TW454351B - Manufacturing method for self-aligned insulated gate semiconductor device - Google Patents

Manufacturing method for self-aligned insulated gate semiconductor device Download PDF

Info

Publication number
TW454351B
TW454351B TW88100287A TW88100287A TW454351B TW 454351 B TW454351 B TW 454351B TW 88100287 A TW88100287 A TW 88100287A TW 88100287 A TW88100287 A TW 88100287A TW 454351 B TW454351 B TW 454351B
Authority
TW
Taiwan
Prior art keywords
layer
oxide layer
polycrystalline silicon
doped region
channel region
Prior art date
Application number
TW88100287A
Other languages
Chinese (zh)
Inventor
Ke-Yu Yu
Original Assignee
Advanced Power Electronics Cor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Power Electronics Cor filed Critical Advanced Power Electronics Cor
Priority to TW88100287A priority Critical patent/TW454351B/en
Application granted granted Critical
Publication of TW454351B publication Critical patent/TW454351B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

The present invention discloses a manufacturing method for insulated gate semiconductor device which includes the following steps: defining a contact between the gate structures; then, forming the channel region and the source region in the drain region. Next, depositing a layer of doped polysilicon layer covering both sides of the gate structures; using thermal diffusion process to form a region with heavier doping concentration in the source region; using etching and lithography processing to define a heavily doped channel region in the source region and using ion implantation process to dope the conductive dopant in the heavily doped channel region; after forming the channel region, removing the doped polysilicon layer to expose the source region; then, covering with silicon dioxide layer on the surface of gate structure as the insulated passivation layer and also covering part of the surface of the source; finally, depositing metal layer into the contact as the source electrode of the device.

Description

A7 B7 454351 五、發明說明() 5-1發明領域: 本發明是有關一種半導體元件的製造方法,特別有關於 一種利用自動對準來製造絕緣閘半導體元件的方法,以減 少寄生雙载子效應。 5-2發明背景: 雙載子連接電晶體(BJT)為最重要的半導體元件之一, 這種元件雖然可作為高功率元件及高速邏輯電路,但是在 操作的過程之中,會消耗大量的能量卻成為最大的缺點。 如今,金氧半場效電晶體(MOSFET)的發展,已經逐漸取 代了雙載子電晶體之應用,由於節省電能的因故,成為積 體電路之中,最常使用的半導體元件。 在一般技術之中,所稱的絕緣閘半導體元件(Insulated Gate Semiconductor Device),最常見的就如同上述之金屬 氧化半導體結構。此金氧半場效電晶體所使用之絕緣層為 二氧化矽,且利用複晶矽取代金屬作為閘極,此種金氧半 場效電晶體的耗電量少且適合尚積集度’梦更能耐商溫而 增加元件穩定度。但是這種元件的缺點是層電阻(sheet-resistance)較高與RC常數較大,而且崩潰電壓較低。因此, 一般的金屬氧化半導體場效電晶體並不適合作為高功率元 件。 請參閱第一圖,圖中顯示出絕緣閘半導體元件的佈局 2 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁) · 11 ---11 訂---------.^>- 經濟部智慧財產局員工消費合作社印製 /1 ^ Λ ^ 1 Α7A7 B7 454351 V. Description of the invention (5) 5-1 Field of the invention: The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing an insulated gate semiconductor device by using automatic alignment to reduce the parasitic double carrier effect. . 5-2 Background of the Invention: BJT is one of the most important semiconductor components. Although this component can be used as high-power components and high-speed logic circuits, it consumes a large amount of power during the operation. Energy has become the biggest drawback. Nowadays, the development of metal-oxide-semiconductor field-effect transistors (MOSFETs) has gradually replaced the application of bipolar transistors. Due to energy conservation, it has become the most commonly used semiconductor element in integrated circuits. In the general technology, the so-called Insulated Gate Semiconductor Device is the most common metal oxide semiconductor structure described above. The metal oxide half field effect transistor has an insulating layer of silicon dioxide, and uses polycrystalline silicon instead of metal as a gate. This metal oxide half field effect transistor consumes less power and is suitable for accumulation. Can withstand commercial temperature and increase component stability. However, the shortcomings of this component are higher sheet resistance and larger RC constant, and lower breakdown voltage. Therefore, general metal oxide semiconductor field effect transistors are not suitable as high power components. Please refer to the first figure, which shows the layout of the insulation gate semiconductor components. 2 This paper size applies to the Chinese National Standard (CNS) A4 specification (210 X 297 mm) (Please read the precautions on the back before filling this page). 11 --- 11 Order ---------. ^ ≫-Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economy / 1 ^ Λ ^ 1 Α7

五、發明說明() (請先閱讀背面之注意事項再填窝本頁) 圖,第一圖中所顯示的11剖面與22剖面,分別顯示於第 二圖與第三圖,作一對應表示。請參閱第二圖,絕緣閘半 導體70件是形成在半導體基板1〇〇之上,在半導體基板1〇〇 之上形成N型摻雜複晶矽層11〇。絕緣閘半導體元件的通 道區120與源極130形成在N型摻雜複晶矽層n〇之中, 而此N型摻雜複晶矽層ι10是作為絕緣閘半導體元件的汲 極區域。數個閘極形成在N型摻雜複晶矽層11〇之上,閘 極是由塾氧化層140、複晶石夕層150所組成,然後在閘極 的表面覆蓋一層二氧化矽層160,作為閘極的絕緣層。最 後,沈積一層金屬層170’覆蓋在二氧化矽層160的表面, 並連接源極130,作為絕緣閘半導體元件的電性接觸。 請參閱第二圖,圖中所顯示的絕緣閘半導體元件的結 構’源極、通道與延伸的汲極區域,可視為一個寄生NpN 型雙載子電晶體的射極、通道與集極區域。當寄生電晶體 的射極/集極接面(也就是源極/通道接面),在室溫下被施加 的順向偏壓’大於阻障位能(barrier potential)時,此寄生 電晶體會被開啟’而此阻障位能在室溫的情況下約為0.6 伏特。 經濟部智慧財產局員工消賁合作社印製 根據歐姆定律,在兩點之間的電位降,是等於在兩點 之間所流過的電流,乘上兩點之間的電阻值。因此,在源 極/通道的PN接面之間的電壓降’受到流通電流與周圍材 料的阻值所影響。此電壓降是發生於源極/通道PN接面的 橫向大小’如第三圖所標示的A。另外一個限制較佳尺寸 A的因素,是源極電極與源極區域的接觸面積,如第三圖 3 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) >'4 54 3 5 1 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明() 所標示的B位置。而B位置的尺寸的受到二氧化石夕層i 覆蓋在閘極表面大小所影響,如第三圖所標示的C位置。 然而在製造過程之中’源極區域對複晶石夕閘極的對準誤 差,會影響位置A2的最小尺寸。 因此,需要一種能夠降低絕緣閘半導體元件的通道/源 極接觸面積的製造方法’同時降低寄生雙載子電晶體的影 響’而且減少使用光罩的次數,增強元件的效能與簡化製 程的複雜程度。 5-3發明目的及概述: 本發明揭露一種絕緣閘半導體元件的製造方法,使用 自動對準方法,製造具有較小源極通道接觸面積的絕緣閘 半導體元件,同時減小此接觸面積的阻值,也就是減少在 絕緣閘半導體元件之中寄生雙載子電晶體的開啟可能性, 有效改善絕緣閘半導體元件的效能。 本發明揭露一種絕緣閘半導體元件,其製造方法如下 所述:提供一半導體基板,在半導體基板上形成第一複晶 矽層,具有第一極性,然後形成第一氧化層,覆蓋在第一 複晶矽層之上,接著形成一第二複晶矽層,具有第一極性, 覆蓋在第一氧化層之上,再形成第二氧化層,覆蓋在第二 複晶矽層之上。然後蝕刻第二氧化層與第二複晶矽層,定 義一接觸窗,露出第一氧化層。進行第一離子佈植製程, 在第一複晶矽層之中,摻雜第二極性導電雜質,在第一複 4 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 X 297公爱) Γ崎先閲讀背面之注$項再填窝本頁) 裝--------訂---------故. 454351 A7 -------------- 五、發明說明() " 晶石夕層之中形成絕緣閘半導體元件的第一通道區。進 二離子佈植製程’在第-通道區之中,植人第—極性導電 雜質,形成一第-摻雜區。沈積第三氧化層,覆蓋在第二 氧化層與第-氧化層之上。然後’蝕刻第二氧化層與第一 氧化層’露出在第一通道區之中的第一摻雜區,並以第一 氧化層、第二複晶石夕層與第二氧化層作為絕緣閑半導體元 件的閘極。沈積第三複晶㈣,覆蓋在第二氧化層、第三 氧化層與第一摻雜區之上,其中第三複晶梦層具有第—極 性,其導電雜質會擴散到第一摻雜區之中,在第一捧雜區 之中形成-第二摻雜區,該第二摻雜區的換雜濃度大於該 第一摻雜區的摻雜濃度,第一摻雜區與第二摻雜區是作為 源極區域,钱刻第三複晶石夕層與第一複晶發層,露出第一 通道區。進行離子佈植製程,摻雜第二極性導電雜質至第 一通道區之中,形成第二通道區。去除第三複晶矽層,再 沈積第四氧化層覆蓋在閘極表面;最後,形成一金屬層連 接第一捧雜區’作為金屬接觸。 5-4圖式簡單說明: 本發明的許多發明目的與優點,將會因為參考下列的詳 細說明,變得更容易被鑑賞與瞭解,同時參酌下列的圖式 加以說明,其中: 第一圖係顯示習知技術之中絕緣閘半導體元件的佈局 圖’說明整個絕緣閘半導體元件的俯視結構示意 5 本紙張疋度適用中國國家標準(CNS)A4規格(210 X 297公楚) (請先閱讀背面之ίίϋ項再填寫本頁) '裝--------訂i:-------轉 經濟部智慧財產局員工消費合作社印製V. Description of the invention () (Please read the precautions on the back before filling in this page) Figure, Section 11 and Section 22 shown in the first picture are shown in the second and third pictures, respectively, for a corresponding representation . Referring to the second figure, 70 insulated gate semiconductors are formed on the semiconductor substrate 100, and an N-type doped polycrystalline silicon layer 11 is formed on the semiconductor substrate 100. The channel region 120 and the source electrode 130 of the insulating gate semiconductor element are formed in an N-type doped compound silicon layer n0, and the N-type doped compound silicon layer ι10 is used as a drain region of the insulating gate semiconductor element. A plurality of gates are formed on the N-type doped polycrystalline silicon layer 110. The gate is composed of a hafnium oxide layer 140 and a polycrystalline stone layer 150, and then the surface of the gate is covered with a silicon dioxide layer 160. , As the insulating layer of the gate. Finally, a metal layer 170 'is deposited to cover the surface of the silicon dioxide layer 160, and is connected to the source electrode 130 as an electrical contact of the insulating semiconductor device. Please refer to the second figure. The structure of the insulated gate semiconductor device's source, channel, and extended drain region shown in the figure can be regarded as the emitter, channel, and collector regions of a parasitic NpN type bipolar transistor. When the parasitic transistor's emitter / collector interface (that is, the source / channel interface) is applied at room temperature with a forward bias greater than the barrier potential, the parasitic transistor Will be turned on 'and this barrier can be about 0.6 volts at room temperature. Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, printed by the cooperative. According to Ohm's law, the potential drop between two points is equal to the current flowing between the two points, multiplied by the resistance value between the two points. Therefore, the voltage drop 'between the PN junction of the source / channel is affected by the resistance of the flowing current and surrounding materials. This voltage drop occurs at the lateral size of the source / channel PN junction 'as indicated by A in the third figure. Another factor limiting the preferred size A is the contact area between the source electrode and the source region, as shown in Figure 3 This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) > '4 54 3 5 1 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. The position B marked by the invention description (). The size of the B position is affected by the size of the oxide layer i covering the gate surface, as indicated by the C position in the third figure. However, during the manufacturing process, the misalignment of the polycrystalline spar gate in the 'source region' will affect the minimum size of position A2. Therefore, there is a need for a manufacturing method capable of reducing the channel / source contact area of an insulated gate semiconductor device 'while reducing the influence of parasitic bipolar transistors', and reducing the number of times the mask is used, enhancing the efficiency of the device and simplifying the complexity of the process . 5-3 Purpose and Summary of the Invention: The present invention discloses a method for manufacturing an insulated gate semiconductor device, which uses an automatic alignment method to manufacture an insulated gate semiconductor device with a smaller source channel contact area, and at the same time reduces the resistance value of this contact area That is, reducing the possibility of turning on the parasitic bipolar transistor in the semiconductor device of the insulation gate, and effectively improving the efficiency of the semiconductor device of the insulation gate. The present invention discloses an insulated gate semiconductor device. The manufacturing method is as follows: Provide a semiconductor substrate, form a first polycrystalline silicon layer on the semiconductor substrate with a first polarity, and then form a first oxide layer to cover the first compound. A second polycrystalline silicon layer is formed on the crystalline silicon layer, having a first polarity, covering the first oxide layer, and forming a second oxide layer covering the second polycrystalline silicon layer. Then, the second oxide layer and the second polycrystalline silicon layer are etched, a contact window is defined, and the first oxide layer is exposed. The first ion implantation process is performed, and the second polycrystalline silicon layer is doped with a second-polar conductive impurity, and the first paper size is in accordance with the Chinese National Standard (CNS) A4 specification (21〇X 297). ) Γ Qi first read the note $ on the back before filling in this page) -------- Order --------- So. 454351 A7 ----------- --- V. Description of the invention () " The first channel region of the insulating gate semiconductor element is formed in the spar layer. In the second ion implantation process, in the first channel region, a first-polar conductive impurity is implanted to form a first-doped region. A third oxide layer is deposited, covering the second oxide layer and the first oxide layer. Then, "etch the second oxide layer and the first oxide layer" to expose the first doped region in the first channel region, and use the first oxide layer, the second polycrystalline stone layer, and the second oxide layer as the insulating spacers. Gate of a semiconductor element. A third polycrystalline gadolinium is deposited, covering the second oxide layer, the third oxide layer, and the first doped region. The third polycrystalline dream layer has a first polarity, and its conductive impurities will diffuse into the first doped region. Among them, a second doped region is formed in the first doped region. The doping concentration of the second doped region is greater than the doped concentration of the first doped region. The first doped region and the second doped region are formed. The miscellaneous region is used as a source region, and the third polycrystalline stone layer and the first polycrystalline hair layer are engraved by the money, exposing the first channel region. An ion implantation process is performed, and a second polar conductive impurity is doped into the first channel region to form a second channel region. The third polycrystalline silicon layer is removed, and a fourth oxide layer is deposited to cover the gate surface. Finally, a metal layer is formed to connect the first doped region 'as a metal contact. 5-4 Schematic illustrations: Many of the objects and advantages of the present invention will become easier to appreciate and understand by referring to the following detailed descriptions, while referring to the following drawings to illustrate, where: The first diagram is Layout diagram showing insulation gate semiconductor components in the conventional technology 'illustrates the top structure of the entire insulation gate semiconductor components. 5 This paper is compatible with Chinese National Standard (CNS) A4 (210 X 297 cm) (Please read the back first) (Please fill in this page again for the item of ίίϋ) 'Installation -------- Order i: ------- Printed by the Consumers' Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs

經濟.部智慧財產局員工消費合作社印製Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs

4543 5 圖; 第一圖係技術之中絕緣閘半導體元件的剖面示 意圖’此剖面為第-圖之中的η剖面示意圖; 第二^顯示習知技術之中絕緣間半導體元件的剖面示 ^® ’此剖面為第一圖之中的22杳丨J面示意圖; 第四圖係顯示本發明的絕緣閘半導體元件的剖面示意 圖’在半導體基板之上形成數層膜層的剖面結構; 第五圖_示本發明之絕緣閘半導體元件的剖面示意 圖,在半導體基板上的膜層之中,定義絕緣閘半導 體元件的接觸窗; 第六圖係顯示本發明之絕緣閘半導體元件的剖面示意 圖,在膜層之中形成Ρ型摻雜區,作為絕緣閘半導 體元件的通道區; 第七圖係顯示本發明之絕緣閘半導體元件的剖面示意 圖,在絕緣閘半導體元件的通道區之中,形成Ν型 推雜區域; 第八圖係顯示本發明之絕緣閘半導體元件的剖面示意 圖,形成二氧化矽側壁覆蓋在膜層的兩侧; 第九Α圖係顯示本發明之絕緣閘半導體元件的第一剖面 示意圖,在形成複晶矽層之後,在N型摻雜區域之 中形成溝渠,在溝渠之中形成P型摻雜區域; 第九B圖係顯示本發明之絕緣閘半導體元件的第二剖面 示意圖’在形成複晶發層之後,在N型摻雜區域之 中形成溝渠,並在溝渠之中形成P型摻雜區域; (請先閱讀背面之注意亊項再填窝本頁)Fig. 4543 5; The first diagram is a schematic cross-sectional view of an insulated gate semiconductor element in the first technology. This section is a schematic diagram of the η cross-section in the first diagram. The second ^ shows a cross-sectional view of an insulating semiconductor element in the conventional technology. 'This section is a schematic diagram of the 22 plane in the first diagram; the fourth diagram is a schematic diagram showing the cross-section of an insulated gate semiconductor device according to the present invention;' a sectional structure in which several film layers are formed on a semiconductor substrate; the fifth diagram _ Shows a schematic cross-sectional view of an insulating gate semiconductor element of the present invention. Among the film layers on a semiconductor substrate, a contact window of the insulating gate semiconductor element is defined; the sixth diagram is a schematic cross-sectional view showing the insulating gate semiconductor element of the present invention. A P-type doped region is formed in the layer as a channel region of the insulating gate semiconductor element. The seventh diagram is a schematic cross-sectional view of the insulating gate semiconductor element of the present invention. In the channel region of the insulating gate semiconductor element, an N-type semiconductor element is formed. Figure 8 shows a schematic cross-sectional view of an insulated gate semiconductor device of the present invention, and a silicon dioxide sidewall is formed to cover both sides of the film layer; Figure 9A is a first schematic cross-sectional view of an insulated gate semiconductor device according to the present invention. After forming a polycrystalline silicon layer, a trench is formed in the N-type doped region, and a P-type doped region is formed in the trench. Figure B is a second schematic cross-sectional view of an insulated gate semiconductor device according to the present invention. 'After forming a polycrystalline layer, a trench is formed in the N-type doped region, and a P-type doped region is formed in the trench. (Please (Read the note on the back before filling in this page)

454351 經濟部智慧財產局員工消費合作社印製 A7 五、發明說明() 第十A圖係顯示本發明之絕緣閘半導體元件的第一剖面 示意圖,去除在表面的複晶矽層’露出絕緣閘半導 體元件的源極區域; 第十B圖係顯示本發明之絕緣閘半導體元件的第二剖面 示意圖,去除在表面的複晶矽層,露出絕緣閘半導 體元件的源極區域; 第十一 A圖係顯示本發明之絕緣閘半導體元件的第一剖 面示意圖,在表面覆蓋一層二氧化矽層,然後定義 出絕緣閘半導體元件的接觸窗,露出絕緣閘半導體 元件的通道區域,並填入金屬層至接觸窗之中; 第十一 B圖係顯示本發明之絕緣閘半導體元件的第二剖 面示意圖,在絕緣閘半導體元件的閘極表面定義— 層二氧化矽層’露出絕緣閘半導體元件的源極區域 與通道區域,並回填金屬層至通道區與源極區域之 上,作為金屬接觸; 第十二圖係顯示本發明之絕緣閘半導體元件的佈局圖, 顯示絕緣閘半導體元件的源汲極與通道區域,以及 兩個剖面的方向。 5-5發明詳細說明: 於本發明之中,揭露一種絕緣閘半導體元件’具有較小 的源極/通道接面面積,有效降低寄生雙載子電晶體效應, 而且減少光罩的使用次數。首先在半導體基板之上定義絕 表紙張尺度適用宁國國家標準(CNS)A4規格(2i0 x 297公髮一 (請先閲讀背面之注意事項再填寫本頁) '裝--------訂-------!^. 454351 五、發明說明() =料體元件的接《,然後形成元件的通道區域,再 出絕缘區域之中形成第—^換雜區。接著定義 純緣閘+導體元件的閘極區域,並形成複晶㈣,保護 閘極結構的兩側,並定義出元 疋義出7G件的第二p型通道區 利用熱擴散製程,在第一N型撫 ^454351 Printed A7 by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 5. Description of the invention () Figure 10A is a first schematic cross-sectional view showing the insulated gate semiconductor element of the present invention. The polycrystalline silicon layer on the surface is removed to expose the insulated gate semiconductor. The source region of the device; FIG. 10B is a second schematic cross-sectional view of the insulated gate semiconductor device according to the present invention. The polycrystalline silicon layer on the surface is removed to expose the source region of the insulated gate semiconductor device. The first cross-sectional schematic diagram of the insulated gate semiconductor device of the present invention is shown. A silicon dioxide layer is covered on the surface, and then a contact window of the insulated gate semiconductor device is defined, a channel region of the insulated gate semiconductor device is exposed, and a metal layer is filled to the contact. In the window, FIG. 11B is a schematic diagram showing a second cross-section of the insulated gate semiconductor device of the present invention, which is defined on the gate surface of the insulated gate semiconductor device—a layer of silicon dioxide layer exposes the source region of the insulated gate semiconductor device. Contact the channel region and backfill the metal layer above the channel region and the source region as metal contact; twelfth Based display layout of FIG insulated gate semiconductor device of the present invention, a display, and two cross-sectional directions of the source drain region and the channel of the insulated gate semiconductor element. 5-5 Detailed description of the invention: In the present invention, it is disclosed that an insulated gate semiconductor element 'has a smaller source / channel interface area, effectively reduces the parasitic bipolar transistor effect, and reduces the number of times the photomask is used. First define the absolute paper size on the semiconductor substrate and apply the Ningguo National Standard (CNS) A4 specification (2i0 x 297) (Please read the precautions on the back before filling this page) -Order -------! ^. 454351 V. Description of the invention () = Connection of the material element, and then form the channel area of the element, and then form the-^ replacement area in the insulation area. Then define The gate region of the pure edge gate + conductor element forms a compound crystal to protect the two sides of the gate structure, and defines a second p-type channel region of 7G pieces using a thermal diffusion process at the first N Stroke ^

矛 玄摻雜區之中,形成一第二N ㈣雜區域。利用離子佈植製程,換雜p型導電雜質至第A second N-doped region is formed in the sperm-doped region. Use ion implantation process to replace p-type conductive impurities

-通道區域之中。最後去除複晶鶴制,露出元件的N 型摻㈣域’並回填金屬層至接觸f之中,作為金屬電極。 在以上的,構之中,疋使用第一 N型推雜區與第二N型換 雜區域作為絕緣閘半導體元件的源極,形成一個猶 晶體。 於本發明之中所舉的較佳實施例為一個鹏^型功率電 晶體:但是本發明的方法,可以用來製造一般的絕緣閑半 導體7L件。熟知該項技術者必定暸解,利用本發明的製造 方法,僅需要適當改變摻雜雜質的極性,就可製造出朦 型絕緣閘半導體元件。 經濟部智慧財蓋局員工消費合作社印製 請參閱第四圖,提供一半導體基板200,在其上製造 絕緣閘半導體元件。沈積一層N型播雜複晶石夕層21〇,覆 蓋在半導體基板200的表面,然後沈積一層二氧化石夕層 220,覆蓋在N型摻雜複晶矽層21〇的表面。接著,沈積 一層N型摻雜複晶矽層230,覆蓋在二氧化矽層22〇的表 面,最後沈積一層二氧化矽層24〇覆蓋在N型摻雜複晶矽 層230的表面,形成一個在半導體基板2〇〇上的疊層結構。 請參閱第五圖,在二氧化矽層2〇〇的表面定義一光阻 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公愛 4 5 4 3 5 1 ;本紙張尺細㈣ A7 五、發明說明() 層400,定義絕緣閘半導體元件的接觸窗區域,然後使用 蝕刻製程,去除未被光阻層400所覆蓋的二氧化矽層24〇 與N型摻雜複晶石夕層23〇,露出二氧化♦層22〇的表面。 在本發明的較佳實施例之中,蝕刻二氧化矽層24〇與1^型 推雜複晶秒層230的方法,是使用非均向性银刻製程或是 一般的濕式#刻製程。 請參閱第六圖,進行離子佈植製程,以二氧化硬層· 為離子佈植罩幕,對N型摻雜複晶石夕層21〇佈植p型導電 雜質(P-type conducting dopant) 型推雜複晶發層⑽ 之中形成P型摻雜區25〇,此一區域是位於接觸窗之下的 N型播雜複晶砂層21G之中,作為絕緣閘半導體元 道區域。 J艰 請參閱第七圖,進行離子佈植製程,以二氧化 2 =子佈植罩幕,對接觸窗之中的二氧切層咖 離子佈植,佈植Ν型導電雜質至卩型推雜區25〇 ^ Ρ型摻雜區250之中形成第—Ν型摻雜區細你在 接觸窗$ "1Γ 如 进' 且位於 植製程,/例之中,此處所進行的離子佈 的同時,疋::面性N型離子佈植製程’在離子饰植製程-In the channel area. Finally, the polycrystalline crane is removed, the N-type erbium-doped region 'of the element is exposed, and the metal layer is backfilled into the contact f as a metal electrode. In the above configuration, the first n-type doping region and the second n-type doping region are used as the source of the semiconductor device of the insulating gate to form a crystal. The preferred embodiment enumerated in the present invention is a Peng-type power transistor: but the method of the present invention can be used to make a general 7L piece of insulated semiconductors. Those skilled in the art must understand that with the manufacturing method of the present invention, only the polarity of doped impurities needs to be appropriately changed to produce a haze-type insulated gate semiconductor device. Printed by the Consumer Cooperative of the Smart Finance Bureau of the Ministry of Economic Affairs Please refer to the fourth figure to provide a semiconductor substrate 200 on which an insulated gate semiconductor element is manufactured. An N-type doped polycrystalline stone layer 21 is deposited to cover the surface of the semiconductor substrate 200, and then a stone dioxide layer 220 is deposited to cover the surface of the N-type doped polycrystalline silicon layer 21O. Next, an N-type doped polycrystalline silicon layer 230 is deposited to cover the surface of the silicon dioxide layer 22o, and finally a silicon dioxide layer 24 is deposited to cover the surface of the N-doped polycrystalline silicon layer 230 to form a A laminated structure on a semiconductor substrate 200. Please refer to the fifth figure. A photoresist is defined on the surface of the silicon dioxide layer 200. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 public love 4 5 4 3 5 1; the size of this paper is small.) A7 V. Description of the invention () Layer 400, which defines the contact window area of the semiconductor device of the insulating gate, and then uses an etching process to remove the silicon dioxide layer 24 and the N-type doped polycrystalline stone not covered by the photoresist layer 400. Layer 23o, exposing the surface of the dioxide layer 22o. In a preferred embodiment of the present invention, the method of etching the silicon dioxide layer 24o and the 1 ^ -type doped complex crystal second layer 230 is to use a non-uniform Anisotropic silver engraving process or general wet # engraving process. Please refer to the sixth figure for the ion implantation process, using a hard dioxide layer as the ion implantation mask, and an N-type doped polycrystalline spar layer. 21 P implanted p-type conducting dopant doped complex crystal layer 形成 forms a P-type doped region 25. This region is an N-type doped complex crystal located below the contact window. Among the sand layers 21G, it is used as the semiconductor gate area of the insulation gate. Please refer to the seventh figure for the ion implantation process. Dioxide 2 = Sub-planting mask, implanting the dioxin-layered coffee ions in the contact window, and implanting N-type conductive impurities into the 卩 -type doped region 25〇 ^ P-type doped region 250 —The N-type doped region is fine when you are in the contact window “1Γ 如 进” and it is located in the implantation process, for example, while performing the ion cloth here, 疋 :: Positive N-type ion cloth implantation process is in Ion decoration process

' .以一氧化矽層240作為離子佈植罩I 雜質穿透到其他部位。 轉,防止導電 沈積一氧:第二圖’在進行上述離子饰植製程之後,接 二t二 N型摻雜複晶㈣230與-氧化H 一聽妙層_、 ,化石夕層220的表面。在本發 -------------------广政 (請先閱讀背面之注意事項再填寫本頁)'. The silicon monoxide layer 240 is used as the ion implantation cover I. Impurities penetrate to other parts. Turn to prevent conduction. Deposition of oxygen: The second picture, after the above-mentioned ion implantation process, is followed by two t2 N-type doped polycrystalline osmium 230 and -oxidized H-layer, the surface of the fossil evening layer 220. In this post -------- Guang Zheng (Please read the notes on the back before filling this page)

----訂----------ό------I___-_________I 4 6 4351 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明() 明之較佳實施例之中,形成二氧化矽層27〇的方法是使用 化學氣相沈積製程。 睛再度參閱第八圖,蝕刻二氧化矽層27〇與二氧化矽 層240,去除在第一 N型摻雜區26〇之上的二氧化矽層27〇 與一氧化矽層220,露出第一 N型摻雜區26〇。在蝕刻製 程之後,形成二氧化矽層220與N型摻雜複晶矽層23(}的 疊層結構,當作絕緣閘半導體元件的閘極結構,二氧化矽 層220是作為一閘氧化層。而二氧化矽層27〇是形成在二 氧化矽層240與N型摻雜複晶矽層23〇的侧壁,當作閘極 結構的保護層,避免在後續的製程之中,使得閘極受到製 程的影響。 接著,沈積一層複晶矽層280在絕緣閘半導體元件的---- Order ---------- ό ------ I ___-_________ I 4 6 4351 Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention () Better implementation of the Ming In the example, the method for forming the silicon dioxide layer 270 is to use a chemical vapor deposition process. Referring again to the eighth figure, the silicon dioxide layer 27o and the silicon dioxide layer 240 are etched, and the silicon dioxide layer 27o and the silicon oxide layer 220 above the first N-type doped region 26o are removed, exposing the first An N-type doped region 26. After the etching process, a stacked structure of a silicon dioxide layer 220 and an N-type doped polycrystalline silicon layer 23 () is formed as a gate structure of an insulating gate semiconductor element, and the silicon dioxide layer 220 is used as a gate oxide layer. The silicon dioxide layer 27 is formed on the sidewalls of the silicon dioxide layer 240 and the N-type doped polycrystalline silicon layer 23o as a protective layer for the gate structure, avoiding the gate during subsequent processes, It is extremely affected by the process. Next, a polycrystalline silicon layer 280 is deposited on the semiconductor device of the insulating gate.

表面,覆蓋在二氧化矽層280、二氧化矽層27〇與第一 N 塑摻雜區260之上’然後對複晶矽層280與N型摻雜複晶 石夕層21〇進行蝕刻製程。請參閱第九a圖與第九B圖, 這兩個圖式是分別從不同剖面來說明絕緣閘半導體元件的 結構。以第九A圖所顯示的剖面來看,二氧化石夕層24〇頂 面的複晶矽層280已經被去除,僅留下在二氧化带層27〇 與一氧化石夕層220側邊的複晶妙層280,而且同時對n型 摻雜複晶矽層210進行蝕刻,在複晶矽層280之間形成一 凹溝。在進行複晶矽層280的蝕刻製程時,是以二氧化石夕 材料作為蝕刻罩幕,利用複晶矽材料與二氧化石夕材料之間 的蝕刻選擇率,對複晶矽層280進行蝕刻製程,從此處可 以看出,二氧化矽層240是作為一蝕刻保護層,以防止複 10 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 χ 297公釐) (請先閱讀背面之注意事項再填寫本頁) - ..裝 -------訂----!丨·.^ 45435 經濟部智慧財產局員工消費合作社印製 A7 五、發明說明() 晶石夕層230受到餘刻傷害。 請參㈣九^目’圖中顯示絕緣間半導體元件的第二The surface is covered on the silicon dioxide layer 280, the silicon dioxide layer 27 and the first N-type plastic doped region 260. Then, the polycrystalline silicon layer 280 and the N-type doped polycrystalline stone layer 21 are etched. . Please refer to FIG. 9a and FIG. 9B. These two figures respectively illustrate the structure of the semiconductor device of the insulation gate from different sections. Based on the cross-section shown in Figure 9A, the polycrystalline silicon layer 280 on the top surface of the dioxide dioxide layer 240 has been removed, leaving only the sides of the dioxide belt layer 27 and the oxide monoxide layer 220. And forming an indentation groove between the polycrystalline silicon layers 280 by etching the n-doped polycrystalline silicon layer 210 at the same time. During the etching process of the polycrystalline silicon layer 280, the polycrystalline silicon layer 280 is used as an etching mask, and the polycrystalline silicon layer 280 is etched by using an etching selectivity between the polycrystalline silicon material and the polycrystalline silicon material. From the process, it can be seen that the silicon dioxide layer 240 is used as an etching protection layer to prevent duplicates. This paper size applies the Chinese National Standard (CNS) A4 specification (21〇χ 297 mm). (Please read the back Please fill in this page again for the matters needing attention)-..install ------- order ----! 丨 ·. ^ 45435 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 V. Description of the invention () 230 takes the remaining damage. Please refer to ㈣ 九 ^ 目 ’, which shows the second

;70面的侧:個Γ面上’複晶梦層280不僅留在二氧化梦層 別的侧邊,在此同時還覆蓋在二氧化 N 型摻雜區260之上。 在本發月之較佳實施例之中,複晶石夕層的沈積方 法是使用同步摻雜化學氣相沈積製程(in situ d— cvd ―測)’而複晶紗層280的摻雜極性為N型。在複晶石夕 層’的沈積製程之後,進行熱擴散製程,在第- N型摻 雜區260之中形成第二㈣播雜區如,如第九a與九b 圖所示。 上述形成第二N型摻雜區265的製程,是先蝕刻複晶 石夕層280 ’然後再進行熱擴散製程;另一個方法是先進型 熱擴散製程在第一 N型摻雜區260之中形成第二N型摻 雜區265,然後進行蝕刻製程,定義出接觸窗區域。 接著’進行離子佈植製程,以複晶矽層280與二氧化 矽層240作為離子佈植罩幕,摻雜p型導電雜質至n型摻 雜複晶石夕層210之中,形成第二p型摻雜區255,如第九 A圖與第九B圖所示。而第一 p型摻雜區250與第二P型 摻雜區255是作為絕緣閘半導體元件的通道區域,在一較 佳實施例之中’第二P型摻雜區255的摻雜濃度大於第一 P型摻雜區250的摻雜濃度。 請參閱第十A圖與第十B圖,分別從雨個剖面說明複 晶矽層280的移除,在移除複晶矽層280之後,露出第二 11 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閲讀背面之注意事項再填寫本頁); 70 plane side: The 'multicrystalline dream layer 280 on the Γ plane is not only left on the other side of the dioxide dream layer, but is also covered on the N-type doped region 260 at the same time. In a preferred embodiment of the present month, the method for depositing the polycrystalline stone layer is to use a simultaneous doping chemical vapor deposition process (in situ d-cvd) and the doping polarity of the polycrystalline yarn layer 280 It is N type. After the polycrystalline stone layer 'deposition process, a thermal diffusion process is performed to form a second dopant doped region in the -N-type doped region 260 as shown in Figures 9a and 9b. The above-mentioned process for forming the second N-type doped region 265 is to first etch the polycrystalline spar layer 280 ′ and then perform the thermal diffusion process; another method is to use an advanced thermal diffusion process in the first N-type doped region 260. A second N-type doped region 265 is formed, and then an etching process is performed to define a contact window region. Then, the ion implantation process is performed, and the polycrystalline silicon layer 280 and the silicon dioxide layer 240 are used as the ion implantation mask, and a p-type conductive impurity is doped into the n-type doped polycrystalline stone layer 210 to form a second layer. The p-type doped region 255 is shown in FIGS. 9A and 9B. The first p-type doped region 250 and the second p-type doped region 255 are channel regions serving as an insulating gate semiconductor device. In a preferred embodiment, the doping concentration of the second p-type doped region 255 is greater than The doping concentration of the first P-type doped region 250. Please refer to Figure 10A and Figure 10B, respectively, to explain the removal of the polycrystalline silicon layer 280 from the rain section. After removing the polycrystalline silicon layer 280, the second 11 paper standards are applicable to Chinese national standards (CNS ) A4 size (210 X 297 mm) (Please read the notes on the back before filling this page)

454351 ‘發明說明() N型換雜區265的矣而 > , 表面。在本發明之較佳實施 除複晶石夕層28〇的方法,是使__製程 梦層與二氧切層咖作為關罩幕,防 ^化 複晶矽層230受到蝕刻傷害。 1摻雜 項 再 填 寫 本 頁 爲請參閱第十—A圖與第十一 B圖,沈積-層二氧化石夕 層290覆蓋在閉極結構的表面,並去除在部份第二n型擦 雜區265之上的二氣化石夕層㈣,此二氧切層290是當 作絕緣層,用來作為閘極與源極之間的隔絕。在本發明之 較佳實施例之中’二氧化梦層·的組成材料為㈣捧雜 石夕玻璃層(BPSG)或是磷摻雜石夕玻璃層(pSG)。然後,沈積 -層金屬層300 ’覆蓋於二氧化發層29〇,並填入於接觸 南之中’接觸第二N型摻雜區265。454351 ‘Explanation of the invention ()) of the N-type doping region 265 >, Surface. In the preferred implementation of the present invention, the method for removing the polycrystalline stone layer 280 is to use the __ process dream layer and the dioxy-cut layer as a curtain to prevent the polycrystalline silicon layer 230 from being damaged by etching. Please fill in this page again for 1 doping item. Please refer to Figure 10-A and Figure 11B. The deposition-layer SiO2 layer 290 covers the surface of the closed electrode structure and removes part of the second n-type wiper. A layer of two gasified fossils above the miscellaneous region 265. The oxygen cut layer 290 is used as an insulation layer to isolate the gate and the source. In a preferred embodiment of the present invention, the composition material of the 'dream dioxide layer' is a pinch doped stone layer (BPSG) or a phosphorus-doped stone layer (pSG). Then, a deposition-layer metal layer 300 'covers the dioxide layer 29 and is filled in the contact south' to contact the second N-type doped region 265.

在第十一 A圓與第十一 B圖之中所顯示的結構,為一 個絕緣閘半導體元件的完整結構,其中是以N型摻雜複晶 矽層210作為電晶體的汲極,第一 N型摻雜區26〇與第二 N型摻雜區265作為電晶體的源極,形成一個完整的NpN 型電晶體。在本發明所揭露的方法之中,所製造的絕緣閘 半導體元件結構,源極與通道之間的接面已經被縮減到最 小,而源極電極與源極的接觸面積依然有相當的大小,有 效減少源極與通道的接觸電阻,降低寄生雙載子電晶體的 影響。 請參閱第十二圖,圖中顯示出絕緣閘半導體元件的佈 局圖,而第九A圖、第十A圖與第十一 A圖為第十二圖 的33剖面;第九]5圖、第十B圖與第十一 B圖為第十二 12 國國豕標準(CNS)A4規格(210 X 297公愛) 經濟部智慧財產局員工消.f合作社印製 454351 A7 " ---------------- 五、發明說明(广 ^ 圖的44剖面。從圖中可以很明顯的看出,第二N型摻雜 區265與第二通道區255的區域與習知技術的佈局圖不 同,藉由改變元件的結構設計,可減少絕緣閘半導體元件 的雙载子效應。 本發明以較佳實施例說明如上,而熟悉此領域技藝者, 在不脫離本發明之精神範圍内,當可作些許更動潤飾,其 專利保護範圍更當視後附之申請專利範圍及其等同領域而 定。 - — — — —I. 裝--------訂---------%'Γ------------------·_!-— f請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格<210 X 297公釐)The structure shown in the eleventh circles A and eleventh B is a complete structure of an insulated gate semiconductor device, in which an N-type doped polycrystalline silicon layer 210 is used as the drain of the transistor. The N-type doped region 26 and the second N-type doped region 265 serve as the source of the transistor, forming a complete NpN-type transistor. In the method disclosed in the present invention, in the manufactured semiconductor device structure of the insulated gate, the interface between the source and the channel has been reduced to a minimum, and the contact area between the source electrode and the source is still relatively large. Effectively reduce the contact resistance between the source and the channel, and reduce the influence of the parasitic bipolar transistor. Please refer to the twelfth figure, which shows the layout of the insulated gate semiconductor element, and the ninth A, tenth A, and eleventh A are the 33 section of the twelfth figure; the ninth] 5th figure, Figures 10B and 11B are the twelfth and twelfth national standards (CNS) A4 specifications (210 X 297 public love) employees of the Intellectual Property Bureau of the Ministry of Economic Affairs. Printed by cooperatives 454351 A7 " --- ------------- V. Description of the invention (wide ^ Figure 44 section. It can be clearly seen from the figure that the second N-type doped region 265 and the second channel region 255 The layout of the area is different from the conventional technology. By changing the structure design of the device, the bipolar effect of the semiconductor device of the insulation gate can be reduced. The present invention is described above with reference to the preferred embodiment, and those skilled in the art will not depart from it. Within the spirit of the present invention, when it can be modified slightly, the scope of its patent protection depends on the scope of the attached patent application and its equivalent fields.-----I. Equipment -------- Order ---------% 'Γ ------------------ · _! -— f Please read the notes on the back before filling this page) Paper size applicable to China Quasi (CNS) A4 size < 210 X 297 mm)

Claims (1)

产㈣4543 51 經濟部智慧財產局員工消費合作社印製 AS B8 C8 D8、申請專利範圍 1.一種絕緣閘半導體元件製造方法,至少包含: 提供一半導體基板; 形成一第一複晶矽層,具有第一極性,覆蓋在該半導體 基板的表面, 形成一第一氧化層,覆蓋在該第一複晶矽層之上; 形成一第二複晶矽層,具有第一極性,覆蓋在該第一氧 化層之上; 形成一第二氧化層,覆蓋在該第二複晶矽層之上; 蝕刻該第二氧化層與該第二複晶矽層,形成一接觸窗, 露出該第一氧化層; 進行第一離子佈植製程,在該第一複晶矽層之中,摻雜 第二極性導電雜質,在該第一複晶矽層之中形成絕緣閘 半導體元件的一第一通道區; 進行第二離子佈植製程,在該第一通道區之中,植入第 一極性導電雜質,形成一第一摻雜區; 沈積一第三氧化層,覆蓋在該第二氧化層與該第一氧化 層之上; 蝕刻該第二氧化層與該第一氧化層,露出在該第一通道 區之中的該第一摻雜區,並以該第一氧化層、該第二複 晶矽層與該第二氧化層作為絕緣閘半導體元件的閘極; 沈積一第三複晶秒層,覆蓋在該第二氧化層、該第三氧 化層與該第一摻雜區之上,其中該第三複晶矽層具有第 一極性,其導電雜質會擴散到該第一摻雜區之中,在該 第一摻雜區之中形成一第二摻雜區,該第二摻雜區的摻 (請先閱讀背面之注意事項再填寫本頁) 装--- 訂---------線/ 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) Afi B8 CS D8 六 經濟部智慧財產局員工消費合作社印製 申請專利範圍 雜濃度大於該第一摻雜區的摻雜濃度,該第一摻雜區與 該第二摻雜區是作為源極區域; 餘刻該第三複晶矽層與該第一複晶矽層,露出該第一通 道區; 進行離子佈植製程,摻雜第二極性導電雜質至該第一通 道區之中,形成一第二通道區; 去除該第三複晶矽層; 沈積一第四氧化層覆蓋在該閘極表面;以及 形成一金屬層連接該第二摻雜區,作為金屬接觸。 2.如申請專利範圍第1項所述之絕緣閘半導體元件製造方 法’其中該第一極性為N型,而該第二極性為p型。 .如申請專利範圍第1項所述之絕緣閘半導體元件製造方 法’其中該第一極性為P型,而該第二極性為N型。 4·如申請專利範圍第1項所述之絕緣閘半導體元件製造方 法,其中姓刻該第二複晶梦層與該第二氧化層是使用非均 向性蝕刻製程。 5.如申清專利範圍第i項所述之絕緣閘半導體元件製造方 法,其中在該第-複晶㈣之中形成該第一通道區的離子 佈植裝程’是使用該第二氧化層作為離子佈植罩幕。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) i-----------Q--------訂 i (請先閱讀背面之注意事項再填寫本頁) 4543 5 1 A8 B8 C8 D8 經濟部智慧財產局員工湞費合作社印製 六、申請專利範圍 ‘如申請專利範圍帛l項所述之絕緣閘半導體元件製造方 、、j、_ '’其中形成該第一摻雜區的離子佈植製程,是使用該第 二氧化層作為離子佈植罩幕。 7·如申請專利範圍第1項所述之絕緣閘半導體元件製造方 法’其中形成該第二通道區的離子佈植製程,是使用該第 一氧化層、該第三氧化層與該第三複晶矽層作為離子蝕刻 罩幕β 8·如申請專利範圍第1項所述之絕緣閘半導體元件製造方 法其中去除該第三複晶矽層是使用該第二氧化層與該第 二氧化層作為蝕刻罩幕。 9·一種功率電晶體製造方法,至少包含: 提供一半導體基板; 形成一第一複晶矽層,具有第一極性,覆蓋在該半導體 基板的表面; 形成一第一氧化層,覆蓋在該第一複晶矽層之上; 形成一第二複晶矽層,具有第—極性,覆蓋在該第一 化層之上; # 形成一第二氧化層,覆蓋在該第二複晶矽層之上; 蝕刻該第二氧化層與該第二複晶矽層,形成一接觸窗, 露出該第一氧化層; 進行第一離子佈植製程,在該第一複晶矽層之中,摻雜 16 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐] 一 ---—- (請先閱讀背面之注意事項再填寫本頁) -—— — — III [111111· ^1 - 4543Produced 4543 51 Printed by ASB8, C8, D8, Consumer Cooperatives, Intellectual Property Bureau, Ministry of Economic Affairs, Patent Application 1. A method for manufacturing an insulated semiconductor device, including at least: providing a semiconductor substrate; forming a first polycrystalline silicon layer having a first A polarity covering the surface of the semiconductor substrate to form a first oxide layer covering the first polycrystalline silicon layer; forming a second polycrystalline silicon layer having a first polarity covering the first oxide Forming a second oxide layer covering the second polycrystalline silicon layer; etching the second oxide layer and the second polycrystalline silicon layer to form a contact window to expose the first oxide layer; Performing a first ion implantation process, doping a second polar conductive impurity into the first polycrystalline silicon layer, and forming a first channel region of an insulating gate semiconductor element in the first polycrystalline silicon layer; In a second ion implantation process, a first polar conductive impurity is implanted in the first channel region to form a first doped region; a third oxide layer is deposited, covering the second oxide layer and the first Of oxide Etch the second oxide layer and the first oxide layer, expose the first doped region in the first channel region, and use the first oxide layer, the second polycrystalline silicon layer, and the second An oxide layer is used as the gate of the insulating gate semiconductor element; a third polycrystalline second layer is deposited, covering the second oxide layer, the third oxide layer, and the first doped region, wherein the third polycrystalline silicon The layer has a first polarity, and its conductive impurities will diffuse into the first doped region, forming a second doped region in the first doped region. The doping of the second doped region (please read first Note on the back, please fill in this page again) Packing --- Ordering --------- Line / This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) Afi B8 CS D8 Six Economy The Ministry of Intellectual Property Bureau employee consumer cooperative prints a patent application with a doping concentration greater than the doping concentration of the first doped region, and the first doped region and the second doped region are used as source regions; A polycrystalline silicon layer and the first polycrystalline silicon layer, exposing the first channel region; performing an ion implantation process, and doping A bipolar conductive impurity enters the first channel region to form a second channel region; removes the third polycrystalline silicon layer; deposits a fourth oxide layer to cover the gate surface; and forms a metal layer connected to the first channel region Two doped regions serve as metal contacts. 2. The method for manufacturing an insulated gate semiconductor element according to item 1 of the scope of the patent application, wherein the first polarity is N-type and the second polarity is p-type. The method for manufacturing an insulated gate semiconductor device according to item 1 of the scope of the patent application, wherein the first polarity is P-type and the second polarity is N-type. 4. The method for manufacturing an insulated gate semiconductor device according to item 1 of the scope of the patent application, wherein the second polycrystalline dream layer and the second oxide layer are etched using an anisotropic etching process. 5. The method for manufacturing an insulated gate semiconductor device as described in item i of the patent claim, wherein the ion implantation process for forming the first channel region in the -multi-crystalline silicon is using the second oxide layer. As an ion implanted curtain. This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) i ----------- Q -------- Order i (Please read the precautions on the back first (Fill in this page again) 4543 5 1 A8 B8 C8 D8 Printed by employees of the Intellectual Property Bureau of the Ministry of Economic Affairs and printed by cooperatives. 6. Scope of patent application. '' The ion implantation process in which the first doped region is formed uses the second oxide layer as an ion implantation mask. 7. The method for manufacturing an insulated gate semiconductor device according to item 1 of the scope of the patent application, wherein the ion implantation process for forming the second channel region uses the first oxide layer, the third oxide layer, and the third compound. The crystalline silicon layer is used as an ion-etching mask β 8 · The method for manufacturing an insulated gate semiconductor device as described in item 1 of the patent application scope, wherein the removal of the third polycrystalline silicon layer uses the second oxide layer and the second oxide layer as Etching the curtain. 9. A method for manufacturing a power transistor, comprising at least: providing a semiconductor substrate; forming a first polycrystalline silicon layer having a first polarity covering the surface of the semiconductor substrate; forming a first oxide layer covering the first oxide layer; Over a polycrystalline silicon layer; forming a second polycrystalline silicon layer with a first polarity covering the first chemical layer; # forming a second oxide layer covering the second polycrystalline silicon layer Etching the second oxide layer and the second polycrystalline silicon layer to form a contact window to expose the first oxide layer; performing a first ion implantation process, and doping in the first polycrystalline silicon layer 16 This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) I ------ (Please read the precautions on the back before filling this page) -—— — — III [111111 · ^ 1 -4543 、申請專利範圍 經濟部智慧財產局員工消費合作社印製 第二極性導電雜質,在該第一複晶矽層之 半導體元件的-第-通道區; 緣聞 進行第二離子佈植製程,在該第—通道區之中, 一極性導電雜質,形成一第一摻雜區; 植入第 沈積一第三氧化層,覆蓋在該第二氧化層與謗 層之上; ^〜氧化 蝕刻該第二氧化層與該第一氧化層,露出在該第―、 區之中的該第一摻雜區,並以該第一氧化層:該;1道 晶矽層與該第二氧化層作為絕緣閘半導體元件的y 沈積一第三複晶矽層,覆蓋在該第二氧化層、該第極 化層與該第一摻雜區之上,其中該第三複晶發層具^ 一極性,其導電雜質會擴散到該第一掺雜區之中了 第-摻雜區之中形成-第二摻雜區,該第二摻雜區的= 雜濃度大於該第-摻雜區的摻雜濃度,該第一摻雜 該第二換雜區是作為源極區域; ' 敍刻該第三複晶砂層與該第—複晶梦層,露出該第 道區; 進行離子佈植製程,摻雜m轉至該第一通 道區之中’形成一第二通道區,· 去除該第三複晶矽層; 沈積一第四氧化層覆蓋在該閘極表面;以及 形成-金屬層連接該第二摻雜區,作為金屬接觸。 瓜如申請專利範㈣9項所述之功率電晶體製造方法,其 17 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 複 C靖先閱讀背面之注意事項再填寫本頁〕 ^ ini —--訂 ---I 線ο- 4543512. The scope of patent application: The consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs printed a second-polar conductive impurity in the first-channel region of the semiconductor element of the first polycrystalline silicon layer; Yuanwen carried out the second ion implantation process in the In the first channel region, a polar conductive impurity forms a first doped region; a first oxide layer is deposited and deposited on the second oxide layer and the second oxide layer; and the second oxide layer is oxidized and etched. An oxide layer and the first oxide layer are exposed in the first doped region among the first and second regions, and the first oxide layer: the; a crystalline silicon layer and the second oxide layer are used as insulating gates. A third polycrystalline silicon layer is deposited on the semiconductor device to cover the second oxide layer, the first polarized layer, and the first doped region. The third polycrystalline hair layer has a polarity, which is Conductive impurities will diffuse into the first doped region to form a second doped region. The second doped region has a doping concentration greater than the doped concentration of the first doped region. , The first doped region and the second doped region are used as source regions; 'the third polycrystalline sand layer and The first—multicrystalline dream layer, exposing the first channel region; the ion implantation process is performed, and the doped m is transferred into the first channel region to form a second channel region, and the third polycrystalline silicon layer is removed; A fourth oxide layer covers the gate surface; and a metal layer is formed to connect the second doped region as a metal contact. The method for manufacturing power transistors described in item 9 of the patent application, including 17 paper sizes, is applicable to China National Standard (CNS) A4 (210 X 297 mm). Please read the notes on the back before filling out this page. 〕 ^ Ini --- order --- I line ο- 454351 經濟部智慧財產局員工消費合作社印製 六、申請專利範圍 中該第一極性為N型,而該第二極性為p型。 11. 如申請專利範圍第9項所述之功率電晶體製造方法,其 中該第一極性為P型,而該第二極性為N型。 1 12, 如申請專利範圍第9項所述之功率電晶體製造方法,其 中蝕刻該第二複晶矽層與該第二氧化層是使用非均向性餘 刻製程。 认如申請專利範圍帛9項所述之功率電晶體製造方法,其 中在該第-複晶石夕層之中形成該第一通道區的離子佈植製 程,是使用該第二氧化層作為離子佈植罩幕。 14. 如申請專利範_ 9項所述之功率電晶體製造方法,其 中形成該第-摻雜區的離子佈植製程,是使用該第二氧化 層作為離子佈植罩幕。 15. 如申請專鋪_ 9餐述之功率電晶難造方法,兑 中形成該第二通道區的離子佈植製程,是使用該第二· 層、該第三氧化層與該第三複晶石夕層作為離子姑刻罩幕。 :申請專利瓣9項所述之功率電晶體製造方法,1 :=;;晶"層是使用該第二氣化層與該第三氧;: 18 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公髮) (請先閱讀背面之注意事項再填寫本頁) Λ¥--------訂 i 旅 A8B8C8D8 ^ 454351 六、申請專利範圍 7.-種功率電晶體製造方法,至少包含: 提供一半導體基板; .m晶'層’具有極性’覆蓋在該半料 形成第氧化層,覆蓋在該第一複晶石夕層之上; 形成-第二複_層,具有N型極性,覆蓋在 化層之上; # 开/成弟一氧化層,覆蓋在該第二複晶發層之上; 餘刻該第二氧化層與該第二複晶石夕層,形成 露出該第-氧化層; 接觸商, 進行第—離子佈植製程,在該第—複晶料之中,播雜r f極性導電雜質,在該第—複晶㈣之中形成絕緣閑半 導體元件的一第一通道區; 進行第二離子佈植製程,在該第—通道區之中,植入^ 型極性導電雜質m接雜區; 沈積第一氧化層,覆蓋在該第二氧化層與該第一氧化 層之上; 飯刻該第二氧化層與該第一氧化層,露出在該第一通道 f之中的該第―換雜區,並以該第-氧化層、該第二複 s曰石夕層與該第二氧化層作為絕緣閘半導體元件的閘極; 沈積-第三複晶矽層’覆蓋在該第二氧化層、該第三氧 化層與該第—摻雜區之上,其中該第三複晶石夕層具有^ 型極性,其導電雜質會擴散到該第一捧雜區之中,在該 19 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 裝--------訂---------線'_ 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 A8 E8 C8 D8 六、申請專利範圍 第一摻雜區之中形成一第二摻雜區,該第二摻雜區的摻 雜濃度大於該第一摻雜區的摻雜濃度,該第一摻雜區與 該第二摻雜區是作為源極區域; 蝕刻該第三複晶矽層與該第一複晶矽層,露出該第一通 道區; 進行離子佈植製程,摻雜p型極性導電雜質至該第一通 道區之中’形成一第二通道區; 去除該第三複晶矽層; 沈積一第四氧化層覆蓋在該閘極表面;以及 形成一金屬層連接該第二摻雜區,作為金屬接觸。 18.如申請專利範圍第17項所述之功率電晶體製造方法,其 中蝕刻該第二複晶矽層與該第二氧化層是使用非均向性蝕 刻製程。 19_如申請專利範圍第17項所述之功率電晶體製造方法,其 中在該第一複晶梦層之中形成該第一通道區的離子佈植製 程,是使用該第二氧化層作為離子佈植罩幕。 20. 如申請專利範圍第17項所述之功率電晶體製造方法,其 中形成該第一推雜區的離子佈植製程,是使用該第二氧化 層作為離子佈植罩幕^ 21. 如申請專利範圍第π項所述之功率電晶體製造方法,其 20 本紙張尺度適用中國國家標準(CNS)A4規格(210 χ 297公釐) (請先閲讀背面之注§項再填寫本頁) 装--------訂 --------線、_ 454351 A8 B8 C8 Ό8 、申請專利範圍 中形成該第二通道區的離子佈植製程,是使用該第二氧化 層、該第三氧化層與該第三複晶矽層作為離子蝕刻罩幕。 22.如申請專利範圍第17項所述之功率電晶體製造方法,其 中去除該第三複晶矽層是使用該第二氧化層與該第三氧化 層作為银刻罩幕。 (請先閱讀背面之注意事項再填寫本頁) 訂---------線、 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 6. In the scope of patent application, the first polarity is N-type, and the second polarity is p-type. 11. The method for manufacturing a power transistor according to item 9 of the scope of patent application, wherein the first polarity is P-type and the second polarity is N-type. 1 12. The method of manufacturing a power transistor according to item 9 of the scope of the patent application, wherein the second polycrystalline silicon layer and the second oxide layer are etched by using an anisotropic post-etching process. It is considered that the power transistor manufacturing method according to item 9 of the scope of patent application, wherein the ion implantation process for forming the first channel region in the first-multicrystalite layer uses the second oxide layer as ions Plant the curtain. 14. The method for manufacturing a power transistor according to item 9 of the patent application, wherein the ion implantation process for forming the first doped region uses the second oxide layer as an ion implantation mask. 15. If applying for a special shop _ 9 meal power transistor manufacturing method, the ion implantation process to form the second channel region is to use the second layer, the third oxide layer and the third compound. The spar stone layer acts as an ion mask. : Application for the power transistor manufacturing method described in item 9 of the patent, 1: = ;; crystal " layer is using the second gasification layer and the third oxygen ;: 18 This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297) (please read the precautions on the back before filling in this page) Λ ¥ -------- Order i Brigade A8B8C8D8 ^ 454351 VI. Application for patent scope 7.- Power transistors The manufacturing method includes at least: providing a semiconductor substrate; .m crystal 'layer' having a polarity 'covering the half material to form a second oxide layer, covering the first polycrystalline stone layer; forming a second complex layer , With N-type polarity, covered on the chemical layer; # Kai / Chengdi oxide layer, covered on the second polycrystalline hair layer; the second oxide layer and the second polycrystalline stone layer in the remaining moment Forming the first oxide layer; contacting the quotient, performing the first ion implantation process, rf polar conductive impurities are doped in the first compound crystal, and an insulating semiconductor is formed in the first compound crystal A first channel region of the element; performing a second ion implantation process, in the first channel region, Implanting a ^ -type polar conductive impurity m doped region; depositing a first oxide layer covering the second oxide layer and the first oxide layer; and carving the second oxide layer and the first oxide layer to expose The first-fifth impurity region in the first channel f, and the first oxide layer, the second complex layer, and the second oxide layer are used as gates of the insulating gate semiconductor element; A triple-polycrystalline silicon layer is overlaid on the second oxide layer, the third oxide layer and the first doped region, wherein the third polycrystalline silicon layer has a ^ -type polarity, and conductive impurities will diffuse to the Among the first miscellaneous areas, the 19 paper sizes are applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) (please read the precautions on the back before filling this page). -------- --Order --------- Line'_ Printed by the Employees 'Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed A8 E8 C8 D8 VI. Forming a second doped region, the doped concentration of the second doped region is greater than the doped concentration of the first doped region The first doped region and the second doped region are used as source regions; the third polycrystalline silicon layer and the first polycrystalline silicon layer are etched to expose the first channel region; an ion implantation process is performed, doping Doping p-type polar conductive impurities into the first channel region to form a second channel region; removing the third polycrystalline silicon layer; depositing a fourth oxide layer to cover the gate surface; and forming a metal layer connection The second doped region serves as a metal contact. 18. The method for manufacturing a power transistor according to item 17 in the scope of the patent application, wherein the second polycrystalline silicon layer and the second oxide layer are etched using an anisotropic etching process. 19_ The method for manufacturing a power transistor according to item 17 of the scope of patent application, wherein the ion implantation process for forming the first channel region in the first polycrystalline dream layer uses the second oxide layer as ions Plant the curtain. 20. The method for manufacturing a power transistor according to item 17 in the scope of the patent application, wherein the ion implantation process for forming the first doped region uses the second oxide layer as an ion implantation mask ^ 21. If applied The power transistor manufacturing method described in item π of the patent scope, 20 paper sizes are applicable to the Chinese National Standard (CNS) A4 specification (210 x 297 mm) (please read the note § on the back before filling this page). -------- Order -------- line, 454351 A8 B8 C8 Ό8, the ion implantation process that forms the second channel region in the scope of patent applications, uses the second oxide layer, The third oxide layer and the third polycrystalline silicon layer serve as an ion etching mask. 22. The method for manufacturing a power transistor according to item 17 of the scope of the patent application, wherein the third polycrystalline silicon layer is removed by using the second oxide layer and the third oxide layer as a silver engraved mask. (Please read the precautions on the back before filling this page) Order --------- Printed by the Consumers and Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs This paper is printed in accordance with China National Standard (CNS) A4 (210 X 297 mm)
TW88100287A 1999-01-08 1999-01-08 Manufacturing method for self-aligned insulated gate semiconductor device TW454351B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88100287A TW454351B (en) 1999-01-08 1999-01-08 Manufacturing method for self-aligned insulated gate semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88100287A TW454351B (en) 1999-01-08 1999-01-08 Manufacturing method for self-aligned insulated gate semiconductor device

Publications (1)

Publication Number Publication Date
TW454351B true TW454351B (en) 2001-09-11

Family

ID=21639346

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88100287A TW454351B (en) 1999-01-08 1999-01-08 Manufacturing method for self-aligned insulated gate semiconductor device

Country Status (1)

Country Link
TW (1) TW454351B (en)

Similar Documents

Publication Publication Date Title
TW437004B (en) Semiconductor device and manufacturing method thereof
JPH0878672A (en) Mos type of semiconductor device and its manufacture
US20140191319A1 (en) Finfet compatible diode for esd protection
US11011615B2 (en) Transistor with contacted deep well region
JP5036130B2 (en) Self-aligned vertical gate semiconductor device.
US8063439B2 (en) Semiconductor device and fabrication method thereof
TW457645B (en) A semiconductor device and method for fabricating the same
JP3590207B2 (en) MOS capacitor
TW454351B (en) Manufacturing method for self-aligned insulated gate semiconductor device
TW454296B (en) Semiconductor device and its manufacturing method
JPH0697448A (en) Field effect transistor
KR900007904B1 (en) Method of manufacturing semiconductor device
JP4339952B2 (en) Semiconductor device and manufacturing method thereof
TW447002B (en) Semiconductor device
TW508676B (en) Manufacture process of high power transistor with different thicknesses of gate oxide layer
TW451312B (en) Manufacture method for sheet resistor of modified concave power semiconductor
KR100424185B1 (en) method for fabricating transistor
TW512438B (en) High power transistor with discontinuous polysilicon gate and its manufacturing process
KR100336559B1 (en) Semiconductor device and fabricating method thereof
JPH0536716A (en) Semiconductor device and its manufacture
TW466766B (en) Power MOSFET apparatus with the capability of decreasing conduction resistance value as well as increasing anti-avalanche breakdown current and the manufacturing method of the same
TW392365B (en) Structure and manufacturing method for high voltage device
JPS58197882A (en) Manufacture of semiconductor device
KR100200924B1 (en) Method for making semiconductor device for connecting active region electrically
KR100268918B1 (en) Semiconductor device and method for fabricating the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees