TW584862B - Random-access multi-directional CDMA2000 turbo code interleaver - Google Patents

Random-access multi-directional CDMA2000 turbo code interleaver Download PDF

Info

Publication number
TW584862B
TW584862B TW091102921A TW91102921A TW584862B TW 584862 B TW584862 B TW 584862B TW 091102921 A TW091102921 A TW 091102921A TW 91102921 A TW91102921 A TW 91102921A TW 584862 B TW584862 B TW 584862B
Authority
TW
Taiwan
Prior art keywords
address
interleaver
input
output
patent application
Prior art date
Application number
TW091102921A
Other languages
English (en)
Inventor
Steven J Halter
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Application granted granted Critical
Publication of TW584862B publication Critical patent/TW584862B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • H03M13/271Row-column interleaver with permutations, e.g. block interleaving with inter-row, inter-column, intra-row or intra-column permutations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/275Interleaver wherein the permutation pattern is obtained using a congruential operation of the type y=ax+b modulo c
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/276Interleaving address generation
    • H03M13/2764Circuits therefore
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2771Internal interleaver for turbo codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2789Interleaver providing variable interleaving, e.g. variable block sizes

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

、發明説明 相關申請案件之交又參考 本無明是1998年1 2月4日所中請之同在中請中美國專利 申=案第⑽205,5㈣中相之部份接續中請案,於此指派 給本發明之受讓人。 背景 I .領域 本發明與通訊統有關,更特定言之,乃與數位通訊系 統中义渦輪編碼法所使用的交錯器有關。 、 Π ·背景 α數位貝料的傳运天生易焚干擾’使所傳送的資料發生錯 誤。已提出了許多種的錯誤偵測法,以盡可能正確地判斷 出已傳送的資料是^有錯誤在其中。f見的方法是以封包 形式傳送f料’並在每—個封包的後面加上—個長度為孽 如^十六^長之循環贅碼檢查(crq攔,此欄位為該封 包資料的檢查和:接收器—旦接收到資料,即針對該資料 i灯;L查和的#异’並將計算後的結果與咖欄中之檢查 和比對,看兩者是否相同。 若所傳送的資料非線上使用,則可在發現錯誤後要求重 送。=若資料的傳送乃屬,緣上性質,像是,電話、行動電 話、遠端視訊系統等的即時傳送,就盔 迴旋碼的出現可讓接㈣數該 數位資料在傳送過程中就已產生錯誤,亦可正確地決斷出 原始的傳送資料。迴旋碼㈣法是,“欲傳送的資料中 加入贅碼’然後再打包成封包,重點是,封包中的每一個 -4- 本€^通用中國國家標準(CNS) A4規格(210 X 297^7
位元均與封位元之前的位元有關。所以,當錯誤產 生=接收4可藉由對所接收到的資料進行序列的回溯而 推導出原始的資料。 為更進-步地改善傳輸通道的效能,—些編碼方式被提 供出來;、這其中包括了交錯法,此法在編碼的過程中,將 封包中位7C的次序打散,混在_起。因此,若傳輸過程中 的干擾所破壞的是-連串的連續位元,則此編碼法會將並 所造W影響分散在整個封包内,因此在解碼時可更為容 易地將錯誤更正回來。並仙沾^ & 木其他的改艮法尚包括,多分量編碼 法,此法乃以並列或串列的方式,不止-次地對封包進行 編碼。譬如,此技藝中所熟知的錯誤更正”是並列地使 用至少兩種迴旋編碼器。 -不過…欲將多分量碼解至最佳通常是—料常複雜的工 作’可能需要大量的時間’所以通常不適用於線上即時的 環境。已發展出的迭代解碼法可克服此問題。接收器並不 急著去判定其所接收到的位元是〇還是丨,而是先給每個位 元分派-個數值,表示該位元為丨的可能性4派數值的 原則最常用的是對數-可能性&(LLR)機率法,此法以某一 個範圍的數值,譬如,{·32,川,來代表每-個所^收 到的位元。3 1代表該位元有非常高的機率是〇,而_32則 代表該位元有非常高的機率是卜〇則代表該位元的邏輯值 無可判定。 該種數值資料通常稱之為“軟資料,’,迭代解碼則通常 稱之為軟進/軟出,亦即,解碼時所接受的一連_輸入資 i紙張尺度適用中@國家鮮(CNS) A4規格(210 X 297公董)^ ------〜_ 584862 A7 B7 五、發明説明 料僅是相對應資料位元其數值的機率,且在將該碼的一些 限制列入考慮後,輸出其機率的修正值。一般來說,執行 迭代解碼t解碼器,是使用前循環所得之軟資料來解接收 器所讀到I軟資料。在進行多分量碼之迭代解碼期間,解 碼器利用解前一碼之結果來改善第二碼的解碼。若使用的 是平行編碼斋(滿輪編碼即是),則兩相對應之解碼器就可 為此目的,以某種得便的方式並列。此種迭代解碼法會不 斷執行迭代,直到咸信該軟資料可代表該傳送資料方才停 止。那些指出它們是如何接近丨(譬如,如上述的,以〇至 3 1的數字刻度來表示.)之機率意含位元會被指派為二進位 零,而所剩之位元則被指派為二進位一。 ‘‘渦輪編碼”是前向糾錯(FEC)領域中的一項重要的進 步。氟輪編碼有許多種方式,最常見的類型是使用多重編 碼步驟且以合併迭代解碼之交錯步驟為該編碼步驟間隔之 法。此種組合提供了先前無法提供的有關於通訊系統中雜 訊容忍度的效能。亦即,渦輪編碼使用現存的前向糾錯技 術,使通訊可處在先前無法接受之每雜訊功率頻譜密度之 每位元能量(Eb/ No)的位準上。 許多通訊系統都有使用前向糾錯技術,所以會因使用了 渦輪編碼法而得利。譬如,渦輪碼可以改善無線衛星鏈路 的效能,其中該衛星接收器系統有限的下行發射功率,可 操作在低Eb/No位準。 數位供線通汛系統,譬如像是,數位細胞式及個人通訊 服務電話系統,也使用前向糾錯技術。譬如,電信工業協 -6- 584862 A7
會已頒佈空氣傳輸介面標準TI w EIA暫行標準9 5及其行生^ 準(譬如,IS福)(此後統稱為IS_95),此標準界定數位^ 通信系統使用傳統的編碼方式,提供編碼増益以增加系統 的容量。美國專利字號5, 1()3,459之專利文件,述及了一種 基本上以IS-95標準為使用依據來處理射頻⑽)信號之系統 及方法’在此指派給本發明之受讓人,_併提出以作參 考0 裝 訂
二通訊工業持續地在改良編碼增益。在傳統的數位無線通 信系統中,已發現用以進行㈣編碼之$列交錯哭,最好 是配以調和P«序列來施行。此技藝中已知,使用線性調 和重覆演算:f可產生出均-的隨編,可參考譬如,由 2. D. Knuth所著之冑私腦程式之技藝(1969)(此書說明了如何 以線性-馮和重覆法,產生出虛擬亂數)。#已發現,使用 了維文錯器(即,_個組織架構為包含列與行的資料矩 陣足交錯器)之平行渦輪編碼器,其在編碼增益方面,一 般與具有維父錯咨(即,一種其資料結構為單一線性陣 列足父錯器)之平行渦輪編碼器所具之功能相同。 C步地加強渦輪編碼器的效能是有好處的。另外,由 於實現滿輪編碼器明顯地要較實現傳統的編碼器來得複 雜’所以亦需要提供出_種實現複雜度較低之滿輪編碼 态。疋故,需要一種複雜度低、使用多重線性一致序列之 二維交錯器。
584862 A7 B7 五、發明説明( 行動電信系統的特徵在於,有多個行動收發器,像是行 動電話,與一或多個基地地通訊。每一個收發器均内含發 射器與接收器。 , 典型的收發器中,乃利用天線接收類比射頻(RF)信號, 再利用RF段將該RF信號下轉換成中頻(IF)。信號處理電 路透過類比自動增益控制來過濾雜訊及調整該信號的大 小。之後,IF段會將該信號混成基頻,並從類比轉換成數 位信號。隨後將該數位信號輸入至基頻處理器,作進一步 的信號處理,以語音或數據形式輸出。 相類似的,發射器接收來自於基頻處理器之數位信號, 將該信號轉換成類此信號。之後,利用IF級,將此信號過 遽並上轉換至中頻。調節傳送信號的增益並將該I jp信號上 轉換至RF,以準備進行無線電傳送。 發射器與接收器間的鏈結,稱之為通道。增加基地台與 相關行動台間通道載運資訊容量的一個方法是,增強信號 干擾比(SIR)。SIR通常是,所接收到信號之每訊息位元的 能量與該接收信號之干擾密度的比值。為增加系統的容 量’必須讓行動台與基地台中的接收器在信號干擾比值較 低的情況下,仍能有效地運作,或是增加通道的SIR。通 常,加強傳送信號的功率可增加SIR,但此法耗費成本且會 使其他行動台受到干擾的情況加重,所以在許多方面,此 法並不實際。另外一種較常用的作法是,使用特殊的編碼 法來降低系統對SIR的要求標準。 -8-
584862 A7 B7 五、發明説明( 通訊#號的編碼必然包括,在信號中加入冗餘資訊之動 作。策略性地在通訊信號中加入贅碼,可使該在多雜訊環 境下傳送之信號,因通道的多雜訊而產生錯誤的情況,降 至可接受的程度。夏能(Shannon)於1948年指出,若通訊信號 的資訊率小於通道容量,則不需降低該資訊率,亦可達到 所需要的雜訊位準。若處在雜訊環境中而又未使用贅碼編 碼法,則要達到無錯誤的地步是很困難或幾乎是不可能 的0 有許多編、解碼系統設計來控制與雜訊及干擾相關的錯 誤,這些錯誤乃發生在通訊系統中的資訊傳送期間。在現 代的高可靠度數位通訊系統的設計中,編碼是很重要的一 環。 可有·效-地在雜訊或衰退環境中運作的能力,對分碼多重 接取(CDMA)無線通訊系統而言是特別的重要,發生羅列 (Raleigh)衰退及受到其他使用者的同通道干擾,在此種系 統中是非常常見的。羅列(Raleigh)衰退乃因接收信號的頻 率因行動台的移動發生了所謂的都卜勒(Doppler)漂移現象 所導致。同通道干擾的發生則是因為CDMA通訊系統乃多 人使用的系統,所以每多一個人使用此系統,同通道干擾 的程度就會加重一分。同通道干擾對信號的影響通常較其 他形式的通道雜訊,譬如,加性白高斯雜訊(AWGN)對信 號的影響為大。 在羅列(Raleigh)衰退信號的環境中,傳送信號的功率位 準將依據羅列(Raleigh)分配來增減。其浮動的範圍一般是 -9- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 584862 A7
584862 A7 B7
交錯器的結構及長度。以往,具有良好效能的渦輪碼所採 用的是虛擬隨機結構之交錯器。 由D· Rowitch等人,於1的8年1 2月4日所提出申請,美國專 利申請案第09/ 205, 511號,標題為使用線性符合序列之渦輪 碼父錯為(事務所檔案號QCPA720)之申請案中,揭示並主張 一種有特別好處的交錯器設計,在此併入本文中以作參 考。Rowitch等人的交錯器所提供出的許多好處均是在個人 電腦中所模擬出來的。但吾人卻有必要有效率地以硬體方 式來實現該交錯器(即,實現於行動電話中)。 所以’此技藝之系統或方法依然有必要將R〇witch等人之 设计概念’有效地以硬體方式實現,將之併入積體電路或 晶片中,使可用於行動電話中。 .....- 摘要 上述之需求是本發明之交錯器的重點所在。本發明之交 錯:器包含一第一計算單元,用以於第一時脈週期期間接收 輸入位址,且回應該位址,計算出一第一連續交錯位址。 包含第一计异單元,用以於該第一時脈週期期間接收輸入 位址,並回應該位址,計算出第二連續交錯位址。本發明 之叉錯器另包含一比較器,用以判斷該第一或第二連續交 錯位址是否有效,並產生一信號回應於此。該比較器的輸 出提供控制信號至一開關,選擇該第一或第二連續交錯位 址來作為該第一時脈週期之輸出交錯位址。該交錯器另設 計成以順向或逆向方式移動。 _— _- 11 - 本紙張尺度適用中國國豕標準(CNS) A4規格(210 X 297公袭')
裝 訂
584862 A7 B7 五 、發明説明( 在圖解的具體實施例中,該第一及第二計算單元將實現 出下列表示式·· A=bitrev(row) · 2c+{(col+l) · c(i)}modC 其中A是該交錯位址,’ row,是輸入線性位址之5 LSB, ’ c〇l'是輸入線性位址之c MSB,C是行數,c( i)是對照表的輸 出,其中i是目前的列號。 本發明之交錯器可應方向控制信號,依順向或逆向移動 輸入位址。有關輸入位址的位址補償機制亦包含在内。圖 式中所示之位址補償儲存器8 6以及其具有對計數器8 4進入 載入動作的能力,使得該交錯器從交錯器序列中的任何一 個所希望的位址開動。R〇wj她等人的專利演算法,規定交 錯器必須從頭開始執行,不可從序列中的其他點開始。若 可將所希望的起始點的位址補償值預先儲存起來,則交錯 备序列就可從該所希望的點起動,然後朝正或反方向移 動。 本發明之交錯器與眾不同地實現了 cdma 2〇〇〇標準所使用 的LCS渦輪交錯器演算法則。 圖式之簡單說明 圖1疋並接式滿輪編碼器的方塊圖。 圖2是可使用於圖!並接式源輪編碼器中之交錯器的方塊 圖。 圖疋可”圖“(又錯态併用之成份編碼器的方塊圖。 圖4是根據本發明意旨所建構出之具有兩個成份迴旋編 碼备及-個又錯器之㊣輪編碼器的最上層方塊圖。 12 本紙張尺度中s S家標準 X 297i^7
疋圖4中之交錯器其簡化的細部方塊圖。 圖6是具有本發明所揭示具體實施例之意旨的滿輪 态的圖解方塊圖。 詳細說明 2據本發明之—具體實施例’ i圖1,乃-並接式之滿 輪、.爲碼器10包含,第一及第二編碼器12,14,一交錯器 :6以及一多工器1 8。該第-編碼器1 2及交錯器1 6 ,接收 2⑽人資㈣,此資料—㈣使用者資料或控制資 :。弟一編碼器12輸出系統記號22,此-般為原始輸入位 -j的複本’第一編碼器1 2另輸出同位記號2 4。第二編 馬态14接收叉錯器16的交錯輸出26,並輸出第二組同位 圮號28。第二編碼器14所產生之系統記號(未顯示)被抑 制、,所以-僅有第一及第二編碼器12 , 14之22,24,“輸 出被运至多工器18 ’多工成輸出資料串流3〇。 一可並列武地再增加編碼器_交錯器對,來降低編碼率, 藉,提供出強化的前向糾錯能力。或者是,略去一些系統 口己號2 2及/或同己號2 4,來增加編碼率,提供出較佳的 頻譜效率。 第一及第二編碼器12 , 14可以是此技藝中已知的各種型 式的編碼器,包括區塊編碼器及迴旋編碼器。Bemard Sklad998年所著的數位通訊一書,第245至38〇頁中所述之區 塊編碼器及迴旋編碼器可為範例,在此併入以作參考。第 一及第二編碼器12,丨4最好是迫制長度K較小(譬如, K = 4 )之迴聢編碼器,以降低複雜度,這是因為較小的迫 13
本紙張尺度適财® S家標準(CNS) A4規格(21QX297公董"T 五、發明説明( 11 A7 B7 ^長度可降低相應解碼器(未顯示)的複雜度。第一及第二 、’扁碼,12 ’ 14也可是遞迴系統迴旋(RSC)編碼器。交錯器 16則瑕好是如下所述之二.維交錯器。 典型地,每一個所接收到的位元2〇,均有兩個同位記號 24,28(分別由第一及第二編碼器12 , 14所輸出),因此 ”扁碼态1 2 ’ 1 4 <編碼率R各為丨/2。雖是如此,渦輪編碼 器10的總編碼率R卻等於1/3,這是因為第二編碼器“所 輸出的系統位元被排除在外。 圖2中可看出,本發明之二維(2-D),線性調和數序列 (LCS)交錯器1〇〇包含四個對照表(LU 丁)1〇2、1〇4、工⑽, 七個雙輸入之多工器(MUX)110、112、114、116、118、12Q、 122’ 一 R輸入多工器124, 一列計數器126,第一及第二位元 反轉邏輯區塊128, 130, 一位址確認模組132,多個(11個)行 (或列)指標暫存器134,136,138,140(圖中簡單地以四個暫 存器表示),一用以將行指標設為〇之暫存器142,第一及第 二k位元之乘法器144,146以及四個K位元之加法器148, 150,152,154。以虛線框起來的即為LCS遞迴產生器156。交 錯器100可以使用於圖1中所示之並接式渦輪編碼器中,亦 可使用於串接式的渦輪編碼器中,在使用於争接式滿輪編 碼器中時,交錯器100定位為外部及内部成份碼,如習於此 藝人士所了解的那般。 交錯器100的大小為N,小於等於2m,大於21^1。列數r乘 以行數C,則等於2m。行數C等於2k,亦即,k=log2C。列數R 等於2r,亦即,r= log 2R。 ~ 14 - __ 本紙張尺度適用中國國家標準(CNS> A4規格(210 X 297公釐) ' -------- 584862 A7 B7 五、發明説明(12 ) 位址確認模組132最好是拿以邏輯閘所作成的平移暫存器 及加法器來實現。位址確認模組132的功用是,檢查X輸入 是否小於行數C與Y輸入(列指標)的乘積與Z輸入(行指標) 的和,這些和與乘的運算,執行的即為平移及加法功能。 位址確認模組132會產生出一旗標,指出該位址是否無效, 亦即,該位址所内含的位元是否超過2的次方而應予丟棄 (亦即,交錯器的大小是否介於2的次方的範圍内)。 LCS遞迴產生器156的輸入端接收的是列數,並將其送至 四個LUT102,104,106,108,然後產生行指標(至該位址確 認模組132的Z輸入),此產生器的功用在於,將交錯器100 中每一列所内含的位元值虛擬隨機式地加以重排(或謂, 混在一起)。習於此藝人士會了解,在像圖1所繪的並接式 渦輪編.碼器中,該等因虛擬隨機式所產生的LCS而自然重 排的資料元素,最好是避免再給第二編碼器讀取。第一及 -第二位元反轉邏輯區塊128,130的功能則是,依預先定義 好之位元反轉規則,針對交錯器100中列的部份加以重排 (或謂,加以混合),其作法在此技藝中已為人所知,以下 會加以說明。 LUT 102,104,106,108可以用任何此技藝已知之儲存媒 體來實現。第一 LUT 102乃用來儲存係數c。第二LUT 104用 來儲存係數a的值。第三LUT用來儲存a的b次方值。第四 LUT 108則用來儲存 X (- 1 )的值。LUT 102,104,106,108 的大 小均為r X k個位元。交錯器100記憶體的總需求量則為4rX k -15- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)
裝 訂
線 584862 A7 B7 五、發明説明(13 ) 個位元,加上暫存器134,136,138,140的r X k個的暫存器 位元。 暫存器142接收指明列教之位元值,此數值一開始時為 R- 1。暫存器142會在每一個處理週期,輸出一個位元值, 指明行數,行數在一開始時並非為零。每當所有列均跑過 一次後,暫存器142就會將行指標重置一次。 在每一個處理週期,輸入MUX 110都會產生數值1或-1, 至於是產生1亦或是-1,則取決於“向後執行”旗標的 值。MUX 110所產生的數值會被提供至加法器148,在此處 與標示為“下一列”之位元數值相加。所得結果送往列計 數器126的資料輸入端。列計數器126的第二輸入端上的數 值則是1。列計數器126產生出列值(該列值一開始時是儲存 在暫存器142中的R- 1),並提供至第二位元反轉邏輯區塊 130。該列值也提供至每一個LUT 102,104,106,108。該列 , 值還提供至加法器150,加上1之後,所得出之結果將送至 第一位元反轉邏輯區塊128。此所得和亦提供至MUX 112的 第一輸入。 每一個處理週期第一位元反轉邏輯區塊128都會提供出一 個數值至MUX 114的第一輸入。該第二位元反轉邏輯區塊 130則提供列指標值至MUX 114的第二輸入,另亦提供至該 位址確認模組132的Y輸入。位址確認模組132的X輸入端所 接收的則是數值N。位址確認模組132於Z輸入端所接收的 數值乃是以所儲存的係數為基礎而得來的。該LCS位址確 認模組132會先計算出C與Y輸入值的乘積,然後將此乘積 _-16-_ 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 584862 A7 ____ B7 五、發明説明(14 ) 值加上Z輸入值,最後再檢查此結果值是否大於或等於χ輸 入值Ν。若所計算出之數值大於或等於Ν ,則輸出數值1 ; 否則’輸出數值〇。該輪出值是一個標示為“位址-大於 一Ν ”的旗標,當其值為1時,代表交錯器的大小介於2的 連續次冪之間,因此,大於該較低次冪的多餘位元應予以 丟棄。 該位址—大於—Ν”值會被提供至Μυχ ,Η4,120及 122,作為它們的選擇指標。若“位址—大於—Ν”值為工, 則MUX 112挑選它的第一輸入。所選出的輸入值會從Μυχ 112中輸出’即為該交錯下一列的列數。若“位址-大於 一N”值為1,則MUX 114挑選它的第一輸入。所選出的輸入 值會從MUX 114中輸出,此為最終的列指標值。 LCS遞迴的產生經過如下。每一個處理週期都會有一個 代表係數c的k個位元數值,由該第一 LUT 102送出至資料路 徑k位元加法器152。從第二LUT 104中送出至MUX 116之第一 輸入的則是數值a。a的b次方值由第三LUT 106送至MUX 116 的第二輸入。該MUX H6的選擇輸入端接收的則是“向後執 行”旗標。若“向後執行”值為1,則MUX116選擇它的第 二輸入-一個k個位元的值,為其所選提供至乘法器144之數 值。若“向後執行”值非為1,MUX 116提供它的第一輸入-一個k個位元的值,至該乘法器144。第四LUT 108送出值x(-1 )至MUX 118的第一輸入。該MUX 118的第二輸入則是一個 來自於MUX 124輸出之k位元數值。MUX 118的選擇指標為行 指標值。該行指標的初始值並非為零。若該行指標值為 ___-17-____ 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 584862 A7 _____B7 五、發明説明(15 ) 1,則MUX118選擇它的第二輸入。若非為1,則MUX118選 擇它的第一輸入。該被選中的輸入值-一個k個位元的值, 會被提供至該乘法器144_。乘法器144所計算出之乘積值, 將送至該K位元加法器152。該資料路徑k位元加法器152最 好是可程式之加/減法器。當交錯器1〇〇是向後執行時,加 法器152減去c值。 該k位元加法器152於每個處理週期均提供一個輸出值至 該位址確認模組132的Z輸入端。加法器152的輸出亦提供至 MUX 120的第一輸入,以及從第一至第(R - 1)列的列暫存器 136,138,140中。加法器152的輸出還提供至MUX 122的第一 輸入,作為其之k位元輸入值。 MUX 120的第二輸入值,來自於該k位元加法器154。若 MUX120的選擇指標為1.,貝其選擇第一輸入。反之,貝,j選 擇第二輸入。所挑出的輸入值會被提供至第〇列的列暫存-器134。每一個列暫存器134,136,138,140均提供一個輸出 值至MUX 124所相應的輸入端。另外,第〇列列暫存器134的 輸出值還會被提供至乘法器146。MUX 124接收該列數值(列 計數器126的輸出)作為它的選擇指標。MUX 124選擇何列暫 存器輸入,全視其選擇指標輸入端的列數值而定。所以當 該列數值等於個別的列暫存器號碼時,每一個列暫存器 134,136,138,140都會更新,而在旗標“位址—大於—N” 等於零時,第零列之列暫存器134也會致能。 當R = 0時之k位元初始輸入值b,會提供至乘法器146。乘 法器146還接收該第零列列暫存器134的輸出值。乘法器146 _____-18-____ 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 一 ' 584862
把此二值相乘,並將結果提供至k位元加法器154。 路徑k位元加SH154還接收當R = 〇時之初始輸入值c。該資 料路徑k位元加》去器154最好是可程式的加/減法器。當交錯 器100向後執行時’加法器154是減去該初始值十加法器 丄54會將所接收到《二數相加(或依規劃的將二數相減)。相
裝 加後的結果個位元的數值,就會被提供至娜12: 的第二輸入。 MUX 122的選擇指標若是為丨,則其挑選第—輸人。如若 不然’就挑選該第二輸人。職職出該所挑選的輸入, 作為最終的行指標值。下-個位元值的所在位址,就是 MUX爾輸出的最終行指標值糾㈣積,再加上眶ιι4 所輸出的取終列指標值,所得出的結果。 在-具體實施例中,M週期的⑽乃是根據下列等式,以 玎
遞迴方式產生:
x(n+l)=(ax(n)+c)modM a ’ c ’ Μ為整數且滿足下列三個條件:⑴c必須盥μ互 質⑺“必須是ρ的整數倍’其中ρ是可以整除μ的任音質 數。^是4的倍數時,Μ也必須是4的倍數…)χ(〇^ 種子值,可以為任何整數。為使實現時較為簡易,乂最= 是2的次万。所以,a必定是4ρ + 1的形式,。則可以是任竟 的奇數。應注意的是’雖然上面是以^〇)為初始條件,; 圖2,具體實施例則是以x(])為初始條件。使用不 並無任何意義上的不同。 本紙張尺度適用中國國家標準(CNS) χ 297公寶了 -19 - 584862 A7 B7
五、發明説明(17 )
装 以下清楚地說明本發明之2· D, LCS交錯器:假設交錯的 尺寸是K=2N,該交錯器為r列,c行的矩陣,其R&c均為 2的/人方。欲父錯的資料先一列一列地寫入矩陣。首先, 使用任意一種傳統的交錯法則來排列這些列資料。最好是 依知、位元反轉法則來排列。每一個列中的行(即為該等資 料元素,這是因為每一個列中的行均只擁有一個位元)均 依相關的LCS所確立的法則來排列。兩不同列所相關的lCS 最好也是不一樣,但在替代中,可以是相同的。當所有列 其内的資料均排列過後,再一行一行地將資料讀出,即產 生出交錯序列。就如習於此藝人士所了解的,從長度為2ν 的交錯器中剔除無效的位址,可以產生出長度小於2ν,大 於的交錯器。
線 在一具體實施例中,一個2 - D,LCS之交錯器包含下列規 格:交錯器的大小為32(即Ν = 5),資料陣列定義為 {d(0),d(l),d(2),…d(3 1)}。該交錯器的結構是一個 具有四行,每行有八個元素的陣列。並以如下的方式,一 行行地將資料元素填入。 ~(〇)叩)J(2) rf(3) rf(4)叩)d ⑺、 ^(8) d(9) d(\0) d(ll) d(l2) d(l3) d(14) d(l5) d(\6) d([7) ^(18) d(\9) d(20) d(2l) d{22) d(23) ' ,^(24) d(25) d(26) d(27) d{2Z) d(29) d(30) <f(31)> 本紙張尺度適用中國國家標準(CNS) A4规格(210 x 297公爱) 584862 A7 B7 五、發明説明(18 ) 最好是將列指標作二進元形式(0 0,〇 1,1 〇,1 1)的位 元反轉(即,〇 〇,1 〇,〇 1,11 ),據此,則列的排列變 成: 〔綱 _ 叩)以3) 州)那)柳叩)、 d(!6) d(l7) d(l8) ¢/(19) d(2Q) d(2l) d(22) d(23) #8) rf(9) d(l〇)邱 1)叫2) d(13) #14) #15) · [d(24) d(25) d(26) d(27) d(2S) d{29) d(30) d〇\)) 位元反轉的功能乃在將交錯器的列,以一預定的位元反 轉演算法加以混合。使用位元反轉,可令交錯器的各列在 時間上能有符合吾人所要求的分隔。但在實現交錯器時, 位元反轉並非必要的功能。 在一特定具體實施例中,LCS的排列情沉乃依下列的公 式產生: 4(11+1)=^^)+7)-8,且xKOW, x2(n+l)=(x2(n)+5)mi)d8,且x2(0)=0, x3(n+l)=(5x3(n)+3)m(>d8,且x3(0)=4, 及 x4(n+l)=(x4(n)+3)mc)d8,且x4(0)=3, 根據上述公式,四列中元素的排列模式應為 {3,6,5,0,7,2,1,4} , {0,5,2,7,4,1,6,3} , {4,7,6,1,0,3,2,5}以 及{7, 2, 5, 0, 3, 6,1,4}。所以,在經過行的重排後,第一列變 成 (d(3) d(6) d(5) d(0) d(7) d(2) d( 1) d(4)), ____-21;__ 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 584862 A7 B7 五、發明説明(19 ) 第二列變成 (d(16) d(21) d(18) d(23) d(20) d( 17) d(22) d( 19)), 第三列變成 · {d(12) d(15) d(14) d(9) d( 8) d(ll) d( 10) d( 13)} ? 第四列變成 {d(31) d(26) d(29) d(24) d(27) d(30) d(25) d(28)}5 在各個列中的行均經重排後,交錯矩陣具下列形式: p⑺ d(6) d(5) d(0) d ⑺ d(2)仰 d(4)、 ^(16) d{2\) d(18) d(23) d(20) d(\l) d(22) ^(19) ^(12) ^(15) ά(ΙΛ) d(9) d(S) ^/(11) d(\0) ^(13) ^^(31) d(26) d(29) d(24) d(27) d(30) d(25) d(2S)/ 將該交錯矩陣中的資料,一行行地讀出,即產生出以下 的交錯序列·· {d(3),d(16),d(12),d(31),d(6),d(21),d(15),d(26),d(5), d(18),d(14),…,d(ll),d(30),d(l),d(22),d(10),d(25),d(4),d(19),d(13),-d(28)}若交錯器的需要長度是30,就需刪除資料元素d( 30)及 d( 31),以將上述之交錯器長度縮短,產生如下之交錯序 列:{d(3),d(16),d(12),4(34),d(6),d(21),d(15),d(26),d(5),d(18), d(14),…,d(ll),_,d(l),d(22),d(10),d(25),d(4),d(19),d(13),d(28)} 交錯器結構中的LCS可以視需要正向,亦或逆向產生, 以便可與渦輪解碼中之MAP解碼器形成最佳的配合之勢。 在一具體實施例中,該交錯序列乃是依下列的公式產生:
modM x(n)=(apx(n+l)-c) 其中 -22- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 584862 A7 ____— B7 五、發明説明(2〇 ) 應注意的疋’上式中之/5所代表的即是圖2具體實施例 中之係數b。 所以,LCS的產生需要每—個交錯器均唯一地由3r參數 所足我,其中R疋列號。需要一個相對較短,丨〇g2(C)xi〇g2(c) 。由於是模數的運算,所以沒有必要產生位元位i1〇g2(c)以 上的位元。需要一組R暫存器以保存R調和數序列的中間 結!。 每一列均有不同的參數x(〇),a,b可資參考,所以排列 的順序就有許多不同的可能。有需要為特定的渦輪碼,尋 找屬於它的最佳參數。 圖3是本發明成份編碼器之一具體實施例2〇〇,其為使用 於CDMA數位無線通訊系統中之某特定渦輪碼的最佳成份 編碼器.。編碼器200包含七個模2的加法器2〇2,204,206, 208,210,212,214及三個位元位置216,218,22〇。位元位_ 置216,218,220可以用三位元之暫存器來實現,或是用三 個單位元之暫存器來實現。模2加法器202,204,206 , 208, 210 ’ 212,214以一種精確的方式與該等位元位置216,218, 220連接,以產生出一組所需的回授拴接器。是故,規劃以 加法器202接收輸入位元。加法器2〇2還連接至位元位置216 及加法器204與206。位元位置216連接至位元位置218及加法 器204與206。位元位置218連接至位元位置220及加法器208與 210 °加法器210連接至加法器202。加法器204連接至加法器 212。加法器206連接至加法器208。加法器208連接至加法器 214。位元位置220連接至加法器210,214及212。將加法器 ____-23-_ 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 584862 A7
212 ’ 214的輸出分別規劃為第_及第二記號。 此技筑中已知,錯㊉現象可用成份解碼器(未顯示)中錯 誤事件的輸入與輸出.權數來表現。譬如,42 ιεεε Trans. Info. Theory 409-28( 1996^ 3 ^ ) t ^ S. Benedetto & Mentors, 所寫m輪碼:一些並接式編碼法的結果,,,即 述及此i吳事件的輸入權數是發生錯誤的位元數,而錯 誤事件的輸出權數則是發生錯誤的碼記號數。輸入權數^ 1之錯誤事件明顯地偏離所有零的狀態,不可能再併入〇 曰在位移暫存器中播止境地循環,累增出更多的輸出權 數)。泛疋由於編碼器的遞迴(或回授)部份所導致。由於結 構是如此,所以已顯示出,處在高信號雜訊比下的渦輪碼 放此主要受到輸入權數為2之輸出錯誤事件的影響。上 述足同一篇文章中有述。渦輪碼的錯誤最低標準,可以使 用所謂的有效自由距離漸近線,準確地預測。該有效自由 距離是所有輸入權數為2之錯誤事件的最小輸出權數。長 度短的輸入權數2錯誤事件一般會導致最小距離錯誤事 件。對圖3之編碼器200而言,回授多項式是1+D2+D3,以及 輸入權數2之錯誤事件的形式為的,其中户i , 2 ’…’ k是0,…,κ-7j範圍内之任意平移(假設κ為交錯器 的大小)。此只要檢查該成份編碼器200的格架,即可輕易 地驗說出來,就如習於此藝人士所了解的那樣。 應注意,圖3具體實施例的交錯器大小標示為κ ,而圖2 具體實施例之交錯器大小則標示為Ν。習於此藝人士應知 道’使用不同的字母並無任何特別的意義。 —μ—— …________ 24 本紙張尺度適用中國國家標準(CNS) Α4規格(21〇Χ297公釐)
裝 訂
線 584862
(k’ k+7j)位置上的位元對’映射至(s,s,位元對,特別 是在j及t較小時。此輸入錯誤事件列於下表丨。下表列出每 一個事件之第一成份碼之輸出同位權數,使用的則是IS_95 中所定義的規格’適當的比率為1/2, 1/3及1/4前向鏈 的穿刺模式。 譬如,假W(⑽)的錯誤模式令第—解碼器出現最小 距離錯誤事件。該渦輪交錯器將會把兩錯誤(Dk, Dk+7)映射 至兩個位置上(DD,若丨m_n卜7或7的某倍數,則第 二解碼器輸出-個低距離錯誤事件是有可能的。渦輪解碼 器最基本的目的就在於防止此種映射行為的發生。亦即, 交錯器應將第一維度中易招致低權數錯誤事件之位元集 合’峡射至第二維度中之可產生大量輸出權數之位元; 合。所以’所需要的^法是設計交錯器時,儘量避免發生 表1輸入權數2錯誤事件 輸入錯誤事件 輸入長度 第1調和輸出槿赵 速率1/2 速率1/3 ~~-_ 速率1/4 Dk(l+D7) 8 3 6 8 Dk(l+D14) 15___ ^^ 16 Dk(l+D21) 22 7 _ 14 20 Dk(l+D28) 29 10 28_ 28 —------ —"-----_[28 __ 若所給足的交錯器内含輸入權數2— 2映射的形式是 DkW+D7卜Dk2(HDV則組合出的最終錯誤事件輸出權 數,對比率1/2之滿輪碼而言,將會是2 + 3 + 3 = 8。此為系
五、發明説明( 23 ) 統位元的權數(2)與分別來自於兩成份編碼器 (3及^和。同樣地,若交錯器内含輸入權數 則…的最終錯”件輸 、 ’、率1/2〈過輪碼而·^ ,將會是2 + = n , 對速率1/3之渦輪碼而言’則將會是2 + 6+1〇〜。 另外二輸入權數4之低成份輸出權數錯誤事件也有可能 映射至矛二維度中之兩個輸入權數2的低輸出權數錯誤事 件。^種映射關係標示以4—{2,2}。輪入權數4之成份 錯誤事件的一般形式解雖然並不存在,但下表内含一些屬 於成份編碼11200之低輸出權數錯誤事件,成份編碼器· 是於採用以95空傳介面之CDMA數位無線通訊系統中,作 為纟’]向鏈路渦輪碼之第一成份編碼器。 表2 ·輸入權數4錯誤事件
584862 A7 B7
裝 訂
584862 A7
—《2,2 })。此方法可設計出該特定大小下之最佳交錯 器。應指出的是,若在作權數4 —丨2,2 }映射關係的最佳 化設計時,所針對的交錯器是大小為2N且可強固地向下切 所得出的錯誤事件,情 疋故’設計的主要目的麵,將交錯器的參 佳,的程度,以避免發生上述不良的映射關係,或 其权度降至最低。it常,具有最低组合輸出權數之不良喊 射是最需避免及/或最小化的映射。在設計某特定大小(考 如’ 153G)之交錯器時,有可能以最佳化交錯器參數的力 式,來同時最小化兩種型式之映射(即,權數2 — 2及權數z 分至任何尺寸大於2ν·ι之交錯器(此稱之為“易切分,,交錯 益)’則欲達最佳化設計是較困難的。 針對圖3具體實施例之2 D,LCS交錯器,執行搜尋以得 出大小2 Ν之友善穿刺交錯器。下表3,包含搜尋的最初結 果。下表列出每一種交錯器之大小及所使用的列數及行 數,與x(0),a,c係數。為便於實現及顧及實現的效率, 所有的交錯器均使用3 2行。 表格3 : 2D,LCS之交錯器的係數 K=512,32X16 K=1024,32X32 K=2048,32X64 K=4( )96?32: X128 χ(〇) a c x(〇) a c x(0) a c」 x(〇) a c 14 9 11 30 29 9 24 45 63 95 61 63 6 1 13 17 29 5 41 53 53 7 121 119 6 1 11 19 9 1 46 53 41 29 113 105 10 13 15 31 1 17 46 5 43 28 29 53 -------28- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)
裝 訂
線 584862 A7 B7 五、發明説明(26 ) 6 5 13 19 17 31 9 29 13 16 25 97 7 9 11 11 13 19 15 37 39 69 33 33 1 9 5 18 13 21 13 53 19 41 93 81 4 9 5 20 9 ’27 28 1 57 34 1 117 14 5 9 31 21 11 20 29 5 100 69 75 11 13 9 29 21 17 1 49 39 69 113 39 12 9 5 26 25 21 15 33 31 40 13 15 10 9 1 19 29 15 9 33 19 13 33 19 10 13 13 11 13 7 30 21 5 23 77 123 1 5 5 1 1 27 61 37 45 84 9 127 11 1 1 24 13 31 12 45 7 87 65 113 2 5 11 10 5 29 9 37 19 16 17 81 4 9 11 23 29 29 12 37 53 85 117 69 15 9 5 26 1 15 59 13 25 103 41 73 14 1 3 28 21 23 18 25 32 50 73 5 9 1 9 11 21 11 9 49 31 91 73 35 7 1 7 16 21 3 17 45 29 59 73 59 13 13 13 17 13 11 50 25 23 87 97 39 6 13 9 10 21 13 26 21 41 47 125 3 1 13 15 13 17 7 14 61 45 34 21 33 7 1 7 24 9 5 12 25 37 120 57 103 2 5 15 17 25 1 34 33 55 76 77 103 5 5 9 10 21 25 10 29 59 19 13 73 0 9 1 28 21 27 16 13 15 49 121 111 10 5 1 13 25 9 29 37 41 4 97 97 9 9 13 21 13 3 33 5 33 13 101 71 3 9 1 4 17 27 30 49 51 73 9 77 11 9 3 18 29 29 0 21 47 102 101 1 __-29- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 584862 A7 B7 五、發明説明(27 表格3(續):2-D,LCS之交錯器的係數 K=8192,32X256 K=163,84,32X512 K=32768,32X 1024 χ(〇) A C χ(〇) a c x(〇) a c 40 37 249 181 45 289 939 281 913 73 53 59 75 217 223 9 85 969 88 177 105 251 125 257 463 989 165 46 29 91 89 141 457 363 981 59 199 73 141 304 29 31 637 437 751 211 185 133 328 153 161 599 597 621 85 193 181 428 17 451 971 173 615 18 169 209 394 245 147 1007 157 79 246 81 89 178 321 111 444 693 415 192 85 71 186 217 227 339 205 331 144 189 223 438 357 423 382 293 565 6 129 73 465 85 261 505 981 259 118 69 119 24 185 109 728 845 447 221 217 127 415 417 465 139 953 383 241 109 27 225 137 33 682 537 461 235 209 133 77 61 265 487 293 903 181 189 235 158 45 211 453 9 885 126 245 37 278 373 255 352 729 619 129 173 191 410 117 175 442 81 315 222 9 43 275 253 429 537 945 519 89 113 159 35 85 289 201 13 175 21 13 205 496 249 15 459 745 97 75 253 183 79 365 221 592 69 829 195 149 71 257 449 337 803 909 385 45 101 209 232 81 137 133 425 201 246 193 159 385 121 87 965 109 1001 228 85 97 138 429 73 707 685 105 0 161 151 479 9 23 627 289 97 _-30- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 584862 A7 B7 五、發明説明(28 ) 191 45 31 158 141 51 1019 805 753 162 165 35 442 481 71 101 69 573 196 149 191 464 269 157 521 753 183 94 157 197 413 * 505 237 290 221 181
裝 在另一具體實施例中,係數a的值設定為1,且再執行一 次新的搜尋以2 N從2 D,LCS交錯器中,得到友善穿刺的交 錯器。順向及逆向的LCS遞迴公式分別地被簡化成如下: x(n+l)=(x(n)+c)mod Μ 及 x(n)=(x(n+l)-c)mod Μ
線 以下之表4,内含初始的搜尋結果。為便於實現及顧及 實現的效率,所有的交錯器均採用3 2行。從表4中的結果 可知,將所有LCS遞迴中的a設定為1,並不影響交錯器的 品質。將a簡化成1,基本上降低複雜度。譬如,圖2具體 -實施例中所述的第二及第三LUT(用來儲存a及ab值的LUT)就 不需要。圖2具體實施例中所述的k位元乘法器也不需要。 從表4中可以看出,只需替交錯器的每一列指明初始條件 X (- 1)及加成常數c即可。較大尺寸之交錯器的係數,並未 包含於此表中,此表只指明初始搜尋的結果,這是因為申 請本發明時,它們尚未提供出來。 _-31 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 584862 A7 B7 五、發明説明(29 表格4 : 2D ) ,LCS交錯器係數 K=512, Κ=1024, Κ=2048, K=4096, K=8192, K=16384, 1032768, 32X16 32X32 32X64 * 32X 128 32X256 32X512 32X 1024 x(-D C x(-D c x(-D C x(-l) c χ(·ι) c x(-D c x(-D c 1 1 1 3 0 5 - 11 9 14 1 1 l • 11 15 5 13 14 1 1 5 13 27 3 23 • 1 5 3 17 9 25 6 7 3 13 8 3 6 15 25 5 4 1 • 12 11 3 23 57 61 • 14 13 2 19 0 5 _ 15 7 1 13 60 49 _ 13 15 8 5 1 9 4 5 25 9 47 55 15 5 14 9 20 25 • 14 5 11 23 34 19 - 12 3 17 13 46 1 _ 3 15 19 13 52 13 14 13 4 39 8 75 _ 8 19 17 35 35 67 _ 12 15 24 27 48 51 _ 14 11 28 23 57 47 14 11 29 19 59 35 6 27 12 51 24 103 _ 7 31 14 59 29 115 2 23 4 47 9 91 • 1 27 2 55 4 107 • 2 15 5 27 11 55 • 13 7 26 11 52 19 - 9 3 19 3 38 7 - -32 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 584862 A7 B7 五、發明説明(3〇 12 11 24 23 49 」 47 14 15 28 31 56 63 _ 11 19 22 35 45 67 鱗 12 15 25 27 50 51 ’ - - - - - - - 根據一具體實施例,輸入進來之位元串流,會被送入雨 個編碼器,一個是原樣的送入,另一個則是先經過交錯器 後才送入。在該二編碼器的輸出端,該同位記號會一起融 入另一個輸出串流,以碼率高於資料率某比例的方式。若 兩編碼器是1/2之編碼率,亦即,每輸進一個記號,就有 兩個記號輸出’則輸出率就會三倍於輸入率,這是因為每 一個編碼器均會貢獻一個額外的同位記號,加在輸出的系 統資訊上之故。當每一編碼器所出之資訊記號均相同時, 就去掉一個記號。 圖4是渦輪編碼器310的最上層圖,其具有兩個成份迴旋 編碼器320, 340以及一個依本發明之意旨所建構之交錯器 360。(習於此藝人士將知道,實現本發明時,該二編碼器 毋須相同)。成份編碼器320、340均包含一第一互斥或(x〇R) 閘322。該XOR閘322為編碼器320及340提供出輸入端子。x〇R P甲”22是實現於編碼器中作為單位元加法器之幾個相同的 2: 1XOR閘的頭一個。該第一x〇R 322的輸出會輸入至第一 單位元位移暫存器324,並分別地前饋至第二及第三x〇R。 該第-位元位移暫存器324是實現於編碼器中的幾個相同的 單位元位移暫存器的第一個。 ______-33 二 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 584862 A7 B7 五、發明説明(31 ) 第二及第三XOR 326,328的第二輸入,則是第一位移暫存 器324的輸出。該第一位移暫存器324的輸出還提供至第二 位移暫存器330。第三XOk閘328及第二位移暫存器330,為第 四X0R閘334提供了第一及第二輸入。第二位移暫存器330還 輸出至第三位移暫存器332及第五X0R閘336。第二X0R閘326 及第三位移暫存器322提供了第一及第二輸入,至第六X0R 閘338。第四X0R閘334及第三位移暫存器332提供了第一及第 二輸入,至第七X0R閘342。 習於此藝人士應知,在此圖示例中,編碼器320及340是 K = 4速率,1/3的迴旋編碼器,具有^―及口^之前饋產 生器多項式。回授產生器多項式則是13 QCtal。在此圖例中’ 渦輪解碼器的碼多項式乃是根據1998年末第一次所公佈的 cdma 2000標準多項式,導線硬體式地實現。所揭示的具體 實施例,與碼多項式或編碼器的型式無關。 運作時,所輸入的資訊位元串流-xk,會為第一編碼器 320的第一 X〇R閘322及交錯器360所接收。交錯器360會將該 輸入串流加以重排(重排的原則以下會有充份的說明),然 後輸入至第二編碼器340的第一 X0R閘322。資訊位元輸入串 流xk在通過編碼器後,在第一編碼器320輸出成伴隨有同位 位元^^观與y0,lk,在第二編碼器340輸出成伴隨有同位位元y1’% 與yUk。(習於此藝人士將知道,編碼器320是一個按法執行 的編碼器,這是因為輸入_流xk在通過它之後並未有所更 改。)此五個輸出信號會融合成一個_流,並傳遞至發射 器中的下一個元件(未顯示)。 _____-34-___ 本紙張尺度適用中國國家標準(CNS> A4規格(210 X 297公釐) 584862
圖5是是簡化的方塊圖,顯示出圖4中之交錯器的細部結 構:因為_4之編碼器32〇及34〇的輸人,彼此之間的排列順 序又更所以,錯疾偵測需要一編碼器(譬如,320)的輸 =必須重排以符合另一解碼器(34〇)的輸入_流。同樣的, 第二解碼器(34G)的輸出必須予以解交錯,以與第一編碼器 (320)的輸入串流相符。 將模擬的交錯器實際施行有重重問題,乃有關於如何產 生正確的又錯器位址,這是因為,若無法做到,則在進行 人錯處理時’ ’貝料位址會混在一起。這些功能均由交錯器 360施行,它會在交錯處理期,抽取出正確的位址。 父錯器360會根據本發明之意旨,將線性位址序列映射成 一順序變更之位址序列。重排位址的方式,類似於位元反 轉區塊X錯器,但區塊之某給定列中之位址需使用線性調 和數序列·( LSC) ’進一步地重排。為產生交錯位址序列, 需以線性位址序列填出一個rx C的矩陣,採用方式則是由 從取上一列開始,由左至右填入。矩陣的列數32= 25 ,行 數則是C== 2C。此特定交錯器之行數固定在32,所以r等於 25。、C /是總行數。譬如,若交錯器位置的數目是128, 那麼會有四行,3 2列,C等於四。接著,每一列中的位址 均依列特定LCS混合在一起。然後,把位元反轉法則使用 在列指標上,將矩陣列予以混合。最後,從矩陣的最左行 開始,一列列、由上而下、由左至右地將矩陣中的位址讀 出。每一列的LCS形式為: xi(n+l)=xi(n)+c(i) [ 1 ] ____-35- 本紙張尺度適用中國國家標準(CNS> A4規格(210 X 297公釐)
裝 訂
線 584862 A7 B7 五、發明説明(33 其中i疋列4日“ ’ C (i)是奇模數c。對cdma2000的滿輪交 錯器360而言,每一列所給定的初始條件均為祕〇)二c(i), 如此’就可在無須儲存先前值的情況下,直接的計算上述 公式。是故, xi(n)=c(i) · (n+1) 〔 2〕 所以,任意給一個線性位址序列:〇,…,K- 1中的位 址,則其所對應的交錯位址可以如下方式計算得出: A=bitrev(row) · 2c+{(Col+l) · c(i)}modC 〔 3〕 其中A是交錯位址,、row /是輸入線性位址之5最低有效 位元(LSB), Col >是輸入線性位址之(:最高有效位元 (MSB),C是總行數,c( i)是對照表的輸出,其中“ Γ是目 前的列數。係數c( i)是以對照表(LUT)的方式來實現的。交 錯器360包含分離的對照表,每一個支援的c值均有。為在 交錯器大小K為2k-1<K< = 2kW情況下,產生交錯的位址序 列,將挑選C=2k·5所相應的c(i)LUT,然後利用公式3產生位 址。任何大於K- 1的位址,都將丟棄。由於交錯器是以一 行行,非一列列的方式“讀出”的,所以絕不會有連續錯 誤的位址出現。線性陣列中的數值是以列的方式讀出的, 這意謂著’在開始讀取列2之前,必先讀取列1。本發明之 交錯器是以行的方式讀取的。在本發明的交錯器公式中的 交錯器位址的上半部,可看到一個代表列的標記,即表示 讀取的方式以行為順序的。cdma 2000標準中,有針對大小 為512,1024,…,32768等之交錯器的對照表。
_ * 36 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 584862 A7 ___ _B7 五、發明説明(34 ) LCS父錯器必須能分段成非2的次方的長度。為了能隨意 的存取X錯器,必須在知道存取點之前,先知道分段的 f 且"T載入父錯备的功能。為達到高的解碼率,有需要 在每一個時脈週期,產生一個有效的交錯器位址。就如上 所指出的,公式3之交錯器演算法無法產生兩個連續的有 效位址。本發明擷取此項性質的優點。如圖5所示,交錯 器360具有雙計算單元362, 364,此二計算單元每^均實 現公式3。計算單元362,364分別包含位元反轉單元弘6, 370,以及分別包含係數對照表3似,372。資料的計算路徑 則依上述之cdma2〇〇〇標準施行。這也就是說,每一個計算單 元均適以實現上述公式3之演算法則。 第一计算單元362計算目前的交錯位址,第二計算單元 )64计算的則是下一個叉錯位址。所以,交錯器36〇在每一 個時脈週期都可產生出有效的交錯位址。 若第。十异單元362輸出端的數值n+m<N(其中n是行位 址,m是列位址,交錯器的長度),則臨界檢測器374就 會偵測出其為錯誤位址,並輸出一‘不正確位址,信號。 臨界檢測器374所輸出的‘不正確位址,信號控制著交錯器 選擇多工器376。多工器376會回應該‘不正確位址,信 號,從第一計算單元362的輸出及第二計算單元364中擇其 一 ’作為交錯器360的輸出。 所產生出的每一個有效位址,均會使位址補償計數器3科 向上加1。位址補償計數器384為位址補償電路38〇的一部 份,該電路尚包含一外部控制器382及一位址補償暫存器 ------37- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公董5 一 ---- 584862 A7 ______Β7 五、發明説明(35~~~" 386 ’位址補償暫存器386可用隨機存取記憶體(ram)來實 現。位址補償電路380透過第一加法器378操控輸入線性位 址以得出切入位址。使用可載入的位址補償計數器384,可 貫現隨機的存取。在隨機存取交錯器中之線性位址之前, 先將位址補償暫存器386中之值設成切入點的總數,如此方 可從位址陣列中的任一處起始交錯器36〇。 貫現滿輪解碼器的一般方法是使用成份解碼器之l〇g_ 解碼器。log-MAP解碼器需要透過碼格作順向及逆向迭代, 此一般需要渦輪交錯器可以順、逆方向執行。順向定義 為:交錯器的運作為從線性位址〇至最大位址。相反地, 逆向定義為:交錯器的運作為從最高位址至線性位址〇。 了以將log- MAP型之滿輪解碼器做成僅需順向操作,不過, 此需額外的暫存記憶體,耗費極高的成本。為降低1〇臣_ 解碼器對儲存記憶體的需求,1〇臣_解碼器通常做成使用 滑動窗。滑動窗的使用不僅使交錯器可倒退執行,也可使 隨機存取交錯器陣列變得可行。為此,本發明之交錯器6〇 被設計成既可逆向執行,亦可順向執行。 為做到可逆向執行,所以交錯器演算法則雖未變更,但 該雙計算單元的輸入卻需變更。將兩計算單元原先的輸入 一位址+位址—補償及輸入—位址+位址—補償+丨的兩輸入, 更改成輸入_位址+位址—補償及輸入—位址+位址—補償· 1。以圖6解碼器400所供應出之順逆信號為命令,再配以一 第二加法器388及一第二乘法器90,即可做到,以下有較充 份的說明。此信號來自於解碼器的控制信號。這也就是 _—___-38- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇x撕公爱) —--- 584862 A7
=。’。該解碼器將根據其目前所執行的操作特性來決定該交 •普咨是否應操作順向或逆向操作 另外必,准持正確的切入計數(或位址補償),控制器384 會將位址補償計數器384驅動成具有下數計數器的功能,而 非順向操作時的上數計數器功能。 簡言之,本發明意旨在於,提供—個獨特的,將cdm漏〇 標準中所使用的LCS渦輪交錯器演算法則予以實現的方 去所a現的渦輪X錯器採擷了 cdma2〇〇〇精巧特性的優點, 而成為一個功能性極強的渦輪交錯器。 圖6是融合本發明意旨之渦輪解碼器的施行圖解方塊 圖。渦輪解碼器400中,除交錯器及解交錯器乃依本發明意 旨設計,餘者均為傳統的設計。渦輪解碼器4〇〇接收編碼器 所輸出的五個信號(典型地乃透過通道而來),然後以回授 方式施行迭代處理,第一軟輸入,軟輸出(SIS〇)解碼器41〇 透過回授接收到該資料串流,另再接收非交錯的同位位 元,最後將結果輸出至交錯器420。 圖6中,x0…xk- 1是資訊記號向量,严…严1是同位記號向 量,均來自於圖4渦輪編碼器310之第一編碼器32〇 , yi〇··· yiiM 則是來自於圖4渦輪編碼器310之第二編碼器340之同位記號 向量。另外,Z0…Zk- 1是來自於SISO解碼器之先驗資訊向 量,L0··· Lk-1是log-可能性比向量,u0…uk-1是已解碼資料 位元向量。 所接收之交錯信號將連同本地交錯器420的輸出,—同輸 入至第二SISO解碼益430 ’其輸出則至弟一解X錯器440及透 -39 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
裝 訂
k 584862 A7 B7 五、發明説明(37 ) 過硬決定單元450,至第二解交錯器460。實現本地交錯器 420,解交錯器440及解交錯器460的方法與實現該使用於渦 輪編碼器310中之交錯器360的方法相同。 渦輪解碼器400解碼一編碼器(320或340)的輸出。SISO解碼 器410及430彼此之間互傳錯誤權數,為下一個解碼器提供 出先驗值以指出該解碼硬決定位元應為何值。本質上,此 程序在每一步驟是迭代的,逐一提供更多的權數至下一個 解碼器,藉以幫助解碼的進行。每一個解碼器410及430的 工作因此影響至下一個解碼步驟。 硬決定單元450的功能是將軟輸出記號,以習於此藝人士 所知之方式轉換成硬輸出位元,其通常是一個比較器。硬 決定單元450的輸出會接受解交錯,隨即提供出解碼器400 之已解碼資料位元向量輸出。 一種新穎的改良型渦輪碼交錯器已說明完畢。習於此藝 人士會了解,雖然文中所揭示之各具體實施例乃以細胞式 電話系統為藍本,但本發明之特性可良好地應用在任何形 式之通訊系統上,包括譬如,衛星通訊系統。習於此藝人 士會另了解,文中所述之各具體實施例可用於對數據或語 音通訊編碼。還會了解,文中所述及之資料、指令、命 令、資訊、信號、位元、記號、片塊可用電壓、電流、電 磁波、磁場或磁粒子、光場或光粒子,或這些物理現象的 任意組合來表現。 習於此藝人士另會了解到,此處連同所揭示之各具體實 施例一起描述之各種圖示邏輯方塊及演算法步驟,均能用 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) -40 - 584862 A7 B7 五、發明説明(38 ) 下列裝置來實現或執行:數位信號處理器(DSP)、特殊應 用積體電路(ASIC)、離散閘或電晶體邏輯、離散硬體元件 (像是譬如,暫存器及FIFO)、執行一組韌體指令之處理 器,或是任何傳統的可程式軟體模組及處理器。該處理器 最好是一微處理器,但在替代具體實施例中,該處理器可 以是任何傳統的處理器、控制器、微處理器,或狀態機。 該軟體模組可常駐在隨機存取記憶體中、快閃記憶體中、 暫存器中,或其他任何此技藝中已知任何形式之可寫入儲 存媒體。 本發明已以適於某特定用途之特殊具體實施例為參考, 說明完畢。習於此藝人士在領會本發明意旨後,將可在本 發明範圍内,做另外的修改、應用及體現。是故,後附之 專利範圍意圖涵蓋任何所有的在本發明範圍内之此種應 用、修改及具現。 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)

Claims (1)

  1. A8 B8 C8 D8 10月) 第 091102^21 中文申請換、 -_ "丨·· 申請專利範圍 1 · 一種交錯器,包含·· 第一裝置,用以接收—輸入位址且於第一時脈週期期 間,回應該位址,計算出—第一連續交錯位址; 第一裝置,用以接收—輸入位址且於該第一時脈週期 期間,回應該位址,計算出一第二連續交錯位址; 第三裝置,用以判斷該第一或第二連續交錯位址是否 有效,並回應產生一信號;以及 回應該信號之第四裝置,用以挑選該第一或第二連續 交錯位址,作為該第一時脈週期之輸出交錯位址。 2.如申請專利範圍第1項之交錯器,其中該第一裝置包含用 以實現此表示式之裝置: A=bitrev(row) · 2c+{(col+l) · c(i)}modC, 其中A是該又錯位址,‘ row’是該輸入線性位址之5個最 低有效位元,col是該輸入線性位址之CM固最高有效位 元,C是總行數,以及c(i)是對照表之輸出,其中“厂, 是目前的列號。 3·如申請專利範圍第2項之交錯器,其中該第二裝置包含用 以實現此表示式之裝置: A=bitrev(row) · 2c+{(col+l) · c(i)}modC, 其中A是該交錯位址,‘ row’是該輸入線性位址之5個最 低有效位元’ ‘ col’是該輸入線性位址之c個最高有效位 元,C是總行數,以及c(i)是對照表之輸出,其中“厂, 是目前的列號。 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) M4862
    4·如申請專利範圍第1項之交錯器,其中該第三裝置是一臨 限檢測器。 5.如申請專利範圍第4項之交錯器,該臨限檢測器包含一比 較器。 6·如申請專利範圍第丨項之交錯器,其中該第四裝置是一多 工器。
    7.如申請專利範圍第6項之交錯器,其中該第一裝置之輸出 提供一第一輸入至該多工器,該第二裝置之輸出提供一 第二輸入至該多工器,以及該第三裝置之輸出提供該多 工器之控制輸入。 8·如申請專利範圍第丨項之交錯器,另包含第五裝置,用以 回應一方向控制信號,控制該交錯器相對於該輸入位址 而順向或逆向移動β 訂 9·如申請專利範圍第1項之交錯器,另包含用以提供相對於 該輸入位址之位址補償的裝置❶ 、 10.—種交錯器,包含:
    第一裝置,用以接收一輸入位址且於第一時脈週期期 間’回應該位址,計算出一第一連續交錯位址; 第二裝置’用以接收一輸入位址且於該第一時脈遇期 期間’回應該位址’計算出一第二連續交錯位址; 第三裝置,用以判斷該第一或第二連續交錯位址是否 有效,並回應產生一信號; 回應該信號之第四裝置,用以挑選該第一或第二連續 交錯位址,作為該第一時脈週期之輸出交錯位址; •2-
    584862 i,’S ‘ 月η '止 …二 :,ϋ Α8 Β8 C8 D8 六、申請專利範圍 第五裝置,用以回應一方向控制信號,控制該交錯器 相對於該輸入位址而順向或逆向移動;以及 第六裝置,用以提供相對於該輸入位址之位址補償。 11·如申請專利範圍第1〇項之交錯器,其中該第一裝置包含 用以實現此表示式之裝置: A=bitrev(row) · 2c+{(col+l) · c(i)}modC, 其中A是該交錯位址,‘ row,是該輸入線性位址之5個最 低有效位元,‘ col,是該輸入線性位址之C個最高有效位 元,C是總行數,以及c(i)是對照表之輸出,其中、,, 是目前的列號。 12. 如申請專利範圍第1 1項之交錯器,其中該第二裝置包含 用以實現此表示式之裝置: A=bitrev(row) · 2c+{(col+l) · c(i)}modC, 其中A是該交錯位址,‘ row’是該輸入線性位址之5個最 低有效位元,‘ c〇r是該輸入線性位址之C個最高有效位 元,C是總行數,以及c (i)是對照表之輸出,其中“ {,, 是目前的列號® 13. 如申請專利範圍第! 〇項之交錯器,其中該第三裝置是一 臨限檢測器。 14. 如申請專利範圍第1 3項之交錯器,該臨限檢測器包含一 比較器。 15. 如申請專利範圍第1 〇項之交錯器,其中該第四裝置是一 多工器。 -3- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 584862
    A BCD 六、申請專利範圍 16. 如申請專利範圍第丨5項之交錯器,其, 丹T邊罘—裝置之輸 出提供一第一輸入至該多工器,該第- _ 币—裝置又輸出提供 一弟二輸入至該多工器,以及該第三裝置 衣直 < 輸出提供該 多工器之控制輸入。 17. —種交錯或解交錯之方法,包含下列之步驟: 接收一輸入位址且於第一時脈週期期間,回應該位 址,計算出一第一連續交錯位址; 接收一輸入位址且於該第一時脈週期期間,回應該位 址,計算出一第二連績交錯位址;以及 判斷該第一或第二連續交錯位址是否有效,並回應產 生一信號;以及 回應該信號,挑選該第一或第二連續交錯位址,作為 該第一時脈週期之輸出交錯位址。 4- 本紙張尺度適用中國國家標準(CNS) A4規格(21〇x 297公«)
TW091102921A 2001-02-23 2002-02-20 Random-access multi-directional CDMA2000 turbo code interleaver TW584862B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/792,483 US6871303B2 (en) 1998-12-04 2001-02-23 Random-access multi-directional CDMA2000 turbo code interleaver

Publications (1)

Publication Number Publication Date
TW584862B true TW584862B (en) 2004-04-21

Family

ID=25157032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091102921A TW584862B (en) 2001-02-23 2002-02-20 Random-access multi-directional CDMA2000 turbo code interleaver

Country Status (9)

Country Link
US (3) US6871303B2 (zh)
EP (1) EP1374418A2 (zh)
JP (3) JP4191485B2 (zh)
KR (2) KR100963384B1 (zh)
CN (2) CN1937473A (zh)
BR (1) BR0207522A (zh)
HK (1) HK1063245A1 (zh)
TW (1) TW584862B (zh)
WO (1) WO2002069506A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7542410B2 (en) 2004-12-06 2009-06-02 Intel Corporation Interleaver and associated methods

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871303B2 (en) * 1998-12-04 2005-03-22 Qualcomm Incorporated Random-access multi-directional CDMA2000 turbo code interleaver
US6999530B2 (en) * 2000-08-22 2006-02-14 Texas Instruments Incorporated Using SISO decoder feedback to produce symbol probabilities for use in wireless communications that utilize turbo coding and transmit diversity
US6938224B2 (en) * 2001-02-21 2005-08-30 Lucent Technologies Inc. Method for modeling noise emitted by digital circuits
KR20030005294A (ko) * 2001-02-23 2003-01-17 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 터보 디코더 시스템
GB2373149B (en) * 2001-03-06 2004-07-07 Ubinetics Ltd Coding
JP4127757B2 (ja) * 2001-08-21 2008-07-30 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、通信端末装置、及びバースト信号送信方法
RU2261529C2 (ru) * 2002-02-06 2005-09-27 Самсунг Электроникс Ко.,Лтд Перемежитель и способ перемежения в системе связи
US7082168B2 (en) * 2002-05-21 2006-07-25 Coffey John T Methods and apparatus for self-inverting turbo code interleaving with high separation and dispersion
KR100516586B1 (ko) * 2002-12-10 2005-09-22 삼성전자주식회사 부호 분할 다중 접속 이동 통신 시스템의 오류 정정 장치및 방법
DE10306302A1 (de) * 2003-02-14 2004-08-26 Infineon Technologies Ag Verfahren und Schaltung zur Adressgenerierung von Pseudo-Zufalls-Interleavern oder -Deinterleavern
WO2005027451A1 (en) * 2003-09-12 2005-03-24 Ems Technologies Canada, Ltd. Joint synchronizer and decoder
US7237181B2 (en) * 2003-12-22 2007-06-26 Qualcomm Incorporated Methods and apparatus for reducing error floors in message passing decoders
ATE400089T1 (de) * 2003-12-22 2008-07-15 Koninkl Philips Electronics Nv Siso-decoder mit subblockverarbeitung und auf subblock basierendem stoppkriterium
US7861059B2 (en) * 2004-02-03 2010-12-28 Nextest Systems Corporation Method for testing and programming memory devices and system for same
JP4408755B2 (ja) * 2004-06-28 2010-02-03 Necエレクトロニクス株式会社 デインタリーブ装置、移動通信端末及びデインタリーブ方法
KR100853497B1 (ko) * 2004-08-25 2008-08-21 삼성전자주식회사 터보 인터리빙 장치 및 그의 출력주소 발생 방법
EP1657845A3 (en) * 2004-11-10 2012-03-07 Alcatel Lucent Dynamic retransmission mode selector
US7543197B2 (en) * 2004-12-22 2009-06-02 Qualcomm Incorporated Pruned bit-reversal interleaver
RU2007136105A (ru) * 2005-03-29 2009-04-10 Мацусита Электрик Индастриал Ко., Лтд. (Jp) Передающее устройство mimo, приемное устройство mimo и способ повторной передачи
US7613243B2 (en) 2005-04-12 2009-11-03 Samsung Electronics Co., Ltd. Interleaver and parser for OFDM MIMO systems
US7437650B2 (en) * 2005-04-12 2008-10-14 Agere Systems Inc. Pre-emptive interleaver address generator for turbo decoders
US7395461B2 (en) * 2005-05-18 2008-07-01 Seagate Technology Llc Low complexity pseudo-random interleaver
US7360147B2 (en) * 2005-05-18 2008-04-15 Seagate Technology Llc Second stage SOVA detector
US7502982B2 (en) * 2005-05-18 2009-03-10 Seagate Technology Llc Iterative detector with ECC in channel domain
US7512863B2 (en) 2005-10-12 2009-03-31 Qualcomm Corporation Turbo code interleaver for low frame error rate
US7729438B2 (en) * 2005-12-01 2010-06-01 Samsung Electronics Co., Ltd. Interleaver design for IEEE 802.11n standard
US7660232B2 (en) 2005-12-20 2010-02-09 Samsung Electronics Co., Ltd. Interleaver design with column skip for IEEE 802.11n standard
US7756004B2 (en) 2005-12-20 2010-07-13 Samsung Electronics Co., Ltd. Interleaver design with column swap and bit circulation for multiple convolutional encoder MIMO OFDM system
US7859987B2 (en) 2005-12-20 2010-12-28 Samsung Electronic Co., Ltd. Interleaver for IEEE 802.11n standard
US7729447B2 (en) * 2005-12-22 2010-06-01 Samsung Electronics Co., Ltd. Interleaver design with multiple encoders for more than two transmit antennas in high throughput WLAN communication systems
US8082479B2 (en) 2006-02-02 2011-12-20 Qualcomm Incorporated Methods and apparatus for generating permutations
US7979781B2 (en) * 2006-11-10 2011-07-12 Samsung Electronics Co., Ltd. Method and system for performing Viterbi decoding using a reduced trellis memory
US8117514B2 (en) 2006-11-13 2012-02-14 Qualcomm Incorporated Methods and apparatus for encoding data in a communication network
US8024644B2 (en) * 2006-11-14 2011-09-20 Via Telecom Co., Ltd. Communication signal decoding
US8051358B2 (en) 2007-07-06 2011-11-01 Micron Technology, Inc. Error recovery storage along a nand-flash string
US8065583B2 (en) * 2007-07-06 2011-11-22 Micron Technology, Inc. Data storage with an outer block code and a stream-based inner code
WO2009035096A1 (ja) * 2007-09-12 2009-03-19 Nec Corporation 通信システム、送信装置、誤り訂正符号再送方法、通信プログラム
KR101531416B1 (ko) 2007-09-13 2015-06-24 옵티스 셀룰러 테크놀로지, 엘엘씨 상향링크 신호 전송 방법
US8046542B2 (en) 2007-11-21 2011-10-25 Micron Technology, Inc. Fault-tolerant non-volatile integrated circuit memory
US8499229B2 (en) 2007-11-21 2013-07-30 Micro Technology, Inc. Method and apparatus for reading data from flash memory
US8327245B2 (en) * 2007-11-21 2012-12-04 Micron Technology, Inc. Memory controller supporting rate-compatible punctured codes
US8751769B2 (en) * 2007-12-21 2014-06-10 Qualcomm Incorporated Efficient address generation for pruned interleavers and de-interleavers
KR100943908B1 (ko) 2008-02-19 2010-02-24 엘지전자 주식회사 Pdcch를 통한 제어 정보 송수신 방법
US20090245423A1 (en) * 2008-03-28 2009-10-01 Qualcomm Incorporated De-Interlever That Simultaneously Generates Multiple Reorder Indices
US8200733B1 (en) * 2008-04-15 2012-06-12 Freescale Semiconductor, Inc. Device having interleaving capabilities and a method for applying an interleaving function
US8281211B2 (en) * 2008-05-15 2012-10-02 Nokia Corporation System and method for relay coding
US7667628B2 (en) * 2008-06-23 2010-02-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Interleaver for scrambling and information word
DE102008029623A1 (de) 2008-06-23 2009-12-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Interleaver
EP2139120B1 (de) 2008-06-23 2019-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Interleaver
US8219782B2 (en) * 2008-09-18 2012-07-10 Xilinx, Inc. Address generation
US8516351B2 (en) * 2009-07-21 2013-08-20 Ramot At Tel Aviv University Ltd. Compact decoding of punctured block codes
CN101964692B (zh) * 2009-07-21 2014-05-28 中兴通讯股份有限公司 一种基于lte的turbo编码方法及系统
US8516352B2 (en) * 2009-07-21 2013-08-20 Ramot At Tel Aviv University Ltd. Compact decoding of punctured block codes
US8375278B2 (en) * 2009-07-21 2013-02-12 Ramot At Tel Aviv University Ltd. Compact decoding of punctured block codes
US9397699B2 (en) * 2009-07-21 2016-07-19 Ramot At Tel Aviv University Ltd. Compact decoding of punctured codes
US8365051B2 (en) * 2010-05-04 2013-01-29 Intel Corporation Device, system and method of decoding wireless transmissions
US8386895B2 (en) 2010-05-19 2013-02-26 Micron Technology, Inc. Enhanced multilevel memory
US9106265B2 (en) * 2011-11-04 2015-08-11 Silicon Laboratories Inc. Receive data flow path using a single FEC decoder
US9264754B2 (en) 2011-11-04 2016-02-16 Silicon Laboratories Inc. Packet synchronization receiver
US8793556B1 (en) 2012-05-22 2014-07-29 Pmc-Sierra, Inc. Systems and methods for reclaiming flash blocks of a flash drive
US8996957B1 (en) 2012-05-22 2015-03-31 Pmc-Sierra, Inc. Systems and methods for initializing regions of a flash drive having diverse error correction coding (ECC) schemes
US9047214B1 (en) 2012-05-22 2015-06-02 Pmc-Sierra, Inc. System and method for tolerating a failed page in a flash device
US8972824B1 (en) 2012-05-22 2015-03-03 Pmc-Sierra, Inc. Systems and methods for transparently varying error correction code strength in a flash drive
US9176812B1 (en) 2012-05-22 2015-11-03 Pmc-Sierra, Inc. Systems and methods for storing data in page stripes of a flash drive
US9021333B1 (en) 2012-05-22 2015-04-28 Pmc-Sierra, Inc. Systems and methods for recovering data from failed portions of a flash drive
US9183085B1 (en) 2012-05-22 2015-11-10 Pmc-Sierra, Inc. Systems and methods for adaptively selecting from among a plurality of error correction coding schemes in a flash drive for robustness and low latency
US9021336B1 (en) 2012-05-22 2015-04-28 Pmc-Sierra, Inc. Systems and methods for redundantly storing error correction codes in a flash drive with secondary parity information spread out across each page of a group of pages
US8788910B1 (en) 2012-05-22 2014-07-22 Pmc-Sierra, Inc. Systems and methods for low latency, high reliability error correction in a flash drive
US9021337B1 (en) 2012-05-22 2015-04-28 Pmc-Sierra, Inc. Systems and methods for adaptively selecting among different error correction coding schemes in a flash drive
US9425826B2 (en) * 2012-11-02 2016-08-23 Blackberry Limited Interleaver employing quotient-remainder reordering
US9577673B2 (en) 2012-11-08 2017-02-21 Micron Technology, Inc. Error correction methods and apparatuses using first and second decoders
US9053012B1 (en) 2013-03-15 2015-06-09 Pmc-Sierra, Inc. Systems and methods for storing data for solid-state memory
US9009565B1 (en) 2013-03-15 2015-04-14 Pmc-Sierra, Inc. Systems and methods for mapping for solid-state memory
US9208018B1 (en) 2013-03-15 2015-12-08 Pmc-Sierra, Inc. Systems and methods for reclaiming memory for solid-state memory
US9081701B1 (en) 2013-03-15 2015-07-14 Pmc-Sierra, Inc. Systems and methods for decoding data for solid-state memory
US9026867B1 (en) 2013-03-15 2015-05-05 Pmc-Sierra, Inc. Systems and methods for adapting to changing characteristics of multi-level cells in solid-state memory
US9124477B2 (en) * 2013-08-28 2015-09-01 Broadcom Corporation Frequency interleave within communication systems
EP3001585B1 (en) * 2014-09-29 2017-07-12 Alcatel Lucent Optical coherent receiver with forward error correction and parallel decoding
US20170262367A1 (en) * 2016-03-11 2017-09-14 Qualcomm Incorporated Multi-rank collision reduction in a hybrid parallel-serial memory system
CN106301393B (zh) * 2016-07-22 2019-09-06 西安空间无线电技术研究所 一种基于Turbo编码的交织地址快速计算方法
TWI589125B (zh) * 2016-08-26 2017-06-21 國立交通大學 渦輪編碼的數位資料之去穿刺方法與裝置及渦輪解碼器系統
CN106899312B (zh) * 2017-02-15 2020-03-20 深圳思凯微电子有限公司 交织编解码方法及交织器
CN111099038B (zh) * 2019-12-19 2021-06-01 武汉航空仪表有限责任公司 一种直升机主桨叶方位角检测装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
JP3077944B2 (ja) 1990-11-28 2000-08-21 シャープ株式会社 信号再生装置
US5392299A (en) 1992-01-15 1995-02-21 E-Systems, Inc. Triple orthogonally interleaed error correction system
US5241563A (en) 1992-08-10 1993-08-31 General Instrument Corporation Method and apparatus for communicating interleaved data
JPH06216882A (ja) 1993-01-19 1994-08-05 Matsushita Electric Ind Co Ltd 誤り訂正送信装置及び受信装置
US5633881A (en) 1993-02-22 1997-05-27 Qualcomm Incorporated Trellis encoder and decoder based upon punctured rate 1/2 convolutional codes
US5668820A (en) 1995-01-23 1997-09-16 Ericsson Inc. Digital communication system having a punctured convolutional coding system and method
EP2302805B1 (en) 1995-02-01 2012-08-22 Sony Corporation Multi-channel transmission with interleaving through in-place addressing of RAM memory
WO1997007451A2 (en) 1995-08-16 1997-02-27 Microunity Systems Engineering, Inc. Method and system for implementing data manipulation operations
JPH09101878A (ja) 1995-10-03 1997-04-15 Mitsubishi Electric Corp 乱数発生回路
US6205190B1 (en) 1996-04-29 2001-03-20 Qualcomm Inc. System and method for reducing interference generated by a CDMA communications device
US5949796A (en) * 1996-06-19 1999-09-07 Kumar; Derek D. In-band on-channel digital broadcasting method and system
JPH1065654A (ja) 1996-08-19 1998-03-06 Oki Electric Ind Co Ltd データ伝送誤り低減方法及びその装置
US5983384A (en) 1997-04-21 1999-11-09 General Electric Company Turbo-coding with staged data transmission and processing
JPH10308676A (ja) 1997-05-09 1998-11-17 Toshiba Corp インターリーブ装置およびデインターリーブ装置
US5907582A (en) 1997-08-11 1999-05-25 Orbital Sciences Corporation System for turbo-coded satellite digital audio broadcasting
US6430722B1 (en) 1998-01-23 2002-08-06 Hughes Electronics Corporation Forward error correction scheme for data channels using universal turbo codes
US5978365A (en) 1998-07-07 1999-11-02 Orbital Sciences Corporation Communications system handoff operation combining turbo coding and soft handoff techniques
US6014411A (en) 1998-10-29 2000-01-11 The Aerospace Corporation Repetitive turbo coding communication method
US6304991B1 (en) 1998-12-04 2001-10-16 Qualcomm Incorporated Turbo code interleaver using linear congruential sequence
US6871303B2 (en) * 1998-12-04 2005-03-22 Qualcomm Incorporated Random-access multi-directional CDMA2000 turbo code interleaver
US6625234B1 (en) * 1998-12-10 2003-09-23 Nortel Networks Limited Efficient implementations of proposed turbo code interleavers for third generation code division multiple access
KR100346170B1 (ko) 1998-12-21 2002-11-30 삼성전자 주식회사 통신시스템의인터리빙/디인터리빙장치및방법
KR100350459B1 (ko) 1998-12-26 2002-12-26 삼성전자 주식회사 통신시스템의인터리빙/디인터리빙장치및방법
DE69934606T2 (de) 1999-02-26 2007-10-04 Fujitsu Ltd., Kawasaki Turbodekoder und verschachtel-/endschachtelapparat
JP3593647B2 (ja) * 1999-03-19 2004-11-24 富士通株式会社 マルチステージ・インタリーブ・パターン生成器
US6314534B1 (en) * 1999-03-31 2001-11-06 Qualcomm Incorporated Generalized address generation for bit reversed random interleaving
KR100480286B1 (ko) * 1999-04-02 2005-04-06 삼성전자주식회사 터보 인터리빙 어드레스 발생 장치 및 방법
CN1345485A (zh) * 1999-04-06 2002-04-17 三星电子株式会社 二维交织设备及方法
KR100526512B1 (ko) * 1999-05-20 2005-11-08 삼성전자주식회사 이동 통신시스템의 직렬 쇄상 컨볼루션 부호화를 위한 인터리빙장치 및 방법
JP3246484B2 (ja) 1999-07-07 2002-01-15 日本電気株式会社 ターボデコーダ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7542410B2 (en) 2004-12-06 2009-06-02 Intel Corporation Interleaver and associated methods

Also Published As

Publication number Publication date
WO2002069506A2 (en) 2002-09-06
EP1374418A2 (en) 2004-01-02
JP2005505947A (ja) 2005-02-24
CN1502168A (zh) 2004-06-02
US20020046371A1 (en) 2002-04-18
US6871303B2 (en) 2005-03-22
US20100064197A1 (en) 2010-03-11
JP5133760B2 (ja) 2013-01-30
JP2012157030A (ja) 2012-08-16
JP2008187738A (ja) 2008-08-14
KR100963384B1 (ko) 2010-06-14
US8484532B2 (en) 2013-07-09
WO2002069506A3 (en) 2003-04-03
US20050028065A1 (en) 2005-02-03
CN1286276C (zh) 2006-11-22
KR20100023962A (ko) 2010-03-04
CN1937473A (zh) 2007-03-28
BR0207522A (pt) 2005-07-19
HK1063245A1 (en) 2004-12-17
JP4191485B2 (ja) 2008-12-03
KR20030077644A (ko) 2003-10-01
US7523377B2 (en) 2009-04-21

Similar Documents

Publication Publication Date Title
TW584862B (en) Random-access multi-directional CDMA2000 turbo code interleaver
US6637000B2 (en) Turbo code interleaver using linear congruential sequences
US6353900B1 (en) Coding system having state machine based interleaver
RU2316111C2 (ru) Устройство и способ кодирования-декодирования блоковых кодов низкой плотности с контролем на четность в системе мобильной связи
US6370670B1 (en) Interlacer, coding device, permutation method, coding method, decoding device and method and systems using them
JP2010016861A (ja) マップ・デコーダのためのメモリ・アーキテクチャ
Shibutani et al. Complexity reduction of turbo decoding
US6304985B1 (en) Coding system having state machine based interleaver
Yoo et al. Reverse rate matching for low-power LTE-advanced turbo decoders
EP2728755B1 (en) Efficient implementation of a Quadratic Polynomial Permutation (QPP) interleaver for parallel processing using interleaver parameters in quotient-remainder form
Aswathy et al. Performance comparison of parallel concatenated gallager codes with different types of interleavers
JP2001028548A (ja) 誤り訂正符号化装置及び方法、誤り訂正復号装置及び方法、情報処理装置、無線通信装置、並びに記憶媒体
KR101456299B1 (ko) 무선통신 시스템에서 인터리빙 방법
Zhang et al. Implementation of RS encoder for CCSDS

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees