TW510018B - In-situ process for producing interface-free dual-material dielectric layer - Google Patents

In-situ process for producing interface-free dual-material dielectric layer Download PDF

Info

Publication number
TW510018B
TW510018B TW90121094A TW90121094A TW510018B TW 510018 B TW510018 B TW 510018B TW 90121094 A TW90121094 A TW 90121094A TW 90121094 A TW90121094 A TW 90121094A TW 510018 B TW510018 B TW 510018B
Authority
TW
Taiwan
Prior art keywords
blok
deposition step
dielectric layer
layer
patent application
Prior art date
Application number
TW90121094A
Other languages
Chinese (zh)
Inventor
Hung-Tien Yu
En-Hsien Ku
Yi-Wen Chen
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to TW90121094A priority Critical patent/TW510018B/en
Application granted granted Critical
Publication of TW510018B publication Critical patent/TW510018B/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

An in-situ process for producing a interface-free dual-material dielectric layer is suitable for forming an intermetal dielectric layer and forming a metal damascene structure in the interior to connect two conductive layers, in which the dual-material includes a BD material and a BLOK material. The process comprises introducing a BLOK-forming trimethyl silane gas, oxygen, helium and ammonia to form a BLOK material layer; gradually reducing helium and ammonia to simultaneously form the BD material/BLOK material until the flowrate of helium and ammonia is zero to form a BD material layer; gradually increasing the flowrate of helium and ammonia to again simultaneously form the BD material/BLOK material; and increasing the flowrate of helium and ammonia to the original flowrate to form a BLOK material layer and form an in-situ BD material/BLOK material dielectric layer; optionally, forming one or more layers of BD material and BLOK material dielectric layer on the in-situ BD material/BLOK material dielectric layer.

Description

510018 B7 五、發明說明() 發明領域: 一種無接面雙材質介電層之原位(in-situ)製程,適用 於形成內金屬介電層’並在其中形成金屬鑲嵌結構以連結 上下兩層導電層。 發明背景= 在超大型積體電路(ULSI)的製程上,可以在丨至2平 方公分面積的矽表面上配置數量多達數十萬個電晶體。並 且,爲了增加積體電路的積集度,將提高連接各個電晶體 或是其他元件的金屬線之密度。所以,以往單一金屬層的 設計,將無法完成整個積體電路的連線工作,兩層以上的 金屬層設計,便逐漸成爲許多積體電路製造所必需採用的 方式。以邏輯電路爲例,目前積體電路所使用的金屬已達 六層。 隨著元件尺寸的縮小’相鄰導線的間距亦隨之縮小, 若無法有效降低做爲導線間電性隔離的介電層之介電常 數,在窄小的空間中’平fr的導線會在相鄰接的導線間產 生不必要的電容式(capacitive)與電感式(inductive)耦接 (coupling),造成導線之間相互干擾’導致導線之間的電 阻-電容時間延遲(RC Time Delay)增加°特別是在經由平 行導線進行較高的傳輸資料速率時’電容式與電感式親接 將降低資料的傳輸速率。而以此方式增加能量的耗損量’ 2 (請先閱讀背面之注意事項再填寫本頁) 訂-------〆·, 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(21G X 297公餐) 510018 A7 B7 五、發明說明() 同時亦限制了元件的效能。爲此’一些低介電係數的材質 被發展出來以適用於形成內金屬介電層’例如黑鑽石 (Black Diamond,BD) 。BD是以三甲基砂院與氧氣爲前 驅物質經化學氣相沉積而形成的。低介電係數材質形成的 介電層可以降低電容式與電感式耦接,因而增加元件的效 倉b 。 BD的材質適用於銅製程中,可以用來形成內金屬介 電層,目前是和BLOK —起使用。一般是在導電層,例如 銅金屬層,上方先形成BLOK層作爲阻障層和蝕刻終止層 之用,BLOK層可以預防銅金屬層中銅金屬材質的擴散。 接著再於BLOK層之上形成一層BD層作爲介電層,即可 適用於後續金屬鑲嵌的製程。若在BD層上方依序再形成 BLOK層及BD層,則適用於後續之雙金屬鑲嵌的製程。 BLOK材質是以三甲基矽烷氣體、氧氣、氦氣及氨氣爲前 驅物,經由化學氣氣相沉積而形成的。 現今在使用BD材質時會碰到以下的問題:第一、黏 著性的問題,BD材質和BLOK的材質間黏著性差,容易 產生剝離的現象,而且BD材質硬度不足,在後續化學機 械硏磨及封裝的製程中,容易發生介電層滑動的情形。第 二、BD材質親水性(Hydrophilic)較差,以化學機械硏磨法 不易移除且易發生缺陷。 習知解決這兩個問題的方法:第一、在BLOK層和 BD層間加上一黏著層,以解決BD材質和BLOK的材質 間黏著性差的問題。第二、在形成BD層後再加上一次後 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂----------510018 B7 V. Description of the invention Field of the invention: An in-situ process of a non-contact bi-material dielectric layer is suitable for forming an inner metal dielectric layer and forming a metal mosaic structure therein to connect the upper and lower two layers. LAYER conductive layer. Background of the Invention = In the ultra-large integrated circuit (ULSI) process, up to hundreds of thousands of transistors can be arranged on a silicon surface with an area of 2 to 2 cm2. In addition, in order to increase the integration degree of the integrated circuit, the density of metal wires connecting various transistors or other components will be increased. Therefore, in the past, the design of a single metal layer could not complete the connection of the entire integrated circuit. The design of two or more metal layers has gradually become a necessary method for the manufacture of many integrated circuits. Take the logic circuit as an example, the current metal used in integrated circuits has reached six layers. As the component size shrinks, the distance between adjacent wires also decreases. If the dielectric constant of the dielectric layer used as the electrical isolation between the wires cannot be effectively reduced, in a narrow space, the wires of a flat fr will Unnecessary capacitive and inductive coupling between adjacent wires leads to mutual interference between the wires, leading to increased resistance-capacitance time delay (RC Time Delay) between the wires ° Especially when the data transmission rate is higher via parallel wires, the capacitive and inductive connection will reduce the data transmission rate. And increase the energy consumption in this way '2 (Please read the precautions on the back before filling this page) Order ------- 〆 ·, printed by the Intellectual Property Bureau Staff Consumer Cooperatives of the Ministry of Economic Affairs This paper applies to China National Standard (CNS) A4 specification (21G X 297 meals) 510018 A7 B7 5. Description of the invention () It also limits the effectiveness of the components. To this end, some materials with low dielectric constant have been developed to be suitable for forming an inner metal dielectric layer such as Black Diamond (BD). BD is formed by chemical vapor deposition of trimethyl sand and oxygen as precursors. The dielectric layer formed of a low dielectric constant material can reduce the capacitive and inductive coupling, thereby increasing the efficiency of the component b. The material of BD is suitable for copper process and can be used to form the inner metal dielectric layer. It is currently used together with BLOK. Generally, a BLOK layer is first formed on a conductive layer, such as a copper metal layer, as a barrier layer and an etch stop layer. The BLOK layer can prevent the diffusion of the copper metal material in the copper metal layer. Then a BD layer is formed on the BLOK layer as a dielectric layer, which can be applied to the subsequent metal damascene process. If the BLOK layer and the BD layer are sequentially formed over the BD layer, it is suitable for the subsequent bimetal mosaic process. The BLOK material is formed by chemical vapor deposition of trimethylsilane gas, oxygen, helium and ammonia as precursors. At present, when using BD material, the following problems are encountered: First, the problem of adhesion, poor adhesion between the BD material and the BLOK material, which is prone to peeling, and the hardness of the BD material is insufficient. In the subsequent chemical mechanical honing and During the packaging process, the dielectric layer is liable to slip. Second, the BD material is poor in hydrophilicity, and it is difficult to remove and defect easily by chemical mechanical honing. Know how to solve these two problems: First, add an adhesive layer between the BLOK layer and the BD layer to solve the problem of poor adhesion between the BD material and the BLOK material. Secondly, after the formation of the BD layer, the paper size will be applied to the Chinese National Standard (CNS) A4 (210 X 297 mm). (Please read the precautions on the back before filling this page) Order --- -------

經濟部智慧財產局員工消費合作社印製 510018 A7 B7 五、發明說明() 處理(Post Treatment)製程,後處理製程會在BD層表面產 生較商比例的氧化狀態,使後續的化學機械硏磨較易進 行。增加了黏著層和後處理的製程意味著製程的循環日寺間 (Cycle Time)增加和產能下降,這也表示製程的成本因而 提禹。除此之外’增加的兩個步驟還會增加整個介電層的 介電材質的介電常數,而降低了這些低介電材質的效用。 請參照第1圖,第1圖係繪示習知形成適用於金屬鑲 嵌的BD材質介電層。在銅金屬層100上先形成BLOK材 質層102,形成BLOK材質層102的方法包括化學氣相沉 積法。接著,在BLOK材質層102上形成黏著層104,再 以化學氣相沉積法形成BD材質層106,最後經過後處理 製程,在BD材質層106的表面形成氧化層108。 請再參照第2圖,第2圖係繪示習知形成適用於雙金 屬鑲嵌的BD材質介電層。在銅金屬層200上先以化學氣 相沉積法形成BLOK材質層202。接著,在BLOK材質層 202上形成黏著層204,再以化學氣相沉積法形成BD材 質層206,繼續於BD材質層206上形成黏著層208,接 著再沉積BLOK材質層210、黏著層212、BD材質層214。 最後經過後處理製程,在BD材質層214的表面形成氧化 層216。爲了適用於後續形成雙金屬鑲嵌,必須多加入形 成黏著層204、208、212及後處理製程4道製程,著實所 費不疵。 發明目的及槪述: 4 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂-------Γ 經濟部智慧財產局員工消費合作社印製Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 510018 A7 B7 V. Description of the invention () Post Treatment process, the post treatment process will produce a relatively oxidized state on the surface of the BD layer, making subsequent chemical mechanical honing Easy to carry. Adding an adhesive layer and post-processing process means that the cycle time of the process increases and the capacity decreases, which also means that the cost of the process is increased. In addition, the two additional steps will increase the dielectric constant of the dielectric material of the entire dielectric layer, and reduce the effectiveness of these low dielectric materials. Please refer to Fig. 1. Fig. 1 shows the conventional formation of a BD dielectric layer suitable for metal embedding. A BLOK material layer 102 is first formed on the copper metal layer 100, and a method of forming the BLOK material layer 102 includes a chemical vapor deposition method. Next, an adhesive layer 104 is formed on the BLOK material layer 102, and then a BD material layer 106 is formed by a chemical vapor deposition method. Finally, an oxide layer 108 is formed on the surface of the BD material layer 106 through a post-processing process. Please refer to Figure 2 again, which shows the conventional formation of a BD dielectric layer suitable for dual metal mosaics. A BLOK material layer 202 is first formed on the copper metal layer 200 by a chemical vapor deposition method. Next, an adhesive layer 204 is formed on the BLOK material layer 202, and then a BD material layer 206 is formed by a chemical vapor deposition method. Continue to form an adhesive layer 208 on the BD material layer 206, and then a BLOK material layer 210, an adhesive layer 212, BD 材料 层 214. Finally, a post-processing process is performed to form an oxide layer 216 on the surface of the BD material layer 214. In order to be suitable for the subsequent formation of bimetal mosaics, four additional processes must be added to form the adhesive layers 204, 208, 212 and the post-processing process, which is really cost-effective. OBJECTIVE AND DESCRIPTION OF THE INVENTION: 4 This paper size is applicable to China National Standard (CNS) A4 (210 X 297 mm) (Please read the notes on the back before filling this page) Order ------- Γ Department of Economy Printed by the Intellectual Property Bureau Staff Consumer Cooperative

510018 A7 _______JB7 五、發明說明() 經濟部智慧財產局員工消費合作社印製 有鑑於此,本發明的目的在提供一種無接面雙材質介 電層之原位製程,可以在不使用黏著層的情形下增加BD 層和BLOK層間的黏著性,而避免BD層在後續的製程中 發生剝離或滑動的現象。 本發明的另一目的在提供一種無接面雙材質介電層 之原位製程,可以在形成介電層後不需要再經過後處理製 程,即可使後續的化學機械硏磨製程容易進行。 本發明的又一目的在提供一種無接面雙材質介電層 之原位製程,不需進行黏著層及後處理製程,可以減少製 程的循環時間而增加產能,降低製程的成本。 本發明的再一目的在提供一種無接面雙材質介電層 之原位製程,不需進行黏著層及後處理製程,因此不會增 加介電層的有效介電係數,而維持這些低介電材質的效 用。 本發明的再又一目的在提供一種無接面雙材質介電 層之原位製程,可以在同一個反應室中完成雙材質介電層 的製程’更進一步的減少製程的循環時間而增加產能,降 低製程的成本。 本發明所提供的無接面雙材質介電層之原位製程,是 將一具有導電層,例如銅金屬層,的基底送入一反應室 中,加上適當的電力功率,高頻功率約200瓦特至400瓦 特’低頻功率約10瓦特至2〇〇瓦特,將反應室內的壓力 維持在1托耳至9托耳之間。導入三甲基矽烷氣體、氧氣、 5 本紙張又度適用中國國家標準(CNS)A4規格(11^297公餐)_ -------丨 hi.—% (請先閱讀背面之注意事項再填寫本頁) — 訂-----— —I·-·. 510018 五、發明說明() 氦氣及氨氣開始在導電層表面沉積BLOK材質。 (請先閱讀背面之注意事項再填寫本頁) 在形成BLOK材質達所需要的厚度之後,開始慢慢減 少氨氣和氨氣的流速,此時,BLOK材質和BD材質會同 時混合沉積於BLOK材質之上。隨著氦氣和氨氣的流速越 來越低,BLOK材質的比例越來越低而BD材質的比例越 來越高,當關閉氦氣和氨氣時,只有材質會繼續沉積。 在形成BD材質達所需要的厚度之後,重新開啓氦氣和氨 氣,使BLOK材質和BD材質同時混合沉積於BD材質之 上,而此時氦氣和氨氣的流量所形成的BD材質的比例會 大於BLOK材質。逐漸增加氦氣和氨氣的流速,BLOK材 質的比例越來越高而BD材質的比例越來越低,當氦氣和 氨氣回到初始的流速,只有BLOK材質繼續沉積,如此則 形成無接面雙材質介電層。 經濟部智慧財產局員工消費合作社印製 在此介電層中,包含著兩種材質,這兩種材質並非均 勻分布,由下向上依序爲第一 BLOK材質層、第一 BLOK 材質/BD材質層、BD材質層、第二BLOK材質/BD材質 層及第二BLOK材質層。第一 BLOK材質/BD材質層越接 近第一 BLOK材質層的位置,BLOK材質含量越高而BD 材質含量越低。第一 BLOK材質/BD材質層越接近BD材 質層的位置,BLOK材質含量越低而BD材質含量越高。 第二BLOK材質/BD材質層越接近第二BLOK材質層的位 置,BLOK材質含量越高而BD材質含量越低。第二BLOK 材質/BD材質層越接近BD材質層的位置,BLOK材質含 量越低而BD材質含量越高。所以BLOK材質和BD材質 6 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 510018 部 智 慧 財 產 B7 五、發明說明() 間沒有介面存在,因此不會由黏著性不佳的問題,後續的 化學機械硏磨製程或封裝製程不會有BD材質剝離或滑動 的問題,而使後續製程的裕度(Window)增加。 另外,介電層的表面並非BD材質而是BLOK材質, 所以後續的化學機械硏磨製程容易進行且不易產生缺 陷。本發明所揭露的製程,均可以在一個反應室中完成, 不需要在不同的反應室中進行,且不需進行黏著層及後處 理製程’可以減少製程的循環時間而增加產能,降低製程 的成本。而且’因爲沒有黏著層的製程及後處理製程,所 以介電層的有效介電係數不會因此而增加以至於減損介 電層原有的功能。 圖式簡單說昍: 第1圖係繪不習知形成適用於金屬鑲嵌的BD材質介 電層; 第2圖係繪示習知形成適用於雙金屬鑲嵌的bd材質 介電層; _第3圖係繪示根據本發明所揭露的方法形成適用於金 屬鑲敗的BD及BLOK雙材質介電層;以及 ^4圖係繪示根據本發明所揭露的方法形成適用於雙 金屬鑲嵌的BD及BLOK雙材質介電層。 尉照說明: (請先閱讀背面之注意事項再填寫本頁) 訂i 消 費 合 作 社 印 製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公餐) 510018 A7 B7 五、發明說明( 312、402、412 :介電層 (請先閱讀背面之注意事項再填寫本頁) 100、200 :銅金屬餍 102 、 202 、 210 、 3〇2 ' 104 、 204 、 208 、 212 : 106 、 206 、 214 、 3〇6 、 108、216 :氧化層 3〇〇、400 :導電層 304、308、404、408 ·· 310、410 : BLOK 材質層 黏著層 406 : BD材質層 BLOK材質/BD材質層 發明詳細說明: 實施例 爲了讓本發明所提供之無接面雙材質介電層之原位 製程更加淸楚起見,茲提供一些較佳實施例說明如下。 請參照第3圖,第3圖係繪示根據本發明所揭露的方 法形成適用於在其中形成金屬鑲嵌的BD及BLOK雙材質 介電層,其中形成BLOK材質的前驅氣體包括三甲基矽烷 氣體、氧氣、氨氣及氨氣,形成BD材質的前驅氣體包括 三甲基矽烷氣體及氧氣。 將一具有導電層300的基底(未繪示於圖上)送入一反 應室(未繪示於圖上)中,導電層300可以爲例如銅金屬 層。然後對此反應室加上適當的電力功率,高頻功率約200 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) 訂 -------- 經濟部智慧財產局員工消費合作社印製 510018 A7 B7 五、發明說明() 瓦特至400瓦特之間,低頻功率約10瓦特至200瓦特之 間,並將反應室內的壓力維持在1托耳至9托耳之間。導 入三甲基矽烷氣體、氧氣、氨氣及氨氣以開始第一沈積步 驟,以在導電層300上開始沉積BLOK材質層3〇2。 第一沈積步驟是在形成BLOK材質,其中三甲基矽烷 氣體的流速介於200 seem至2500 Sccm之間,氧氣的流速 介於50 seem至500 seem之間,氦氣的流速介於50 seem 至2〇0 seem之間以及氛氣的流速介於200 seem至1500 seem之間° 在經過預定的時間或形成所需厚度的BLOK材質之 後,開始第二沈積步驟,第二沈積步驟在形成BLOK/BD 的混合材質。在此階段中,逐漸減少氦氣和氨氣的流速, 此即是減少氨氣和氨氣的量,此時,BLOK材質/BD材質 層304會同時混合沉積於已形成之BLOK材質層302之 上。隨著氨氣和氨氣的流速越來越低,BLOK材質的比例 越來越低而BD材質的比例越來越高,當氦氣和氨氣的流 速低到〇時,停止BLOK材質的形成,開始第三沈積步驟。 第三沈積步驟是在形成BD材質,當氨氣和氨氣的流 速低到〇時,只有BD材質沉積,並形成BD材質層306 於BLOK材質/BD材質層304之上。在形成足夠厚度的 BD材質層306之後,開始第四沈積步驟。 第四沈積步驟在形成BLOK/BD的混合材質。重新開 啓氦氣和氨氣並逐漸增加流速,BLOK材質/BD材質層308 會再度同時混合沉積於BD材質層306之上,而此時氮氣 9 -------l· — — 卜 1¾ (請先閱讀背面之注意事項再填寫本頁) 訂-------- 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 〇ιυυΐ8 五、發明說明() 和氨氣的流量所形成的BD材質的比例會大於BLOK材 質。隨著逐漸增加氦氣和氨氣的流速,BLOK材質的比例 越來越高而BD材質的比例越來越低,當氨氣和氨氣回到 初始的流速,第五沈積步驟開始。 第五沈積步驟是在形成BLOK材質。BLOK材質層310 形成於BLOK材質/BD材質層308之上,如此則形成無接 面雙材質介電層312。 介電層312適用於形成一金屬鑲嵌(未繪示於圖上)於 其中。在此介電層312中,包含著兩種材質,這兩種材質 並非均勻分布,由下向上依序爲BLOK材質層302、BLOK 材質/BD材質層304、BD材質層306、BLOK材質/BD材 質層308及BLOK材質層310°BLOK材質/BD材質層304 越接近BLOK材質層3 02的位置,BLOK材質含量越高而 BD材質含量越低。BLOK材質/BD材質層3〇4越接近BD 材質層306的位置,BLOK材質含量越低而BD材質含量 越局。 BLOK材質/BD材質層308越接近BLOK材質層31〇 的位置,BLOK.材質含量越高而BD材質含量越低。BL0K 材質/BD材質層308越接近BD材質層306的位置’BLOK 材質含量越低而BD材質含量越高。所以BLOK材質和BD 材質間沒有介面存在,因此不會由黏著性不佳的問題。所 以後續的化學機械硏磨製程或封裝製程不會有BD材質剝 離或滑動的問題,而使後續製程的裕度(Window)增加。 10 ------卜丨丨卜丨犧·! (請先閱讀背面之注意事項再填寫本頁)510018 A7 _______JB7 V. Description of the Invention () Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs In view of this, the purpose of the present invention is to provide an in-situ process of a dual-material dielectric layer without an interface. In some cases, the adhesion between the BD layer and the BLOK layer is increased, and the phenomenon of peeling or sliding of the BD layer in the subsequent process is avoided. Another object of the present invention is to provide an in-situ process for a non-contact bi-material dielectric layer, which can facilitate subsequent chemical mechanical honing processes after the dielectric layer is formed without the need for a post-processing process. Yet another object of the present invention is to provide an in-situ process for a non-contact bi-material dielectric layer without the need for an adhesive layer and a post-processing process, which can reduce the cycle time of the process, increase production capacity, and reduce the cost of the process. Yet another object of the present invention is to provide an in-situ process for a non-contact bi-material dielectric layer, which does not require an adhesive layer and a post-processing process, and therefore does not increase the effective dielectric coefficient of the dielectric layer and maintain these low dielectrics. The utility of electrical materials. Yet another object of the present invention is to provide an in-situ process for a non-contact bi-material dielectric layer, which can complete the process of the bi-material dielectric layer in the same reaction chamber, further reducing the cycle time of the process and increasing the production capacity. To reduce the cost of the process. The in-situ process of the non-contact bi-material dielectric layer provided by the present invention is to send a substrate with a conductive layer, such as a copper metal layer, into a reaction chamber, and add appropriate electric power. 200 Watts to 400 Watts' low-frequency power of about 10 Watts to 200 Watts, maintaining the pressure in the reaction chamber between 1 Torr and 9 Torr. Introducing trimethylsilane gas, oxygen, 5 papers are again applicable to China National Standard (CNS) A4 specifications (11 ^ 297 meals) _ ------- 丨 hi .—% (Please read the note on the back first Please fill in this page for more details) — Order -----— —I ·-·. 510018 V. Description of the invention () Helium and ammonia began to deposit BLOK material on the surface of the conductive layer. (Please read the precautions on the back before filling this page) After forming the BLOK material to the required thickness, slowly reduce the flow rate of ammonia and ammonia gas. At this time, the BLOK material and the BD material will be mixed and deposited on the BLOK at the same time. Above the material. As the flow rate of helium and ammonia is getting lower and lower, the proportion of BLOK material is getting lower and the proportion of BD material is getting higher. When helium and ammonia gas are turned off, only the material will continue to deposit. After the BD material is formed to the required thickness, the helium and ammonia gas are turned on again, and the BLOK material and the BD material are mixed and deposited on the BD material at the same time. At this time, the BD material formed by the flow of helium and ammonia gas is The proportion will be larger than the BLOK material. Gradually increase the flow rate of helium and ammonia, the proportion of BLOK material is getting higher and higher, and the proportion of BD material is getting lower and lower. When the helium and ammonia gas return to the initial flow rate, only the BLOK material continues to deposit. The interface is made of a dual-material dielectric layer. Printed on the dielectric layer by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, this dielectric layer contains two materials, which are not evenly distributed. From bottom to top, it is the first BLOK material layer, the first BLOK material / BD material. Layer, BD material layer, second BLOK material / BD material layer, and second BLOK material layer. The closer the first BLOK material / BD material layer is to the position of the first BLOK material layer, the higher the BLOK material content and the lower the BD material content. The closer the first BLOK material / BD material layer is to the position of the BD material layer, the lower the BLOK material content and the higher the BD material content. The closer the second BLOK material / BD material layer is to the position of the second BLOK material layer, the higher the BLOK material content and the lower the BD material content. The closer the second BLOK material / BD material layer is to the position of the BD material layer, the lower the BLOK material content and the higher the BD material content. Therefore, the paper size of BLOK material and BD material 6 is in accordance with Chinese National Standard (CNS) A4 specification (210 X 297 mm) 510018 intellectual property B7 5. There is no interface between the description of the invention, so it will not be caused by poor adhesion. The problem is that the subsequent chemical mechanical honing process or packaging process will not have the problem of peeling or sliding of the BD material, which will increase the margin of the subsequent process (Window). In addition, the surface of the dielectric layer is not a BD material but a BLOK material, so subsequent chemical mechanical honing processes are easy to perform and defects are not easy to occur. The processes disclosed in the present invention can be completed in one reaction chamber, and do not need to be performed in different reaction chambers, and do not need to perform an adhesive layer and a post-treatment process. 'It can reduce the cycle time of the process and increase the production capacity. cost. Moreover, because there is no process of the adhesive layer and the post-processing process, the effective dielectric constant of the dielectric layer will not be increased as a result, so that the original function of the dielectric layer is impaired. The diagram is simple: Figure 1 shows how to form a BD material dielectric layer suitable for metal mosaic; Figure 2 shows how to form a BD material dielectric layer suitable for bimetal mosaic; _ 第 3 FIG. 4 shows a method for forming a BD and a BLOK dual-material dielectric layer suitable for metal inlay according to the method disclosed in the present invention; and FIG. 4 shows a method for forming a BD and a bimetal inlay according to the method disclosed in the present invention. BLOK dual-material dielectric layer. Explanation of Wei Zhao: (Please read the notes on the back before filling in this page) Order i Printed by the Consumer Cooperatives The paper size is applicable to Chinese National Standard (CNS) A4 specifications (210 X 297 meals) 510018 A7 B7 V. Description of the invention ( 312, 402, 412: Dielectric layer (please read the precautions on the back before filling in this page) 100, 200: Copper metal 餍 102, 202, 210, 3202 '104, 204, 208, 212: 106, 206 , 214, 306, 108, 216: oxide layer 300, 400: conductive layer 304, 308, 404, 408 ... 310, 410: BLOK material layer adhesive layer 406: BD material layer BLOK material / BD material layer Detailed description of the invention: Examples In order to make the in-situ process of the non-contact bi-material dielectric layer provided by the present invention more clear, some preferred embodiments are provided as follows. Please refer to FIG. 3 and FIG. 3 It is shown that according to the method disclosed in the present invention, a BD and BLOK dual-material dielectric layer suitable for forming a metal inlay is formed therein. The precursor gas for forming the BLOK material includes trimethylsilane, oxygen, ammonia, and ammonia. Precursor forming BD material It includes trimethylsilane gas and oxygen. A substrate (not shown in the figure) with a conductive layer 300 is sent into a reaction chamber (not shown in the figure), and the conductive layer 300 may be, for example, a copper metal layer. Then add appropriate electric power to this reaction chamber, high-frequency power is about 200. This paper size is applicable to China National Standard (CNS) A4 specification (210 X 297 public love). -------- Intellectual Property Bureau, Ministry of Economic Affairs Printed by Employee Consumer Cooperatives 510018 A7 B7 V. Description of the invention () Between watts and 400 watts, low-frequency power is between about 10 watts and 200 watts, and the pressure in the reaction chamber is maintained between 1 Torr and 9 Torr. Introduce trimethylsilane gas, oxygen, ammonia gas and ammonia gas to start the first deposition step to start depositing the BLOK material layer 30 on the conductive layer 300. The first deposition step is to form a BLOK material, in which trimethyl Silane gas flows between 200 seem and 2500 Sccm, oxygen flows between 50 seem and 500 seem, helium flows between 50 seem and 200 seem, and atmosphere flows between 200 seem between seem and 1500 seem ° after predetermined After the BLOK material with a desired thickness is formed occasionally, a second deposition step is started. The second deposition step is to form a BLOK / BD mixed material. In this stage, gradually reduce the flow rate of helium and ammonia, which is to reduce ammonia. The amount of gas and ammonia gas, at this time, the BLOK material / BD material layer 304 will be mixed and deposited on the formed BLOK material layer 302 at the same time. As the flow rate of ammonia and ammonia is getting lower and lower, the proportion of BLOK material is getting lower and the proportion of BD material is getting higher. When the flow rate of helium and ammonia gas is low, the formation of BLOK material is stopped To start the third deposition step. The third deposition step is to form a BD material. When the flow rate of ammonia gas and ammonia gas is low, only the BD material is deposited, and a BD material layer 306 is formed on the BLOK material / BD material layer 304. After forming the BD material layer 306 with a sufficient thickness, the fourth deposition step is started. The fourth deposition step is to form a BLOK / BD mixed material. Turn on the helium and ammonia gas again and gradually increase the flow rate. The BLOK material / BD material layer 308 will be mixed and deposited on the BD material layer 306 at the same time. At this time, the nitrogen 9 ------- l ·-— BU 1¾ (Please read the notes on the back before filling this page) Order -------- Printed on the paper by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the paper size applies to China National Standard (CNS) A4 (210 X 297 mm) ) 〇ιυυΐ8 V. Description of the invention () and the proportion of BD material formed by the flow of ammonia gas will be greater than the BLOK material. As the flow rates of helium and ammonia are gradually increased, the proportion of BLOK material is getting higher and the proportion of BD material is getting lower and lower. When the ammonia gas and ammonia gas return to the initial flow rate, the fifth deposition step begins. The fifth deposition step is to form a BLOK material. The BLOK material layer 310 is formed on the BLOK material / BD material layer 308, and thus a non-contact dual-material dielectric layer 312 is formed. The dielectric layer 312 is suitable for forming a metal damascene (not shown in the figure) therein. The dielectric layer 312 contains two materials, which are not evenly distributed. From the bottom to the top, they are BLOK material layer 302, BLOK material / BD material layer 304, BD material layer 306, and BLOK material / BD. Material layer 308 and BLOK material layer 310 ° BLOK material / BD material layer 304 The closer the position of BLOK material layer 302, the higher the BLOK material content and the lower the BD material content. The closer the BLOK material / BD material layer 304 is to the position of the BD material layer 306, the lower the BLOK material content and the more BD material content. The closer the BLOK material / BD material layer 308 is to the position of the BLOK material layer 31 °, the higher the BLOK. Material content and the lower the BD material content. The closer the BL0K material / BD material layer 308 is to the position of the BD material layer 306, the lower the BLOK material content and the higher the BD material content. Therefore, there is no interface between the BLOK material and the BD material, so there is no problem of poor adhesion. Therefore, the subsequent chemical mechanical honing process or packaging process does not have the problem of peeling or sliding of the BD material, which increases the margin of the subsequent process (Window). 10 ------ Bu 丨 丨 Bu 丨 Sacrifice! (Please read the notes on the back before filling this page)

Γ 、· -n n nH1 f n fl·— IV —e n *1ϋ I I 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 510018 _______B7_____ 五、發明說明() y施例2 請參照第4圖,第4圖係繪示根據本發明所揭露的方 法形成適用於雙金屬鑲嵌的及BL0K雙材質介電層。 如實施例1中所述之第一階段至第五階段製程在一導電層 400之上形成介電層402之後,維持反應室中電力功率及 壓力,開始第六階段製程,第六沈積步驟是再形成一 BLOK/BD的混合材質。逐漸減少氨氣和氨氣的流速,此 即是減少氦氣和氨氣的量,此時,BLOK材質/BD材質層 404會同時混合沉積於已形成之介電層402之上。隨著氦 氣和氨氣的流速越來越低,BLOK材質的比例越來越低而 BD材質的比例越來越高,當氦氣和氨氣的流速低到〇時, 停止BLOK材質的形成,開始第七沈積步驟。 第七沈積步驟是在形成BD材質,當氦氣和氨氣的流 速低到0時,只有BD材質沉積,並形成BD材質層406 於BLOK材質/BD材質層404之上。在形成足夠厚度的 BD材質層406之後,開始第八沈積步驟。 第八沈積步驟在形成BLOK/BD的混合材質。重新開 啓氦氣和氨氣並逐漸增加流速,BLOK材質/BD材質層408 會再度同時混合沉積於BD材質層406之上,而此時氦氣 和氨氣的流量所形成的BD材質的比例會大於BLOK材 質。隨著逐漸增加氨氣和氨氣的流速,BLOK材質的比例 越來越高而BD材質的比例越來越低,當氦氣和氨氣回到 初始的流速,第九沈積步驟開始。 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公釐) in —mi iw ·ϋ ϋι >κ I I H · H ·Ι«- .1 n i^— an ^ I n· II ϋ I n n I I (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 510018 五、發明說明() 第九沈積步驟是在形成BLOK材質。BLOK材質層410 形成於BLOK材質/BD材質層408之上,如此則形成無接 面雙材質介電層412於介電層402之上。在此介電層412 中,包含著兩種材質,這兩種材質並非均勻分布’由下向 上依序爲BLOK材質/BD材質層404、BD材質層406、 BLOK材質/BD材質層408及BLOK材質層410。BLOK 材質/BD材質層404越接近介電層402的位置,BLOK材 質含量越高而BD材質含量越低。BLOK材質/BD材質層 404越接近BD材質層406的位置,BLOK材質含量越低 而BD材質含量越高。 BLOK材質/BD材質層408越接近BLOK材質層410 的位置,BLOK材質含量越高而BD材質含量越低。BLOK 材質/BD材質層408越接近BD材質層406的位置,BLOK 材質含量越低而BD材質含量越高。所以BLOK材質和BD 材質間沒有介面存在,因此不會由黏著性不佳的問題。所 以後續的化學機械硏磨製程或封裝製程不會有BD材質剝 離或滑動的問題,而使後續製程的裕度(Window)增加。介 電層402和412適用於形成一雙金屬鑲嵌(未繪示於圖上) 於其中。 如熟悉此技術之人員所瞭解的,以上所述僅爲本發明 之較佳實施例而已,並非用以限定本發明之申請專利範 圍;凡其它未脫離本發明所揭示之精神下所完成之等效改 變或修飾,均應包含在下述之申請專利範圍內。 12 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公爱) .—--------^--------- (請先閱讀背面之注意事項再填寫本頁)Γ 、 · -nn nH1 fn fl · — IV —en * 1ϋ II Printed on paper by employees ’cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs, this paper applies Chinese National Standard (CNS) A4 (210 X 297 mm) Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the employee consumer cooperative 510018 _______B7_____ V. Description of the invention () y Example 2 Please refer to FIG. 4, which illustrates the formation of a dielectric layer suitable for bimetal mosaic and BLOK dual material according to the method disclosed in the present invention. . After forming the dielectric layer 402 on a conductive layer 400 as described in the first stage to the fifth stage in Embodiment 1, the power and pressure in the reaction chamber are maintained, and the sixth stage process is started. The sixth deposition step is Then form a BLOK / BD mixed material. The flow rate of ammonia gas and ammonia gas is gradually reduced, which is to reduce the amount of helium gas and ammonia gas. At this time, the BLOK material / BD material layer 404 will be mixed and deposited on the formed dielectric layer 402 at the same time. As the flow rate of helium and ammonia is getting lower and lower, the proportion of BLOK material is getting lower and the proportion of BD material is getting higher and higher. When the flow rate of helium and ammonia gas is as low as 0, the formation of BLOK material is stopped. , Start the seventh deposition step. The seventh deposition step is to form a BD material. When the flow rate of helium and ammonia is low, only the BD material is deposited, and a BD material layer 406 is formed on the BLOK material / BD material layer 404. After forming the BD material layer 406 with a sufficient thickness, the eighth deposition step is started. The eighth deposition step forms a BLOK / BD mixed material. Re-open helium and ammonia and gradually increase the flow rate. The BLOK material / BD material layer 408 will be mixed and deposited on the BD material layer 406 at the same time. At this time, the proportion of the BD material formed by the flow of helium and ammonia will be Greater than BLOK material. As the flow rate of ammonia and ammonia gas is gradually increased, the proportion of BLOK material is getting higher and the proportion of BD material is getting lower and lower. When the helium and ammonia gas return to the initial flow rate, the ninth deposition step begins. This paper size applies to China National Standard (CNS) A4 (21〇X 297 mm) in —mi iw · ϋ ϋι > κ IIH · H · Ι «-.1 ni ^ — an ^ I n · II ϋ I nn II (Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 510018 5. Description of the invention () The ninth deposition step is to form the BLOK material. The BLOK material layer 410 is formed on the BLOK material / BD material layer 408, and thus a non-contact dual-material dielectric layer 412 is formed on the dielectric layer 402. In this dielectric layer 412, there are two kinds of materials, which are not evenly distributed. From the bottom to the top, they are BLOK material / BD material layer 404, BD material layer 406, BLOK material / BD material layer 408, and BLOK. Material layer 410. The closer the BLOK / BD material layer 404 is to the position of the dielectric layer 402, the higher the BLOK material content and the lower the BD material content. The closer the BLOK material / BD material layer 404 is to the position of the BD material layer 406, the lower the BLOK material content and the higher the BD material content. The closer the BLOK material / BD material layer 408 is to the position of the BLOK material layer 410, the higher the BLOK material content and the lower the BD material content. The closer the BLOK material / BD material layer 408 is to the position of the BD material layer 406, the lower the BLOK material content and the higher the BD material content. Therefore, there is no interface between the BLOK material and the BD material, so there is no problem of poor adhesion. Therefore, the subsequent chemical mechanical honing process or packaging process does not have the problem of peeling or sliding of the BD material, which increases the margin of the subsequent process (Window). The dielectric layers 402 and 412 are suitable for forming a double metal damascene (not shown in the figure) therein. As will be understood by those familiar with this technology, the above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the patent application for the present invention; all others completed without departing from the spirit disclosed by the present invention, etc. Effective changes or modifications should be included in the scope of patent application described below. 12 This paper size applies to China National Standard (CNS) A4 specification (21〇X 297 public love). ---------- ^ --------- (Please read the precautions on the back before (Fill in this page)

Claims (1)

510018 A8B8C8D8 t、申請專利範圍 申請專利範園: 經濟部智慧財產局員工消費合作社印製 1· 一種無接面雙材質介電層之原位製程,其中雙材 質包括一 BD材質及一 BLOK材質,該製程至少包含: 一第一沈積步驟,導引三甲基矽烷氣體、氧氣、氨氣 及氨氣入一反應室以形成一第一 BLOK材質層; 一第二沈積步驟,逐漸減低該氨氣及該氨氣的流量以 形成包含該BLOK材質及該BD材質的一第一 BL0K/BD 材質層,使該BLOK材質的含量隨該第一BL0K/BD材質 層沉積的厚度增加而逐漸減少但該BD材質的含量逐漸增 加; 一第三沈積步驟,停止該氨氣及該氨氣以形成一 BD 材質層; 一第四沈積步驟,開啓並逐漸增加該氦氣及該氨氣的 流量以形成包含該BLOK材質及該BD材質的一第二 BL0K/BD材質層,其中該BLOK材質的含量隨該第二 BL0K/BD材質層沉積的厚度增加而逐漸增加而該BD材 質的含量逐漸減少;以及 一第五沈積步驟,增加該氦氣及該氨氣的流量以形成 只含該BLOK材質之一第二BLOK材質層。 2.如申請專利範圍第1項所述之無接面雙材質介電 層之原位製程,其中在該第一沈積步驟中’該三甲基石夕 烷氣體的流速介於200 seem至2500 seem之間。 13 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再^寫本頁) 訂------- 510018 A8B8C8D8 申請專利範圍 3. 如申請專利範圍第1項所述之無接面雙材質介電 層之原位製程,其中該第一沈積步驟中,該氧氣的流速介 於 50 seem 至 500 seem 之間。 4. 如申請專利範圍第1項所述之無接面雙材質介電 層之原位製程,其中該第一沈積步驟中,該氦氣的流速介 於 50 seem 至 200 seem 之間。 5. 如申請專利範圍第1項所述之無接面雙材質介電 層之原位製程,其中該第一沈積步驟中,該氨氣的流速介 於 200 seem 至 1500 seem 之間。 6. 如申請專利範圍第1項所述之無接面雙材質介電 層之原位製程,其中該第一沈積步驟至該第五沈積步驟中 該反應室內的壓力介於1托耳至9托耳之間。 7. 如申請專利範圍第1項所述之無接面雙材質介電 層之原位製程,其中該第一沈積步驟至該第五沈積步驟中 更包括提供該反應室一高頻電力和一低頻電力。 8. 如申請專利範圍第7項所述之無接面雙材質介電 層之原位製程,其中該高頻電力的功率介於200瓦特至 400瓦特之間。 14 請 先 閱 讀 背 意 事 項510018 A8B8C8D8 t, patent application scope, patent application range: Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Employee Consumer Cooperative 1. An in-situ manufacturing process of a non-contact dual-material dielectric layer, where the dual-material includes a BD material and a BLOK material, The process includes at least: a first deposition step, which directs trimethylsilane gas, oxygen, ammonia gas and ammonia gas into a reaction chamber to form a first BLOK material layer; a second deposition step, which gradually reduces the ammonia gas And the flow rate of the ammonia gas to form a first BLOK / BD material layer including the BLOK material and the BD material, so that the content of the BLOK material gradually decreases as the thickness of the first BLOK / BD material layer increases, but the The content of BD material gradually increases; a third deposition step stops the ammonia gas and the ammonia gas to form a BD material layer; a fourth deposition step starts and gradually increases the flow of the helium gas and the ammonia gas to form a layer containing The BLOK material and a second BLOK / BD material layer of the BD material, wherein the content of the BLOK material gradually increases as the thickness of the second BLOK / BD material layer is increased and the content of the BD material Gradually decreasing; and a fifth deposition step, increasing the flow of the helium gas and the ammonia gas to form a second BLOK material layer containing only one of the BLOK materials. 2. The in-situ process of the non-contact bi-material dielectric layer according to item 1 of the scope of the patent application, wherein in the first deposition step, the flow rate of the trimethylphosphine gas is between 200 seem to 2500 seem between. 13 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) (Please read the precautions on the back before writing this page) Order ------- 510018 A8B8C8D8 Patent Application Scope 3. Such as The in-situ process of the non-contact bi-material dielectric layer described in item 1 of the scope of the patent application, wherein in the first deposition step, the flow rate of the oxygen is between 50 seem and 500 seem. 4. The in-situ process of the non-contact bi-material dielectric layer described in item 1 of the scope of the patent application, wherein in the first deposition step, the flow rate of the helium gas is between 50 seem and 200 seem. 5. The in-situ process of the non-contact bi-material dielectric layer described in item 1 of the scope of the patent application, wherein in the first deposition step, the flow rate of the ammonia gas is between 200 seem and 1500 seem. 6. The in-situ process of the non-contact bi-material dielectric layer as described in item 1 of the scope of the patent application, wherein the pressure in the reaction chamber during the first deposition step to the fifth deposition step is between 1 Torr to 9 Between the ears. 7. The in-situ process of the non-contact bi-material dielectric layer as described in item 1 of the scope of the patent application, wherein the first deposition step to the fifth deposition step further include providing the reaction chamber with a high frequency power and a Low frequency power. 8. The in-situ process for a non-contact bi-material dielectric layer as described in item 7 of the scope of patent application, wherein the power of the high-frequency power is between 200 watts and 400 watts. 14 Please read the memorandum first 經濟部智慧財產局員工消費合作社印制衣 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 510018 A8 B8 C8 D8t、申請專利範圍 經濟部智慧財產局員工消費合作社印製 9. 如申請專利範圍第7項所述之無接面雙材質介電 層之原位製程,其中該低頻電力的功率介於1〇瓦特至200 瓦特之間。 10. —種無接面雙材質介電層之原位製程,雙材質包 括一 BD材質及一 BLOK材質,該製程至少包含: 一第一沈積步驟,導引形成一 BLOK材質層的複數個 第一氣體進入一反應室中; 一第二沈積步驟,導引形成一 BD材質層的複數個第 二氣體進入該反應室中且逐漸增加該些第二氣體並逐漸 降低該些第一氣體的流速; 一第三沈積步驟,降低該些第一氣體的流速至〇並維 持一預定時間; 一第四沈積步驟,開啓並逐漸增加該些第一氣體且逐 漸降低該些第二氣體的流速;以及 一第五沈積步驟,降低該些第二氣體的流速至〇。 11. 如申請專利範圍第10項所述之無接面雙材質介 電層之原位製程,其中該些第一氣體至少包括三甲基矽烷 氣體、氧氣、氦氣及氨氣,該些第二氣體至少包括三甲基 矽烷氣體及氧氣。 12. 如申請專利範圍第11項所述之無接面雙材質介 15 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) --------訂--------- 經濟部智慧財產局員Η消費合作社印製 510018 §88 S_ 六、申請專利範圍 電層之原位製程,其中於該第一沈積步驟及該第五沈積步 驟中該些第一氣體之三甲基矽烷氣體的流速介於200 seem 至 2500 seem 之間。 13. 如申請專利範圍第11項所述之無接面雙材質介 電層之原位製程,其中於該第三沈積步驟中該些第二氣體 之三甲基矽烷氣體的流速介於200 seem至2500 seem之 間。 14. 如申請專利範圍第11項所述之無接面雙材質介 電層之原位製程,其中於該第一沈積步驟及該第五沈積步 驟中該些第一氣體之氧氣的流速介於50 seem至500 seem 之間。 15. 如申請專利範圍第11項所述之無接面雙材質介 電層之原位製程,其中於該第三沈積步驟中該些第二氣體 之氧氣的流速介於50 seem至500 seem之間。 16. 如申請專利範圍第11項所述之無接面雙材質介 電層之原位製程,其中於該第一沈積步驟及該第五沈積步 驟中該些第一氣體之氯氣的流速介於50 seem至200 seem 之間。 17. 如申請專利範圍第11項所述之無接面雙材質介 16 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) -------— (請先閱讀背面之注意事項再填寫本頁) tr---------線 510018 A8 B8 _S_ t、申請專利範圍 電層之原位製程,其中於該第一沈積步驟及該第五沈積步 驟中該些第一氣體之氨氣的流速介於200 seem至1500 seem之間。 18. 如申請專利範圍第10項所述之無接面雙材質介 電層之原位製程,其中該反應室內的壓力介於1托耳至9 托耳之間。 19. 如申請專利範圍第10項所述之無接面雙材質介 電層之原位製程,其中該第一沈積步驟至該第五沈積步驟 1 中更包括提供該反應室一高頻電力和一低頻電力。 20. 如申請專利範圍第21項所述之無接面雙材質介 電層之原位製程,其中該反應室所使用的該高頻電力的功 率介於200瓦特至400瓦特之間。 21. 如申請專利範圍第21項所述之無接面雙材質介 電層之原位製程,其中該反應室所使用的該高頻電力的功 率介於10瓦特至200瓦特之間。 (請先閱讀背面之注意事項再填寫本頁) 訂----- 經濟部智慧財產局員Η消費合作社印製 17 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)The printed paper size of the employee's consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 510018 A8 B8 C8 D8t. The in-situ process of the non-contact bi-material dielectric layer as described in item 7 of the scope of the patent application, wherein the power of the low frequency power is between 10 watts and 200 watts. 10. —An in-situ process for a non-contact bi-material dielectric layer. The dual material includes a BD material and a BLOK material. The process includes at least: a first deposition step to guide the formation of a plurality of BLOK material layers. A gas enters a reaction chamber; a second deposition step guides a plurality of second gases forming a BD material layer into the reaction chamber and gradually increases the second gases and gradually reduces the flow rate of the first gases A third deposition step that reduces the flow rate of the first gases to 0 and maintains a predetermined time; a fourth deposition step that turns on and gradually increases the first gas and gradually reduces the flow rate of the second gas; and A fifth deposition step reduces the flow rate of the second gases to zero. 11. The in-situ process of the non-contact bi-material dielectric layer as described in item 10 of the scope of the patent application, wherein the first gases include at least trimethylsilane gas, oxygen, helium, and ammonia. The two gases include at least trimethylsilane gas and oxygen. 12. As described in item 11 of the scope of patent application, the double-faced non-contact material 15 is applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm). (Please read the precautions on the back before filling in this page. ) -------- Order --------- Printed by a member of the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 510018 §88 S_ VI. In-situ manufacturing process of the electrical layer for patent application In the deposition step and the fifth deposition step, the flow rates of the trimethylsilane gas of the first gases are between 200 seem and 2500 seem. 13. The in-situ process of the non-contact bi-material dielectric layer as described in item 11 of the scope of the patent application, wherein in the third deposition step, the flow rates of the trimethylsilane gases of the second gases are between 200 seem To 2500 seem. 14. The in-situ process of the non-contact bi-material dielectric layer as described in item 11 of the scope of the patent application, wherein the flow rate of oxygen of the first gases in the first deposition step and the fifth deposition step is between Between 50 seem and 500 seem. 15. The in-situ process for a non-contact bi-material dielectric layer as described in item 11 of the scope of the patent application, wherein in the third deposition step, the flow rate of the oxygen of the second gases is between 50 seem and 500 seem between. 16. The in-situ process of the non-contact bi-material dielectric layer according to item 11 of the scope of the patent application, wherein the flow rate of the chlorine gas of the first gases in the first deposition step and the fifth deposition step is between Between 50 seem and 200 seem. 17. As described in item 11 of the scope of patent application, the double-faced material without interface 16 is applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm). --------- (Please read first Note on the back side, please fill in this page again) tr --------- line 510018 A8 B8 _S_ t, in-situ process of patent layer electric layer, in the first deposition step and the fifth deposition step The flow rate of the ammonia gas of the first gases is between 200 seem and 1500 seem. 18. The in-situ process of the non-contact bi-material dielectric layer as described in item 10 of the scope of the patent application, wherein the pressure in the reaction chamber is between 1 Torr and 9 Torr. 19. The in-situ process of the non-contact bi-material dielectric layer as described in item 10 of the scope of the patent application, wherein the first deposition step to the fifth deposition step 1 further include providing the reaction chamber with a high frequency power and A low frequency power. 20. The in-situ process for a non-contact bi-material dielectric layer as described in item 21 of the scope of the patent application, wherein the power of the high frequency power used in the reaction chamber is between 200 watts and 400 watts. 21. The in-situ process for a non-contact bi-material dielectric layer as described in item 21 of the scope of patent application, wherein the power of the high frequency power used in the reaction chamber is between 10 watts and 200 watts. (Please read the precautions on the back before filling this page) Order ----- Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 17 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)
TW90121094A 2001-08-27 2001-08-27 In-situ process for producing interface-free dual-material dielectric layer TW510018B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW90121094A TW510018B (en) 2001-08-27 2001-08-27 In-situ process for producing interface-free dual-material dielectric layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW90121094A TW510018B (en) 2001-08-27 2001-08-27 In-situ process for producing interface-free dual-material dielectric layer

Publications (1)

Publication Number Publication Date
TW510018B true TW510018B (en) 2002-11-11

Family

ID=27657038

Family Applications (1)

Application Number Title Priority Date Filing Date
TW90121094A TW510018B (en) 2001-08-27 2001-08-27 In-situ process for producing interface-free dual-material dielectric layer

Country Status (1)

Country Link
TW (1) TW510018B (en)

Similar Documents

Publication Publication Date Title
TW559862B (en) Etch pattern definition using a CVD organic layer as an anti-reflection coating and hardmask
TW559951B (en) A semiconductor device barrier layer
TW410435B (en) The metal interconnection manufacture by using the chemical mechanical polishing process
TW462122B (en) Air gap semiconductor structure and the manufacturing method thereof
KR102018432B1 (en) Film forming method
US10410869B2 (en) CVD based oxide-metal multi structure for 3D NAND memory devices
TW425631B (en) Semiconductor device having a multilayer interconnection structure
TWI308777B (en) A method for fabricating two dielectric layers
TWI242032B (en) CMP slurry for metal and method for manufacturing metal line contact plug of semiconductor device using the same
TW465039B (en) Void-type metal interconnect and method for making the same
TW582086B (en) Surface densification method of low dielectric constant film
TW480662B (en) Method for forming dual damascene
TW510018B (en) In-situ process for producing interface-free dual-material dielectric layer
TWI226100B (en) Improved fluorine doped SiO2 film and method of fabrication
TW410434B (en) Structure of multilevel interconnects in semiconductor device and its manufacturing method
TW304297B (en)
TW405242B (en) Manufacture method of the metal plug
TW452921B (en) Method for forming etching stop layer in dual damascene processing
TW444324B (en) Manufacturing method of dielectric layer with a low dielectric constant
TW413859B (en) Planarization method of DRAM memory cell
TW416119B (en) Manufacturing method of low-k inter-metal dielectric layer having a hybrid structure
TW444343B (en) Manufacturing method of inter-level dielectrics
TW439188B (en) Manufacturing method of fluorinated dielectric layer for integrated circuits
TW541622B (en) Method of post treatment for a metal line of semiconductor device
TWI288954B (en) Method for manufacturing cap layer

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees