TW417199B - Method of strengthening gate oxide layer - Google Patents
Method of strengthening gate oxide layer Download PDFInfo
- Publication number
- TW417199B TW417199B TW088109723A TW88109723A TW417199B TW 417199 B TW417199 B TW 417199B TW 088109723 A TW088109723 A TW 088109723A TW 88109723 A TW88109723 A TW 88109723A TW 417199 B TW417199 B TW 417199B
- Authority
- TW
- Taiwan
- Prior art keywords
- oxide layer
- gate oxide
- strengthening
- patent application
- scope
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28185—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/0223—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
- H01L21/02233—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
- H01L21/02236—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
- H01L21/02238—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/02255—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02343—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a liquid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28211—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/326—Application of electric currents or fields, e.g. for electroforming
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28158—Making the insulator
- H01L21/28167—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
- H01L21/28202—Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/691—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator comprising metallic compounds, e.g. metal oxides or metal silicates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/68—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
- H10D64/693—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Formation Of Insulating Films (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
,Γ 417 19 9 五、發明說明(1) . 本案係為一種形成閘極氧化層的方法,應用於半導體 元件的製程上面,尤指一種強化閘極氧化層的方法。 隨著微電子技術的發展,半導體元件的尺寸也越來越 小。現今為了發展超大型積體電路ULSI (Ultra Large Scaled Integrated Circuit) 之次微米元件技術,半導體 元件閘極氧化層的厚度也隨之降低至100埃以下。在現今 製造閘極氧化層的方法中,以熱氧化法(t h e r m a 1 oxidation process) 最為普遍。而熱氧化製程的發展方 向,主要是集中在如何製造電性優良且厚度極薄的閘極氧 化層,以因應半導體元件越來越小的要求。也因此,如此薄 的閘極氧化層必須要具有較高的介電常數(d i e 1 e c t r i c ( constant),較低的氧化層電荷(oxide charge),與較高的 崩潰電壓(breakdown voltage)等 ° 在傳統的製程上,形成閘極氧化層的方法,不外乎下列 兩種方法:(1 )使用超高純度的氧氣來形成閘極氧化層,並 加上高溫氮氣的退火(a η n e a I i n g ) 步驟,或是(2 )使用 超高純度的笑氣(N20)取代氧氣直接成長氧化層並加上高 溫氮氣的退火步驟。並且為了符合生產的經濟要素與技術 條件,傳統的高溫爐設備成長氧化層的方式已經逐漸被快 速熱處理(rapid thermal processing) 的方法所取代。 而以如此方法所形成的閘極氧化層,雖然能承受更高的崩 潰電場(breakdown field) 與更高的崩潰電荷庫倫數 < (charge to breakdown), 但是卻具有厚度不均勻的缺 點,使得後續的製程上,產生了閘極氧化層穩定度不佳的問
第4頁 417199 五、發明說明(2) . 題。 職是之故,吾人鑑於習知技術的缺失,乃經悉心試驗與 研究並一本鍥而不捨的精神,終創作出本案之強化閘極氧 化層的方法。 以下為本案之簡要說明。 本案的主要目的在於提供一種強化閘極氧化層的方 法,以使所形成之閘極氧化層能承受更高的崩潰電場與崩 潰電何庫儉數。 根據本案之構想,該方法之步驟包括:(a)提供一晶 圓,(b)在該晶圓表面上形成一閘極氧化層,(c)提供一 具有高導電性的化學溶液,U)將該晶圓當作陰極,置入該( 化學溶液中,(e )提供一陽極,置入該化學溶液中,(f )對 該晶圓通入一電子流,以電子通過該閘極氧化層來破壞該 閘極氧化層中鍵結不完全的鍵與比較差的該閘極氧化層, (g )以去離子水清洗該閘極氧化層表面殘留的該化學溶液, 以及(h )將該間極氧化層進行一退火(a η n e a丨i n g ) 處理以 使受損的該閘極氧化層重新鍵結。 根據本案構想,其中該步驟(a)夠包含了下列步驟: (a )將該晶圓以R C A 清洗步驟清洗完成。 根據本案構想,其中該步驟(b )之形成閘極氧化層之 方法,係為一採用快速熱處理(rapid thermal processing) 之熱氧化法。 根據本案之構想,其中該閘極氧化層係為二氧化矽 (Si02)。
五、發明說明(3) . 根據本案之構想,其中該閘極氧化層係為氮化矽 (Si3N4)。 根據本案之構想,其中該閘極氧化層係為五氧化二鈕 (Ta2 05 )。 根據本案之構想,其中該具有高導電性的化學溶液係 為一稀釋的氫就酸溶液(diluted HF solution),且其漢 度範圍為0 0 4 9 % 至0 . 9 8 %,而以0 · 2 4 5 % 為最佳。 根據本案之構想,其中該陽極係為一白金片 (platinum plate) ° 根據本案之構想,其中該電流之電流密度範圍為0. 1 /zA/cm2 至 10 yA/cm2,而以4 //A/cm2 為最佳 d 根據本案之構想,其中該退火處理,係使用快速熱處理 (rapid thermal processing) 〇 本案得藉由下列圖示詳細說明,俾得一更深入之瞭 解。 第一圖:為本案設備之簡單示意圖。 第二圖:為四個實驗樣本在時依性介電崩潰定電流破 壞測試的偉伯分布圖(W e i b u 1 1 p 1 〇 t)。其中電流密度為 2 0 mA /cm2 〇 第三圖:為實驗樣本1與樣本4的電流密度-電壓曲線 圖。 第四圖:為四個實驗組樣品在非時依性介電崩潰破壞 測試的偉伯分布圖(W e i b u Π ρ丨〇 t)。 第五圖:為本案的能階示意圖。
417199 五、發明說明(4) _ 本案圖示中所包含之各元件列示如下: 1 : K e t h 1 e y 2 2 0 電流源。 2 :白金片。 3 :石夕晶圓。 4 : 閘極氧化層。 5:濃度為0.2 4 5% 的稀釋氫氟酸溶液(diluted HF solution) ° 6 : 通過閘極氧化層之電子流。 7 :快速熱機台。 請參見第一圖。本圖係為本案設備的簡單示意圖。首 先,提供一矽晶圓3 ( s i 1 i c ο n w a i e r ),將該石夕晶圓3先以 ( R C A 清洗步驟清洗完成後,再置入一高溫氧氣的快速熱機 台7進行快速熱處理(rapid thermal processing)後形成 一閘極氧化層4 於矽晶圓3上。 再者,提供一濃度為0 . 2 4 5 %的稀釋氫氟酸溶液5 (d i 1 u t e d H F s ο 1 u t i ο η )為導電闻的化學溶液,將該表面上 長成一閘極氧化層4的石夕晶圓3當成電解用的陰極,採用白 金片2 (platinum plate)為電解用的陽極,置入該稀釋的 氫氟酸溶液5 (diluted HF solution)中,並以 Kethley 2 2 0 電流源1為本實施例中的電流源,如圖將該電流源1與 陽極2與陰極3所示的極性相連接後通入電子流進行破壞。 由於該稀釋的氫氟酸溶液5具有蝕刻性,它會蝕刻該閘 極氧化層4,更由於該稀釋的氫氟酸溶液5是種具高導電度 的化學溶液,一旦通入電流,馬上就會有強大的電子流6由
第7頁 417 1 99 五、發明說明(5) . 電流源1進入陰極3而通過該閘極氧化層4至陽極2。因為該 閘極氧化層4中品質比較差的區域其等效厚度比正常的閘 極氧化層來的薄,因此在石夕晶圓3與閘極氧化層4之介面會 累積較多的電子,而會有較少氫氟酸陰離子在此處累積,因 而蝕刻速度降低,使的往後的閘極氧化層厚度變的更均勻; 並且此處的氧化層會通過較多的電荷,而此電荷會將閘極 氧化層4中的未飽合鍵(unsaturated bonding)及鍵結不 完全的區域給破壞。 在完成破壞步驟後,該閘極氧化層4 _的未飽合鍵與鍵 結不完全的部份都已經受到破壞,這時再將該閘極氧化層4 置入一高溫It氣的快速熱機台7做退火(annealing)處理,( 將這些被電子破壤的區域重新鍵結起來。由於閘極氧化層 生長後,在靠近矽晶圓與閘極氧化層的介面有很多鍵結不 完全之處,在高電場的情形下,於此處容易產生「電子陷 阱」(electron traps)。以高溫氮氣退火的技術,可以將 鍵結不完全的區域部份改善,以使該閘極氧化層4的穩定度 增加。 而在本實施例中,我們更進一步的設立了四個實驗樣 本以輔助說明本實施例中所形成的閘極氧化層的電氣特 性。第一個實驗樣本,是採用快速熱氧化法加上快速熱退 火以形成閘極氧化層;第二個實驗樣本,是採用快速熱氧化 法加上化學物質輔助電子破壞後熱退火處理,不過是以去 離子水(Dissociated water, H20)為電解的化學溶液;第 三個實驗樣本,是採用快速熱氧化法加上化學物質輔助電
五、發明說明(6) _ 子破壞,不過是以氫氟酸溶液(H F )為電解的化學溶液。第 四個實驗樣本即是本實施例,乃是採用快速熱氧化法加上 化學物質輔助電子破壞後熱退火處理,而以氫氟酸溶液 (HF)為電解的化學溶液。 請參見第二圖。本圖是四個實驗樣本在時依性介電崩 潰定電流破壞(time-dependent dielectric breakdown constant current stressing)湏1J 試的偉伯分佈圖 (Weibull plot),其縱座標為-In (1-F)的自然對數值,橫 座標為崩潰電荷庫倫數。由此圖中可以看出本實施例的實 驗樣本4具有比習用方法的實驗樣本1多一倍以上的崩潰電 荷庫倫數。而實驗樣本2因為採用去離子水(H20)來當電解/ 溶液,而去離子水的導電度遠不及氫氟酸溶液,無法選擇性 的通過閘極氧化層比較弱的區域,因而影響了電子通過氧 化層的路徑,造成樣本2曲線分散的效果。 請參見第三圖。本圖是典型的電流密度與電壓圖,其 中縱座標為電流密度J;橫座標為閘極氧化層的電壓V,以樣 本1與樣本4的曲線來作比較,發現到F - N t u η n e 1 i n g 發生 的區域,樣本1發生的時間比樣本4還要早。但是在兩個樣 本崩潰前,樣本1的電流密度反而比樣本4來的小。這代表 樣本1在量測J - V時在崩潰前的高電場,會產生較多的電子 陷阱,使得後來要穿過閘極氧化層的電子,因為負電荷相排, 斥,比較不容易穿過去,電流密度比樣本4來的小。在高電 ' 場下能含有較少的電子陷阱,往往在時依性介電崩潰定電 流破壞測試中能容忍較多的電子通過氧化層,這印證了樣
ί 41719 9 五、發明說明(7) _ 本4具有較佳的穩定度。 請參見第四圖。本圖是四個實驗樣本在非時依性介電 崩潰破壞(time-zero dielectric breakdown stressing)測試的偉伯分佈圖(Weibull plot),其縱座標 為 1 - F )的自然對數值,橫座標為崩潰電場。本圖類 似於第二圖,其中樣本4具有較高的崩潰電場,且樣本2的曲 線也分散開來,代表著若去離子水不能夠有效的讓電子通 過品質較差的閘極氧化層,反而會去破壞原本品質已經报 好的閘極氧化層,而高溫熱退火又不足以將這樣被破壞的 閘極氡化層完全鍵結回來,導致樣本2的測試結果有好有壞 的分布。 請參見第五圖《本圖是本實施例的能階示意圖,其表 示氧化層受到電子破壞之情形。 縱上所述,本案乃是利用一具有高導電性的化學溶液 將一表面長成一閘極氧化層的晶圓通入電子流,利用電子 通過品質較差或是鍵結不完全的閘極氧化層來破壞該閘極 氧化層,再用高溫氮氣退火的技術將該閘極氧化層重新鍵 結,如此形成的閘極氧化層不但穩定度提昇,更能承受更高 的崩潰電場與崩潰電荷庫倫數。 是以,本案得由熟習此技藝之人士任施匠思而為諸般 修飾,然皆不脫如附申請專利範圍所欲保護者。
第10頁
Claims (1)
- 六、申請專利範圍 _ 1 . 一種強化閘極氧化層的方法,應用於半導體元件的製程 上,其包含下列步驟: (a ) 提供一晶圓; (b ) 在該晶圓表面上形成一閘極氧化層; (c) 提供一具有高導電性的化學溶液; (d ) 將該晶圓當作陰極,置入該化學溶液中; (e ) 提供一陽極,置入該化學溶液中; (f ) 對該晶圓通入一電子流進行破壞,以電子通過該晶圓 上的該閘極氧化層來破壞該閘極氧化層中鍵結不完全的鍵 與比較差的該閘極氧化層; (g)以去離子水清洗該閘極氧化層表面殘留的該化學溶 液;以及 (h ) 將該閘極氧化層進行一退火(a η n e a 1 i n g ) 處理以使受 損的該閘極氧化層重新鍵結。 2. 如申請專利範圍第1項所述之強化閘極氧化層的方法, 其中該步驟(a )更包含下列步驟: (a ) 將該晶圓以R C A 清洗步驟清洗完成。 3. 如申請專利範圍第1項所述之強化閘極氧化層的方法, 其中步驟(b ) 之形成該閘極氧化層之方法係為一熱氧化 法。 4. 如申請專利範圍第3項所述之強化閘極氧化層的方法, 其中該熱氧化法係使用快速熱處理(r a p i d t h e r m a 1 processing) ° 5. 如申請專利範圍第1項所述之強化閘極氧化層的方法,六、申請專利範圍 . 其中該閘極氧化層係為二氧化矽(S i 02)。 6. 如申請專利範圍第1項所述之強化閘極氧化層的方法, 其中該閘極氧化層係為氮化矽(Si3N4)。 7. 如申請專利範圍第1項所述之強化閘極氧化層的方法, 其中該間極氧化層係為五氧化二钽(T a2 05 )。 8. 如申請專利範圍第1項所述之強化閘極氧化層的方法, 其中該具有高導電性的化學溶液係為一稀釋的氫氟酸溶液 (diluted HF solution)。 9. 如申請專利範圍第8項所述之強化閘極氧化層的方法, 其中該稀釋的氫氟酸溶液的濃度範圍為0. 0 4 9% 至0. 98 °/〇, 而以0 . 2 4 5 為最佳= 10. 如申請專利範圍第1項所述之強化閘極氧化層的方法, 其中該陽極係為一白金片(platinum plate)。 11. 如申請專利範圍第1項所述之強化閘極氧化層的方法, 其中該電流之電流密度範圍為0 . 1 # A / c m2至1 0 # A / cm2, 而以4 " A / c m2最最佳。 12. 如申請專利範圍第1項所述之強化閘極氧化層的方法, 其中該退火處理,係使用快速熱處理(rapid thermal processing) a第12頁
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW088109723A TW417199B (en) | 1999-06-10 | 1999-06-10 | Method of strengthening gate oxide layer |
| US09/506,850 US6352939B1 (en) | 1999-06-10 | 2000-02-17 | Method for improving the electrical properties of a gate oxide |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW088109723A TW417199B (en) | 1999-06-10 | 1999-06-10 | Method of strengthening gate oxide layer |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| TW417199B true TW417199B (en) | 2001-01-01 |
Family
ID=21641053
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW088109723A TW417199B (en) | 1999-06-10 | 1999-06-10 | Method of strengthening gate oxide layer |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US6352939B1 (zh) |
| TW (1) | TW417199B (zh) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100426467C (zh) * | 2004-12-25 | 2008-10-15 | 鸿富锦精密工业(深圳)有限公司 | 一种成长超薄闸极氧化层的方法 |
| US7368045B2 (en) * | 2005-01-27 | 2008-05-06 | International Business Machines Corporation | Gate stack engineering by electrochemical processing utilizing through-gate-dielectric current flow |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4289602A (en) * | 1980-05-15 | 1981-09-15 | Exxon Research And Engineering Co. | Electrochemical oxidation of amorphous silicon |
| US5314601A (en) * | 1989-06-30 | 1994-05-24 | Eltech Systems Corporation | Electrodes of improved service life |
| US6100562A (en) * | 1996-03-17 | 2000-08-08 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device |
| US5616233A (en) * | 1996-05-01 | 1997-04-01 | National Science Council | Method for making a fluorinated silicon dioxide layer on silicon substrate by anodic oxidation at room temperature |
| US5877069A (en) * | 1996-09-16 | 1999-03-02 | Micron Technology, Inc. | Method for electrochemical local oxidation of silicon |
| US5736454A (en) * | 1997-03-20 | 1998-04-07 | National Science Council | Method for making a silicon dioxide layer on a silicon substrate by pure water anodization followed by rapid thermal densification |
-
1999
- 1999-06-10 TW TW088109723A patent/TW417199B/zh not_active IP Right Cessation
-
2000
- 2000-02-17 US US09/506,850 patent/US6352939B1/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| US6352939B1 (en) | 2002-03-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101536155B (zh) | 一种具有原位背侧聚合物去除的等离子体蚀刻工艺 | |
| JP3187109B2 (ja) | 半導体部材およびその製造方法 | |
| TWI223846B (en) | Manufacture method of semiconductor device with gate insulating films of different thickness | |
| CN101421829A (zh) | 包括对低介电常数材料进行非原位背侧聚合物去除的等离子体电介质蚀刻处理 | |
| JPH0794725A (ja) | 半導体装置のゲート酸化膜形成法 | |
| US10886252B2 (en) | Method of bonding semiconductor substrates | |
| JP4961668B2 (ja) | 半導体装置の製造方法 | |
| TWI270140B (en) | A method for forming a thin complete high-permittivity dielectric layer | |
| TW478062B (en) | A method of surface treatment on the improvement of electrical properties for doped SiO2 films | |
| TWI485771B (zh) | Semiconductor processing methods | |
| US4013485A (en) | Process for eliminating undesirable charge centers in MIS devices | |
| TW417199B (en) | Method of strengthening gate oxide layer | |
| TWI316737B (en) | Method for manufacturting gate electrode for use in semiconductor device | |
| JP2010092909A (ja) | Soiウェーハの製造方法 | |
| JP3437540B2 (ja) | 半導体部材及び半導体装置の製造方法 | |
| JP4515309B2 (ja) | エッチング方法 | |
| JP3533377B2 (ja) | 半導体基板表面の酸化膜の形成方法及び半導体装置の製造方法 | |
| CN108538850A (zh) | 一种高抗疲劳性的铁电栅场效应晶体管存储器及制备工艺 | |
| TW202115791A (zh) | 形成半導體結構的方法、形成絕緣層上半導體(soi)基底的方法以及半導體結構 | |
| JPH0786229A (ja) | 酸化シリコンのエッチング方法 | |
| JP6372436B2 (ja) | 半導体装置の作製方法 | |
| WO2003079456A1 (fr) | Procede de production d'un substrat et d'un dispositif semi-conducteur par traitement au plasma | |
| CN105448652B (zh) | 接触槽的清洁工艺和接触层的形成方法 | |
| CN113846384A (zh) | 晶体锗材料的表面非晶化的方法 | |
| KR100244924B1 (ko) | 반도체장치의 커패시터 제조방법 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| GD4A | Issue of patent certificate for granted invention patent | ||
| MM4A | Annulment or lapse of patent due to non-payment of fees |