TW383409B - Process for forming a metal-silicide gate for dynamic random access memory - Google Patents

Process for forming a metal-silicide gate for dynamic random access memory Download PDF

Info

Publication number
TW383409B
TW383409B TW086119031A TW86119031A TW383409B TW 383409 B TW383409 B TW 383409B TW 086119031 A TW086119031 A TW 086119031A TW 86119031 A TW86119031 A TW 86119031A TW 383409 B TW383409 B TW 383409B
Authority
TW
Taiwan
Prior art keywords
layer
gate electrode
temperature
forming
oxide
Prior art date
Application number
TW086119031A
Other languages
English (en)
Inventor
Jiann Liu
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Application granted granted Critical
Publication of TW383409B publication Critical patent/TW383409B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)

Description

A7 B7 經濟部中央標準局員工消費合作社印製 五、發明説明(1 ) 發明技術領域 一般來說,本發明與M0S電晶體有關,更詳細說, 本發明與形成DRAM中所使用之電晶體的閘電極的方法有 關 發明背景 動態隨機存取記憶體(DRAM)是利用許多配置成列與 行之陣列的記憶體單元。每一個記憶體單元都是由一個 MOS電晶體與一個記憶體單元電容器所構成。該陣列可 被存取,選擇任何一個記憶體單元,需要選擇該記憶體單 元所在的整列記憶體單元,將其中的資料讀到相關的資料 線。之後,行解碼器電路決定那一條資料線要從記憶體輪 出。 為存取整列記憶體單元,提供一與記憶體單元列平行 配置的字線,在讀取作業時,字線由低電壓升到高電壓。 對較大的記憶體陣列而言,傳統的技術是利用一複$夕晶閘 電極並配置一電晶體,因此,構成閘電極的層同時也構成 字線,其中的某一列上可配置一條傳導帶,它覆於閘氧化 物上以形成閘電極。此閘電極通常是在單層的複碎晶上製 作圖案及蝕刻而成。 當記憶體陣列的大小增加到超過256Meg DRAM以上 ’電晶體變的太小,字線變的太細。此將導致字線的整體 阻杬增加。雖然複矽晶字線的摻雜水準可增加以改變它的 電導,但一般來說,靠近覆蓋於電晶體通道區域的閘氧化 I.-------Ί.裝-- (請先閣讀背面之注意事項再填寫本頁) 訂 » A7 --~~---— 67________ 五、發明説明(2 ) ~ :- 物,摻雜的水準必須控制以獲得最適的電晶體。如此,就 必須接受構成電晶體閘電極之材料的電導率,如字線。不 過,為改善沿著字線的傳播延遲,乃發展出一種電導率較 低的材料,它就是耐高溫的金屬矽化物層,如二矽化鈦或 矽化鎢。形成這些耐高溫金屬矽化物的方法是先在複矽晶 上沈積一層耐高溫金屬薄層,接著將基材置於6〇(rc以上 的溫度中退火。此將致使複矽晶與耐高溫的金屬形成耐高 溫的金屬氧化物。一般來說,此舉只能消耗掉複矽晶一部 分上層’因此,複石夕晶的下層靠近閘氧化物的部分仍保持 原樣’如此,雖然字線的整體電導率增加,但電晶體的特 性並未改變。不過,形成這些耐高溫的金屬矽化物廣有一 缺點’那就是需要額外的處理步驟。 發明概述 經濟部中央標準局員工消費合作社印製 ------------j裝-- (請先閱讀背面之注意事項再填寫本頁} 本文揭示一種金屬矽化物閘電極的成形法,它包括在 半導體基材的通道區域上成形閘電極台面(mesa),並以一 閘乳化物層將其隔離。閘電極層中有一層複碎晶或非晶石夕 沈積於閘氧化物層上,其上再沈積一層耐高溫金屬,在对 高溫金屬層上再沈積一層絕緣材料的覆蓋層。接著在閘電 極台面及基材上形成一層絕絕緣材料的均一層,其操作溫 度足以使耐高溫金屬與下層的複矽晶或非晶矽層形成耐高 溫金屬矽化物層。之後’以垂直蝕刻法去除均一層中水平 平面部分的絕緣材料’暴露出閘電極台面兩侧的半導體基 材表面,並以成形於閘電極台面侧壁的側壁隔離物隔開。 -4- 本紙張尺度適用中國國家標準(CNS ) A4規格(210χ 297公釐) '~~~ --- A7 B7 五、發明説明(3 ) 本發明另一方面,耐高溫金屬是鈦,成形為二矽化鈦 。均一層的絕緣材料是氧化物,它是使用低壓化學沈積法 沈積而成,操作的溫度足以使鈦與下層的複矽晶或非晶矽 層形成二矽化鈦。 圖式簡述 為能完全瞭解本發明及它的優點’現請連同所附圖示 參閱以下的說明: 圖1是在半導體基材上形成複矽晶閘層與耐高溫的金 屬層後的截面圖; 圖2說明製作的步驟,其·中氮化物覆蓋層配置於半導 體基材上; 圖3說明半導體基材在製作閘電極圖案與輕摻雜汲極 植入後的截面圖; 圖4說明基材在氧化物層成形後的截面圖;以及 圖5說明基材在氧化物側壁以及源/汲植入區成形後的 截面圖。 經濟部中央標準局員工消費合作社印製 ------------ (請先閱讀背面之注意事項再^寫本頁) 發明詳述 現請參閲圖1,此圖是說明基材10的截面圖。要成形 N-通道的電晶體,此基材1〇必須是型的基材。在成形圖 1的基材前,所要進行的步驟是在基材内成形一些活性區 域以供形成電晶體。一般來說這些活性區都以某種型態的 隔離區相互隔離,如場氧化廢。要形成這些隔離區可以使 紙張尺度適用中國國家標準(CNS )八4^格(210X297公釐) A7 B7_ 五、發明説明(4 ) 一 用locoi隔離技術或絕緣溝的隔離技術β這兩種都屬於傳 統技術。隔離區形成後’為構成隔離區而成形於基材上的 上層向下移入基材内。之後,閘氧化物層12成形於基材上 。該閘氧化物層12形成電晶體的閘氧化物。此閘氧化物層 的厚度在20-100埃之間。 閘氧化物層成形後’摻雜的複矽晶或非晶矽的層14沈 積於基材上。此摻雜的層14可摻雜Ν-型雜質或Ρ-型雜質, 視所要製造的電晶體類型及它的性質而定。此層14是所有 電晶體的閘電極要被成形的第一複;6夕晶廣,且字線連接於 DRAM中某列電晶體之間。經由沈積程序複矽晶層14成形 後,接著在基材的複矽晶層14上沈積一層耐高溫金屬。在 本具體實例中’此耐高溫金屬是鈦。此層鎢是經由濺射或 化學氣相沈積(CVD)技術成形,厚度大約200-600埃。 經濟部中央標準局員工消費合作社印製 在傳統製程中,在複矽晶層14上濺射耐高溫金屬層之 前,先在層14上製作閘電極的圖案。按此方法,其它所需 的連接都可成形於此區域,如需暴露出的源區與汲區。其 後,基材進行退火,以使耐高溫金屬與矽反應,以形成耐 高溫金屬矽化物,例如本較佳具體實例中的二矽化鈦 (TiSi2)。此二矽化鈦的薄層是傳導性大大增加的傳導層。 此外,閘電極僅上層部分消耗於矽化物反應中,因此,閘 電極中靠近閘氧化物的部分仍為摻雜的複矽晶,且提供電 曰Θ體需求的所有特徵。 在本發明中,在耐高溫金屬層16成形後,接著下一步 是沈積低溫的氮化物或氧化杨,以成形層18。此層18是— _6· 本紙張纽適用中國國家標準(CNS ) A4· ( 210X297公釐)- -----— 經濟部中央標準局貝工消費合作社印製 A7 ----- ----B7 ___ 五、發明説明(5 ) 覆蓋層,它是傳統DRAM製程中所需之自對齊(seif_aiigned) 接觸處理所需的步驟。 製程中的下一步如圖3中所示。堆疊結構是由閘氧化 物12、複矽晶層14、鈦層16、以及氮化物或氧化物層18所 構成’它被製作圖案與蝕刻形成閘電極台面20。此閘結構 成形後’即在閘電極20兩侧暴露出的矽基材上植入N—型 雜質’以形成輕摻雜的汲區(LDD)22與24,在它的兩側定 義出源/汲區。此為傳統技術。必須注意的是,在本發明 中’鈦層16在此時仍為耐高溫金屬層,它尚未經過退火步 驟。 製程中的下一步如圖4中所示。以低壓化學氣相沈積 (LPCVD)法在整個基材上沈積一層氮化物層26。在沈積氮 化物期間’基材升溫到600eC以上。在此點,鈇層16將與 下方的複石夕晶層14反應,形成二石夕化鈥,即圖中所示的層 28。此將使層14縮小成較薄的層14'。不過,需注意的是 ’靠近閘層12的複矽晶的摻雜水準與成分水準仍保持不變 。因此,此步驟可視為二矽化鈦成形處理,藉著成形層26 的步驟’也使二矽化鈦層28成形,因此所需的熱循環處理 也減少一次。 製程中的下一步如圖5中所示。基材接受各向異性或 垂直蝕刻處理,此將選擇性地蝕刻沈積之氧化物層26位於 水平平面上的部分。此將形成閘電極台面兩側壁的隔離區 30與32,以及沈積於閘電極二矽化鈦層28上的覆蓋區34。 此即為圖2的處理步驟中,在鈦層16上沈積氮化物或氧化 -7- ( CNS ) A4^fg- ( 210X297^^ ) ‘ i,---------,1 裝-- (請先閱讀背面之注意事項再填寫本頁) I訂 A7 B7 五、發明説明(6) 物層18的理由’當最上層的氧化物層26被去掉後,仍提供 上層的電性絕緣層。因此’此提供了一自對齊接觸暴露源 /極區。之後’基材接受源/汲的植入,此步驟是高能植入 ,以使N-型雜質進入該區形成n+材料的源區36與汲區38 〇 概言之,本文提供一種在複矽晶閘電極層上成形二石夕 化鈦層的方法。此方法利用自對齊接觸處理,其中的对高 溫金屬層是在沈積覆蓋的氮化物或氧化物層之前,先沈積 於複石夕晶閘上。耐高溫金屬(如欽)在次一步驟的自對齊接 觸處理(亦即沈積乳化物的步驟)期間,與下方的複;^晶廣 反應形成二矽化鈦層,該氧化物層是用來形成隔離區的侧 壁。此種方法可使製程中的熱循環次數減少—次。 雖然是以較佳具體實例詳細描述,但必須瞭解的是, 各種的變化、取代、或變氪’都不會偏離本發明所附之申 請專利項目之範圍與精神。 (請先閲讀背面之注意事項再填寫本頁) 經濟部中央標準局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)

Claims (1)

  1. S8 34yS A8 B8 C8 D8 經濟部中央標準局負工消費合作社印製 六、申請專利範圍 1. 一種成形金屬矽化物閘電極的方法,包括的步驟有 在半導體基材内電晶體區域的通道區域成形一閘電極 台面,並藉閘氧化物層隔離,該閘電極台面中靠^閘 氧化物的是一摻雜的複矽晶或非晶矽層,耐高溫金屬 層沈積於複矽晶或非晶矽層上,正對於閘氧化物以 及一絕緣材料層沈積於耐高溫金屬上; 在基材與閘電極台面上成形一均一層,成形該均一層 時的溫度’正好可使耐高溫金屬與複碎晶或非晶石夕層 反應,以形成.耐高溫金屬石夕化物,且不會消耗掉所有 的複碎晶或非晶石夕廣;以及 以垂直蝕刻方法蝕刻該均一層,以去除均一層的水平 平面部分,暴露出閘電極台面兩側之半導體基材部分 ’並在閘電極台面兩側壁形成側壁隔離物。 2. 根據申請專利第1項的方法,其中的崎高溫金屬是欽, 耐高溫金屬矽化物是二矽化鈦。 3·根據申請專利第丄項的方法,其中成形閘電極與絕緣材 料覆蓋層的步驟,包括成形閘電極與氮化物覆蓋層。 4. 根據,請專利第1項的方法’其中成形閘電極與絕緣材 料覆蓋層的步驟,包括成形閘電極與氧化物覆蓋層。 5. 根據巾請專·丨項的方法’其中成形絕緣材料均一層 的步驟’包括成形氧化物均一層。 6. 根據申請專利第5項的方法,其中成形氧化物均一層的 步驟’包括以低壓化學氣相沈積法沈積一層氧化物的 均一層。 (請先閲讀背面之注意事項再填寫本頁) -裝· 訂.. 9- A8 B8 C8 D8 8834ΰ9 一 1 I I 、申請專利範圍 7. 根據申請專利第1項的方法,其中儀刻方法包括各向異 性蝕刻法。 ' 8. 根據申請專利第1項的方法,進一步包括在閘電極台面 兩侧的半導體基材區域植入與基材類型相反雜質,以 在該處形成源/汲區域,並以側壁隔離物與閘電極台面 隔開。 9. 根據申請專利第1項的方法,進一步的步驟包括成形絕 緣的均一層之前,在閘電極台面兩侧的半導體基材區 域進行輕掺雜汲區的雜貲植入,其雜質的傳導類型與 基材在該區域之雜質相反。 10. 根據申請專利第1項的方法,其中成形閘電極的步驟包 括: 在半導體基材上成形閘氧化物層; 在閘氧化物層上成形複碎晶或非晶*夕的均一層; 在複石夕晶或非晶碎層的上表面濺射一層对高溫金屬; 在耐高溫金屬層上成形一絕綠層;以及 在基材上製作圖案並蝕刻穿過絕綠材料層、耐高溫金 屬層、複矽晶或非晶矽層、與閘氧化物層,以形成閘 電極台面’不含耐高溫金屬層與複矽晶或非晶矽層的 反應。 11. 一種自動對齊接觸的方法,其步驟包括在電晶體的閘 氧化層上成形一具有複砍晶層的閘電極台面,包含絕 緣覆蓋層’接著在間電極台面上成形侧壁氧化隔離物 ,且進一步包括在複矽晶或非晶矽層與絕緣覆蓋層間 -10- 本紙張尺度適用中國國家揉準(CNS ) A4規格(210X297公釐了 I--------裝-- (請先閲讀背面之注意事項再填寫本頁) 、1T1111 n 經濟部中央標準局貝工消費合作社印装 Α8 Β8 C8 D8 六、申請專利範圍 成形一層耐高溫金屬,在侧壁隔離物成形期間,耐高 溫金屬與下方的複矽晶或非晶矽層反應,形成耐高溫 金屬石夕化物’形成隔離物所需的溫度超過形成耐高溫 金屬矽化物所需的溫度。 12. 根據申請專利第11項的方法,其中的对高溫金屬是鈥 〇 13. 根據申請專利第η項的方法,其中形成側壁隔離物的 步驟包括: 以低壓化學氣相沈積法在基材及閘電極台面上成形氧 化物的均一層,其操作溫度超過形成耐高溫金屬矽化 物所需的溫度;以及 垂直餘刻均一層以除去均一層之水平平面部分,保留 閘電極台面之側壁垂直面的側壁隔離物,侧壁隔離物 與覆蓋層在閘電極四周形成絕緣屠。 ----------J 裝— (請先閱讀背面之注意事項再填寫本頁) *tT' 經濟部中央揉準局貞工消费舍作社印装 -11- 本紙張尺度逋用中國國家標準(CNS ) A4規格(210X297公釐)
TW086119031A 1996-12-17 1998-05-01 Process for forming a metal-silicide gate for dynamic random access memory TW383409B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3365596P 1996-12-17 1996-12-17

Publications (1)

Publication Number Publication Date
TW383409B true TW383409B (en) 2000-03-01

Family

ID=21871672

Family Applications (1)

Application Number Title Priority Date Filing Date
TW086119031A TW383409B (en) 1996-12-17 1998-05-01 Process for forming a metal-silicide gate for dynamic random access memory

Country Status (5)

Country Link
US (1) US5956614A (zh)
EP (1) EP0849776A3 (zh)
JP (1) JPH10189915A (zh)
KR (1) KR19980064177A (zh)
TW (1) TW383409B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10836452B2 (en) 2015-09-25 2020-11-17 Honda Motor Co., Ltd. Front fork for saddled vehicle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19849542C2 (de) * 1998-10-27 2002-07-11 Infineon Technologies Ag Verfahren zur Herstellung eines Kondensators
US6198144B1 (en) * 1999-08-18 2001-03-06 Micron Technology, Inc. Passivation of sidewalls of a word line stack
US20050059260A1 (en) * 2003-09-15 2005-03-17 Haowen Bu CMOS transistors and methods of forming same
KR100655658B1 (ko) * 2005-07-26 2006-12-08 삼성전자주식회사 게이트 전극 구조물과 그 제조 방법 및 이를 갖는 반도체트랜지스터와 그 제조 방법
US7476610B2 (en) * 2006-11-10 2009-01-13 Lam Research Corporation Removable spacer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128670A (en) * 1977-11-11 1978-12-05 International Business Machines Corporation Fabrication method for integrated circuits with polysilicon lines having low sheet resistance
EP0388565B1 (en) * 1988-02-11 1996-06-05 STMicroelectronics, Inc. Refractory metal silicide cap for protecting multi-layer polycide structure
US5059554A (en) * 1989-06-23 1991-10-22 Sgs-Thomson Microelectronics, Inc. Method for forming polycrystalline silicon contacts
US5034348A (en) * 1990-08-16 1991-07-23 International Business Machines Corp. Process for forming refractory metal silicide layers of different thicknesses in an integrated circuit
US5569947A (en) * 1994-06-28 1996-10-29 Nippon Steel Corporation Insulated-gate field-effect transistor in a semiconductor device in which source/drain electrodes are defined by formation of silicide on a gate electrode and a field-effect transistor
US5472896A (en) * 1994-11-14 1995-12-05 United Microelectronics Corp. Method for fabricating polycide gate MOSFET devices
TW322608B (en) * 1997-07-31 1997-12-11 United Microelectronics Corp Manufacturing method of self-aligned salicide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10836452B2 (en) 2015-09-25 2020-11-17 Honda Motor Co., Ltd. Front fork for saddled vehicle

Also Published As

Publication number Publication date
EP0849776A3 (en) 1999-12-15
KR19980064177A (ko) 1998-10-07
JPH10189915A (ja) 1998-07-21
US5956614A (en) 1999-09-21
EP0849776A2 (en) 1998-06-24

Similar Documents

Publication Publication Date Title
US7338874B2 (en) Highly integrated semiconductor device with silicide layer that secures contact margin and method of manufacturing the same
KR100296126B1 (ko) 고집적 메모리 소자의 게이트전극 형성방법
US6248623B1 (en) Method for manufacturing embedded memory with different spacer widths
JPH06310680A (ja) Dram−mosfet集積回路及びその製造方法
US5027172A (en) Dynamic random access memory cell and method of making thereof
KR920010062B1 (ko) 반도체 장치의 실리사이드 형성방법
US6461923B1 (en) Sidewall spacer etch process for improved silicide formation
KR100423904B1 (ko) 모스 트랜지스터에 접속되는 콘택을 가진 반도체 장치의제조방법
TW386283B (en) A method of manufacturing the buried contact of an SRAM cell
TW383409B (en) Process for forming a metal-silicide gate for dynamic random access memory
TW461047B (en) Manufacturing method of embedded DRAM
US6306760B1 (en) Method of forming a self-aligned contact hole on a semiconductor wafer
US7375017B2 (en) Method for fabricating semiconductor device having stacked-gate structure
JPH06232365A (ja) 半導体記憶装置のキャパシター製造方法
US6107131A (en) Method of fabricating interpoly dielectric layer of embedded dynamic random access memory
JPH07161835A (ja) 半導体記憶装置の製造方法
US5204281A (en) Method of making dynamic random access memory cell having a trench capacitor
US5646061A (en) Two-layer polysilicon process for forming a stacked DRAM capacitor with improved doping uniformity and a controllable shallow junction contact
KR20010078203A (ko) 폴리 캡 마스크를 이용하는 집적회로 소자의 제조 방법
KR100753546B1 (ko) 트랜지스터의 게이트 및 그 형성 방법.
US6218271B1 (en) Method of forming a landing pad on the drain and source of a MOS transistor
KR100222895B1 (ko) 반도체 소자 및 그의 제조방법
JP2002118180A (ja) 回路素子の形成方法
EP0836223A2 (en) Method of forming a silicide layer
KR100425989B1 (ko) 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees