, Al2O3 / Si () 2, Si3N4 / Si () 2 and the like. 10 · A method for manufacturing a mv-group nitride light-emitting diode-covered BΘ structure with a multilayer film light-reflecting layer, comprising the following steps: · Cleaning a transparent substrate using a standard procedure; epitaxially growing a light emission on the transparent substrate Layer, the structure of the light emitting layer from bottom to top includes at least a nuclei layer, an N-type gallium nitride lower cladding layer, an indium gallium nitride multiple quantum well, and a p-type gallium nitride upper cladding layer; An etching method is used to partially etch the light-emitting layer; a transparent conductive film is formed on the light-emitting layer; an N-type ohmic metal layer is formed on the n-type gallium nitride under-cladding layer that has been etched and exposed; and Deposit two kinds of dielectric materials with different refractive index coefficients to form a multilayer film light reflection layer as a protective layer, and make a P-type electrode and an N-type electrode on the transparent conductive film and the N-type ohmic metal layer respectively. Up. 22 1229954 11. The method for manufacturing a π-ν group nitride light-emitting diode flip-chip structure with a multilayer film light reflection layer as described in item 10 of the scope of patent application, wherein the light-emitting layer is formed on the transparent substrate A nucleation layer is first grown on the nucleus layer, a gallium nitride lower cladding layer is grown on the nucleus layer, and an indium gallium nitride multiple quantum well is grown on the GaN lower cladding layer. An indium gallium multiple quantum well grows an upper gallium nitride cladding layer. 12. The method for manufacturing a mv-group nitride light-emitting diode flip-chip structure with a multilayer film light-reflective layer as described in item 10 of the scope of the patent application, wherein in the etching step, the light-emitting layer is partially etched until The N-type gallium nitride lower cladding layer is exposed. 13. The method for manufacturing a guar-v-nitride light-emitting diode flip-chip structure with a multilayer film light reflection layer as described in item 12 of the scope of the patent application, wherein the step of staggered deposition is on the transparent conductive film The top of the N-type gallium nitride lower cladding layer and the N-type ohmic metal layer are implemented. 14. The method for manufacturing a cucurbit-v-nitride light-emitting diode flip-chip structure with a multilayer film light reflection layer as described in item 10 of the scope of the patent application, wherein in the etching step, the light emission is partially etched Layer, the light emitting layer of the epitaxial wafer is completely etched to expose the transparent substrate. 15. The method for manufacturing a melon-V group atmosphere light-emitting diode-clad structure with a multilayer film light-reflective layer as described in item 1 of the scope of the patent application, wherein the step of staggered deposition is performed on the transparent conductive film, the N-type gallium nitride lower cladding layer, N-type ohmic metal layer and upper surface of the transparent substrate 23 1229954
TW93119053A 2004-06-29 2004-06-29 III-V nitride compound LED flip-chip structure having multiple layers of reflective film and manufacturing method thereof TWI229954B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93119053A TWI229954B (en) 2004-06-29 2004-06-29 III-V nitride compound LED flip-chip structure having multiple layers of reflective film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93119053A TWI229954B (en) 2004-06-29 2004-06-29 III-V nitride compound LED flip-chip structure having multiple layers of reflective film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI229954B true TWI229954B (en) 2005-03-21
TW200601585A TW200601585A (en) 2006-01-01

Family

ID=36083245

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93119053A TWI229954B (en) 2004-06-29 2004-06-29 III-V nitride compound LED flip-chip structure having multiple layers of reflective film and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI229954B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393273B (en) * 2009-08-27 2013-04-11 Edison Opto Corp Method for manufacturing light emitting diode assembly
CN102270724B (en) * 2010-06-01 2014-04-09 陈文彬 Method for color purification of light emitting diode (LED) wafer

Also Published As

Publication number Publication date
TW200601585A (en) 2006-01-01

Similar Documents

Publication Publication Date Title
KR100631840B1 (en) Nitride semiconductor light emitting device for flip chip
JP4091048B2 (en) Gallium nitride semiconductor light emitting device and method for manufacturing the same
US8674375B2 (en) Roughened high refractive index layer/LED for high light extraction
JP4766966B2 (en) Light emitting element
TWI285965B (en) Semiconductor light-emitting device
US20120322183A1 (en) Method for fabricating light emitting diode
CN1996630A (en) Light-emitting diode and method for manufacturing the same, its uses in electronic apparatus
JP2002237618A (en) Display device and it manufacturing method
KR20080070696A (en) Nitride semiconductor light emitting device
US20080099776A1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
KR100593891B1 (en) Nitride semiconductor light emitting device for flip chip and manufacturing method thereof
JP2007049063A (en) Semiconductor light emitting element, lighting system employing it, and process for fabricating semiconductor light emitting element
JP2010098068A (en) Light emitting diode, manufacturing method thereof, and lamp
US7700966B2 (en) Light emitting device having vertical structure and method for manufacturing the same
US20130207147A1 (en) Uv light emitting diode and method of manufacturing the same
CN104425670B (en) Light emitting diode and its manufacturing method
TWI229954B (en) III-V nitride compound LED flip-chip structure having multiple layers of reflective film and manufacturing method thereof
JP2008277430A (en) Nitride semiconductor light-emitting element
KR100965242B1 (en) Light emitting diode with a plurality of insulator layers and fabrication method of the same
KR101478335B1 (en) Ultra violet light emitting diode with a aluminum reflection structure and fabrication method of the same
KR20090112854A (en) Group 3 nitride-based semiconductor light emitting diodes and methods to fabricate them
JP2010109127A (en) Light emitting device
CN116583954A (en) Substrate structure and preparation method thereof, light-emitting device and preparation method thereof
JP2006049350A (en) Light emitting device and its manufacturing method
KR20160015731A (en) Light emitting diode and method of fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees