TW202412373A - 非水電解液用添加劑、非水電解液及蓄電裝置 - Google Patents

非水電解液用添加劑、非水電解液及蓄電裝置 Download PDF

Info

Publication number
TW202412373A
TW202412373A TW112129593A TW112129593A TW202412373A TW 202412373 A TW202412373 A TW 202412373A TW 112129593 A TW112129593 A TW 112129593A TW 112129593 A TW112129593 A TW 112129593A TW 202412373 A TW202412373 A TW 202412373A
Authority
TW
Taiwan
Prior art keywords
group
aqueous electrolyte
compound
lithium
cyclic
Prior art date
Application number
TW112129593A
Other languages
English (en)
Inventor
坂雄生
増原悠策
Original Assignee
日商住友精化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友精化股份有限公司 filed Critical 日商住友精化股份有限公司
Publication of TW202412373A publication Critical patent/TW202412373A/zh

Links

Abstract

一種非水電解液用添加劑,其包含由下述式(1)表示之環狀碸化合物,X 1表示磺醯基或羰基,Z表示由下述式(21)、(22)、(23)或(24)表示之1價的基團。

Description

非水電解液用添加劑、非水電解液及蓄電裝置
本揭示有關一種非水電解液用添加劑、非水電解液及蓄電裝置。
非水電解液二次電池的電池容量存在隨著反覆充放電而降低的傾向。為了抑制隨著反覆充放電而電池容量降低,有時在非水電解液中加入各種添加劑(例如,專利文獻1~6)。已知一部分添加劑在初始充放電時,在電極表面進行電化學分解,在電極表面上形成稱為固體電解質界面(SEI)之被膜。認為SEI抑制電極表面的溶劑分子的分解,從而抑制隨著溶劑分子的分解而消耗電力。亦即,良好的SEI的形成能夠有助於抑制非水電解液二次電池等的蓄電裝置的劣化。
專利文獻1:日本特開昭63-102173號公報 專利文獻2:日本特開平5-74486號公報 專利文獻3:日本特開2004-281368公報 專利文獻4:日本特開2015-138597公報 專利文獻5:日本特開2002-352852公報 專利文獻6:國際公開第2019/117101號
近年來,要求進一步提高蓄電裝置的高溫特性。本揭示有關一種即使蓄電裝置暴露於高溫環境下,亦維持高容量,並且抑制蓄電裝置中的氣體的產生。
本揭示包含以下。 [1]一種非水電解液用添加劑,其包含由下述式(1)表示之環狀碸化合物, Q表示與磺醯基的硫原子一起形成環狀基團之、可以被取代之碳數4~8的伸烷基或可以被取代之碳數4~8的伸烯基, X 1表示磺醯基或羰基, Z表示由下述式(21)、(22)、(23)或(24)表示之1價的基團, R 1表示直接鍵結或可以被取代之碳數1~6的伸烷基, R 11及R 12表示氫原子、甲基或乙基,Q為四亞甲基且X 1為磺醯基時,R 11為甲基或乙基, X 2表示磺醯基或羰基, Ar表示可以被取代之伸芳基。 [1’]由上述式(1)表示之環狀碸化合物的用於添加到非水電解液之使用。 [2]如[1]所述之非水電解液用添加劑,其中 X 1為磺醯基。 [3]如[1]或[2]所述之非水電解液用添加劑,其中 前述環狀碸化合物為由下述式(11)表示之化合物: 式(11)中的X 1及Z與式(1)中的X 1及Z的含義相同。 [4]如[1]或[2]所述之非水電解液用添加劑,其中 前述環狀碸化合物為由下述式(12)表示之化合物: 式(12)中的X 1及Z與式(1)中的X 1及Z的含義相同。 [5]如[1]至[4]之任一項所述之非水電解液用添加劑,其中 R 1為直接鍵結或可以被氟原子取代之碳數1~3的伸烷基, Ar為可以被氟原子或氟烷基取代之伸芳基。 [6]一種非水電解液,其含有[1]至[5]之任一項所述之非水電解液用添加劑、非水溶劑及電解質。 [7]一種蓄電裝置,其具備[6]所述之非水電解液和正極及負極。 [8]一種鋰離子電池,其具備[6]所述之非水電解液和正極及負極。 [9]一種鋰離子電容器,其具備[6]所述之非水電解液和正極及負極。 [10]一種環狀碸化合物,其由下述式(11S)或(12S)表示: Z表示由下述式(21A)或(22A)表示之1價的基團: R 1表示可以被氟原子取代之碳數1~6的伸烷基。 [11]如[10]所述之環狀碸化合物,其由下述式表示: 。 [12]如[10]所述之環狀碸化合物,其由下述式表示: 。 [13]如[10]所述之環狀碸化合物,其由下述式表示: 。 [發明效果]
即使蓄電裝置暴露於高溫環境下,亦能夠維持高容量,並且抑制蓄電裝置中的氣體的產生。本揭示所涉及之非水電解液用添加劑在穩定性及操作性方面亦可以具有優異的性能。
本發明並不限定於以下例子。
非水電解液用添加劑的一例包含1種以上的由下述式(1)表示之環狀碸化合物。
式(1)中,Q為與磺醯基的硫原子一起形成環狀基團之2價的基團,並且表示可以被取代之碳數4~8的伸烷基或可以被取代之碳數4~8的伸烯基。X 1表示磺醯基或羰基。Z為由下述式(21)、(22)、(23)或(24)表示之1價的基團。
式(21)及(22)中的R 1表示直接鍵結或可以被取代之碳數1~6的伸烷基。式(21)~(24)中,R 11及R 12表示氫原子、甲基或乙基。其中,Q為四亞甲基且X 1為磺醯基時,R 11為甲基或乙基。式(22)及(24)中的X 2表示磺醯基或羰基。式(23)及(24)中的Ar表示可以被取代之伸芳基。
本說明書中,「可以被取代」表示各基團所具有之氫原子中的1個以上可以被取代基取代。
認為由式(1)表示之環狀碸化合物在初始充放電時產生電化學還原時,藉由末端的碳-碳不飽和鍵在電極上聚合而多聚化,從而形成強的SEI。又,認為所形成之SEI以大量且高密度含有包含O、S等之極性基。認為這種以高密度包含極性基之穩定的SEI能夠抑制副反應亦即電極活性物質與溶劑等的反應,例如,有助於提高高溫保存時的容量維持率及抑制產生氣體。
式(1)中的Q為構成環狀碸之2價的基團,可以藉由由-O-X 1-Z表示之基團在任意位置被取代。Q表示可以被取代之碳數4~8的伸烷基或可以被取代之碳數4~8的伸烯基,可以進一步被除了-O-X 1-Z以外的取代基取代。
作為式(1)中的Q的碳數4~8的伸烷基可以為直鏈狀的伸烷基,亦可以為支鏈狀的伸烷基。Q可以為可以被鹵素原子取代之碳數1~6的伸烷基,亦可以為可以被氟原子取代之碳數1~6的伸烷基。
Q為碳數4~8的伸烷基時,作為其例子,可以列舉四亞甲基、五亞甲基、1-甲基四亞甲基、2-甲基四亞甲基、六亞甲基、1-甲基五亞甲基、2-甲基五亞甲基、3-甲基五亞甲基、1-乙基四亞甲基、1,2-二甲基四亞甲基、七亞甲基、1-乙基五亞甲基、1,2-二甲基五亞甲基及八亞甲基。
Q為被氟原子取代之碳數4~8的伸烷基時,作為其例子,可以列舉1-氟四亞甲基、2,3-二氟四亞甲基、1-氟五亞甲基、2-(三氟甲基)四亞甲基、1-氟-2-(三氟甲基)四亞甲基、1-氟六亞甲基、3-(三氟甲基)五亞甲基、1,2-雙(三氟甲基)四亞甲基、2-(五氟乙基)四亞甲基、1-氟七亞甲基、1-(三氟甲基)六亞甲基、1-(六氟乙基)五亞甲基、1-氟八亞甲基及1,8-二氟八亞甲基。
式(1)中的作為Q的碳數4~8的伸烯基,可以為直鏈狀的伸烯基,亦可以為支鏈狀的伸烯基。Q可以為可以被鹵素原子取代之碳數4~8的伸烯基,亦可以為可以被氟原子取代之碳數4~8的伸烯基。
Q為碳數4~8的伸烯基時,作為其例子,可以列舉-CH=CHCH 2CH 2-、-CH 2CH=CHCH 2-、-CH=CHCH 2CH 2CH 2-、-CH 2CH=CHCH 2CH 2-、-CH=C(CH 3)CH 2CH 2-、-CH 2(CH 3)CH=CHCH 2-、-CH=CHCH 2CH 2CH 2CH 2-、-CH 2CH=CHCH 2CH 2CH 2-、-CH 2CH 2CH=CHCH 2CH 2-、-C(CH 3)=CHCH 2CH 2CH 2-、-CH=C(CH 3)CH 2CH 2CH 2-、-CH(CH 3)CH=CHCH 2CH 2-、-CH=CHCH 2CH 2CH 2CH 2CH 2-、-C(CH 3)=CHCH 2CH 2CH 2CH 2-、-C(CH 2CH 3)=CHCH 2CH 2CH 2、-C(CH 3)=C(CH 3)CH 2CH 2CH 2-及-CH=CHCH 2CH 2CH 2CH 2CH 2CH 2-。
Q為可以被氟原子取代之碳數4~8的直鏈狀或支鏈狀的伸烯基時,作為其例子,可以列舉-CH=CHCF 2CH 2-、-CH 2CH=CH 2CF 2-、-CF=CHCH 2CH 2-、-CH=CFCH 2CH 2-、-CH=CHCHFCH 2CH 2-、-CF=CHCH 2CH 2CH 2-、-CH=CH-CH(CF 3)CH 2-、-CF=CHCH 2CH 2CH 2CH 2-、-CH=CHCH(CF)CH 2CH 2-、-CF=CHCH 2CH 2CH 2CH 2CH 2-及-CF=CHCH 2CH 2CH 2CH 2CH 2CH 2-。
從進一步提高高溫保存時的容量維持率的觀點考慮,Q可以與磺醯基的硫原子一起形成5員環。在該情況下,例如,Q可以為可以被鹵素原子取代之碳數4的伸烷基或可以被鹵素原子被取代之碳數4的伸烯基。從相同的觀點考慮,Q可以為可以被氟原子取代之碳數4的伸烷基或可以被氟原子取代之碳數4的伸烯基。
從進一步抑制產生氣體之觀點考慮,式(1)中的X 1可以為磺醯基。
式(21)及(22)中的R 1為未被取代或被取代之碳數1~6的伸烷基。碳數1~6的伸烷基可以為直鏈狀的伸烷基,亦可以為支鏈狀的伸烷基。R 1可以為可以被鹵素原子取代之碳數1~6,亦可以為碳數1~3的伸烷基。
本說明書中,「可以被鹵素原子取代」表示各基團所具有之氫原子中的1個以上可以被鹵素原子取代。作為取代基的鹵素原子可以為碘原子、溴原子、氯原子或氟原子,從進一步降低電池電阻的觀點考慮,可以為氟原子。
R 1為碳數1~6的未被取代之伸烷基時,作為其例子,可以列舉亞甲基、二亞甲基(伸乙基)、三亞甲基(丙烷-1,3-二基)、伸丙基(丙烷-1,2-二基)、四亞甲基(丁烷-1,3-二基)、1-甲基三亞甲基、2-甲基三亞甲基、1,1-二甲基二亞甲基、1,2-二甲基二亞甲基、乙基二亞甲基、五亞甲基(戊烷-1,5-二基)及六亞甲基(己烷-1,6-二基)。
R 1為被碳數1~6的氟原子取代之碳數1~6的伸烷基時,作為其例子,可以列舉氟亞甲基、二氟亞甲基、1-氟二亞甲基、1,1-二氟二亞甲基、1,2-二氟二亞甲基、1,1,2-三氟二亞甲基、1,1,2,2-四氟二亞甲基、三氟甲基亞甲基、1-氟三亞甲基、2-氟三亞甲基、1,1-二氟三亞甲基、1,2-二氟三亞甲基、1,3-二氟三亞甲基、2,2-二氟三亞甲基、1,2,3-三氟三亞甲基、1,1,2,2,3,3-六氟三亞甲基、三氟甲基二亞甲基、1-氟四亞甲基、2-氟四亞甲基、1,1-二氟四亞甲基、1,1,2,2-四氟四亞甲基、1,1,2,2,3,3-六氟四亞甲基、1,1,2,2,3,3,4,4-八氟四亞甲基、1-(三氟甲基)三亞甲基、2-(三氟甲基)三亞甲基、1-氟五亞甲基、2-氟五亞甲基、3-氟五亞甲基、1,1-二氟五亞甲基、1,1,2,2-四氟五亞甲基、1,1,2,2,3,3-六氟五亞甲基、1,1,2,2,3,3,4,4-八氟五亞甲基、1,1,2,2,3,3,4,4,5,5-十氟五亞甲基、1-(三氟甲基)四亞甲基、2-(三氟甲基)四亞甲基、1,2-雙(三氟甲基)三亞甲基、2,2-雙(三氟甲基)三亞甲基、1-(五氟乙基)三亞甲基、2-(五氟乙基)三亞甲基、1-氟六亞甲基、2-氟六亞甲基、3-氟六亞甲基、1,1-二氟六亞甲基、1,1,2,2-四氟六亞甲基、1,1,2,2,3,3-六氟六亞甲基、1,1,2,2,3,3,4,4-八氟六亞甲基、1,1,2,2,3,3,4,4,5,5-十氟六亞甲基、1,1,2,2,3,3,4,4,5,5,6,6-十二氟六亞甲基、1-(三氟甲基)五亞甲基、2-(三氟甲基)五亞甲基、3-(三氟甲基)五亞甲基、1,1-二(三氟甲基)四亞甲基、1,2-二(三氟甲基)四亞甲基、1,3-二(三氟甲基)四亞甲基、1,4-二(三氟甲基)四亞甲基、2,2-二(三氟甲基)四亞甲基、2,3-二(三氟甲基)四亞甲基、1-(五氟乙基)四亞甲基、2-(五氟乙基)四亞甲基、1,2,3-三(三氟甲基)三亞甲基及1-(七氟丙基)三亞甲基。
R 1為可以被氟原子取代之亞甲基、可以被氟原子取代之二亞甲基或可以被氟原子取代之三亞甲基。
式(23)及(24)中的Ar可以為未被取代之伸芳基或被取代之伸芳基。Ar可以為鹵素原子、鹵代烷基、烷基(例如,甲基)或可以被該等的組合取代之伸芳基。Ar可以為被氟原子或氟烷基(例如,氟甲基)取代之伸芳基,亦可以為未被取代之伸芳基。被氟原子或氟烷基取代之伸芳基可以進一步被烷基取代。伸芳基的碳數可以為6~10或6。
Ar為未被取代之伸芳基時,作為其例子,可以列舉苯-1,4-二基。
Ar為被氟原子或氟烷基取代之伸芳基時,作為其例子,可以列舉2-氟伸芳基、2,3-二氟伸芳基、2,5-二氟伸芳基、2,6-二氟伸芳基、2,3,5-三氟伸芳基、2,3,6-三氟伸芳基、2,3,5,6-四氟伸芳基、2-甲基-3-氟伸芳基、2-甲基-5-氟伸芳基、2-甲基-6-氟伸芳基及2-三氟甲基伸芳基。
Ar為可以被烷基取代之伸芳基時,作為其例子,可以列舉2,3-二甲基伸芳基、2,3,5-三甲基伸芳基及2,3,5,6-四甲基伸芳基。
由式(1)表示之環狀碸化合物可以為由下述式(11)表示之化合物或由下述式(12)表示之化合物。式(11)及(12)中的X 1及Z與式(1)中的X 1及Z,包括其例子在內為相同的基團。從容易獲得原料及合成的簡便性的觀點考慮,該等化合物是有利的。
尤其,環狀碸化合物可以為由下述式(11S)表示之化合物或由下述式(12S)表示之化合物。 式(11S)及(12S)中的Z表示由下述式(21A)或(22A)表示之1價的基團。 式(21A)及(22A)中,R 1表示可以被氟原子取代之碳數1~6的伸烷基,Ar表示可以被氟原子或氟烷基取代之伸芳基。
由式(1)表示之環狀碸化合物的具體例包含以下表1及表2所示之由式(1-1)~(1-18)表示之化合物。
[表1]
[表2]
由式(1)表示之環狀碸化合物能夠藉由本領域具有通常知識者理解之通常的方法來合成。例如,能夠藉由包括在三乙胺等鹼的存在下使具有與環狀碸化合物對應之基團之羥基環丁碸和與環狀碸化合物對應之醯氯化合物反應之步驟之方法來合成由式(1)表示之環狀碸化合物。
本揭示所涉及之非水電解液用添加劑除了由式(1)表示之環狀碸化合物以外,還可以依據需要包含與其不同的其他成分。作為其他成分的例子,可以列舉負極保護劑、正極保護劑、阻燃劑、過度充電抑制劑、環狀碳酸酯化合物、腈化合物、異氰酸酯化合物、具有乙炔-1,2-二基(-C≡C-)之化合物、具有與式(1)的環狀碸化合物不同之磺醯基(>S(=O) 2)之化合物、磷酸酯化合物、酸酐、環狀磷腈化合物、環硼氧烷衍生物、包含矽原子之化合物、以及烷基金屬鹽化合物(例如,鋰鹽化合物)。作為用於提高蓄電裝置的特性之添加劑,該等其他成分可以與由式(1)表示之環狀碸化合物一起包含於非水電解液中。另外,鹼金屬鹽化合物還在非水電解液中作為電解質發揮作用。
作為環狀碳酸酯化合物的例子,可以列舉4-氟-1,3-二氧戊環-2-酮(FEC)、反式或順式-4,5-二氟-1,3-二氧戊環-2-酮(DFEC)、伸乙烯基碳酸酯(VC)、乙烯基伸乙基碳酸酯(VEC)及4-乙炔基-1,3-二氧戊環-2-酮(EEC)。環狀碳酸酯化合物可以為VC、FEC、VEC或該等的組合。
作為腈化合物的例子,可以列舉乙腈、丙腈、丁二腈、戊二腈、己二腈、庚二腈、辛二腈及癸二腈。腈化合物可以為丁二腈、己二腈或該等組合。
作為異氰酸酯化合物的例子,可以列舉異氰酸甲酯、異氰酸乙酯、異氰酸丁酯、異氰酸苯酯、四亞甲基二異氰酸酯、六亞甲基二異氰酸酯、辛亞甲基二異氰酸酯、1,4-亞苯基二異氰酸酯、2-異氰酸基丙烯酸乙酯及2-異氰酸基甲基丙烯酸乙酯。
作為具有乙炔-1,2-二基(-C≡C-)之化合物的例子,可以列舉2-丙炔基甲基碳酸酯、乙酸-2-丙炔酯、甲酸-2-丙炔酯、甲基丙烯酸-2-丙炔酯、甲磺酸-2-丙炔酯、乙烯基磺酸-2-丙炔酯、2-(甲磺醯氧基)丙酸-2-丙炔酯、二(2-丙炔基)草酸酯、甲基-2-草酸丙炔酯、乙基-2-草酸丙炔酯、二(2-丙炔基)戊二酸酯、2-丁炔-1,4-二基二甲磺酸酯、2-丁炔-1,4-二基二甲酸酯及2,4-己二炔-1,6-二甲磺酸二酯。
作為具有磺醯基(>S(=O) 2)之化合物的例子,可以列舉1,3-丙磺內酯(PS)、1,3-丁磺內酯、2,4-丁磺內酯、1,4-丁磺內酯、1,3-丙烯磺內酯、2,2-二氧化-1,2-氧硫雜環戊烷-4-乙酸酯及5,5-二甲基-1,2-氧硫雜環戊烷-4-酮2,2-二氧化物等磺內酯、亞硫酸乙烯酯、硫酸乙烯酯、六氫苯并[1,3,2]二氧硫雜環戊烷-2-氧化物(亦稱為1,2-環己二醇環狀亞硫酸酯)及5-乙烯基-六氫-1,3,2-苯并二氧硫醇-2-氧化物等環狀亞硫酸酯、丁烷-2,3-二甲磺酸二酯、丁烷-1,4-二甲磺酸二酯、亞甲基甲烷二磺酸酯及1,3-丙二磺酸酐等磺酸酯、二乙烯基碸、1,2-雙(乙烯基磺醯基)乙烷以及雙(2-乙烯基磺醯基乙基)醚。
作為磷酸酯化合物的例子,可以列舉磷酸三甲酯、磷酸三丁酯、磷酸三辛酯、磷酸三(2,2,2-三氟乙基)酯、磷酸雙(2,2,2-三氟乙基)甲酯、磷酸雙(2,2,2-三氟乙基)乙酯、磷酸雙(2,2,2-三氟乙基)2,2-二氟乙酯、磷酸雙(2,2,2-三氟乙基)2,2,3,3-四氟丙酯、磷酸雙(2,2-二氟乙基)2,2,2-三氟乙酯、磷酸雙(2,2,3,3-四氟丙酯)2,2,2-三氟乙酯、磷酸(2,2,2-三氟乙基)(2,2,3,3-四氟丙酯)甲酯、磷酸三(1,1,1,3,3,3-六氟丙烷-2-基)、亞甲基雙膦酸甲酯、亞甲基雙膦酸乙酯、亞乙基雙膦酸甲酯、亞乙基雙膦酸乙酯、伸丁基雙膦酸甲酯、伸丁基雙膦酸乙酯、甲基2-(二甲基磷醯基)乙酸酯、乙基2-(二甲基磷醯基)乙酸酯、甲基2-(二乙基磷醯基)乙酸酯、乙基2-(二乙基磷醯基)乙酸酯、2-丙炔基2-(二甲基磷醯基)乙酸酯、2-丙炔基2-(二乙基磷醯基)乙酸酯、甲基2-(二甲氧基磷醯基)乙酸酯、乙基2-(二甲氧基磷醯基)乙酸酯、甲基2-(二乙氧基磷醯基)乙酸酯、乙基2-(二乙氧基磷醯基)乙酸酯、2-丙炔基2-(二甲氧基磷醯基)乙酸酯、2-丙炔基2-(二乙氧基磷醯基)乙酸酯、焦磷酸甲酯及焦磷酸乙酯。
作為酸酐的例子,可以列舉乙酸酐、丙酸酐、琥珀酸酐、順丁烯二酸酐、3-烯丙基琥珀酸酐、戊二酸酐、衣康酸酐及3-磺基-丙酸酐。
作為環狀磷腈化合物的例子,可以列舉甲氧基五氟環三磷腈、乙氧基五氟環三磷腈、苯氧基五氟環三磷腈及乙氧基七氟環四磷腈。
作為包含硼原子之化合物的例子,可以列舉環硼氧烷、三甲基環硼氧烷、三甲氧基環硼氧烷、三乙基環硼氧烷、三乙氧基環硼氧烷、三異丙氧環硼氧烷、三異丙氧基環硼氧烷、三正丙基環硼氧烷、三正丙氧基環硼氧烷、三正丁基環硼氧烷、三正丁氧基環硼氧烷、三苯基環硼氧烷、三苯氧基環硼氧烷、三環己基環硼氧烷及三環己氧基環硼氧烷。
作為包含矽原子之化合物的例子,可以列舉六甲基環三矽氧烷、六乙基環三矽氧烷、六苯基環三矽氧烷、1,3,5-三甲基-1,3,5-三乙烯基環三矽氧烷、八甲基環四矽氧烷、十甲基環五矽氧烷、三甲基氟矽氧烷、三乙基氟矽氧烷、三丙基氟矽氧烷、苯基二甲基氟矽氧烷、三苯基氟矽氧烷、乙烯基二甲基氟矽氧烷、乙烯基二乙基氟矽氧烷、乙烯基二苯基氟矽氧烷、二乙烯基二氟矽烷、二乙烯基二甲基矽烷、三甲氧基氟矽氧烷、三乙氧基氟矽氧烷、二甲基二氟矽氧烷、三乙烯基氟矽烷、三乙烯基甲基矽烷、二乙基二氟矽氧烷、二乙烯基二氟矽烷、二乙烯基二氟矽氧烷、乙基乙烯基二氟矽氧烷、甲基三氟矽氧烷、乙基三氟矽氧烷、六甲基二矽氧烷、1,3-二乙基四甲基二矽氧烷、六乙基二矽氧烷、八甲基三矽氧烷、甲氧基三甲基矽氧烷、乙氧基三甲基矽氧烷、二甲氧基二甲基矽烷、三甲氧基甲基矽氧烷、四甲氧基矽烷、四乙烯基矽烷、四烯丙基矽烷、四丁烯基矽烷、雙(三甲基甲矽烷基)過氧化物、乙酸三甲基甲矽烷基酯、三乙基甲矽烷基乙酸酯、三甲基甲矽烷基丙酸酯、三甲基甲矽烷基甲基丙烯酸酯、三甲基甲矽烷基三氟乙酸酯、甲磺酸三甲基甲矽烷基酯、乙磺酸三甲基甲矽烷基酯、甲磺酸三乙基甲矽烷基酯、氟甲磺酸三甲基甲矽烷基酯、雙(三甲基矽烷基)硫酸酯、三(三甲基甲矽烷基)硼、三(三甲基甲矽烷基)磷酸酯及三(三甲基甲矽烷基)亞磷酸酯。
作為鋰鹽化合物的例子,可以列舉二氟磷酸鋰、雙草酸硼酸鋰(LiBOB)、四氟(草酸)磷酸鋰(LiTFOP)、二氟草酸硼酸鋰(LiDFOB)、二氟二草酸磷酸鋰(LiDFOP)、四氟硼酸鋰、雙氟磺醯亞胺鋰、四氟(草酸)磷酸鋰及Li 2PO 3F等具有磷酸骨架之鋰鹽、以及三氟((甲磺醯基)氧基)硼酸鋰、五氟((甲磺醯)氧基)磷酸鋰、甲基硫酸鋰、乙基硫酸鋰、2,2,2-三氟乙基硫酸鋰及氟磺酸鋰等具有S(=O)基之鋰鹽。
作為鹼金屬鹽化合物的其他例子,可以列舉二氟磷酸鈉、二氟磷酸鉀、雙草酸硼酸鈉、雙草酸硼酸鉀、四氟(草酸)磷酸鈉、四氟(草酸)磷酸鉀、二氟雙(草酸)磷酸鈉、二氟雙(草酸)磷酸鉀、二氟草酸硼酸鈉及二氟草酸硼酸鉀。
非水電解液的一例含有包含由式(1)表示之環狀碸化合物之添加劑、非水溶劑及電解質。
非水電解液中的由式(1)表示之環狀碸化合物的含量可以考慮作為添加劑的效果來適當確定,例如,以非水電解液的總質量為基準,可以為0.001~10質量%的範圍。由式(1)表示之環狀碸化合物的含量以非水電解液的總質量基準為0.001質量%以上且10質量%以下時,在電極上形成適當厚度的被膜(SEI),具有能夠特別有效地抑制電阻上升的傾向。從相同的觀點考慮,由式(1)表示之環狀碸化合物的含量以非水電解液的總質量為基準,可以為0.05質量%以上且8質量%以下、0.05質量%以上且5質量%以下、0.05質量%以上且4質量%以下、0.05質量%以上且3質量%以下、0.1質量%以上且8質量%以下、0.1質量%以上且5質量%以下、0.1質量%以上且4質量%以下或0.1質量%以上且3質量%以下。
非水電解液進一步包含與由式(1)表示之環狀碸化合物不同的其他化合物作為添加劑時,其他化合物的含量以非水電解液的總質量基準,可以為0.001質量%以上,亦可以為10質量%以下,亦可以為0.001~10質量%。
從將非水電解液的黏度抑制得較低之觀點考慮,非水溶劑可以為非質子性溶劑。非質子性溶劑可以包含選自由環狀碳酸酯、鏈狀碳酸酯、脂肪族羧酸酯、內酯、內醯胺、環狀醚、鏈狀醚、碸、腈及該等鹵素衍生物組成的組中的至少一種。非質子性溶劑可以包含環狀碳酸酯或鏈狀碳酸酯,可以包含環狀碳酸酯及鏈狀碳酸酯的組合。
作為環狀碳酸酯的例子,可以列舉碳酸伸乙酯、碳酸伸丙酯、碳酸伸丁酯及氟代碳酸伸乙酯。作為鏈狀碳酸酯的例子,可以列舉碳酸二甲酯、碳酸二乙酯及碳酸甲乙酯。作為脂肪族羧酸酯的例子,可以列舉乙酸甲酯、乙酸乙酯、丙酸甲酯、丙酸乙酯、丁酸甲酯、異丁酸甲酯及三甲基乙酸甲酯。作為內酯的例子,可以列舉γ-丁內酯。作為內醯胺的例子,可以列舉ε-己內醯胺及N-甲基吡咯啶酮。作為環狀醚的例子,可以列舉四氫呋喃、2-甲基四氫呋喃、四氢吡喃及1,3-二氧戊環。作為鏈狀醚的例子,可以列舉1,2-二乙氧基乙烷及乙氧基甲氧基乙烷。作為碸的例子,可以列舉環丁碸。作為腈的例子,可以列舉乙腈。作為鹵素衍生物的例子,可以列舉4-氟-1,3-二氧戊環-2-酮、4-氯-1,3-二氧戊環-2-酮、4,5-二氟-1,3-二氧戊環-2-酮等環狀碳酸酯的鹵素衍生物。該等可以單獨使用1種,亦可以組合2種以上來使用。該等非水溶劑特別適合於鋰離子電池等二次電池的用途。
非水電解液中的非水溶劑的含量以非水電解液的總質量為基準,例如可以為70~99質量%。
電解質可以為成為鋰離子的離子源的鋰鹽或成為鈉離子的離子源的鈉鹽。電解質可以包含選自由LiAlCl 4、LiBF 4、LiPF 6、LiClO 4、LiTFSI(雙三氟甲磺醯亞胺鋰)、LiFSI(雙氟磺醯亞胺鋰)、LiAsF 6及LiSbF 6組成的組中的至少一種。作為鈉鹽的例子,可以列舉NaPF 6、NaBF 4、NaClO 4、NaAsF、NaCF 3SO 3、NaN(CF 3SO 22、NaN(C 2F 5SO 22及NaC(CF 3SO 2)3。從解離度高且能夠提高電解液的離子傳導率且進一步具有抑制藉由抗氧化還原特性而長期使用引起之蓄電裝置的性能劣化之作用等之觀點考慮,電解質可以包含LiBF 4、LiPF 6或該等的組合。
電解質為LiBF 4、LiPF 6或該等組合時,非水溶劑可以包含環狀碳酸酯及鏈狀碳酸酯。可以組合LiBF 4及/或LiPF 6和碳酸伸乙酯及碳酸二乙酯。
非水電解液中的電解質的濃度以非水電解液的總體積為基準,可以為0.1mol/L以上,亦可以為2.0mol/L以下。以非水電解液的總體積為基準的電解質的濃度為0.1mol/L以上時,容易獲得非水電解液的良好的導電性等。以非水電解液的總體積為基準之電解質的濃度為2.0mol/L以下時,藉由抑制非水電解液的黏度上升而特別容易確保離子的流動率。從相同的觀點考慮,電解質的濃度以非水電解液的總體積為基準,可以為0.5mol/L以上,亦可以為1.5mol/L以下。
非水電解液可以包含選自由LiAlCl 4、LiBF 4、LiPF 6、LiClO 4、LiTFSI(雙三氟甲磺醯亞胺鋰)、LiFSI(雙氟磺醯亞胺鋰)、LiAsF 6及LiSbF 6組成的組中的1種以上的鋰鹽(第1鋰鹽)及與第1鋰鹽不同的1種以上的第2鋰鹽。作為第2鋰鹽的例子,可以列舉二氟磷酸鋰、雙草酸硼酸鋰(LiBOB)、四氟(草酸)磷酸鋰(LiTFOP)、二氟草酸硼酸鋰(LiDFOB)、二氟二草酸磷酸鋰(LiDFOP)、四氟硼酸鋰、雙氟磺醯亞胺鋰、四氟(草酸)磷酸鋰及Li 2PO 3F等具有磷酸骨架之鋰鹽、以及三氟((甲磺醯基)氧基)硼酸鋰、五氟((甲磺醯)氧基)磷酸鋰、甲基硫酸鋰、乙基硫酸鋰、2,2,2-三氟乙基硫酸鋰及氟磺酸鋰等具有S(=O)基之鋰鹽。第2鋰鹽可以包含選自由二氟磷酸鋰、雙草酸硼酸鋰、四氟(草酸)磷酸鋰、二氟草酸硼酸鋰、二氟二草酸磷酸鋰、甲基硫酸鋰、乙基硫酸鋰及氟磺酸鋰組成的組中的1種以上的鋰鹽。
非水電解液中的第2鋰鹽的濃度以非水電解液的體積為基準,可以為1.0mol/L以下。第2鋰鹽的濃度為1.0mol/L以下時,由於非水電解液的黏度不易上升,因此能夠充分確保離子的流動率。從相同的觀點考慮,第2鋰鹽的濃度可以為0.8mol/L以下或0.5mol/L以下。
非水電解液藉由例如使包含由式(1)表示之化合物之非水電解液用添加劑與電解質及依據需要添加之其他成分一起溶解於非水溶劑來製備。
蓄電裝置主要由上述非水電解液和正極及負極構成。蓄電裝置的具體例包含非水電解液二次電池(鋰離子電池、鈉離子電池、鋰硫電池)及電雙層電容器(鋰離子電容器、鈉離子電容器)。本揭示所涉及之非水電解液在鋰離子電池及鋰離子電容器的用途中特別有用。
圖1係示意性地表示蓄電裝置亦即非水電解液二次電池(例如,鋰離子電池)的一例之剖面圖。圖1中示出之非水電解液二次電池1具備交替積層之負極4及正極9、配置於負極4與正極9之間之非水電解液5及設置於非水電解液5中之隔板6。其中,關於複數個負極4及正極9,負極4的主表面與正極9的主表面以隔著隔板6對置之方式積層。非水電解液二次電池1具備7層的負極4及6層的正極9,在圖1中,省略重複結構的一部分。負極4具有負極集電體3和設置於負極集電體3的兩側之負極活性物質層2。正極9具有正極集電體8和設置於正極集電體8的兩側之正極活性物質層7。非水電解液5為上述之二次電池用非水電解液。
正極集電體8及負極集電體3例如可以為由鋁、銅、鎳及不鏽鋼等金屬形成之金屬箔。
正極活性物質層7包含正極活性物質。正極活性物質可以為含有鋰之複合氧化物,亦可以為含有鋰之磷酸鹽化合物。作為含有鋰之複合氧化物的例子,可以列舉LiMnO 2、LiFeO 2、LiCoO 2、LiMn 2O 4、LiNi 1/3Co 1/3Mn 1/3O 2、LiNi 0.5Co 0.2Mn 0.3O 2、LiNi 0.6Co 0.2Mn 0.2O 2、LiNi 0.8Co 0.1Mn 0.1O 2、LiNi xCo yM zO 2(其中,0.01<x<1、0≤y≤1、0≤z≤1且x+y+z=1,M為選自由Mn、V、Mg、Mo、Nb、Fe、Cu及Al組成的組中的至少一種元素。)、Li zNi 1-x-y Co xM yO 2(其中,0≤x≤0.40、0≤y≤0.40且0.90≤z≤1.20,M為選自由Mn、V、Mg、Mo、Nb及Al組成的組中的至少一種元素。)及Li zCo 1-x M xO 2(其中,0≤x≤0.1且0.97≤z≤1.20,M為選自由Mn、Ni、V、Mg、Mo、Nb及Al組成的組中的至少一種元素。)。作為含有鋰之磷酸鹽化合物的例子,可以列舉LiFePO 4、LiCoPO 4、LiMnPO 4、LiNiPO 4及該等複合物。含有鋰之磷酸鹽化合物包含過渡元素(Fe、Co、Mn及Ni等)時,該過渡元素可以被其他元素取代或摻雜。
上述正極活性物質可以為Li zNi 1-x-y Co xM yO 2(其中,0.01≤x≤0.20、0≤y≤0.30且0.90≤z≤1.20,M為選自由Mn、V、Mg、Mo、Nb及Al組成的組中的至少一種元素。)、Li zNi 1-x-y Co xM yO 2(其中,0.01≤x≤0.15、0≤y≤0.15且0.97≤z≤1.20,M為選自Mn、V、Mg、Mo、Nb及Al中的至少一種元素。)或Li zCo 1-x M xO 2(其中,0≤x≤0.1且0.97≤z≤1.20,M為選自由Mn、Ni、V、Mg、Mo、Nb及Al組成的組中的至少一種元素。)。在該情況下,在電極表面上容易形成SEI,其結果,能夠進一步提高電池性能。
負極活性物質層2包含負極活性物質。負極活性物質例如為能夠嵌入和脫嵌鋰之材料。負極活性物質的例子包含石墨及非晶碳等碳材料以及氧化銦、氧化矽、氧化錫、鈦酸鋰、氧化鋅及氧化鋰等氧化物材料。負極活性物質可以為鋰金屬或能夠與鋰形成合金之金屬材料。關於能夠與鋰形成合金之金屬的例子,包含Cu、Sn、Si、Co、Mn、Fe、Sb及Ag。負極活性物質可以包含合金,該合金含有包含該等金屬和鋰之2種或3種金屬。該等例示之負極活性物質可以單獨或組合2種以上來使用。
從高能量密度化之觀點考慮,負極活性物質可以包含石墨等碳材料和選自Si、Si合金及Si氧化物等之Si系活性物質。從兼顧循環特性和高能量密度化之觀點考慮,負極活性物質可以包含石墨和Si系活性物質。在該等情況下,Si系活性物質相對於碳材料和Si系活性物質的合計質量之質量比可以為0.5質量%以上、1質量%以上或2質量%以上,亦可以為95質量%以下、50質量%以下或40質量%以下。
正極活性物質層7及負極活性物質層2可以進一步包含黏結劑。作為黏結劑的例子,可以列舉聚偏二氟乙烯(PVdF)、偏二氟乙烯-六氟丙烯共聚物、偏二氟乙烯-四氟乙烯共聚物、苯乙烯-丁二烯共聚合橡膠、羧甲基纖維素、聚四氟乙烯、聚丙烯、聚乙烯、聚醯亞胺、聚醯胺醯亞胺、聚丙烯酸、聚乙烯基醇、聚丙烯酸金屬鹽、丙烯酸-聚丙烯腈、聚丙烯醯胺、聚甲基丙烯酸及該等共聚物。正極活性物質層及負極活性物質層能夠包含彼此相同或不同之黏結劑。
為了降低電阻,正極活性物質層7及負極活性物質層2可以進一步包含導電輔助材料。作為導電輔助材料的例子,可以列舉碳精、碳黑、乙炔黑及科琴碳黑等碳質微粒以及碳纖維。
隔板6例如可以為多孔薄膜。多孔薄膜可以為包含選自聚乙烯、聚丙烯及氟樹脂等之樹脂之薄膜。多孔薄膜可以為單層,亦可以具有複數個層。
構成蓄電裝置之各構件的形狀、厚度等的具體形態能夠由本領域具有通常知識者來適當設定。蓄電裝置的構成並不限定於圖1的實施形態,能夠適當地變更。 [實施例]
以下,列舉實施例對本發明進行進一步詳細說明。本發明並不限定於以下實施例。
1.非水電解液 (實施例1) 化合物(1-1)(由式(1-1)表示之化合物)的合成
在配備攪拌機、冷卻管、溫度計之2L的四頸燒瓶中加入了3-環丁碸(236.3g、2.0mol)及水500mL。將燒瓶內的反應液升溫至40℃,將3-環丁碸溶解於水中直至使其變得均勻。在反應液中添加氢氧化鈉(104.0g、2.6mol),在維持40℃的狀態下,將反應液攪拌10小時。其後,將燒瓶在水浴中冷卻,用30分鐘向反應液中滴加了濃硫酸(130.1g、1.3mol)。其後,過濾藉由濃縮反應液而析出之固體,並藉由濃縮所獲得之濾液而獲得了3-羥基環丁碸(250.59g、3-環丁碸的產率92%)。
在配備攪拌機、冷卻管、溫度計及滴液漏斗之200mL的四頸燒瓶中加入了2-甲基-2-丙烯-1-磺酸鈉(8.04g、50mmol)、N,N-二甲基甲醯胺(0.37g、5mmol)及二氯甲烷30mL。在室溫(25℃)下,攪拌燒瓶內的反應液,並且滴加了亞硫醯氯(7.14g、60mmol)。在結束滴加後,維持在20~25℃,並且將反應液攪拌了24小時。其後,藉由在反應液中加入水、將混合液分液、濃縮油層而獲得了2-甲基-2-丙烯-1-磺醯氯(7.73g、2-甲基-2-丙烯-1-磺酸鈉的產率100%)。
接著,在配備攪拌機、冷卻管、溫度計及滴液漏斗之200mL的四頸燒瓶中加入了在上述所獲得之3-羥基環丁碸(5.45g、40mmol)、在上述所獲得之2-甲基-2-丙烯-1-磺醯氯(6.80g、44mmol)及乙腈20mL。在水浴中冷卻燒瓶,攪拌燒瓶內的反應液,並且滴加了三乙胺(4.05g、40mmol)。結束滴加後,維持0~5℃,並且將反應液攪拌了1小時。其後,添加水,濾出所析出之白色固體。藉由用甲醇清洗了所獲得之固體之後進行減壓乾燥而獲得了白色固體的化合物(1-1)(5.84g、3-羥基環丁碸的產率50%)。 1H-NMR(400MHz、CD 3CN)、δ(ppm):1.93(m、3H)、2.53(m、2H)、3.18(m、2H)、3.36(dd、1H)、3.41(dd、1H)、3.97(s、2H)、5.15(s、1H)、5.22(s、1H)、5.42(m、1H) 13C-NMR(100MHz、CD 3CN)δ(ppm):22.4、30.9、50.0,57.7、59.5,78.0、121.5、134.7
非水電解液的調整 以EC:EMC=30:70的體積比混合碳酸伸乙酯(EC)和碳酸甲乙酯(EMC)而獲得了混合非水溶劑。在所獲得之混合非水溶劑中溶解作為電解質的LiPF 6而獲得了濃度1.0mol/L的LiPF 6溶液。在所獲得之LiPF 6溶液中添加化合物(1-1)作為非水電解液用添加劑,製備了非水電解液。非水電解液用添加劑(化合物(1-1))的含有比例以非水電解液的總質量基準為1.0質量%。
(實施例2) 化合物(1-5)(由式(1-5)表示之化合物)的合成
在配備攪拌機、冷卻管、溫度計及滴液漏斗之200mL的四頸燒瓶中加入了4-羥基-2-環丁碸(5.37g、40mmol)、以與實施例1相同的方法獲得之2-甲基-2-丙烯-1-磺醯氯(6.80g、44mmol)及乙腈20mL。在水浴中冷卻燒瓶,攪拌燒瓶內的反應液,並且滴加了三乙胺(4.05g、40mmol)。結束滴加後,維持0~5℃,並且將反應液攪拌了1小時。其後,在反應液中加入水,濾出了所析出之白色固體。用甲醇清洗所獲得之固體,接著藉由減壓乾燥而獲得了白色固體的化合物(1-5)(6.98g、4-羥基-2-環丁碸的產率69%)。 1H-NMR(400MHz、CD 3CN)δ(ppm):1.93(m、3H)、3.37(dd、1H)、3.70(dd、1H)、4.02(s、2H)、5.15(s、1H)、5.24(s、1H)、5.84(m1H)、6.84(d、1H)、7.04(d、1H) 13C-NMR(100MHz、CD 3CN)δ(ppm):22.4、54.8、59.6、75.9、121.8、134.4、137.0、137.8
非水電解液的製備 將化合物(1-5)用作非水電解液用添加劑來代替化合物(1-1),除此之外,以與實施例1相同的方式製備了非水電解液。
(實施例3) 化合物(1-7)(由式(1-7)表示之化合物)的合成
在配備攪拌機、冷卻管、溫度計及滴液漏斗之500mL的四頸燒瓶中加入了3-(甲基丙烯醯氧基)丙磺酸鉀(24.63g、100mmol)、N,N-二甲基甲醯胺(2.19g、30mmol)及四氫呋喃60mL。在室溫下,攪拌燒瓶內的反應液,並且用30分鐘滴加了亞硫醯氯(65.43g、550mmol)。在結束滴加後,維持在20~25℃,並且將反應液攪拌了24小時。其後,在反應液中加入水,將混合液分液。藉由濃縮油層而獲得了3-(甲基丙烯醯氧基)丙烷磺醯氯(22.67g、3-(甲基丙烯醯氧基)丙磺酸鉀的產率100%)。
在配備攪拌機、冷卻管、溫度計及滴液漏斗之200mL的四頸燒瓶中加入了以與實施例1相同的方法獲得之3-羥基環丁碸(5.45g、40mmol)、3-(甲基丙烯醯氧基)丙烷磺醯氯(10.86g、48mmol)及乙腈20mL。在水浴中冷卻燒瓶,攪拌燒瓶內的反應液,並且滴加了三乙胺(4.45g、44mmol)。在結束滴加後,維持在0~5℃,並且將反應液攪拌了1小時。其後,在反應液中加入水,濾出了所析出之白色固體。用甲醇清洗所獲得之固體,接著藉由減壓乾燥而獲得了白色固體的化合物(1-7)(4.02g、3-羥基環丁碸的產率31%)。 1H-NMR(400MHz、CD 3CN)δ(ppm):1.93(m、3H)、2.15(m、2H)、2.54(m、2H)、3.17(m、2H)、3.33(t、2H)、3.37(ddd、2H)、4.21(t、2H)、5.42(m、1H)、5.63(s、1H)、6.08(s、1H) 13C-NMR(100MHz、CD 3CN)δ(ppm):18.5、24.1、30.9、48.9、50.0,57.7,63.0,77.6、126.3、137.5、167.9
非水電解液的製備 將化合物(1-7)用作非水電解液用添加劑來代替化合物(1-1),除此之外,以與實施例1相同的方式製備了非水電解液。
(實施例4) 化合物(1-12)(由式(1-12)表示之化合物)的合成
在配備攪拌機、冷卻管、溫度計及滴液漏斗之500mL的四頸燒瓶中加入了4-乙烯基苯磺酸鈉(24.74g、120mmol)及N,N-二甲基甲醯胺(66.00g、90mmol)。在室溫下攪拌燒瓶內的反應液,並且滴加了亞硫醯氯(92.79g、780mmol)。在結束滴加後,維持在20~25℃,並且將反應液攪拌了24小時。其後,在反應液中加入水,將混合液分液。藉由濃縮油層而獲得了4-乙烯基苯磺醯氯(18.00g、4-乙烯基苯磺酸鈉的產率74%)。
在配備攪拌機、冷卻管、溫度計及滴液漏斗之200mL的四頸燒瓶中加入了以與實施例1相同的方法獲得之3-羥基環丁碸(4.77g、35mmol)、在上述獲得之4-乙烯基苯磺醯氯(10.86g、42mmol)及乙腈17.5mL。在水浴中冷卻燒瓶,攪拌燒瓶內的反應液,並且滴加了三乙胺(4.45g、44mmol)。結束滴加後,將反應液維持在0~5℃,並且攪拌了1小時。其後,添加水,濾出所析出之白色固體。用甲醇清洗了所獲得之固體之後,藉由減壓乾燥而獲得了白色固體的化合物(1-12)(5.21g、3-羥基環丁碸的產率49.2%)。 1H-NMR(400MHz、CD 3CN)δ(ppm):2.39(m、2H)、3.12(m、4H)、5.24(m、1H)、5.50(d、1H)、6.02(d、1H)、6.85(dd、1H)、7.70(d、2H)、7.90(d、2H) 13C-NMR(100MHz、CD 3CN)δ(ppm):30.5、49.9、57.3、78.2、119.4、128.3、129.3、135.6、136.1、144.6
非水電解液的製備 將化合物(1-12)用作非水電解液用添加劑來代替化合物(1-1),除此之外,以與實施例1相同的方式製備了非水電解液。
(實施例5) 化合物(1-15)(由式(1-15)表示之化合物)的合成
在配備攪拌機、冷卻管、溫度計及滴液漏斗之200mL的四頸燒瓶中加入了以與實施例1相同的方法獲得之3-羥基環丁碸(5.45g、40mmol)、甲基丙烯醯氯(5.44g、52mmol)及乙腈20mL。將燒瓶在水浴中冷卻,在燒瓶內攪拌反應液,滴加了三乙胺(4.86g、48mmol)。結束滴加後,將反應液維持在0~5℃,並且攪拌了1小時。其後,添加水,濾出所析出之白色固體。用甲醇清洗所獲得之固體之後,藉由減壓乾燥而獲得了白色固體的化合物(1-15)(1.96g、3-羥基環丁碸的產率24.0%)。 1H-NMR(400MHz、CD 3CN)δ(ppm):1.92(m、3H)、2.48(m、2H)、3.14(m、3H)、3.37(dd、1H)、5.51(m、1H)、5.68(s、1H)、6.11(s、1H) 13C-NMR(100MHz、CD 3CN)δ(ppm):18.3、29.7、50.4、57.4、71.4、127.1、137.2、167.1
非水電解液的製備 將化合物(1-15)用作非水電解液用添加劑來代替化合物(1-1),除此之外,以與實施例1相同的方式製備了非水電解液。
(比較例1) 在實施例1中,將添加化合物(1-1)之前的LiPF 6溶液(濃度1.0mol/L)用作比較例1的非水電解液。
(比較例2) 將1,3-丙磺內酯(PS、Tokyo Chemical Industry Co.,Ltd.製造)用作非水電解液用添加劑來代替化合物(1-1),除此之外,以與實施例1相同的方式製備了非水電解液。
(比較例3) 化合物(A)(3-異丙磺醯基四氫噻吩-1,1-氧化物)的合成
在配備攪拌機、冷卻管、溫度計及滴液漏斗之200mL的四頸燒瓶中加入了以與實施例1相同的方法獲得之3-羥基環丁碸(6.81g、50mmol)、異丙基磺醯氯(8.56g、60mmol)及乙腈25mL。將燒瓶在水浴中冷卻,攪拌燒瓶內的反應液,並且滴加了三乙胺(5.06g、50mmol)。結束滴加後,維持0~5℃,並且將反應液攪拌了1小時。其後,添加水,濾出所析出之固體。用甲醇清洗所獲得之固體,接著藉由減壓乾燥而獲得了化合物(A)(2.31g、3-羥基環丁碸的產率19%)。
非水電解液的製備 將化合物(A)用作非水電解液用添加劑來代替化合物(1-1),除此之外,以與實施例1相同的方式製備了非水電解液。
(比較例4) 化合物(B)(3-(4-甲基苯磺醯基)四氫噻吩-1,1-二氧化物)的合成
在配備攪拌機、冷卻管、溫度計及滴液漏斗之200mL的四頸燒瓶中加入了以與實施例1相同的方法獲得之3-羥基環丁碸(8.17g、60mmol)、4-甲基苯磺醯氯(13.73g、72mmol)及乙腈30mL。將燒瓶在水浴中冷卻,攪拌燒瓶內的反應液,並且滴加了N,N,N’,N’-四甲基丙二胺(3.91g、30mmol)。結束滴加後,維持0~5℃,並且將反應液攪拌了1小時。其後,添加水,濾出所析出之白色固體。用甲醇清洗所獲得之白色固體之後,進行減壓乾燥而獲得了化合物(B)(3.84g、3-羥基環丁碸的產率22%)。
非水電解液的製備 使用化合物(B)來代替化合物(1-1),除此之外,以與實施例1相同的方式製備了非水電解液。
(比較例5) 化合物(C)(3-乙醯氧基四氫噻吩-1,1-二氧化物)的合成
在配備攪拌機、冷卻管、溫度計及滴液漏斗之200mL的四頸燒瓶中加入了以與實施例1相同的方法獲得之3-羥基環丁碸(13.62g、100mmol)、乙酸酐(11.23g、110mmol)及乙腈10mL。將燒瓶在水浴中冷卻,攪拌燒瓶內的反應液,並且滴加了吡啶(15.82g、200mmol)。結束滴加後,維持0~5℃,並且將反應液攪拌了1小時。其後,在反應液中加入水及二氯甲烷,將混合液分液。藉由濃縮包含二氯甲烷之油層而獲得了化合物(C)(3.97g、3-羥基環丁碸的產率22%)。
非水電解液的製備 將化合物(C)用作非水電解液用添加劑來代替化合物(1-1),除此之外,以與實施例1相同的方式製備了非水電解液。
2.非水電解液二次電池的製作 準備了包含含有鋰之複合氧化物之正極片(Yamaya公司製造)及包含石墨之負極片(Yamaya公司製造)。正極片具有作為正極集電體之鋁箔(厚度20μm)和在其兩面上形成之正極活性物質層。正極活性物質層包含作為正極活性物質之含有鋰之複合氧化物(LiNi 0.5Co 0.2Mn 0.3O 2)、作為導電助劑之碳黑(CB)及碳(KS)以及作為黏結劑之聚偏二氟乙烯(PVDF)。該等質量比為含有鋰之複合氧化物:CB:KS:PVDF=92:2.5:2.5:3。負極片具有作為負極集電體的銅箔(厚度10μm)和在其兩面上形成之負極活性物質層。負極活性物質層包含作為負極活性物質的石墨(Gr)以及作為黏結劑的羧甲基纖維素鈉(CMC)及苯乙烯丁二烯橡膠(SBR)。該等質量比為Gr:CMC:SBR=98:1:1。經由由丙烯形成之隔板交替積層負極片及正極片,製作了作為電極而具有7層的負極片及6層的正極片的合計13層的電池元件。
將所製作之電池元件插入到由具有鋁(厚度40μm)和被覆其兩面之樹脂層之層壓薄膜形成之袋中,以使正極片及負極片的端部從袋中突出。將實施例或比較例中所獲得之各非水電解液加入到袋中,將袋真空密封,獲得了片狀非水電解液二次電池。為了提高電極間的密接性,用玻璃板夾住片狀非水電解液二次電池來進行加壓。
3.評價 (初始容量的測定) 在25℃下,以相當於0.1C的電流將各非水電解液二次電池充電1小時之後,在25℃下保持了10小時。接著,以相當於0.1C的電流將各非水電解液二次電池充電5小時,在45℃下保持了24小時。其後,在25℃下,以相當於0.1C的電流放電至3V之後,實施了脫氣。脫氣後,藉由將各非水電解液二次電池以相當於0.2C的電流充電至4.2V、以相當於0.2C的電流放電至3V的操作重複3個循環、以相當於0.5C的電流充電至4.2V、以相當於0.5C的電流放電至3.0V的操作重複3個循環、以相當於1C的電流充電至4.2V、以相當於1C的電流放電至3.0V的操作重複3個循環而使其老化,藉此使各非水電解液二次電池穩定。其後,作為初始充放電,以相當於2.0C的電流進行了充放電。將在初始充放電中觀測之放電容量設為「初始容量」。
(剩餘容量維持率及氣體產生量) 藉由阿基米德法測定了初始容量測定後的各非水電解液二次電池的體積,將其作為電池的「初始體積」。在25℃下,將初始充放電後的各非水電解液二次電池以1C充電至4.2V之後,在60℃下保持了30小時。其後,將各非水電解液二次電池冷卻至25℃,以相當於1C的電流放電至3V。將此時的放電容量設為「剩餘容量」。藉由阿基米德法,測定在60℃下保存30天後的各非水電解液二次電池的體積,將其設為「高溫保存後體積」。藉由下述式計算了高溫保存後的剩餘容量維持率及氣體產生量。將結果示於表3中。 剩餘容量維持率(%)=(剩餘容量/初始容量)×100 氣體產生量(cm 3)=高溫保存後體積-初始體積
[表3]
   非水電解液用添加劑 剩餘容量維持率 (%) 氣體產生量 (cm 3
實施例1 化合物(1-1) 70 0.05
實施例2 化合物(1-5) 73 0.07
實施例3 化合物(1-7) 71 0.17
實施例4 化合物(1-12) 70 0.19
實施例5 化合物(1-15) 70 0.22
比較例1 63 0.59
比較例2 PS 66 0.44
比較例3 化合物(A) 67 0.30
比較例4 化合物(B) 65 0.35
比較例5 化合物(C) 66 0.36
1:鋰離子電池 2:負極活性物質層 3:負極集電體 4:負極 5:非水電解液 6:隔板 7:正極活性物質層 8:正極集電體 9:正極
[圖1]係表示蓄電裝置的一例之剖面圖。
1:鋰離子電池
2:負極活性物質層
3:負極集電體
4:負極
5:非水電解液
6:隔板
7:正極活性物質層
8:正極集電體
9:正極

Claims (13)

  1. 一種非水電解液用添加劑,其包含由下述式(1)表示之環狀碸化合物, Q表示與磺醯基的硫原子一起形成環狀基團之、可以被取代之碳數4~8的伸烷基或可以被取代之碳數4~8的伸烯基, X 1表示磺醯基或羰基, Z表示由下述式(21)、(22)、(23)或(24)表示之1價的基團, R 1表示直接鍵結或可以被取代之碳數1~6的伸烷基, R 11及R 12表示氫原子、甲基或乙基, Q為四亞甲基且X 1為磺醯基時,R 11為甲基或乙基, X 2表示磺醯基或羰基, Ar表示可以被取代之伸芳基。
  2. 如請求項1所述之非水電解液用添加劑,其中 X 1為磺醯基。
  3. 如請求項1或請求項2所述之非水電解液用添加劑,其中 前述環狀碸化合物為由下述式(11)表示之化合物: 式(11)中的X 1及Z與式(1)中的X 1及Z的含義相同。
  4. 如請求項1或請求項2所述之非水電解液用添加劑,其中 前述環狀碸化合物為由下述式(12)表示之化合物: 式(12)中的X 1及Z與式(1)中的X 1及Z的含義相同。
  5. 如請求項1或請求項2所述之非水電解液用添加劑,其中 R 1為直接鍵結或可以被氟原子取代之碳數1~3的伸烷基, Ar為可以被氟原子或氟烷基取代之伸芳基。
  6. 一種非水電解液,其含有請求項1或請求項2所述之非水電解液用添加劑、非水溶劑及電解質。
  7. 一種蓄電裝置,其具備請求項6所述之非水電解液和正極及負極。
  8. 一種鋰離子電池,其具備請求項6所述之非水電解液和正極及負極。
  9. 一種鋰離子電容器,其具備請求項6所述之非水電解液和正極及負極。
  10. 一種環狀碸化合物,其由下述式(11S)或(12S)表示: Z表示由下述式(21A)或(22A)表示之1價的基團: R 1表示可以被氟原子取代之碳數1~6的伸烷基。
  11. 如請求項10所述之環狀碸化合物,其由下述式表示:
  12. 如請求項10所述之環狀碸化合物,其由下述式表示:
  13. 如請求項10所述之環狀碸化合物,其由下述式表示:
TW112129593A 2022-08-08 2023-08-07 非水電解液用添加劑、非水電解液及蓄電裝置 TW202412373A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022-126498 2022-08-08

Publications (1)

Publication Number Publication Date
TW202412373A true TW202412373A (zh) 2024-03-16

Family

ID=

Similar Documents

Publication Publication Date Title
JP7059250B2 (ja) 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
TWI700848B (zh) 非水電解液用添加劑、非水電解液、蓄電裝置、鋰離子電池以及鋰離子電容器
WO2018016195A1 (ja) 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
JP7045240B2 (ja) 非水電解液用添加剤、非水電解液及び蓄電デバイス
JP7187125B2 (ja) 非水系電解液及びそれを用いたエネルギーデバイス
WO2024034520A1 (ja) 二次電池用非水電解液、並びに、リチウムイオン電池及びリチウムイオンキャパシタ
JP7258012B2 (ja) 非水電解液用添加剤、非水電解液及び蓄電デバイス
KR20140065108A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2022158400A1 (ja) 非水電解液及び非水電解液電池
TW202412373A (zh) 非水電解液用添加劑、非水電解液及蓄電裝置
WO2024034522A1 (ja) 非水電解液用添加剤、非水電解液及び蓄電デバイス
WO2024034521A1 (ja) 二次電池用非水電解液、並びに、リチウムイオン電池及びリチウムイオンキャパシタ
WO2018164130A1 (ja) 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
TW201924129A (zh) 非水電解液用添加劑、非水電解液及蓄電裝置
KR102581748B1 (ko) 비수전해액용 첨가제, 비수전해액, 및 축전 디바이스
TW202410519A (zh) 二次電池用非水電解液、以及鋰離子電池及鋰離子電容器
JP2023117850A (ja) 非水電解液用添加剤、非水電解液及び蓄電デバイス
JP2023054904A (ja) 非水電解液用添加剤、非水電解液及び蓄電デバイス
TW202410520A (zh) 二次電池用非水電解液、以及鋰離子電池及鋰離子電容器
JP2017183067A (ja) 非水電解液用添加剤、非水電解液および蓄電デバイス
US20240105992A1 (en) Nonaqueous Electrolytic Solution, Nonaqueous Electrolytic Solution Battery, and Compound
JP2016192382A (ja) 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
WO2022158398A1 (ja) 非水電解液及び非水電解液電池