TW555980B - Low leakage technique for determining power spectra of non-coherently sampled data - Google Patents
Low leakage technique for determining power spectra of non-coherently sampled data Download PDFInfo
- Publication number
- TW555980B TW555980B TW091113849A TW91113849A TW555980B TW 555980 B TW555980 B TW 555980B TW 091113849 A TW091113849 A TW 091113849A TW 91113849 A TW91113849 A TW 91113849A TW 555980 B TW555980 B TW 555980B
- Authority
- TW
- Taiwan
- Prior art keywords
- frequency
- patent application
- frequency components
- sampling
- waveform
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/16—Spectrum analysis; Fourier analysis
Landscapes
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Tests Of Electronic Circuits (AREA)
- Complex Calculations (AREA)
- Emergency Protection Circuit Devices (AREA)
Description
555980 A7 --- - B7_ 五、發明說明(j ) 明之領域 本發明係槪括關於用於測試電子裝置之設備及方法, 特別是有關於一種從電子測試訊號中擷取測試訊號之頻率 分量強度的技術。 Μ背景 自動化測試系統所用的測試程式通常需要利用測試器 來測量從受測元件(D U Τ )取得的訊號樣本之功率譜。 在習知測試場合中,自動化測試系統會產生當作受測元件 之輸入的刺激訊號,並當該受測元件回應刺激訊號時針對 受測元件之輸出進行取樣。測試器軟體會針對所須之取樣 輸出訊號執行離散傅立葉轉換(D F Τ)來計算所得樣本 之功率譜。 如吾人已知,每當取樣時脈與取樣訊號不「同調」時, 稱爲「漏失」的誤差會使其本身顯露在離散傅立葉轉換所 產生的功率譜。若取樣時脈之頻率爲出現在被取樣訊號之 各頻率的整數倍時,則此取樣時脈爲「同調」。漏失係針 對刪節的頻率一亦即在取樣窗內並未完成整個週期的頻 率一執行離散傅立葉轉換之後在數學上的必然結果。漏失 可在下列情況中觀察到:頻譜線不當地變寬、錯誤的波峰 或波谷(波瓣)之形成,以及功率譜之雜訊本底槪略升高 等。 目前已有許多方法被設計用以減少漏失。其中一種方 法係增加取樣率。槪括而言,取樣率愈高,在關注的頻率 ---------- —_3 ___ 本紙張尺度適用中國國豕標準(CNS)A4規格(21〇 X 297公爱) (請先閱讀背面之注意事項再填寫本頁) --裝 . -線- 555980 A7 ___B7___ 五、發明說明(>) 範圍內之刪節量愈小,且漏失誤差亦愈小。上述方法雖然 有效,但增加取樣率所減少的漏失僅正比於增加量。此方 法同時會大幅增加所使用的取樣設備之成本。 另一種減少漏失之常用技術係將取樣資料序列乘上加 窗函數(windowing function)。力口 窗函數具有使取樣資料序列在其端點附近逐漸縮小的功 效,以藉此消除會引發漏失誤差的不連續性。有不同的加 窗函數可供使用,例如B 1 a ckman、Ha rmi η g或H a mm i n g等加窗函數,此等加窗函數各有其自 身的特性。加窗函數會傾向於縮小功率譜中遠離波峰的漏 失誤差,但同時也會傾向形成較寬的波峰。因此,上述加 窗函數之功效係在於重新分佈,而非完全消除漏失。此外, 由於加窗函數會實質改變在其上執行離散傅立葉轉換的資 料,因而此等加窗函數會傾向於稍微扭曲頻譜。 另一種技術係以和被取樣訊號之頻率同調的取樣率針 對波形資料進行「重新取樣」。重新取樣之運作係在某速 率下取樣而得的實際資料點之間進行內插,而以數學方法 建構資料點之序列,該等資料點序列像是在不同速率下予 以取樣。雖然重新取樣能非常有效地減少漏失,但其需要 大量運算,且其精確度會受到內插誤差的不良影響。 另一種用於減少漏失的技術係改變取樣時脈率,使其 能準確等於取樣訊號內所發現之所有頻率的整數倍。此種 技術非常有效,但需要昂貴的硬體。當測試器包含大量的 取樣時脈時一情況經常如此,此種處理方法尤其昂貴。 ----------4__ 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公釐) " (請先閱讀背面之注意事項再填寫本頁) —裝 --線- A7 555980 ___B7 ___ 五、發明說明(七) 自動化測試設備(A T E或「測試器」)之製造商通 常會針對典型的測試問題提供成本較低的解決方案以尋求 改善其產品。藉由提昇測試機之效能且同時降低測試機之 成本將可獲得重大益處。爲達此目的,吾人極需要一種成 本低廉的技術,期能減少自動化測試系統所取得之訊號樣 本頻譜內的漏失。 本發明之槪要 鑑於上述發明背景,本發明之一目的係爲減少取樣訊 號內之漏失,且不需要顯著增加測試機之成本。 爲達前述目的以及其它目的和優點,一種用於分析取 樣波形之頻譜內容的技術包含組合期望能在取樣波形內發 現的N個頻率之列表。在此假設取樣波形符合在數學上對 應於N條正弦曲線之總和的波形模式。N條正弦曲線之振 幅及相位均爲未知,且各正弦曲線之頻率係等於頻率列表 中的N個頻率之一不同頻率。此技術係爲解出使模式能最 佳擬合於取樣資料的未知振幅及/或相位。 根據一實施例,當事先不知取樣波形之頻率時亦使用 上述技術。根據此差異,針對取樣波形執行傅立葉轉換以 產生槪略的功率譜。槪略的功率譜內之波峰會被找出,其 頻率會加以編排而形成N個頻率之列表。在編排N個頻率 之列表時,可考量其它因素,例如獲得取樣資料所用的裝 置之已知刺激訊號,以及其它附帶情況等。上述技術隨後 在得到的N個頻率之列表上執行,藉以決定N條正弦曲線 當中各條曲線之準確振幅及/或相位。 ---------I----___ (請先閱讀背面之注意事項再填寫本頁) 訂·· •線· 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 555980 A7 __^_B7____ 五、發明說明(& ) MAZMMMm, 參照以下詳細說明及圖式,當能明瞭本發明之其它目 的、優點及新穎特點,其中: 圖1爲自動化測試系統之高度簡化槪要圖,該自動化 測試系統能引發受測元件之輸入,並能對受測元件之輸出 訊號進行取樣; 圖2爲一高階流程圖,其描繪根據本發明用於決定波 形頻率分量之振幅的程序,該波形係由圖1所示自動化測 試系統進行取樣而得,其中已先得知頻率分量之頻率; 圖3爲一流程圖,其描繪根據本發明用於計算波形之 功率譜的程序,該波形係由圖1所示自動化測試系統進行 取樣而得,其中頻率分量之頻率爲未知; 圖4 A — 4 C爲模擬功率譜,其係比較用於減少漏失 之不同技術回應於不同的模擬誤差之效能。 元件符號說明 110 自動化測試系統 112 主電腦 114 頻率合成器 116 數位器 12 0 受測元件 較佳實施例之詳細說明 技術 圖1爲高度簡化的方塊圖,其圖示利用自動化測試系 _______6____ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) - ---I----— II-----— II--訂 -------- (請先閱讀背面之注意事項再填寫本頁) A7 555980 B7____ 五、發明說明(< ) 統1 1 0來測試受測元件(DUT) 1 2 0的習知結構。 自動化測試系統包含主電腦1 1 2。主電腦1 1 2具備用 於執行測試程式的測試機軟體。測試程式係控制測試機之 硬體資源以測試受測元件。舉例而言,測試程式可控制頻 率合成器1 1 4,藉以將一刺激訊號運用到受測元件之輸 入端,並可控制數位器1 1 6以針對在受測元件之輸出端 所產生的回應進行取樣。 槪括而言,主電腦係將數位器1 1 6所得到的取樣資 料儲存在記憶體以供分析。測試程式或測試程式所能使用 的軟體例行程序會針對所儲存的取樣資料分析其內容。一 般而言,測試程式會指導測試軟體針對取樣資料執行離散 傅立葉轉換(D F T)。測試程式隨後會測試受測元件之 結果。 圖2係圖示根據本發明在自動化測試設備(A T E ) 環境中進行取樣及分析測試訊號的程序。在步驟2 1 0, 自動化測試系統1 1 0將刺激訊號運用到受測元件1 2 0 之輸入端。 在步驟2 1 2,取得N個頻率之列表。該等N個頻率 係代表取樣波形之頻率,吾人希望得知關於該等頻率之振 幅及/或相位。數字N可爲任一正整數。並非所有N個頻 率均必須確實出現在取樣波形中。事實上,本技術可應用 於測試存在或不存在任何特定的頻率分量。以較佳實施例 而言,N個頻率之列表已事先得知並儲存在測試程式內。 在步驟2 1 4,取樣波形已經過電腦模式化處理。代 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ----------------I----訂---------線 (請先閱讀背面之注意事項再填寫本頁) 555980 A7 _ B7 _ 五、發明說明(t ) 表取樣波形的電腦模式係由N條正弦曲線所構成,此等正 弦曲線之總和近似於實際的取樣波形。N條正弦曲線當中, 各條曲線之形式如下:
Ak sin(mki) + Bk cos(mki) (E Q 1 ) 其中: •” Ak”和” B k”爲未知係數; •” k ”爲一下標,範圍從1至n,其代表該等N個 頻率分量其中之一; • 01^係對應第k個頻率分量(確切而言,= 2 7Γ F k,其中F k爲第k個頻率); • “ i ”係表示某特定樣本之標號,並對應於時間。 雖然方程式E Q 1爲兩條正弦曲線之總和,但其在數 學上等於單一正弦曲線一此正弦曲線之頻率等於ω k/ 2 ττ,振幅等於,相位角則等於B k和A 雙幅角 反正切値。 設方程式E Q 1係代表取樣波形當中的N條正弦曲 線,則所有取樣波形可由下式予以模式化:
Σ(4 cosqt^/ + ^ sincr.O k 二l (E Q 2 ) ___« ---------
L本紙張尺度_中關家標準(CNS)A4規格(21G (請先閱讀背面之注意事項再填寫本頁) i裝 訂· .線_ 555980 A7 B7 五、發明說明(\ ) 在步驟2 1 6,方程式E Q 2之波形模式係由電腦加 以處理,藉以獲得模式與實際取樣波形之間的最佳擬合。 此較佳實施例係運用線性最小平方法使模式與資料相互擬 合。特定而言,步驟2 1 6試圖使下列最小平方估計因子 (e s t ima t 〇 r)爲最小·· Σ X -Σ(4 cosmki + Bk sin mki) i=0 k=\ (E Q 3 ) 其中y i爲取樣波形之第i個取樣點’且i之範圍爲 0至Μ,其中Μ代表取樣波形內之樣本總數。 爲了使方程式E Q 3爲最小,本技術確知當相對於Α &和B k取方程式E Q 3之偏導數等於零時可獲得最佳擬 合。由於N個頻率均各自有A k値和B k値’因此相對於各 個A k値和B k値取方程式E Q 3之偏微分將會產生2 N個 分程式組: Μ Σ 少, cosiy·/: ί = 0 Μ Μ Xcos^/cos<^ ^ ^sin^/cosiy ./ (Ε Q 4 Σχ sin στ / = Σ \Ak Σ cos wkisin wi + Σsin tukisin mi /=〇 1 】 k=\ * k /=〇 7=0 (E Q 5 ) (請先閱讀背面之注意事項再填寫本頁) -裝 •線· 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 555980 A7 _B7__ 五、發明說明(名) 其中方程式EQ4和方程式EQ5均隨著” j”從1 至N而重複N次。定義下列係數將能使式子簡化: 設 Μ
Let c〇kj= Σc〇s 〇)ji z c〇s ω τ* (E Q 6 ) 設 Μ
Let SCkJ,== Σ sin^> zcoS6; ./ E Q 7 ) (請先閱讀背面之注意事項再填寫本頁) -裝 設
M
Let cskj = cossin (E Q 8 ) 設
M
Let ssKi = Xsin^y, zsin^y (E Q 9 ) 瞭解到下列式子則此等係數可加以簡化: Zcos(mk +m)i + Zcos(m-m)il/2 _/=〇 y /=〇 J J Μ M I Ssin(CT; +G7.)z’ + Ssin(Q7 -οι.)/ /2 L/=o 3 /=〇 J * Μ M I TJcos(mk +mj)i-YJcos(mk -cj.)/|/25 cc, sc, = cs, sst 以及 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) i線· 555980 A7 B7 五、發明說明( ΜΣ cos ai = (cos a(N -1)- cos aN - cos a +1) / 2(1 - cos a) i=0 和 MΣ sin ai = (sin a(N -1)- sin aN + sin a) / 2(1 - cos a) 其中a爲任一 ω値。利用方程式E Q 6至方程式E Q 9當中所定義的係數 來改寫方程式E Q 4和方程式E Q 5,則可得到下列矩陣: vΜ 、 cos 呼 / = 0 Μ ωχι i = 0 χ CC] ] SC] i 〇〇2] S〇21 CSi i SSn CS2] SS21 cos ω^ι Μ i = 0 Μ Σ 少/C0S6V / = 0 Μ sin ω C〇12 SC12 C〇22 SC22 CS12 SS12 CS22 SS22 C〇13 SC13 CC23 SC23 CS13 SS13 CS23 SS23 ζ = 0 ΜΣ
凡· C0S"V ο ΜΣ
兄· C0S6V 0 ab r Λ CCni SCni A CSni SSn I B】 CCN2 SCN2 a2 CSN2 SSN2 b2 CCn3 SCn3 As CSN3 SSn3 b3 CCkn SCnn Am CSnn SSnn Bn (EQ10) (請先閱讀背面之注意事項再填寫本頁) ____11 本紙張尺度適用中國國家標準(CNS)A4Mr格(210 X 297公釐) A7 555980 ______B7_ 五、發明說明(f ) 藉由決定矩陣X之逆矩陣,並在方程式E Q 1 0左邊 乘上向量V,則吾人可解出方程式E Q 1 〇當中向量a b 的各個A k値和B k値。 一旦得知從1至N的各個k値之厶1^和:61^後,頻率列表 當中的各個第k個頻率之振幅即可經由計算而決定。 各個相位値可經由計算8 A k之雙幅角反正切値而得。 求解方程式E Q 1 〇所引發的計算困難度可經由引進 2 N = M+ 1的限制條件(頻率個數爲樣本數的一半)而 稍微減低。代入此限制條件,方程SEq 1 〇當中的向量 V可改寫如下: (請先閱讀背面之注意事項再填寫本頁) 裝 訂: |線· ____________12 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 χ 297公釐) 555980 A7 B7 五、發明說明(Λ V Μ 、 cos i = 〇l Μ ωγί
C y cosOco】 coslcoi cos2co】 · cosMcoi A y〇 Μ Σ'· .cos ω^ι Μ Z>Vsi sm ω, 2 Μ cos ω^ι Μ Σ^·δί sin ΜΣ ί=( ΜΣ γ.οο$ωΝι y^N1
sinOcoi sinlc〇i sin2c〇i . .sinM(〇i COS〇C〇2 coslc〇2 cos2c〇2 .. COsMc〇2 sin0c〇2 sinlc〇2 sin2c〇2 sinMc〇2 COS〇C〇3 coslc〇3 cos2c〇3 COSMCO3 sin0c〇3 sinlc〇3 sin2c〇3 . sinMc〇3 cosOcon cos Icon cos2c〇n . .cosMcon sin0c〇N sin Icon sin2c〇N sinMc〇N 13_ 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) y】 Ϊ2 Y3 Y4 ys
Ym-i
Ym (EQ11) ---I----------------訂---------線 (請先閱讀背面之注意事項再填寫本頁) 555980 A7 _B7_ 一 五、發明說明(丨,) 由於引進上述限制條件會迫使C和X-1成爲同秩(r a n k )方陣,因此方程式E Q 1 0和方程式E Q 1 1可 加以合倂而成爲: ab = (XlC)y (E Q 1 2 ) 因此,可以在不需計算向量V的情況下求解a b。 茲建議以下列方法求解a b : •首先利用下列遞迴關係式迅速建構C: cos(a+l)6; k= 2 cos ω k cos aw k — cos(a-l)ω k sin(a+l)6J k = 2 cos ω k sin ao k— sin(a-l)ω k •接著利用L 一 U分解法來計算X — 1 •將X —1作用於C •將X —1 C乘上y來計算a b 一旦X-1 C被建構後,計算a b需要大約N 2個累積 乘算値。 以較佳實施例而言,在此描述的技術係以軟體函式庫 內的函數予以實作。此種函數最好能接受存有頻率列表的 輸入陣列以及指向取樣資料的指標。此種函數最好能傳回 包含有A k値和B k値的陣列,而由此等數値可計算出振幅 及相位。在另一實施例中,此種函數係直接傳回振幅及相 位。此種軟體函式庫最好設置於自動化測試系統,以便在 】4 ..... — 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ' (請先閱讀背面之注意事項再填寫本頁) -丨裝 I. :線- A7 555980 __B7____ 五、發明說明(θ ) 測試系統上執行的測試程式能取用該軟體函式庫。 範例 圖4 A - 4 C係圖示說明本發明之最佳擬合法相較於^ 其它用於減少漏失的技術之模擬預估效能。形成此等 資料所使用的測試程式碼列表已詳列於本說明書之末頁;。 圖4 A - 4 C等三圖係比較在四種不同條件下所得到的單 音功率譜: 1 ·未修正資料(亦即以標示爲「未修正」的矩形窗 所獲得的資料)之快速傅立葉轉換(F FT); 2 ·以H a η n i n g窗(「加窗」)修飾資料之快 速傅立葉轉換; 3·重新取樣資料(重新取樣化)之快速傅立葉轉換; 以及 4 ·在此描述的最佳擬合法(「最小平方法」)。 各圖之橫軸係對應於頻率一尤其是頻率範圍(f r e q u e n c y b i n) 0 — 63。爲了能夠與運用FF 丁的方法直接比較,最佳擬合法係以6 4來執行,其 中N個頻率當中的各個頻率對應一個快速傅立葉轉換頻率 範圍。縱軸係對應於振幅強度,其單位爲分貝。 各圖顯示稍微偏離第9頻率範圍中心的單音,亦即該 單音並未以同調方式予以取樣。確切而言,0k = 2 7 π (k — 1) (l + ε),其中圖 4A 中的 ε = 1〇-6,圖 4Β中的ε = 1〇 - 9,圖4C中的ε = 10-12。各圖均 顯現出最佳擬合法的功效。相較於其它技術,最佳擬合法 仍保持非常窄的波峰,而沒有環繞在波峰周圍的提升區(「外 ____—---- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) — — — — — —_______ Γ请先閱讀背面之注意事項再填寫本頁) 一5J» . --線- A7 555980 ___B7 _ 五、發明說明(I今) 圍」)。 優點 在此揭露的技術可提供許多優於習知離散傅立葉轉換 的優點,特別是在自動化測試設備上。利用在此揭露的技 術,吾人可運用價格較低廉的測試電子裝置來執行非常準 確的頻譜分析。取樣時脈不需要與接受測量的頻率同調, 而且能實質上消除頻譜漏失現象。相較於習知的離散傅立 葉轉換一其中頻率係區分成寬度有限的頻率範圍,在此揭 露的技術並非運用頻率範圍,而是運用離散的頻率。因此, 在此揭露的技術能以運用習知的離散傅立葉轉換所無法達 成的方式來解析間隔非常接近的頻率。 本技術亦可予以擴充,因爲其計算時間會隨著N—接 受分析的頻率個數一之函數而改變。因此,若接受分析的 頻率個數很少時,本技術之執行速度將會非常快。此外, 由於本技術係運用最佳擬合演算法,因而其可用來決定在 取樣窗內未完成整個週期的頻率的頻率分量之振幅及相 位。一般而言,必須事先指定頻率的要求並不會成爲自動 化測試設備的缺點;在自動化測試設備中,受測元件所產 生的頻率大部分均可事先得知,且其中測試機會產生用於 驅動受測元件的刺激訊號。 雖然χ-1 C需要大量時間計算,但其不需每次在波形 被分析時重新予以計算。只要頻率列表和樣本數Μ保持不 變,新取得的波形可藉由取回X — 1 C之儲存備份並乘以y 來加以分析。提供的函式庫可包括不同頻率和樣本數之各 種不同的X — 1 C組合。使用者可在該等組合中選取能快速 ________16_ - _ 本紙張尺度適用中國國家標準(CNS)A4規格(210 χ 297公爱) ----I I I I------· i I (請先閱讀背面之注意事項再填寫本頁) 訂-- 線. 555980 A7 ___ B7___ 五、發明說明(丨< ) 分析波形的組合。 其它可供選擇的實施例! C 1请先閲讀背面之注意事項再填寫本頁) 說明實施例之後,吾人當能做成許多可供選擇的實施 例或變更。 舉例而言,如上所述,用於分析取樣波形的技術係用 於自動化測試設備的場合。然而,本技術能更一般化地應 用於任何需要分析頻率資訊的取樣資料。儘管本技術係對 圖1所示特定的測試情況加以說明,但本技術不限定於任 何特定測試情況。 在此揭露之實施例係利用線性最小平方法來獲得波形 模式(方程式E Q 2 )與實際取樣資料之間的最佳擬合。 然而,亦可利用其它最佳擬合技術,例如:C a u c h y 一 L o r e n t z分佈以及試圖使模式與取樣資料之間的 差異絕對値爲最小的各種技術。因此,本發明並不限定於 使用最小平方法。 此外,上述說明提到吾人利用軟體來操作矩陣及執行 必要的計算。在可供選擇的情況下,吾人可提供經特別設 計的硬體電路或處理器,以便能更有效率地執行此類功能。 如上所述,本技術要求必須事先得知N個頻率之列表。 然而,此項要求可透過在取樣資料上執行離散傅立葉轉換 及檢查結果而予以略除。圖3即圖示此項變更。在步驟3 1 0,執行離散傅立葉轉換。在步驟3 1 2,在離散傅立 葉轉換所產生的功能譜中找出波峰。對應於該等波峰的頻 率隨後被附加到頻率之列表,以供執行更精確的分析。步 ___ . ___π____ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) A7 555980 __B7___ 五、發明說明(4 ) 驟316和318以上述方式進行:假設取樣資料符合模 式,並取得樣本與模式之間的最佳擬合。本技術不需要在 完全孤立的狀態下進行操作。本技術亦可考量附帶狀況, 例如:運用到受測元件的刺激訊號之頻率、該等頻率之諧 振,以及受測元件之已知特性等。 上述技術已假設波形係在均勻的速率下進行取樣。然 而,根據可供選擇之實施例,吾人可以非均勻的速率針對 波形進行取樣。具體而言,以” ti” (即實際上的取樣 時間)取代上述方程式與矩陣當中的離散足標” i” 可任意進行非均勻性取樣。利用非均勻性取樣,吾人將# 法使用依照方程式E Q 9所進行的計算簡化;然而,此_ 改變對所述技術的其餘部分而言,實屬顯明易知。 本案發明人已仔細思忖此等及其它可供選擇的實施例 及變更,且該等實施例及變更均爲本發明之範圍所涵盞° 因此,當瞭解的是,上述說明僅爲範例,實則本發明僅由 所附申請專利範圍之精神及範圍予以界定。 電腦列表 形成此等圖表資料所使用的測試程式碼軟體列表如 下: 18_ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項#填寫本貢) 裝 •線 555980 A7
本紙張尺度適用中國國家標準(CNS)A4規格(210 χ 297公釐)
ιδΊ- (請先閱讀背面之注意事項再填寫本頁) --裝 ;線_ 555980 A7 B7 五、發明說明(丨S) filter[i]=(1-cos(2*M_PI*i/1024))/2; (請先閱讀背面之注意事項再填寫本頁) /★ Id interpolation routine - used for resampling algorithm ★/ /* Basically Lagrange’s interpolation /★ This is not used by least squares /★ tries to return y [a] given y[0] y [n-1] as input double interpolate一Id(a, y, n) double a, y []; int n; {int k, j, xl, xr; double product, sum=0; xl = ftoi(a-2 0); xr = ftoi(a+2 0); xl = xl >= 0 ? xl : 0; xr = xl <= n ? xr : n; for(k=xl;k<=xr;k++) {product=y [k]; for (j=xl;j<=xr;j++) if (j !=k) product★=(a-j)/(k-j); sum+=product; ) return sum; main () {int struct timeval tpO,tpl,tp2,tp3; /* Used for timing */ double fO = 1 0+ 0 001e-9; /* Frequency error of 0 OOlppb ★/ gettimeofday(&tp0, NULL); for (i=0;i<N;i++) raw一capture[i]= cos(2*M_PI* 9*fO*i/N); gettimeofday(&tpl,NULL); printf("Time to construct raw capture: %6uus\n",diff(tpl,tpO)); gettimeofday(&tp0,NULL); for (m=0 ;m<M;nH-+) {x [2*m] =x [2*m+l] =0 ; for (i=0;i<N;i++) {x[2*m ] += raw一capture[i]*cos(2*M一PI*m*i/N); x[2*m+l] += raw capture [i]*sin(2*M PI*m*i/N); }} _ gettimeofday(&tpl;NULL); printf("Time to construct %i-point uncorrected dft: %6uus\n",M,diff(tpl,tpO)); for (i=0;i<M;i++) {xmags [i] =hypot (x [2*i+l] , x [2*i+0] ) /M; xargsli]=180/M_PI*atan2(x[2*i + l]# x[2*i +0]);
/★ This section is not least squares fit, but is a crude resampling algorithm ★/ #ifdef R gettimeof day (SctpO , NULL); for (i=0;i<2*N;i++) extended一capture [i]=cos(2*M_PI* 9*f0*(i-N/2)/N); gettimeofday (fictpl^ULL) / ~ printf("Time to construct raw capture (with N/2 padding): %6uus\n",diff(tpl,tpO)); gettimeof day (£ctp0,NULL); make一filter{); ___ 20 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 555980 A7 B7 五、發明說明( gettimeofday(&tpl,NULL); printf("Time to construct cos^2 filter: %6uus\n",diff(tpl, tpO)); gettirneof day (&tpO, NULL); for (i=0;i<N*R;i++) {int eO=N/2-F/R/2+(i+R-1) /R; expanded一capture[i]=0; for (j=0;j<F/R;j++) {int fi=(N*R-i)%R+j*R; int ej =e0+j; expanded一capture [i] += filter [fi] *extended一capture [ej]; }} 一 gettimeofday(&tpl,NULL); printf("Time to expand padded capture: %6uus\nn,diff(tpl, tpO)); gettimeofday(&tpl,NULL); for (i=0;i<N;i++) resampled一capture [i] = interpolate_ld(i*R/f0,expanded_capture,N*R); gettimeofday(&tpl,NULL); printf("Time to resample from expanded capture: %6uus\n",diff(tpl,tpO)); gettimeof day (£ctp0, NULL); for (m=0;m<H;m++) {xs[2*m]=xs[2*m+l]=0; for {i=0;i<N;i++) {xs[2*m ] += resampled一capture[i]*cos(2*M一PI*m*i/N); xs[2*m+l] += resampled_capture[i] *sin(2*M_PI*m*i/N); }} ' gettimeofday(&tpl/NULL); printf("Time to construct %i-point resampled dft: %6uus\n",M,diff(tpl,tpO)); for (i=0;i<M;i++) {xsmags[i]=hypot(xs[2*i+l],xs[2*i + 0])/M; xsargs[i] =180/M_PI*atan2(xs+ ,xs[2*i+0]); ) 一 #endif /* This section is not least squares fit, but instead uses a harming window */ gettimeofday(&tp0, NULL); for (m=0;m<M;m++) {xw[2*m]=xw[2*m+l]=0; for (i=0;i<N;i++) {xw[2*m ] += raw一capture[i]*cos(2*M一PI*m*i/N)*(1-(1+cos(2*M_PI*i/N) }/2); xw [2*m+l] += raw一capture [i] *sin (2*M一PI*m*i/N) Ml- (1+cos (2*M_PI*i/N) ) /2); gettimeofday (Sctpl, NULL); printf("Time to construct %i>point windowed dft: %6uus\n",M, diff(tpl,tpO)); for (i=0;i<M;i++) {xwmags[i]=hypot (xw [2*i+l],xw[2*i+0] )/M; xwargs[i]=180/M_PI*atan2(xw[2*i + l] ,xw[2*i+0]); /* The least-squares section */ gettimeofday (SctpO , NULL); for (i=0;i<M;i++) for (j=0;j<M;j++) {Mx[2*i ] [2*j ] =0 5* ( sunicos (2*M_PI* (i +j ) *f 0/N, N) +sumcos (2 *M_PI * (i-j ) *f 〇/N, N))
Mx[2*i ] [2*j + l] =0 5M sumsin(2*M二PIMi + j) *f0/N,N)-sumsin(2*M=PlMi-j) *f〇/N,N))
Mx[2*i + 1] [2*j ] =0 5M sumsin(2*M=PI* (i+j) *f0/N,N)+sumsin(2*M=PIMi-j) *f〇/N,N))
Mx[2*i + 1] [2*j+l]=0 5*(-sumcos(2*M~PI* (i+j)*f0/N,N)+sumcos(2*M~PI*(i-j)*f0/N, N))
Mx [l] [l]=Mx[0] [0] ; /★ fix that nasty problem with sin ★/ gettimeofday(&tpl, NULL); printf("Time to construct matrix: %6uus\n",diff(tp],tpO)); 21 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) I--------^---------^ (請先閱讀背面之注意事項再填寫本頁) 555980 A7 B7 五、發明說明(θ) gettimeofday (£ctpO#NULL); invert2M(); gettimeofday(&tpl,NULL); printf("Time to invert matrix: %6uus\n”,diff(tpl,tpO)); gettimeofday(fittpO, NULL); for (i=0;i<M2;i++) for (j=0;j<M2;j++) {MiCti] tj]=〇 〇; for (k=0;k<M;k++)
MiC[i] [j] +=Mi[i][2^k ] *cos (2*M__PI*k*f 0* j/N) +
Mi[i] [2*k+l] *sin(2*M_PI*k*fO*j/N); } 一 gettimeofday (£ctplfNULL); printf("Time to construct composite matrix: %6uus\n",diff(tpl,tpO)); gettimeofday(&tp0, NULL); for (i=0;i<M2;i++) {xp[i]=0; for (j=0;j<M2;j++) xp [i] += MiC [i] [j] *raw一capture [j]; ) ~ gettimeofday (ietpl, NULL); printf("Time to multiply composite matrix on result: %6uus\n",diff(tpl,tpO)); for (i=0;i<M;i++) {xpmags[i]=hypot (xp [2*i+l],xp[2*i+0]); xpargs[i]=180/M—PI*atan2(xp[2*i+l],xp[2*i+0]); }} 一 /★ These matrix inversion routines should be replaced by L-U decomposition */ /+ These unfortunately use a crude Gauss-Jordon algorithm with no pivoting ★/ initMi() {int i,j; for (i=0;i<M2;i++) for (j=〇; j<M2 ; j++)
Mi[i] [j] = i==j; invert2M() {int i,j; initMi(); for (i=0;i<M2;i++) {divrow(i,Mx[i 3 [i]); for (j=i+l;j<M2;j++) if (Mx [ j] [i]) {divrow(j,Mx[j][i]); decrow(j,i); for (i=M2-l;i;i--) for (j=i-l;j>=〇;j--) submultdrow(j,Mx[j] [i],i); divrow(i,denom) int i ; float denom; {int k; for (k=0;k<M2;k++) {Mx[i][k] /= denom; Mi [i] [k] /= denom; }} ____ 22 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) I 1——!!— - ·! I 訂·--— — — — — (請先閱讀背面之注意事項再填寫本頁) 555980 A7 B7 五、發明說明(,i) decrow (i,j) int i,j; {int k; for (k=0;k<M2;k++) {Mx[i] [k] -= Mx[j] [k]; Mi[i] [k] -= Mi[j] [k]; }} submultdrow(i;factor,j) int i,j; float factor; {int k; for (k=0;k<M2;k++) {Mx [i] [k] -= factor*Mx[j] [k]; Mi[i] [k] -= factor*Mi[j] [k]; }} /* returns the difference in microseconds between two timeval structures ★/ diff(tpl,tpO) struct timeval tpO,tpl; {return (tpl tv一sec-tpO tv_sec)*1000000+tpl tv_usec-tpO tv_usec; /★ this makes an ascii file which can be cut and pasted into spreadsheet ★/ write_out_data_for一msexcel(filename) char *filename; {int i; FILE *fp; fp=fopen(filename,"w"); if (fp) {for (i=0;i<M;i++) fprintf(fp,"%4 3f\t%4 3f\t%4 3f\t%4 3f%c\n"; 20*logl0(xmags[i]), 20*logl0(xwmags[i]), 20*logl0(xsmags[ij), 20*logl0(xpmags[i]〉, 13); fclose(fp); } else {fprintf (stderr,’’Could not open output file \n"); perror(filename); )} 23 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝 訂-· i線·
Claims (1)
- 555980 C8 D8 六、申請專利範圍 1 ·一種分析取樣訊號之頻率分量的方法,其包含: (A)建立該取樣訊號內尋求分析的N個不同頻率分 量之列表,且N>1,其中該等N個頻率分量之各頻率爲 已知,振幅和相位則爲未知; (B )使該取樣訊號模式化而成爲一波形模式,該波 形模式對應於N條正弦曲線之總和,該等N條正弦曲線之 各曲線亦具一未知振幅和相位,並具等於該等N個頻率分 量之一頻率的頻率;以及 (C )處理該波形模式,以使該波形模式最佳擬合於 該取樣訊號。 2 ·如申請專利範圍第1項所述之方法,其中電腦處 理該波形模式之步驟(C )係運用最小平方演算法,使該 波形模式擬合於該取樣訊號。 3 ·如申請專利範圍第2項所述之方法,其中該等N 條正弦曲線之各條曲線可依A k Siri6;ki+BkC0S i予以表示,其中: “A k”和” B k”爲未知係數, “k”爲一足標,範圍從1至N,其代表該等N個頻 率分量其中之一, ^匕係對應第k個頻率分量, “ i ”則爲表示某特定樣本之標號,並對應於時間。 4 ·如申請專利範圍第3項所述之方法,其中處理該 波形模式之步驟(C )係使一估計因子爲最小,該估計因 子可如下予以表示: ____—1—____ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) <請先閲讀背面之注意事項再塡寫本頁) 、1T: 線 A8B8C8D8 555980 六、申請專利範圍 Μ Ν ΐ Σ [X ~~ Σ (A cos mJ + sin wj) 其中: “M”係對應構成該取樣波形之若干樣本,且 “ y i ”代表該取樣波形之第i點。 5 ·如申請專利範圍第1項所述之方法,其另包含解 出該等N個頻率分量之未知振幅和相位至少其中之一。 6 ·如申請專利範圍第5項所述之方法,其中該等N 個頻率分量之第k個頻率分量之振幅可如下予以表示: 4A2k + B2k 7 ·如申請專利範圍第5項所述之方法,其中該等N 個頻率分量之第k個頻率分量之相位可表示爲B 1^和A 雙幅角反正切値。 8·—種在自動化測試系統內測試受測元件之方法, 其包含: (A)將一刺激訊號運用在該受測元件; (B )針對該受測元件之回應訊號進行取樣; (C )建立該取樣回應訊號內尋求分析的N個不同頻 率分量之列表,且N > 1,其中該等N個頻率分量之各頻 率爲已知,振幅和相位則爲未知; (D)使該取樣訊號電腦模式化而成爲一波形模式’ 該波形模式對應於N條正弦曲線之總和,該等N條正弦曲 線之各曲線亦具一未知振幅和相位,並具等於該等N個頻 率分量之一不同頻率的頻率; (E )電腦處理該波形模式,以使該波形模式最佳擬 - —__2------- 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) ......................—裝.................——訂...............-線 (請先閲讀背面之注意事項再塡寫本頁) 555980 A8 g D8 六、申請專利範圍 合於該取樣訊號;以及 - (F )解出該等N個頻率分量之未知振幅和相位至少 其中之一。 9 ·如申請專利範圍第8項所述之方法,其中該元件 係以其製造過程之一部份進行測試’以便在運送之前確保 其品質。 1 〇 ·如申請專利範圍第8項所述之方法,其中在步 驟(C)建立該等N個頻率分量之列表包含: 爲該等N個頻率分量之列表提供一刺激訊號之頻率, 該刺激訊號係運用於該受測元件。 1 1 ·如申請專利範圍第1 0項所述之方法,其另包 含: 爲該等N個頻率分量之列表提供該刺激訊號之頻率諧 振,該刺激訊號係運用於該受測元件。 1 2 ·如申請專利範圍第8項所述之方法,其中建立 該等N個頻率分量之列表的步驟(C)包含: 針對該取樣回應訊號執行離散傅立葉轉換(D F 丁); 找出該離散傅立葉轉換當中的波峰;以及 將實質上等同於該離散傅立葉轉換當中之波峰的頻率 增列到N個頻率分量之列表。 13·—種在自動化測試系統內用於分析測試訊號之 頻率內容的裝置,其包含: 一數位器,用於針對一受測元件之測試訊號進行取樣; 一記憶體,用於儲存該取樣訊號內尋求分析的N個不 _____3___ $紙張尺用中國國家標準(CNS)A4規格(210 X 297公釐) ..........................裝---------------1T................t (請先閲讀背面之注意事項再填寫本頁) 555980 ab _g_ 六、申請專利範圍 同頻率分量之列表,且N> 1,其中該等N個頻率分量之 各頻率爲已知,振幅和相位則爲未知; 用於使該取樣訊號電腦模式化而成爲一波形模式的軟 體,該波形模式對應於N條正弦曲線之總和’該等N條正 弦曲線之各曲線亦具一未知振幅和相位,並具有等於該等 N個頻率分量之一不同頻率的頻率;以及 用於電腦處理該波形模式的軟體,以使該波形模式最 佳擬合於該取樣訊號。 1 4 ·如申請專利範圍第1 3項所述之裝置,其另包 含一測試程式,該測試程式係在該自動化測試系統上執行, 並指定該等N個頻率之列表內的頻率。 1 5 ·如申請專利範圍第1 3項所述之裝置,其中該 用於電腦模式化的軟體及該用於電腦處理的軟體係存在於 一軟體函式庫,該軟體函式庫可供不同測試程式取用以分 析取樣波形。 1 6 ·如申請專利範圍第1 3項所述之裝置,其中該 用於電腦處理的軟體係運用最小平方演算法,而使該波形 模式擬合於該取樣回應訊號。 1 7 ·如申請專利範圍第1 6項所述之裝置,其中該 等N條正弦曲線之各條曲線可依A k s i η ω k i + B k c 0S6JkiT以表示,其中: “A k”和” B k”爲未知係數, “k”爲一足標,範圍從1至N,其代表該等N個頻 率分量其中之一, 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再塡寫本頁) 裝 、1T: 線 555980 § D8 六、申請專利範圍 〇)1^係對應第k個頻率分量, “ i ”則爲對應於時間之標號。 1 8 ·如申請專利範圍第1 7項所述之裝置,其中該 用於電腦處理的軟體係使一估計因子爲最小,該估計因子 可如下予以表示: Σ 乂 一 iX4C0SCV. +式 sincr〆) /=〇 k=\ Λ 』 其中: “Μ”係代表構成該取樣波形之若干樣本,且 “ y i ”代表該取樣波形之第i點。 19·一種在自動化測試系統內用於分析測試訊號之 頻率內容的裝置,其包含: 一數位器,用於針對一受測元件之測試訊號進行取樣; 一用於儲存該取樣訊號內尋求分析的N個不同頻率分 量之列表的裝置,且N> 1,其中該等N個頻率分量之各 頻率爲已知,振幅和相位則爲未知; 一用於使該取樣訊號模式化而成爲一波形模式的裝 置,該波形模式對應於N條正弦曲線之總和,該等N條正 弦曲線之各曲線亦具一未知振幅和相位’並具有等於該等 N個頻率分量之一不同頻率的頻率;以及 一用於處理該波形模式的裝置,使該波形模式能最佳 擬合於該取樣訊號。 2 0 ·如申請專利範圍第1 9項所述之裝置,其中該 本紙張尺度適用中國國家標準(CNS)A4規格(210X 297公釐) (請先閲讀背面之注意事項再塡寫本頁) :裝-· 、-ΰ 線 555980 A8 B8 C8 D8 六、申請專利範圍 用於模式化的裝置及該用於處理的裝置係存在於一軟體函 式庫’該軟體函式庫可供不同測試程式取用以分析取樣波 形。 2 1 ·如申請專利範圍第1項所述之方法,其中該取 樣訊號係在非均勻速率下進行取樣。 用中國國家標準(CNS)A4規格(210 X 297公釐) ................ .............裝---------------訂................線 (請先閲讀背面之注意事項再塡寫本頁)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/896,788 US6687630B2 (en) | 2001-06-29 | 2001-06-29 | Low leakage technique for determining power spectra of non-coherently sampled data |
Publications (1)
Publication Number | Publication Date |
---|---|
TW555980B true TW555980B (en) | 2003-10-01 |
Family
ID=25406840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW091113849A TW555980B (en) | 2001-06-29 | 2002-06-25 | Low leakage technique for determining power spectra of non-coherently sampled data |
Country Status (8)
Country | Link |
---|---|
US (1) | US6687630B2 (zh) |
EP (1) | EP1405087A1 (zh) |
JP (1) | JP4881542B2 (zh) |
KR (1) | KR100911685B1 (zh) |
CN (1) | CN1271542C (zh) |
MY (1) | MY130358A (zh) |
TW (1) | TW555980B (zh) |
WO (1) | WO2003003030A1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2349041A1 (en) * | 2001-05-28 | 2002-11-28 | Alireza Karimi Ziarani | System and method of extraction of sinusoids of time-varying characteristics |
US6882947B2 (en) * | 2001-12-31 | 2005-04-19 | Teradyne, Inc. | Discrete fourier transform (DFT) leakage removal |
JP2004061415A (ja) * | 2002-07-31 | 2004-02-26 | Agilent Technologies Japan Ltd | デバイスの特性試験方法 |
DE102004039441A1 (de) * | 2004-08-13 | 2006-02-23 | Rohde & Schwarz Gmbh & Co. Kg | Verfahren zur Ermittlung der komplexen Spektrallinien eines Signals |
US7444249B2 (en) * | 2005-04-15 | 2008-10-28 | Square D Company | Digital power metering system for reducing spectral leakage when determining the frequencies present in a power signal |
US20070073797A1 (en) * | 2005-09-29 | 2007-03-29 | Lockheed Martin Corporation | Recursive method for solving the inexact greatest common divisor problem |
US8046396B2 (en) * | 2007-03-28 | 2011-10-25 | Teradyne, Inc. | Residual Fourier-padding interpolation for instrumentation and measurement |
US8090558B1 (en) * | 2008-06-09 | 2012-01-03 | Kla-Tencor Corporation | Optical parametric model optimization |
US8223057B2 (en) | 2010-09-30 | 2012-07-17 | Schneider Electric USA, Inc. | Quantizing sampled inputs using fixed frequency analog to digital conversions through interpolation |
EP3309521B1 (en) * | 2016-10-14 | 2020-07-29 | Grundfos Holding A/S | Method for evaluating a frequency spectrum |
CN108572345B (zh) * | 2017-12-29 | 2020-12-15 | 深圳市鼎阳科技股份有限公司 | 示波器,基于欠采样对频率准确度进行校正的方法、系统 |
CN111983308B (zh) * | 2020-08-19 | 2021-09-14 | 电子科技大学 | Adc频谱测试中存在非相干采样和谐波失真的信号恢复方法 |
WO2022061469A1 (en) * | 2020-09-25 | 2022-03-31 | Carleton University | Independent control of the magnitude and phase of a reflected electromagnetic wave through coupled resonators |
KR102380506B1 (ko) * | 2020-10-29 | 2022-03-31 | 포스필 주식회사 | 전자기기 자가 진단 장치 |
US11563444B1 (en) | 2021-09-09 | 2023-01-24 | Textron Systems Corporation | Suppressing spurious signals in direct-digital synthesizers |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5473555A (en) * | 1988-08-18 | 1995-12-05 | Hewlett-Packard Company | Method and apparatus for enhancing frequency domain analysis |
JPH03216562A (ja) * | 1990-01-22 | 1991-09-24 | Hitachi Ltd | 離散的フーリエ変換による正弦波の周期と位相の検出方法及びその装置 |
US5165051A (en) * | 1990-05-15 | 1992-11-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Modified fast frequency acquisition via adaptive least squares algorithm |
US5475315A (en) * | 1991-09-20 | 1995-12-12 | Audio Precision, Inc. | Method and apparatus for fast response and distortion measurement |
JPH0580091A (ja) * | 1991-09-25 | 1993-03-30 | Hitachi Ltd | 周波数特性測定法 |
JPH08204766A (ja) * | 1995-01-25 | 1996-08-09 | Katsuyoshi Azeyanagi | 時間制限波形の周波数分析検出方式 |
JPH09211038A (ja) * | 1996-01-31 | 1997-08-15 | Hitachi Ltd | 位相・振幅検出装置の診断装置、位相検出装置、振幅検出装置、周波数検出装置、位相・振幅・周波数検出装置 |
JPH09243679A (ja) | 1996-03-05 | 1997-09-19 | Takayoshi Hirata | 任意区間波形を用いた非調和的周波数分析法 |
WO1999018520A1 (en) | 1997-10-07 | 1999-04-15 | Massachusetts Institute Of Technology | Nonuniform sampling for spectral and related applications |
US6137104A (en) * | 1998-06-12 | 2000-10-24 | Varian, Inc. | Fast automated spectral fitting method |
JP2000009768A (ja) * | 1998-06-19 | 2000-01-14 | Neucore Technol Inc | 周波数解析装置 |
JP3191782B2 (ja) * | 1998-10-23 | 2001-07-23 | 日本電気株式会社 | 集積回路の故障検査装置及び方法及び制御プログラムを記録した記録媒体 |
JP2000055949A (ja) * | 1998-08-10 | 2000-02-25 | Hitachi Building Systems Co Ltd | 周波数分析方法及び周波数分析装置 |
JP2000180484A (ja) * | 1998-12-18 | 2000-06-30 | Nissin Electric Co Ltd | 高調波測定装置 |
-
2001
- 2001-06-29 US US09/896,788 patent/US6687630B2/en not_active Expired - Fee Related
-
2002
- 2002-06-24 JP JP2003509161A patent/JP4881542B2/ja not_active Expired - Fee Related
- 2002-06-24 EP EP02744573A patent/EP1405087A1/en not_active Withdrawn
- 2002-06-24 KR KR1020037002923A patent/KR100911685B1/ko not_active IP Right Cessation
- 2002-06-24 CN CNB028022416A patent/CN1271542C/zh not_active Expired - Fee Related
- 2002-06-24 WO PCT/US2002/019944 patent/WO2003003030A1/en active Application Filing
- 2002-06-25 TW TW091113849A patent/TW555980B/zh not_active IP Right Cessation
- 2002-06-27 MY MYPI20022421A patent/MY130358A/en unknown
Also Published As
Publication number | Publication date |
---|---|
MY130358A (en) | 2007-06-29 |
KR20040014976A (ko) | 2004-02-18 |
CN1271542C (zh) | 2006-08-23 |
EP1405087A1 (en) | 2004-04-07 |
US20030014203A1 (en) | 2003-01-16 |
KR100911685B1 (ko) | 2009-08-10 |
JP2004522167A (ja) | 2004-07-22 |
WO2003003030A1 (en) | 2003-01-09 |
JP4881542B2 (ja) | 2012-02-22 |
US6687630B2 (en) | 2004-02-03 |
CN1464979A (zh) | 2003-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW555980B (en) | Low leakage technique for determining power spectra of non-coherently sampled data | |
Vanhuffel et al. | Algorithm for time-domain NMR data fitting based on total least squares | |
Damour et al. | Frequency-domain P-approximant filters for time-truncated inspiral gravitational wave signals from compact binaries | |
De La Cuadra et al. | Efficient pitch detection techniques for interactive music | |
Pantazis et al. | Iterative estimation of sinusoidal signal parameters | |
TWI277742B (en) | Method and apparatus for testing non-coherently sampled test signals | |
US20220026264A1 (en) | Machine Condition Monitoring Using Phase Adjusted Frequency Referenced Vector Averaging | |
Veletsos et al. | Dynamic analysis of structures by the DFT method | |
JP5712255B2 (ja) | フーリエ解析による周波数測定方法および周波数測定装置 | |
Smyth | Employing symmetry constraints for improved frequency estimation by eigenanalysis methods | |
US6816242B2 (en) | System and method for performing time domain reflectometry using Gaussian pulses | |
JP2505707B2 (ja) | フ―リエ解析による周波数測定方法 | |
KR20080021800A (ko) | 산란 시그니처를 이용한 개선된 구조 식별 | |
Aiello et al. | A PC-based instrument for harmonics and interharmonics measurement in power supply systems | |
Jiang et al. | Time-frequency analysis—G (λ)-stationary processes | |
Migneco et al. | Modeling plucked guitar tones via joint source-filter estimation | |
Zhang et al. | Measurement and analysis of musical vibrato parameters | |
De Beer et al. | Creating the Semipar custom plug-in for the jMRUI platform | |
KR102209905B1 (ko) | 혼성신호 회로의 성능예측을 위한 스펙트럼 누출 기반의 루프백 방법 및 그 시스템 | |
CN1475929A (zh) | 具有调音功能的个人数字助理装置 | |
US6775628B2 (en) | Low distortion frequency tracking technique | |
Papanikolaou et al. | Designing problems in computerized acoustic analyzers | |
Burgos Pintos et al. | Design and Evaluation of Acoustic Guitar Plates by Additive Manufacturing: A Methodology Proposed and Application | |
Knopoff | An index for the relative quality among musical instruments | |
Kermit-Canfield | A comparison of real-time pitch detection algorithms in supercollider |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |