TW202345891A - 超氧化物歧化酶可溶性纖維組成物及使用方法 - Google Patents

超氧化物歧化酶可溶性纖維組成物及使用方法 Download PDF

Info

Publication number
TW202345891A
TW202345891A TW112107490A TW112107490A TW202345891A TW 202345891 A TW202345891 A TW 202345891A TW 112107490 A TW112107490 A TW 112107490A TW 112107490 A TW112107490 A TW 112107490A TW 202345891 A TW202345891 A TW 202345891A
Authority
TW
Taiwan
Prior art keywords
superoxide dismutase
composition
various embodiments
units
fiber
Prior art date
Application number
TW112107490A
Other languages
English (en)
Inventor
利亞卡特 霍桑
Original Assignee
美商先進製藥公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商先進製藥公司 filed Critical 美商先進製藥公司
Publication of TW202345891A publication Critical patent/TW202345891A/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • A61K38/446Superoxide dismutase (1.15)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y115/00Oxidoreductases acting on superoxide as acceptor (1.15)
    • C12Y115/01Oxidoreductases acting on superoxide as acceptor (1.15) with NAD or NADP as acceptor (1.15.1)
    • C12Y115/01001Superoxide dismutase (1.15.1.1)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

所提供者係包含超氧化物歧化酶和可溶性纖維的組成物。該等組成物可另外包含其他抗氧化劑、甜味劑、益生菌、維生素、和營養素。該等組成物可用作為膳食補充劑和用於改善健康和福祉。亦提供者係使用如此化合物的方法。

Description

超氧化物歧化酶可溶性纖維組成物及使用方法
本文之揭露內容總體上係關於包含超氧化物歧化酶和可溶性纖維的組成物。該等組成物可用作為膳食補充劑和用於改善健康和福祉。本文之揭露內容進一步係關於使用包含超氧化物歧化酶和可溶性纖維的組成物的方法。
超氧化物歧化酶(SOD)係一群提供對抗活性含氧物(ROS)造成的細胞傷害的保護的金屬酶。SOD催化超氧化物陰離子自由基(O 2 -)歧化成分子氧和過氧化氫(H 2O 2)。細胞中的ROS可傷害核酸、蛋白質、和脂質,導致細胞功能下降且可能導致細胞凋亡。因此,將ROS轉化成無害分子的能力對於保護細胞功能和整體健康而言係至關重要的。
儘管幾乎所有生物皆天然製造一些類型的SOD,細胞中製造的SOD之量隨著個體老化或當個體患有某些健康疾患時降低。此外,環境中種種污染物和毒素之存在可造成細胞中ROS之量增加。因此,天然產生的SOD之膳食補充劑對於維持健康而言可能很重要。
另一個重要的膳食組份係可溶性纖維。可溶性纖維在消化道中吸收水並形成凝膠。可溶性纖維在腸中有許多益處,包括減緩某些類型的脂質和碳水化合物之消化、協助預防膳食膽固醇之吸收、和預防血糖水平飆升。可溶性纖維對於維持健康腸微生物群系而言也很重要,因為腸細菌可使一些類型的可溶性纖維發酵。現代膳食典型可溶性纖維低且往往需要補充劑以改善健康。
糖尿病(Diabetes mellitus/diabetes)係常見的碳水化合物代謝疾患。於US,超過3千萬人患有糖尿病。於最近20年,隨著美國人口老化且變得更過重或肥胖,被診斷出患有糖尿病的成人之數目增加超過兩倍。於患有糖尿病者,身體利用葡萄糖的正常能力受損,導致血糖水平增加。糖尿病與心血管或循環疾病或疾患之風險增加有關。
已顯示食物中的纖維(諸如可溶性纖維)會減弱對進餐的血糖反應。當由腸細菌發酵時,纖維亦產生參與葡萄糖體內恆定的短鏈脂肪酸(SCFA)之代謝物。然而,如同某些纖維補充劑,高纖維食物可造成胃不適。
已顯示抗氧化劑在人體於對抗自由基(許多疾病過程涉及其)具有有益功效。然而,許多抗氧化劑之有效代謝物(諸如多酚)之吸收依賴該抗氧化劑在腸中的微生物代謝。因此,對於許多營養補充劑而言,此等有效多酚代謝物不產生且該抗氧化活性該補充劑受限。
本文之揭露內容之一個方面提供一種液體組成物,其包含:a)約0.03單位/mL至約0.5單位/mL超氧化物歧化酶;b)約1.3 mg/mL至約23 mg/mL可溶性纖維;和c)水。
於複數個實施方式中,該液體組成物包含約0.05單位/mL至約0.4單位/mL超氧化物歧化酶。於複數個實施方式中,該液體組成物包含約0.2單位/mL至約0.3單位/mL超氧化物歧化酶。
於複數個實施方式中,該液體組成物包含約2.7 mg/mL至約12 mg/mL可溶性纖維。於複數個實施方式中,該液體組成物包含約5.55 mg/mL至約11.11 mg/mL可溶性纖維。
於複數個實施方式中,該超氧化物歧化酶係自甜瓜、牛肝、異營細菌、或海洋植物性浮游生物萃取。於複數個實施方式中,該超氧化物歧化酶係銅/鋅超氧化物歧化酶、鐵/錳超氧化物歧化酶、或鎳超氧化物歧化酶。
於該液體組成物之複數個實施方式中,超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:100至約1:1000。於複數個實施方式中,超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:500至約1:700。
於該液體組成物之複數個實施方式中,該可溶性纖維係水溶性多醣。於複數個實施方式中,該可溶性纖維選自可溶性玉米纖維、菊糖、糊精、瓜爾膠、寡多醣、半乳多糖 果-寡糖(galactopolysaccharides fructo-oligosaccharides)、乳果糖、抗消化澱粉、木-寡糖(xylo-oligosaccharides)、和異麥芽-寡糖(isomalto-oligossacharide)。於複數個實施方式中,該可溶性纖維係可溶性玉米纖維。於複數個實施方式中,該可溶性玉米纖維係抗消化麥芽糊精。
於複數個實施方式中,該液體組成物進一步包含約0.1 mg/mL至約1.5 mg/mL的單醣(simple sugar)。於複數個實施方式中,該液體組成物進一步包含約0.1 mg/mL至約1.5 mg/mL d-核糖。於複數個實施方式中,該液體組成物進一步包含約0.40 mg/mL至約0.85 mg/mL d-核糖。
於複數個實施方式中,該液體組成物進一步包含約1.3 mg/mL至約9.0 mg/mL的糖醇。於複數個實施方式中,該液體組成物進一步包含約1.3 mg/mL至約9.0 mg/mL赤藻糖醇。於複數個實施方式中,該液體組成物進一步包含約2.7 mg/mL至約5.6 mg/mL赤藻糖醇。
於複數個實施方式中,該液體組成物進一步包含約0.1 mg/mL至約1.5 mg/mL的pH調整劑。於複數個實施方式中,該液體組成物進一步包含約0.1 mg/mL至約1.5 mg/mL檸檬酸。於複數個實施方式中,該液體組成物進一步包含約0.4 mg/mL至約0.7 mg/mL檸檬酸。
於複數個實施方式中,該液體組成物進一步包含約0.05 mg/mL至約0.75 mg/mL的甜味劑。於複數個實施方式中,該液體組成物進一步包含約0.05 mg/mL至約0.75 mg/mL甜菊醣苷(steviol glycoside)。於複數個實施方式中,該液體組成物進一步包含約0.2 mg/mL至約0.35 mg/mL甜菊醣苷。
於複數個實施方式中,該液體組成物進一步包含矯味劑。
本文之揭露內容之另一方面提供一種組成物,其包含:a)約10單位至約200單位超氧化物歧化酶;b)約500 mg至約8000 mg可溶性纖維;和c)益生菌。
於複數個實施方式中,該益生菌組成物包含約50單位至約150單位超氧化物歧化酶。於複數個實施方式中,該益生菌組成物包含約70單位至約100單位超氧化物歧化酶。
於複數個實施方式中,該益生菌組成物包含約1000 mg至約5000 mg可溶性纖維。於複數個實施方式中,該益生菌組成物包含約2000 mg至約4000 mg可溶性纖維。
於該益生菌組成物之複數個實施方式中,該超氧化物歧化酶係自甜瓜、牛肝、異營細菌、或海洋植物性浮游生物萃取。於複數個實施方式中,該超氧化物歧化酶係銅/鋅超氧化物歧化酶、鐵/錳超氧化物歧化酶、或鎳超氧化物歧化酶。
於該益生菌組成物之複數個實施方式中,超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:100至約1:1000。於複數個實施方式中,超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:500至約1:700。
於該益生菌組成物之複數個實施方式中,該可溶性纖維係水溶性多醣。於複數個實施方式中,該可溶性纖維選自可溶性玉米纖維、菊糖、糊精、瓜爾膠、寡多醣、半乳多糖 果-寡糖、乳果糖、抗消化澱粉、木-寡糖、和異麥芽-寡糖。於複數個實施方式中,該可溶性纖維係可溶性玉米纖維。於複數個實施方式中,該可溶性玉米纖維係抗消化麥芽糊精。
於該益生菌組成物之複數個實施方式中,該益生菌包含雙岐桿菌屬( Bifidobacterium)之細菌。於複數個實施方式中,該益生菌包含乳酸桿菌屬( Lactobacillus)之細菌。於複數個實施方式中,該益生菌包含厚壁菌門乳酸桿菌屬( Firmicutes lactobacillus)、放線菌門雙歧桿菌科( Actinobacteria Bifidobacteriaceae)、或其等之組合。
於該益生菌組成物之複數個實施方式中,該組成物呈凝膠形式。於複數個實施方式中,該組成物呈液體形式。於複數個實施方式中,該組成物呈粉末形式。
本文之揭露內容之另一方面提供一種增加一個體中的T細胞活化之方法,其包含向該個體口服投予一組成物,該組成物包含:a)約10單位至約200單位超氧化物歧化酶;和b)約500 mg至約8000 mg可溶性纖維;其中,於投予該組成物後,該個體中T細胞之活化增加。於該方法之複數個實施方式中,該組成物係組合抗癌劑投予。於該方法之複數個實施方式中,該組成物係組合抗病毒劑投予。
本文之揭露內容之另一方面提供一種增加一個體之消化道中的短鏈脂肪酸(SCFA)之製造之方法,其包含向該個體口服投予一組成物,該組成物包含:a)約10單位至約200單位超氧化物歧化酶;和b)約500 mg至約8000 mg可溶性纖維;其中,於投予該組成物後,該個體之消化道中的SCFA之製造增加。於該方法之複數個實施方式中,製造增加的SCFA係醋酸、丙酸、丁酸、或乳酸SCFA、或其等之組合。於該方法之複數個實施方式中,該SCFA係以相較於增加前的醋酸、丙酸、丁酸、和乳酸SCFA之比例提供大約相同的醋酸、丙酸、丁酸、和乳酸SCFA之比例的方式增加。
本文之揭露內容之另一方面提供一種增加一個體之消化道中的雙岐桿菌屬或乳酸桿菌屬之細菌之量之方法,其包含向該個體口服投予一組成物,該組成物包含:a)約10單位至約200單位超氧化物歧化酶;和b)約500 mg至約8000 mg可溶性纖維;其中,於投予該組成物後,該個體之消化道中的雙岐桿菌屬、乳酸桿菌屬、或其等之組合之細菌之量增加。於該方法之複數個實施方式中,該雙岐桿菌屬之細菌包含物種放線菌門雙歧桿菌科。於該方法之複數個實施方式中,該乳酸桿菌屬之細菌包含物種厚壁菌門乳酸桿菌屬。
於本文中的方法之任何者之複數個實施方式中,該組成物包含約50單位至約150單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約70單位至約100單位超氧化物歧化酶。
於本文中的方法之任何者之複數個實施方式中,該組成物包含約1000 mg至約5000 mg可溶性纖維。於複數個實施方式中,該組成物包含約2000 mg至約4000 mg可溶性纖維。
於本文中的方法之任何者之複數個實施方式中,該超氧化物歧化酶係自甜瓜、牛肝、異營細菌、或海洋植物性浮游生物萃取。於複數個實施方式中,該超氧化物歧化酶係銅/鋅超氧化物歧化酶、鐵/錳超氧化物歧化酶、或鎳超氧化物歧化酶。
於本文中的方法之任何者之複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:100至約1:1000。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:500至約1:700。
於本文中的方法之任何者之複數個實施方式中,該可溶性纖維係水溶性多醣。於複數個實施方式中,該可溶性纖維選自可溶性玉米纖維、菊糖、糊精、瓜爾膠、寡多醣、半乳多糖 果-寡糖、乳果糖、抗消化澱粉、木-寡糖、和異麥芽-寡糖。於複數個實施方式中,該可溶性纖維係可溶性玉米纖維。於複數個實施方式中,該可溶性玉米纖維係抗消化麥芽糊精。
於本文中的方法之任何者之複數個實施方式中,該組成物呈凝膠形式。於複數個實施方式中,該組成物呈液體形式。於複數個實施方式中,該組成物呈粉末形式。
本文之揭露內容提供包含超氧化物歧化酶和可溶性纖維的組成物。本文揭露的組成物可用作為補充劑以增加一個體中超氧化物歧化酶和可溶性纖維之水平。如於本文中敘述,該等組成物亦可包含另外的組份,諸如抗氧化劑、維生素、或其他營養素以及賦形劑和其他調配劑。
應理解本文中顯示和敘述的具體實施係實例而非意欲以任何方式另外限制本案之範圍。
本文中引用的已公開專利、專利申請案、網站、公司名、和科學文獻特此以引用方式將其等之完整內容併入本文中,其程度如同明確地和個別地指出將各者以引用方式併入本文中。來自本文中引用的任何參考文獻與本說明書之具體教示間的任何矛盾應以支持後者的方式解決。同樣,來自發明所屬技術領域中已了解的字或辭之定義與本說明書中具體教示的字或辭之定義間的任何矛盾應以支持後者的方式解決。
用於本文,「一(「a」或「an」)」可意味一或多。用於本文,當結合字詞「包含」使用時,字詞「一(「a」或「an」)」可意味一或多於一。用於本文,「另一」或「進一步」可意味至少第二或更多。
於本說明書通篇,術語「約」係用於指出一值包括用以確定該值的方法/裝置的固有誤差變異、或研究個體間存在的變異。典型地,術語「約」意欲涵蓋大約或少於1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、或20%變異性,其視情況而定。
申請專利範圍中術語「或」之使用係用於意味「及/或」,除非明確指出僅意指複數個備選方案或互不相容的複數個備選方案,雖然本文之揭露內容支持一僅意指複數個備選方案和「及/或」的定義。
用於本文,術語「包含(comprising)」(和包含之任何變體或形式,諸如「包含(comporise)」和「包含(comprises)」)、「具有(having)」(和具有之任何變體或形式,諸如「具有(have)」和「具有(has)」)、「包括(including)」(和包括之任何變體或形式,諸如「包括(includes)」和「包括(include)」)、或「含有(containing)」(和含有之任何變體或形式,諸如「含有(contains)」和「含有(contain)」)係包括一切的或開放性的且不排除另外的、未敘述的、元件或方法步驟。
術語「例如」和其對應縮寫「e.g.」(無論是否斜體書寫)之使用意味所敘述的特定術語係本文之揭露內容之代表性實例和實施方式,其等非意欲限於所提及或引用的具體實例,除非另外具體指出。
本文中使用的技術和科學術語具有本案之發明所屬技術領域中具有通常知識者一般了解的意義,除非另外定義。本文中參照發明所屬技術領域中具有通常知識者已知的種種方法論和材料。
用於本文,術語「超氧化物歧化酶」(有時縮寫成SOD)意指一種酶,其催化超氧化物陰離子自由基(O 2-)歧化成分子氧和過氧化氫(H 2O 2)。超氧化物歧化酶具有酶分類(EC)編號1.15.1.1。超氧化物歧化酶係一個保護細胞對抗來自諸如於細胞的氧之代謝期間形成的O 2 -的活性含氧物(ROS)的傷害中的重要組份。超氧化物歧化酶因此起重要的抗氧化劑作用且在幾乎所有類型的細胞生物中存在。然而,尤其在諸如哺乳動物的複雜生物,超氧化物歧化酶之細胞水平隨著生物老化減少,使生物更易受來自活性含氧物的細胞傷害影響。
用於本文,術語「可溶性纖維」係指任何類型的水溶性膳食纖維。當食用時,可溶性纖維在生物之腸中吸收水以形成凝膠而幫助減緩脂質和碳水化合物之代謝。可溶性纖維亦係一種益菌生,其可由腸細菌發酵且幫助維持健康的腸微生物群系。
用於本文,術語「抗氧化劑」意指一種物質,其藉由完全或部分中和活性物種(諸如活性含氧物和活性含氮物)來顯著地減少活性物種之不良效應。抗氧化劑可被分類成「初級抗氧化劑」和「二級抗氧化劑」。初級抗氧化劑延遲或抑制氧化之起始步驟,而二級抗氧化劑藉由移除受質或藉由淬滅氧自由基減緩氧化。 1) 超氧化物歧化酶
複數個實施方式,本文揭露的組成物包含一以每mg的蛋白質的活性之單位測量的量的超氧化物歧化酶。對於酶活性,一單位(U)(以μmol/min表現)定義為於具體指出的條件下每分鐘催化一微莫耳的受質之轉化的酶之量。超氧化物歧化酶活性之單位可以藉由任何已知方法測量。例如,測定以單位計的超氧化物歧化酶活性之方法係於以下者敘述:McCord, J. M.和Fridovich, I., J. Biol. Chem.1969, 244:6049-6055;Weydert等人, 自然步驟準則( Nature Protocols) 2010, 5(1): 51–66;和https://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-assay-of-superoxide-dismutase.html中的技術步驟準則;其等各者之揭露內容皆以引用方式併入本文中。於複數個實施方式中,一超氧化物歧化酶活性之單位定義成於pH 7.8下於25°C下於3.0 ml反應體積下使用黃嘌呤和黃嘌呤氧化酶,於偶合系統中會抑制細胞色素c之還原反應之速率達50%的超氧化物歧化酶之量。
於複數個實施方式中,本文揭露的組成物中超氧化物歧化酶之量之濃度以該組成物中超氧化物歧化酶之單位之總量測量。於複數個實施方式中,該組成物包含約10單位至約200單位超氧化物歧化酶。於複數個實施方式中,該組成物包含包含約50單位至約150單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約70單位至約100單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約20單位至約190單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約30單位至約180單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約40單位至約170單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約50單位至約160單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約60單位至約150單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約70單位至約140單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約80單位至約130單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約90單位至約130單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約75單位至約95單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約80單位至約90單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約20、30、40、50、60、70、80、90、100、110、120、130、140、150、或160單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約84單位超氧化物歧化酶。
本文揭露的組成物中使用的超氧化物歧化酶可獲自任何該酶之來源。於複數個實施方式中,該超氧化物歧化酶係自甜瓜、牛肝、異營細菌、或海洋植物性浮游生物萃取。該超氧化物歧化酶亦可為任何類型的該酶。於複數個實施方式中,該超氧化物歧化酶係銅/鋅超氧化物歧化酶、鐵/錳超氧化物歧化酶、或鎳超氧化物歧化酶。
於複數個實施方式中,該超氧化物歧化酶係自植物萃取。於複數個實施方式中,該植物係水果、穀物、或塊莖。於複數個實施方式中,該植物係選自甜瓜、柑橘類水果、桃、梨、蘋果、或香蕉的水果。於複數個實施方式中,該植物係選自小麥、大麥、黑麥、小米、燕麥、斯卑爾脫小麥、布格麥(bulger)、高梁、和法羅麥(farro)的穀物。於複數個實施方式中,該植物係選自辣根、馬鈴薯、山藥、甘藷、木薯、或大理菊的塊莖。
於複數個實施方式中,該超氧化物歧化酶係自動物萃取。於複數個實施方式中,該動物係牛、豬、綿羊、或山羊。
於複數個實施方式中,該超氧化物歧化酶係自微生物萃取。於複數個實施方式中,該微生物係植物性浮游生物或細菌。於複數個實施方式中,該微生物係異營細菌,例如自其等之環境攝取其能量生產所需的糖的細菌。 2) 可溶性纖維
按需要調整超氧化物歧化酶對比可溶性纖維的比例,其藉由改變該組成物之一個組份或兩個組份之量。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:100至約1:1000。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:200至約1:800。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:300至約1:700。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:500至約1:700。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:650至1:675。
無意受限於理論,本發明之發明人已發現特定比率的可溶性纖維加上超氧化物歧化酶之存在協同性地允許改善穩定性和消化道(腸)中的吸收,如以下實施例中展示的。此改善的穩定性和吸收背後的一個機制係該可溶性纖維在消化道中形成凝膠且此所形成的凝膠捕捉並保護該超氧化物歧化酶同時亦允許其更容易透過腸壁吸收。本文之揭露內容之可溶性纖維和抗氧化劑調配物提供協同性功效,其在於該可溶性益菌生纖維在結腸中起對於細菌的肥料的作用,而多酚在結腸的實質部分中被吸收並經歷結腸微生物之廣泛的分解代謝。益菌生纖維之存在增強了結腸微生物相之作用,從而導致多酚在結腸中更有效的吸收。來自抗氧化劑補充劑的多酚之大部分最後在大腸中,於該處其等經歷微生物代謝成其等之活性代謝物,於該處其等可發揮抗氧化功效。該可溶性纖維調整腸微生物並最大化多酚代謝,產生許多抗氧化、抗發炎、和抗感染功效。
於複數個實施方式中,該可溶性纖維係益菌生纖維。用於本文,「益菌生纖維」係一種可溶性纖維,其在消化道中形成基質,該基質在腸中提供供微生物之增殖用的受質。
於本文揭露的組成物之複數個實施方式中,可使用種種類型的可溶性纖維,包括兩種、三種、四種、五種、六種、或更多種不同類型的可溶性纖維之混合物。於複數個實施方式中,該可溶性纖維係水溶性多醣。於複數個實施方式中,該可溶性纖維係自玉米、小麥、大麥、黑麥、豆、蘋果、梨、桃、柑橘類水果、漿果、豌豆、米糠、或燕麥分離。於複數個實施方式中,該可溶性纖維選自可溶性玉米纖維、菊糖、糊精、瓜爾膠、寡多醣、半乳多糖 果-寡糖、乳果糖、抗消化澱粉、木-寡糖、和異麥芽-寡糖。於複數個實施方式中,該可溶性纖維係可溶性玉米纖維。於複數個實施方式中,該可溶性纖維係抗消化麥芽糊精。於複數個實施方式中,該可溶性纖維係由Archer Daniels Midland Company和Matsutani Chemical Industry Co., Ltd販售的Fibersol-2®。於複數個實施方式中,該可溶性纖維Fibersol-2®之替代類型,諸如Fibersol-2AG、Fibersol-LQ、Fibersol-2L、Fibersol-DLQ、或非GMO Fibersol。
於一些實施方式中,該可溶性纖維係基於玉米的消化抗性麥芽糊精(Fibersol-2)益菌生纖維。 3) 液體組成物
於複數個實施方式中,本文之揭露內容提供一種液體組成物,其包含超氧化物歧化酶、可溶性纖維、和水。於複數個實施方式中,本文之揭露內容提供一種液體組成物,其包含:a)約0.03單位/mL至約0.5單位/mL超氧化物歧化酶;b)約1.3 mg/mL至約23 mg/mL可溶性纖維;和c)水。
於複數個實施方式中,該液體組成物包含約0.05單位/mL至約0.4單位/mL超氧化物歧化酶。於複數個實施方式中,該液體組成物包含約0.2單位/mL至約0.3單位/mL超氧化物歧化酶。於複數個實施方式中,該液體組成物包含約0.1單位/mL至約0.4單位/mL超氧化物歧化酶。於複數個實施方式中,該液體組成物包含約0.15單位/mL至約0.35單位/mL超氧化物歧化酶。於複數個實施方式中,該液體組成物包含約0.05、0.1、0.15、0.2、0.25、0.3、0.35、或0.4單位/mL超氧化物歧化酶。於複數個實施方式中,該液體組成物包含約0.20、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、或0.30單位/mL超氧化物歧化酶。
於複數個實施方式中,該液體組成物包含約2.7 mg/mL至約12 mg/mL可溶性纖維。於複數個實施方式中,該液體組成物包含約5.55 mg/mL至約11.11 mg/mL可溶性纖維。於複數個實施方式中,該液體組成物包含約2 mg/mL至約15 mg/mL可溶性纖維。於複數個實施方式中,該液體組成物包含約4 mg/mL至約12 mg/mL可溶性纖維。於複數個實施方式中,該液體組成物包含約5 mg/mL至約12 mg/mL可溶性纖維。於複數個實施方式中,該液體組成物包含約6 mg/mL至約12 mg/mL可溶性纖維。於複數個實施方式中,該液體組成物包含約7 mg/mL至約12 mg/mL可溶性纖維。於複數個實施方式中,該液體組成物包含約8 mg/mL至約12 mg/mL可溶性纖維。於複數個實施方式中,該液體組成物包含約9 mg/mL至約12 mg/mL可溶性纖維。於複數個實施方式中,該液體組成物包含約10 mg/mL至約12 mg/mL可溶性纖維。於複數個實施方式中,該液體組成物包含約2.78、5.56、8.33、11.11、或13.89 mg/mL可溶性纖維。
於複數個實施方式中,該液體組成物包含本文中揭露的超氧化物歧化酶之任何者。於複數個實施方式中,該超氧化物歧化酶係自甜瓜、牛肝、異營細菌、或海洋植物性浮游生物萃取。於複數個實施方式中,該超氧化物歧化酶係銅/鋅超氧化物歧化酶、鐵/錳超氧化物歧化酶、或鎳超氧化物歧化酶。
於該液體組成物之複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:100至約1:1000。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:200至約1:800。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:300至約1:700。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:500至約1:700。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:650至1:675。
於複數個實施方式中,該液體組成物包含本文中揭露的可溶性纖維之任何者。於複數個實施方式中,該可溶性纖維係益菌生纖維。於複數個實施方式中,該可溶性纖維係水溶性多醣。於複數個實施方式中,該可溶性纖維選自可溶性玉米纖維、菊糖、糊精、瓜爾膠、寡多醣、半乳多糖 果-寡糖、乳果糖、抗消化澱粉、木-寡糖、和異麥芽-寡糖。於複數個實施方式中,該可溶性纖維係可溶性玉米纖維。於複數個實施方式中,該可溶性玉米纖維係抗消化麥芽糊精。
於複數個實施方式中,該液體組成物可進一步包含另外的成分,包括甜味劑、pH調整劑、矯味劑、和其他劑,包括此等劑之組合。
於複數個實施方式中,該液體組成物包含甜味劑。於複數個實施方式中,該液體組成物包含甜味劑之組合,其實例於以下提供。
於複數個實施方式中,該甜味劑係單醣。於複數個實施方式中,該單醣係核糖、葡萄糖、果糖、蔗糖、乳糖、或其等之組合。於複數個實施方式中,該單醣係核糖。於複數個實施方式中,該單醣係d-核糖。
於複數個實施方式中,該液體組成物包含約0.1 mg/mL至約1.5 mg/mL的單醣。於複數個實施方式中,該液體組成物包含約0.2 mg/mL至約1.3 mg/mL的單醣。於複數個實施方式中,該液體組成物包含約0.3 mg/mL至約1.0 mg/mL的單醣。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.8 mg/mL的單醣。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.85 mg/mL的單醣。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.6 mg/mL的單醣。於複數個實施方式中,該液體組成物包含約0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、或0.85 mg/mL的單醣。
於複數個實施方式中,該液體組成物包含約0.1 mg/mL至約1.5 mg/mL的d-核糖。於複數個實施方式中,該液體組成物包含約0.2 mg/mL至約1.3 mg/mL的d-核糖。於複數個實施方式中,該液體組成物包含約0.3 mg/mL至約1.0 mg/mL的d-核糖。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.8 mg/mL的d-核糖。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.85 mg/mL的d-核糖。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.6 mg/mL的d-核糖。於複數個實施方式中,該液體組成物包含約0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、或0.85 mg/mL的d-核糖。
於該液體組成物之複數個實施方式中,該甜味劑包含糖醇。於複數個實施方式中,該糖醇係赤藻糖醇、甘露糖醇、山梨糖醇、木糖醇、乳糖醇(lactitol)、異麥芽酮糖醇(isomalt)、或其等之組合。於複數個實施方式中,該糖醇係赤藻糖醇。
於複數個實施方式中,該液體組成物包含約1.3 mg/mL至約9.0 mg/mL的糖醇。於複數個實施方式中,該液體組成物包含約2.0 mg/mL至約8.0 mg/mL的糖醇。於複數個實施方式中,該液體組成物包含約3.9 mg/mL至約7.0 mg/mL的糖醇。於複數個實施方式中,該液體組成物包含2.7 mg/mL至約5.6 mg/mL的糖醇。於複數個實施方式中,該液體組成物包含約2.0、2.5、3.0、3.5、4.0、4.15、4.5、5.0、5.5、6.0、6.5、7.0、7.5、或8.0 mg/mL的糖醇。
於複數個實施方式中,該液體組成物包含約1.3 mg/mL至約9.0 mg/mL的赤藻糖醇。於複數個實施方式中,該液體組成物包含約2.0 mg/mL至約8.0 mg/mL的赤藻糖醇。於複數個實施方式中,該液體組成物包含約3.9 mg/mL至約7.0 mg/mL的赤藻糖醇。於複數個實施方式中,該液體組成物包含2.7 mg/mL至約5.6 mg/mL的赤藻糖醇。於複數個實施方式中,該液體組成物包含約2.0、2.5、3.0、3.5、4.0、4.15、4.5、5.0、5.5、6.0、6.5、7.0、7.5或8.0 mg/mL的赤藻糖醇。
於複數個實施方式中,該甜味劑係甜菊醣苷。於複數個實施方式中,該甜菊醣苷係甜菊糖雙苷(Rebaudioside)A、甜菊苷、甜菊糖雙苷C、杜克苷(Dulcoside)A、甜菊糖雙苷B、甜菊糖雙苷D、甜菊糖雙苷E、甜菊醇二苷(steviolbioside)、或其等之組合。
於複數個實施方式中,該液體組成物包含約0.05 mg/mL至約0.75 mg/mL的甜菊醣苷。於複數個實施方式中,該液體組成物包含約0.2 mg/mL至約0.35 mg/mL甜菊醣苷。於複數個實施方式中,該液體組成物包含約0.1 mg/mL至約0.5 mg/mL甜菊醣苷。於複數個實施方式中,該液體組成物包含約0.2 mg/mL至約0.3 mg/mL甜菊醣苷。於複數個實施方式中,該液體組成物包含約0.10、0.15、0.20、0.25、0.27、0.30、0.35、0.40、0.45、或0.50 mg/mL甜菊醣苷。
於複數個實施方式中,該液體組成物包含約0.05 mg/mL至約0.75 mg/mL的甜菊糖雙苷A。於複數個實施方式中,該液體組成物包含約0.2 mg/mL至約0.35 mg/mL甜菊糖雙苷A。於複數個實施方式中,該液體組成物包含約0.1 mg/mL至約0.5 mg/mL甜菊糖雙苷A。於複數個實施方式中,該液體組成物包含約0.2 mg/mL至約0.3 mg/mL甜菊糖雙苷A。於複數個實施方式中,該液體組成物包含約0.10、0.15、0.20、0.25、0.27、0.30、0.35、0.40、0.45、或0.50 mg/mL甜菊糖雙苷A。
於複數個實施方式中,該液體組成物進一步包含pH調整劑。於複數個實施方式中,該pH調整劑係任何可用以改變該液體組成物之pH的食物安全劑。於複數個實施方式中,該pH調整劑係檸檬酸、醋酸、鹽酸、乳酸、蘋果酸、磷酸、酒石酸、或其等之組合。
於複數個實施方式中,該液體組成物包含約0.1 mg/mL至約1.5 mg/mL的pH調整劑。於複數個實施方式中,該液體組成物包含約0.2 mg/mL至約1.3 mg/mL的pH調整劑。於複數個實施方式中,該液體組成物包含約0.3 mg/mL至約1.0 mg/mL的pH調整劑。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.8 mg/mL的pH調整劑。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.85 mg/mL的pH調整劑。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.6 mg/mL的pH調整劑。於複數個實施方式中,該液體組成物包含約0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、或0.85 mg/mL的pH調整劑。
於複數個實施方式中,該液體組成物包含約0.1 mg/mL至約1.5 mg/mL的檸檬酸。於複數個實施方式中,該液體組成物包含約0.2 mg/mL至約1.3 mg/mL的檸檬酸。於複數個實施方式中,該液體組成物包含約0.3 mg/mL至約1.0 mg/mL的檸檬酸。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.8 mg/mL的檸檬酸。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.85 mg/mL的檸檬酸。於複數個實施方式中,該液體組成物包含約0.4 mg/mL至約0.6 mg/mL的檸檬酸。於複數個實施方式中,該液體組成物包含約0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、或0.85 mg/mL的檸檬酸。
於複數個實施方式中,該液體組成物包含矯味劑。於複數個實施方式中,該矯味劑係天然矯味劑。於複數個實施方式中,該矯味劑係人工矯味劑。於複數個實施方式中,該矯味劑若果汁矯味劑。於複數個實施方式中,該矯味劑係石榴、紅葡萄、藍莓、黑歐洲甜櫻桃、歐洲酸櫻桃、枸杞子、阿薩伊果(acai berry)、黑莓、樹莓、草莓、醋栗、蔓越莓、柑橘、葡萄柚、西瓜、甜菜、蘋果、檸檬、萊姆、荔枝、鳳梨、乾果李、芒果、或其等之組合。於複數個實施方式中,該液體組成物包含可樂矯味劑。
於複數個實施方式中,該液體組成物係調配在飲料中。於複數個實施方式中,該液體組成物係調配成補水飲料(hydration beverage)、蛋白質搖搖飲(protein shake)、果汁、茶、咖啡、乳、克弗酒、冰淇淋、優格、思慕雪(smoothie)、肉汁、或湯的形式。
於複數個實施方式中,該液體組成物之體積約15 mL至約1500 mL。於複數個實施方式中,該液體組成物之體積約30 mL至約1200 mL。於複數個實施方式中,該液體組成物之體積約50 mL至約1000 mL。於複數個實施方式中,該液體組成物之體積約100 mL至約500 mL。於複數個實施方式中,該液體組成物之體積約200 mL至約400 mL。於複數個實施方式中,該液體組成物之體積約200 mL至約1000 mL。於複數個實施方式中,該液體組成物之體積約300 mL至約1000 mL。於複數個實施方式中,該液體組成物之體積約50、100、150、200、250、300、350、400、450、500、550、600、650、700、750、800、850、900、950、或1000 mL。
於複數個實施方式中,該液體組成物包裝在瓶子中。於複數個實施方式中,該瓶子係玻璃瓶。於複數個實施方式中,該瓶子係塑膠瓶。於複數個實施方式中,該液體組成物包裝在罐子中。於複數個實施方式中,該液體組成物包裝在飲料盒(drink box)中。
於複數個實施方式中,液體組成物之一個具體實例係於表1中提供: 11.     SOD [甜瓜萃取粉末,14,000單位/g]---------- 6.0 mg [84酶單位] 2.     Fibersol-2--------------------------------------------4000.0 mg [i可減至3或2 g] 3.     D-核糖-----------------------------------------------200.0 mg 4.     赤藻糖醇--------------------------------------------1494.0 mg 5.     檸檬酸-----------------------------------------------200.0 mg 6.     甜菊糖雙苷A---------------------------------------100.0 mg 7.     矯味劑-----------------------------------------------100.0 mg 8.     水qs--------------------------------------------------360 ml。 4) 粉末組成物
於本文揭露的組成物之一些實施方式中,該組成物呈粉末形式。於複數個其中該組成物呈粉末形式的實施方式中,其可以乾粉形式食用或加至飲料或食物。於複數個實施方式中,食用前將該粉末混入水、補水飲料、蛋白質搖搖飲、果汁、茶、咖啡、乳、克弗酒、冰淇淋、優格、思慕雪、肉汁、或湯中。
於複數個實施方式中,該粉末組成物包含高濃度的超氧化物歧化酶,以重量計例如大於0.1 ppm、大於0.5 ppm、大於1 ppm、大於2 ppm、大於5 ppm、大於10 ppm、大於20 ppm、大於50 ppm、大於100 ppm、大於200 ppm、大於300 ppm、大於400 ppm、或大於500 ppm。於複數個實施方式中,該粉末組成物包含以重量計約0.1 ppm至約10 ppm超氧化物歧化酶。於複數個實施方式中,該粉末組成物包含以重量計約0.5 ppm至約5 ppm超氧化物歧化酶。於複數個實施方式中,該粉末組成物包含以重量計約0.7 ppm至約2 ppm超氧化物歧化酶。於複數個實施方式中,該粉末組成物包含以重量計約0.8 ppm至約1.2 ppm超氧化物歧化酶。於複數個實施方式中,該粉末組成物包含以重量計約0.1、0.25、0.5、0.75、1.0、1.1、1.2、1.25、1.3、1.4、1.5、1.6、1.7、1.75、1.8、1.9、2.0、2.25、2.5、2.75、3.0、3.25、3.5、3.75、4.0、4.25、4.5、4.75、5.0、5.25、5.5、5.75、6.0、6.25、6.5、6.75、7.0、7.25、7.5、7.75、8.0、8.25、8.5、8.75、9.0、9.25、9.5、9.75、或10.0 ppm超氧化物歧化酶。
於複數個實施方式中,該粉末組成物包含以重量計約5 ppm至約15 ppm超氧化物歧化酶。於複數個實施方式中,該粉末組成物包含以重量計約7.5 ppm至約12.5 ppm超氧化物歧化酶。於複數個實施方式中,該粉末組成物包含以重量計約8 ppm至約11 ppm超氧化物歧化酶。於複數個實施方式中,該粉末組成物包含以重量計約9 ppm至約11 ppm超氧化物歧化酶。於複數個實施方式中,該粉末組成物包含以重量計約5、6、7、8、9、10、11、12、13、14、或15 ppm超氧化物歧化酶。
於複數個實施方式中,該粉末組成物包含以重量計約1%至約90%可溶性纖維。於複數個實施方式中,該粉末組成物包含以重量計約1%至約50%可溶性纖維。於複數個實施方式中,該粉末組成物包含以重量計約5%至約25%可溶性纖維。於複數個實施方式中,該粉末組成物包含以重量計約10%至約20%可溶性纖維。於複數個實施方式中,該粉末組成物包含以重量計約12%至約14%可溶性纖維。於複數個實施方式中,該威力組成物包含以重量計約1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、或30%可溶性纖維。
於複數個實施方式中,該粉末組成物包含以重量計約50%至約75%可溶性纖維。於複數個實施方式中,該粉末組成物包含以重量計約50%至約70%可溶性纖維。於複數個實施方式中,該粉末組成物包含以重量計約60%至約70%可溶性纖維。於複數個實施方式中,該粉末組成物包含以重量計約50%至約80%可溶性纖維。於複數個實施方式中,該威力組成物包含以重量計約50%、55%、60%、65%、66%、67%、70%、75%、80%、85%、或90%可溶性纖維。
於複數個實施方式中,該粉末組成物包含甜味劑。於複數個實施方式中,該粉末組成物包含甜味劑之組合,其實例於以下提供。
於複數個實施方式中,該甜味劑係單醣。於複數個實施方式中,該單醣係核糖、葡萄糖、果糖、蔗糖、乳糖、或其等之組合。於複數個實施方式中,該單醣係核糖。於複數個實施方式中,該單醣係d-核糖。
於複數個實施方式中,該粉末組成物包含以重量計約1%至約10%的單醣。於複數個實施方式中,該粉末組成物包含以重量計約2%至約8%的單醣。於複數個實施方式中,該粉末組成物包含以重量計約2%至約5%的單醣。於複數個實施方式中,該粉末組成物包含以重量計約1%、2%、3%、4%、5%、6%、7%、8%、9%、或10%的單醣。
於複數個實施方式中,該粉末組成物包含以重量計約1%至約10%的d-核糖。於複數個實施方式中,該粉末組成物包含以重量計約2%至約8%的d-核糖。於複數個實施方式中,該粉末組成物包含以重量計約2%至約5%的d-核糖。於複數個實施方式中,該粉末組成物包含以重量計約1%、2%、3%、4%、5%、6%、7%、8%、9%、或10%的d-核糖。
於該粉末組成物之複數個實施方式中,該甜味劑包含糖醇。於複數個實施方式中,該糖醇係赤藻糖醇、甘露糖醇、山梨糖醇、木糖醇、乳糖醇、異麥芽酮糖醇、或其等之組合。於複數個實施方式中,該糖醇係赤藻糖醇。
於複數個實施方式中,該粉末組成物包含以重量計約10%至約50%的赤藻糖醇。於複數個實施方式中,該粉末組成物包含以重量計約15%至約35%的赤藻糖醇。於複數個實施方式中,該粉末組成物包含以重量計約20%至約30%的赤藻糖醇。於複數個實施方式中,該粉末組成物包含以重量計約15%、20%、25、30%、35%、40%、45%、或50%的赤藻糖醇。
於複數個實施方式中,該甜味劑係甜菊醣苷。於複數個實施方式中,該甜菊醣苷係甜菊糖雙苷A、甜菊苷、甜菊糖雙苷C、杜克苷A、甜菊糖雙苷B、甜菊糖雙苷D、甜菊糖雙苷E、甜菊醇二苷、或其等之組合。
於複數個實施方式中,該粉末組成物包含以重量計約0.5%至約5%的甜菊醣苷。於複數個實施方式中,該粉末組成物包含以重量計約1%至約4%的甜菊醣苷。於複數個實施方式中,該粉末組成物包含以重量計約1%至約2.5%的甜菊醣苷。於複數個實施方式中,該粉末組成物包含以重量計約1%、1.5%、1.6% 2%、2.5%、3%、3.5%、或4%的甜菊醣苷。
於複數個實施方式中,該粉末組成物包含以重量計約0.5%至約5%的甜菊糖雙苷A。於複數個實施方式中,該粉末組成物包含以重量計約1%至約4%的甜菊糖雙苷A。於複數個實施方式中,該粉末組成物包含以重量計約1%至約2.5%的甜菊糖雙苷A。於複數個實施方式中,該粉末組成物包含以重量計約1%、1.5%、1.6% 2%、2.5%、3%、3.5%、或4%的甜菊糖雙苷A。
於複數個實施方式中,該液體組成物進一步包含pH調整劑。於複數個實施方式中,該pH調整劑係任何可用以改變該液體組成物之pH的食物安全劑。於複數個實施方式中,該pH調整劑係檸檬酸、醋酸、鹽酸、乳酸、蘋果酸、磷酸、酒石酸、或其等之組合。
於複數個實施方式中,該粉末組成物包含以重量計約1%至約10%的pH調整劑。於複數個實施方式中,該粉末組成物包含以重量計約2%至約8%的pH調整劑。於複數個實施方式中,該粉末組成物包含以重量計約2%至約5%的pH調整劑。於複數個實施方式中,該粉末組成物包含以重量計約1%、2%、3%、4%、5%、6%、7%、8%、9%、或10%的pH調整劑。
於複數個實施方式中,該粉末組成物包含以重量計約1%至約10%的檸檬酸。於複數個實施方式中,該粉末組成物包含以重量計約2%至約8%的檸檬酸。於複數個實施方式中,該粉末組成物包含以重量計約2%至約5%的檸檬酸。於複數個實施方式中,該粉末組成物包含以重量計約1%、2%、3%、4%、5%、6%、7%、8%、9%、或10%的檸檬酸。
於複數個實施方式中,粉末組成物之一個具體實例係於表2中提供: 2總量:6克。 1.     SOD [甜瓜萃取粉末,14,000單位/g]----------6.0 mg [84酶單位] 2.     Fibersol-2--------------------------------------------4000.0 mg 3.     D-核糖-----------------------------------------------200.0 mg 4.     赤藻糖醇[賦形劑]---------------------------------1494.0 mg 5.     檸檬酸[賦形劑]------------------------------------200 .0 mg 6.     甜味劑[甜菊糖雙苷A],天然甜菊-------------100.0 mg 5) 凝膠組成物
於本文揭露的組成物之複數個實施方式中,該組成物呈凝膠形式。於複數個其中該組成物呈凝膠形式的實施方式中,其可以該形式以直接食用。於其他實施方式中,可將該凝膠加至飲料或食物。於複數個實施方式中,食用前將該凝膠混入水、補水飲料、蛋白質搖搖飲、果汁、茶、咖啡、乳、克弗酒、冰淇淋、優格、思慕雪、肉汁、或湯中。
於複數個實施方式中,該凝膠組成物包含約0.005 mg/mL至約5.0 mg/mL超氧化物歧化酶。於複數個實施方式中,該凝膠組成物包含約0.01 mg/mL至約2.5 mg/mL超氧化物歧化酶。於複數個實施方式中,該凝膠組成物包含約0.05 mg/mL至約1.0 mg/mL超氧化物歧化酶。於複數個實施方式中,該凝膠組成物包含約0.1 mg/mL至約0.5 mg/mL超氧化物歧化酶。於複數個實施方式中,該凝膠組成物包含約0.005、0.01、0.05、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、或3.0 mg/mL超氧化物歧化酶。
於複數個實施方式中,該凝膠組成物包含約50 mg/mL至約1000 mg/mL可溶性纖維。於複數個實施方式中,該凝膠組成物包含約70 mg/mL至約500 mg/mL可溶性纖維。於複數個實施方式中,該凝膠組成物包含約90 mg/mL至約250 mg/mL可溶性纖維。於複數個實施方式中,該凝膠組成物包含約100 mg/mL至約200 mg/mL可溶性纖維。於複數個實施方式中,該凝膠組成物包含約50、75、100、110、120、125、130、133、135、140、150、160、170、175、180、190、200、225、250、275、300、325、350、375、400、425、450、475、或500 mg/mL可溶性纖維。
於本文揭露的組成物之複數個實施方式中,該包含超氧化物歧化酶和可溶性纖維的組成物亦包含果汁。該果汁可向該組成物提供另外的抗氧化劑、可溶性纖維、不可溶性纖維、維生素、和營養素。於複數個實施方式中,本文中揭露的凝膠組成物包含果汁。
於複數個實施方式中,該果汁係石榴汁、紅葡萄汁、藍莓汁、黑歐洲甜櫻桃汁、歐洲酸櫻桃汁、枸杞子汁、阿薩伊果汁、黑莓汁、樹莓汁、草莓汁、醋栗汁、蔓越莓汁、柑橘汁、葡萄柚汁、西瓜汁、甜菜汁、蘋果汁、檸檬汁、萊姆汁、荔枝汁、鳳梨汁、乾果李汁、或其等之組合。於複數個實施方式中,該組成物包含兩種、三種 四種、五種、或六種選自以下者的果汁:石榴汁、紅葡萄汁、藍莓汁、黑歐洲甜櫻桃汁、歐洲酸櫻桃汁、枸杞子汁、阿薩伊果汁、黑莓汁、樹莓汁、草莓汁、醋栗汁、蔓越莓汁、柑橘汁、葡萄柚汁、西瓜汁、甜菜汁、蘋果汁、檸檬汁、萊姆汁、荔枝汁、鳳梨汁、和乾果李汁。
於複數個實施方式中,該果汁可經濃縮,例如原始果汁中的水之一些被移除。於複數個實施方式中,該果汁係濃縮石榴汁、紅葡萄汁、藍莓汁、黑歐洲甜櫻桃汁、歐洲酸櫻桃汁、枸杞子汁、阿薩伊果汁、黑莓汁、樹莓汁、草莓汁、醋栗汁、蔓越莓汁、柑橘汁、葡萄柚汁、西瓜汁、甜菜汁、蘋果汁、檸檬汁、萊姆汁、荔枝汁、鳳梨汁、乾果李汁、或其等之組合。於複數個實施方式中,該組成物包含兩種、三種 四種、五種、或六種選自以下者的濃縮果汁:濃縮石榴汁、濃縮紅葡萄汁、濃縮藍莓汁、濃縮黑歐洲甜櫻桃汁、濃縮歐洲酸櫻桃汁、濃縮枸杞子汁、濃縮阿薩伊果汁、濃縮黑莓汁、濃縮樹莓汁、濃縮草莓汁、濃縮醋栗汁、濃縮蔓越莓汁、濃縮柑橘汁、濃縮葡萄柚汁、濃縮西瓜汁、濃縮甜菜汁、濃縮蘋果汁、濃縮檸檬汁、濃縮萊姆汁、濃縮荔枝汁、濃縮鳳梨汁、濃縮乾果李汁。於複數個實施方式中,該濃縮果汁中約60%至約97%的該果汁之水被移除。於複數個實施方式中,該濃縮果汁中約85%至約95%的該果汁之水被移除。於複數個實施方式中,該濃縮果汁中約60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、或99%的該果汁之水被移除。水可使用任何用於濃縮果汁的技術領域中已知的方法自該果汁移除。
於複數個實施方式中,該組成物包含約5 mg/mL至約200 mg/mL的該濃縮果汁。於複數個實施方式中,該組成物包含約75 mg/mL至約150 mg/mL濃縮石榴汁。於複數個實施方式中,該組成物包含約75 mg/mL至約150 mg/mL濃縮紅葡萄汁。於複數個實施方式中,該組成物包含約25 mg/mL至約100 mg/mL濃縮藍莓汁。於複數個實施方式中,該組成物包含約20 mg/mL至約80 mg/mL濃縮黑歐洲甜櫻桃汁。於複數個實施方式中,該組成物包含約20 mg/mL至約80 mg/mL濃縮歐洲酸櫻桃汁。於複數個實施方式中,該組成物包含約2 mg/mL至約20 mg/mL濃縮枸杞子汁。於複數個實施方式中,該組成物包含約2 mg/mL至約20 mg/mL濃縮阿薩伊果汁。
於本文中揭露的凝膠組成物之一些實施方式中,該包含超氧化物歧化酶和可溶性纖維的組成物亦包含蘆薈汁。該蘆薈汁可向該組成物提供另外的抗氧化劑、可溶性纖維、不可溶性纖維、維生素、和營養素。
於一些實施方式中,該蘆薈汁係濃縮蘆薈汁。於複數個實施方式中,該蘆薈汁可經濃縮,例如其水之一些從自蘆薈植物萃取的蘆薈汁移除。於複數個實施方式中,該濃縮蘆薈汁中約60%至約97%的該蘆薈汁之水被移除。於複數個實施方式中,該濃縮蘆薈汁中約60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、或99%的該蘆薈汁之水被移除。於複數個實施方式中,該組成物包含約2 mg/mL至約20 mg/mL濃縮蘆薈汁。
於本文中揭露的凝膠組成物之一些實施方式中,該包含超氧化物歧化酶和可溶性纖維的組成物亦包含綠茶。該綠茶可向該組成物提供另外的抗氧化劑、維生素、和營養素。
於複數個實施方式中,該綠茶係濃縮綠茶。於複數個實施方式中,該濃縮綠茶係來自綠茶葉或綠茶粉的綠茶萃取物。於複數個實施方式中,該綠茶以粉末形式加至該組成物。於複數個實施方式中,該組成物包含約2 mg/mL至約20 mg/mL濃縮綠茶。
於本文中揭露的凝膠組成物之一些實施方式中,該包含超氧化物歧化酶和可溶性纖維的組成物亦包含白藜蘆醇。該白藜蘆醇可向該組成物提供另外的抗氧化劑。於一些實施方式中,該組成物包含約0.5 mg/mL至約6 mg/mL白藜蘆醇。
於複數個實施方式中,一具體凝膠組成物係於表3中提供 3
SI. # 成分 QTY ,以 mg
1 可溶性玉米纖維(Fibersol-2) 4000
2 石榴汁濃縮物 4000
3 康考特葡萄汁濃縮物 4000
4 藍莓汁濃縮物 2000
5 黑歐洲甜櫻桃汁濃縮物 1450
6 歐洲酸櫻桃汁濃縮物 1450
7 枸杞子肉 294
8 阿薩伊濃縮果汁 200
9 蘆薈汁 200
10 綠茶 200
11 白藜蘆醇 80
12 Extramel SOD(14000單位/g) 6
13 CMC 60.5
14 黃原膠 60.5
15 QS水(30 ml)   
6) 益生菌組成物
於複數個實施方式中,本文中揭露者係包含超氧化物歧化酶、可溶性纖維、和益生菌的組成物。於複數個實施方式中,該益生菌組成物包含:a)約10單位至約200單位超氧化物歧化酶;b)約500 mg至約8000 mg可溶性纖維;和c)益生菌。
於複數個實施方式中,本文中揭露的益生菌組成物中超氧化物歧化酶之量之濃度以該組成物中超氧化物歧化酶之單位之總量測量。於複數個實施方式中,該組成物包含約10單位至約200單位超氧化物歧化酶。於複數個實施方式中,該組成物包含包含約50單位至約150單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約70單位至約100單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約20單位至約190單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約30單位至約180單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約40單位至約170單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約50單位至約160單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約60單位至約150單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約70單位至約140單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約80單位至約130單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約90單位至約130單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約75單位至約95單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約80單位至約90單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約20、30、40、50、60、70、80、90、100、110、120、130、140、150、或160單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約84單位超氧化物歧化酶。
於複數個實施方式中,該益生菌組成物包含約1000 mg至約5000 mg可溶性纖維。於複數個實施方式中,該益生菌組成物包含約2000 mg至約4000 mg可溶性纖維。於複數個實施方式中,該益生菌組成物包含約1000 mg至約10000 mg可溶性纖維。於複數個實施方式中,該益生菌組成物包含約2000 mg至約9000 mg可溶性纖維。於複數個實施方式中,該益生菌組成物包含約3000 mg至約8000 mg可溶性纖維。於複數個實施方式中,該益生菌組成物包含約2000 mg至約4000 mg可溶性纖維。於複數個實施方式中,該益生菌組成物包含約500、1000、1500、2000、2500、3000、3500、4000 4500或5000 mg可溶性纖維。
於複數個實施方式中,該益生菌組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:100至約1:1000。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:200至約1:800。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:300至約1:700。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:500至約1:700。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:650至1:675。
該益生菌組成物可包含一或多種如本文中揭露的超氧化物歧化酶。於複數個實施方式中,該超氧化物歧化酶係自甜瓜、牛肝、異營細菌、或海洋植物性浮游生物萃取。於複數個實施方式中,該超氧化物歧化酶係銅/鋅超氧化物歧化酶、鐵/錳超氧化物歧化酶、或鎳超氧化物歧化酶。
該益生菌組成物可包含一或多種如本文中揭露的可溶性纖維。於複數個實施方式中,該可溶性纖維係水溶性多醣。於複數個實施方式中,該可溶性纖維選自可溶性玉米纖維、菊糖、糊精、瓜爾膠、寡多醣、半乳多糖 果-寡糖、乳果糖、抗消化澱粉、木-寡糖、和異麥芽-寡糖。於複數個實施方式中,該可溶性纖維係可溶性玉米纖維。於複數個實施方式中,該可溶性玉米纖維係抗消化麥芽糊精。
於複數個實施方式中,該益生菌組成物之益生菌包含一或多種有益微生物。於複數個實施方式中,該益生菌包含雙岐桿菌屬之細菌。於複數個實施方式中,該益生菌包含乳酸桿菌屬之細菌。於複數個實施方式中,該益生菌包含厚壁菌門乳酸桿菌屬、放線菌門雙歧桿菌科、或其等之組合。
於複數個實施方式中,該益生菌組成物呈凝膠形式。適用於補充益生菌以製造益生菌組成物的凝膠之實例係於本文中揭露。
於複數個實施方式中,該益生菌組成物呈粉末形式。適用於補充益生菌以製造益生菌組成物的粉末之實例係於本文中揭露。
於複數個實施方式中,該益生菌組成物呈液體形式。適用於補充益生菌以製造益生菌組成物的液體之實例係於本文中揭露。 7) 賦形劑/調配物
於複數個實施方式中,本文揭露的組成物可與一或多種賦形劑組合。於複數個實施方式中,該賦形劑係膠凝劑、增稠劑、載劑、緩衝劑、或填充劑。於複數個實施方式中,可將本文揭露的組成物調配成飲料或食物。於複數個實施方式中,將該等組成物調配成果汁、補水飲料(例如運動飲料)、蛋白質搖搖飲、茶、咖啡、乳、克弗酒、冰淇淋、優格、思慕雪、肉汁、或湯。
於複數個實施方式中,該等組成物包含增稠劑/膠凝劑羧甲基纖維素。於複數個實施方式中,組成物係包含超氧化物歧化酶、可溶性纖維、和羧甲基纖維素的凝膠。於複數個實施方式中,該組成物包含約0.5至約5.0 mg/mL羧甲基纖維素。
於複數個實施方式中,該等組成物包含增稠劑/膠凝劑黃原膠。於複數個實施方式中,組成物係包含超氧化物歧化酶、可溶性纖維、和黃原膠的凝膠。於複數個實施方式中,該組成物包含約0.5至約5.0 mg/mL黃原膠。 8) 方法
本文之揭露內容亦針對一種增加一個體中的T細胞活化之方法,其包含向該個體口服投予一組成物,該組成物包含:a)約10單位至約200單位超氧化物歧化酶;和b)約500 mg至約8000 mg可溶性纖維;其中,於投予該組成物後,該個體中T細胞之活化增加。
於複數個實施方式中,T細胞之活化係藉由測量T細胞活化之生物標記來測量,如於以下實施例中揭露的。
於複數個實施方式中,該組成物係組合抗癌劑投予。於複數個實施方式中,該組成物係組合抗病毒劑投予。
於該增加T細胞活化的方法之複數個實施方式中,該方法係用於預防或治療病毒感染,包括以下者之感染:流行性感冒A、流行性感冒B、流行性感冒C、流行性感冒D、冠狀病毒,包括SARS(嚴重急性呼吸道症候群)、SARS-CoV-2(其造成COVID-19)、MERS(中東呼吸道症候群)、HIV、伊波拉、鼻病毒、和呼吸道融合細胞病毒。
本文之揭露內容亦提供一種增加一個體之消化道中的短鏈脂肪酸(SCFA)之製造之方法,其包含向該個體口服投予一組成物,該組成物包含:a)約10單位至約200單位超氧化物歧化酶;和b)約500 mg至約8000 mg可溶性纖維;其中,於投予該組成物後,該個體之消化道中的SCFA之製造增加。
於複數個實施方式中,製造增加的SCFA係醋酸、丙酸、丁酸、或乳酸SCFA、或其等之組合。於複數個實施方式中,該SCFA係以相較於增加前的醋酸、丙酸、丁酸、和乳酸SCFA之比例提供大約相同的醋酸、丙酸、丁酸、和乳酸SCFA之比例的方式增加。
本文之揭露內容亦提供一種增加一個體之消化道中的雙岐桿菌屬或乳酸桿菌屬之細菌之量之方法,其包含向該個體口服投予一組成物,該組成物包含:a)約10單位至約200單位超氧化物歧化酶;和b)約500 mg至約8000 mg可溶性纖維;其中,於投予該組成物後,該個體之消化道中的雙岐桿菌屬、乳酸桿菌屬、或其等之組合之細菌之量增加。
於該方法之實施方式中,該雙岐桿菌屬之細菌包含物種放線菌門雙歧桿菌科。於複數個實施方式中,該乳酸桿菌屬之細菌包含物種厚壁菌門乳酸桿菌屬。
於以上方法之複數個實施方式中,所使用的該組成物包含約10單位至約200單位超氧化物歧化酶。於複數個實施方式中,該組成物包含包含約50單位至約150單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約70單位至約100單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約20單位至約190單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約30單位至約180單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約40單位至約170單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約50單位至約160單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約60單位至約150單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約70單位至約140單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約80單位至約130單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約90單位至約130單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約75單位至約95單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約80單位至約90單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約20、30、40、50、60、70、80、90、100、110、120、130、140、150、或160單位超氧化物歧化酶。於複數個實施方式中,該組成物包含約84單位超氧化物歧化酶。
於以上方法之複數個實施方式中,所使用的該組成物包含約1000 mg至約5000 mg可溶性纖維。於複數個實施方式中,該組成物包含約2000 mg至約4000 mg可溶性纖維。於複數個實施方式中,該組成物包含約1000 mg至約10000 mg可溶性纖維。於複數個實施方式中,該組成物包含約2000 mg至約9000 mg可溶性纖維。於複數個實施方式中,該組成物包含約3000 mg至約8000 mg可溶性纖維。於複數個實施方式中,該組成物包含約2000 mg至約4000 mg可溶性纖維。於複數個實施方式中,該組成物包含約500、1000、1500、2000、2500、3000、3500、4000 4500或5000 mg可溶性纖維。
於以上方法之複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:100至約1:1000。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:200至約1:800。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:300至約1:700。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:500至約1:700。於複數個實施方式中,該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:650至1:675。
於以上方法之複數個實施方式中,該組成物可包含一或多種如本文中揭露的超氧化物歧化酶。於複數個實施方式中,該超氧化物歧化酶係自甜瓜、牛肝、異營細菌、或海洋植物性浮游生物萃取。於複數個實施方式中,該超氧化物歧化酶係銅/鋅超氧化物歧化酶、鐵/錳超氧化物歧化酶、或鎳超氧化物歧化酶。
於以上方法之複數個實施方式中,該組成物可包含一或多種如本文中揭露的可溶性纖維。於複數個實施方式中,該可溶性纖維係水溶性多醣。於複數個實施方式中,該可溶性纖維選自可溶性玉米纖維、菊糖、糊精、瓜爾膠、寡多醣、半乳多糖 果-寡糖、乳果糖、抗消化澱粉、木-寡糖、和異麥芽-寡糖。於複數個實施方式中,該可溶性纖維係可溶性玉米纖維。於複數個實施方式中,該可溶性玉米纖維係抗消化麥芽糊精。
於以上方法之複數個實施方式中,該組成物呈凝膠形式。適用於以上方法的凝膠之實例係於本文中揭露。
於以上方法之複數個實施方式中,該組成物呈粉末形式。適用於以上方法的粉末之實例係於本文中揭露。
於以上方法之複數個實施方式中,該組成物呈液體形式。適用於以上方法的液體之實例係於本文中揭露。
於本文中揭露的方法之任何者之複數個實施方式中,該組成物係一日一次向該哺乳動物投予。於本文中揭露的方法之任何者之複數個實施方式中,該組成物係日兩次向該哺乳動物投予。於本文中揭露的方法之任何者之複數個實施方式中,該組成物係一日三次、四次、五次、六次、七次、八次、九次、十次、或更多次向該哺乳動物投予。
於本文中揭露的方法之任何者之複數個實施方式中,該哺乳動物係人類。於本文中揭露的方法之任何者之複數個實施方式中,該哺乳動物係靈長動物(例如猴、猿、大猩猩、獼猴)、寵物(例如狗、貓、兔、倉鼠、天竺鼠、小鼠、大鼠)或農業動物(例如牛、綿羊、馬、山羊、豬)。 實施例 實施例 1 SOD 和可溶性纖維凝膠刺激 T 細胞活化、抗氧化和抗發炎途徑,如於 Jurkat 細胞試管內顯示
背景和目的:REVIVIFY®持久活力(pro-vitality)抗氧化凝膠由初級抗氧化劑超氧化物歧化酶(SOD)、益菌生纖維、來自種種水果汁的多種多樣的多酚構成。REVIVIFY®具有如表4中顯示的配方。 4
SI . # 成分 QTY ,以 mg
1 可溶性玉米纖維(Fibersol-2) 4000
2 石榴汁濃縮物 4000
3 康考特葡萄汁濃縮物 4000
4 藍莓汁濃縮物 2000
5 黑歐洲甜櫻桃汁濃縮物 1450
6 歐洲酸櫻桃汁濃縮物 1450
7 枸杞子肉 294
8 阿薩伊濃縮果汁 200
9 蘆薈汁 200
10 綠茶 200
11 白藜蘆醇 80
12 Extramel SOD(14000單位/g) 6
13 CMC 60.5
14 黃原膠 60.5
15 QS水(30 ml)   
SOD減少由於正常細胞活性產生的超氧化物陰離子。多酚係起抗氧化、抗發炎、和抗病毒劑作用的酚化合物。其等修復由於ROS/RNS之活性氧分子而受傷害的細胞。膳食益菌生纖維調整有益腸生態微生物群系並提供許多健康益處,包括增加免疫力。此三種組份之組合透過T細胞活化和抗氧化及抗發炎途徑刺激免疫系統。此研究之目的係評估REVIVIFY®凝膠之對試管內T細胞模型的功效。
方法:Jurkat細胞株係一種永生化T淋巴球細胞株,其最常被用作為原型T細胞株以研究多種T細胞生物學中的事件,包括T細胞傳訊。將Jurkat細胞接種在6孔盤上。於處理前,將細胞在無血清培養基中培養24個小時。以以下劑處理細胞48個小時:1.僅超氧化物歧化酶;2.僅益菌生纖維;3.僅果汁;4.超氧化物歧化酶+益菌生纖維+果汁(組合);5.陽性對照組:佛波醇12-肉豆蔻酸酯13-醋酸酯(PMA)組合離子黴素(ionomycin);6.陰性對照組:細胞培養基。
處理後,培養基係自細胞移出並置於管子中。藉由可商購的ELISA套組測量以下者之量:CD-8+;CD-4+;干擾素-伽瑪(IFNγ);介白素-6(IL-6);干擾素伽瑪誘發性蛋白10(IP-10;亦稱為CXCL10);巨噬細胞發炎蛋白1α和1β;單核球化學引誘蛋白1(MCP-1,亦稱為CCL2);和8異構前列腺素。
經活化Jurkat細胞係藉由在CD3(使用抗CD3抗體MCA463A488測量)陽性細胞族群上的經上調CD69(使用抗CD69抗體MCA2806A647,BioRad測量)表現來看。細胞係於人類Seroblock(BUF070A,BioRad)之存在下對淋巴球閘控。以處理刺激Jurkat細胞五日並藉由細胞增殖分析套組(1351205,BioRad)以CytoTrack Red 628/643染色。數據係在ZE5細胞分析儀上獲得。數據係以平均± SE表現。統計顯著性係藉由ANOVA和Duncan氏事後檢定針對處理組和以陰性對照組處理功效間的差異評估並將p < 0.05視作為顯著。結果係以平均±S.E呈現。(n= 6,四重複)。
結果:如以下詳細討論的,經REVIVIFY®和其組份活化的T細胞係藉由經上調CD69表現來看且活化相較於培養基的CD4+和CD8+之分化。該凝膠和其組份使Jurkat細胞之8-異構前列腺素(8IP)、COX-2、IFN-γ、IL-6、TGF-β、TNF-α、和CXCL10分泌之脂多醣誘發性活化降低。
結論/觀點:REVIVIFY®凝膠含有超氧化物歧化酶、益菌生纖維、和多酚、和來自果汁的槲皮素。此獨特的預防氧化壓力、維持促發炎和抗發炎平衡、和刺激免疫反應的多方向方法係極迅速且有效。 引言
超氧化物歧化酶( SOD ):SOD構成對抗體內氧化壓力的極重要抗氧化防禦。此酶起對抗活性含氧物介導性疾病的良好治療劑的作用。SOD於種種生理和病理病況(諸如癌症、發炎性疾病、囊腫纖維化、局部缺血、老化、類風濕性關節炎、神經退化性疾病、和糖尿病)可具有治療功效。然而,此酶由於與吸收有關的問題而於臨床應用具有某些限制。因此,已開發了SOD複合物和模擬物以增加其治療效力 1,2,3,4,5,6,7
多酚:多酚係植物之二級代謝物且一般包括於對抗紫外線輻射或病原體之侵犯的防禦中。於近十年,已對膳食植物多酚作為抗氧化劑的潛在健康益處有很多興趣。流行病學研究和相關統合分析強烈暗示長期食用富植物多酚膳食提供對抗癌症、心血管疾病、糖尿病、骨質疏鬆症、和神經退化性疾病之發展的保護 8,9,10,11,12
膳食益菌生纖維:膳食纖維之健康益處已被了解很久。較高的膳食纖維之攝入與較少的心血管疾病相關聯且纖維於腸健康扮演某種角色,而許多有效的輕瀉劑事實上係經分離的纖維源。較高的纖維攝入與較低的體重相關聯。本來膳食纖維只包括多醣,但最近定義已包括寡醣作為膳食纖維,非基於其等之作為膳食纖維的藉由所接受總膳食纖維(TDF)方法的化學測量,而是基於其等之生理功效。在US,菊糖、果-寡糖、和其他寡醣作為纖維在食物標籤中包括。另外,寡醣係最為人所知的「益菌生」,「一種被選擇性發酵的成分,其允許該組成及/或胃腸微生物叢之活性兩者之特別改變,其賦予對宿主好-帶來(well-bring)和健康的益處」。迄今,所有已知和猜想的益菌生皆為碳水化合物化合物,主要係寡醣,已知在人類小腸中抗消化且到達結腸,於該處其等被腸微生物叢發酵。研究已提供證據顯示菊糖和寡果糖(OF)、乳果糖、和抗性澱粉(RS)符合該定義之所有方面,包括刺激雙岐桿菌屬(一種有益的細菌屬)。其他經分離碳水化合物和含碳水化合物食物(包括半乳寡糖(GOS)、反式半乳寡糖(TOS)、聚右旋糖、小麥糊精、阿拉伯膠、洋車前子(psyllium)、香蕉、全穀小麥、和全穀玉米)亦具有益菌生功效 13,14,15,16,17
T 細胞活化和免疫力:T細胞係在胸腺中產生且經編程為對一特定外來顆粒(抗原)有專一性。一旦其等離開胸腺,其等於整個身體循環直到其等辨認到抗原呈現細胞(APC)之表面上的其等之抗原。當抗原被APC之表面上稱為MHC複合體的結構抓住時,CD4 +輔助T細胞和CD8 +細胞毒性T細胞兩者上的T細胞受體(TCR)與抗原結合。此觸發T細胞之最初活化。CD4和CD8分子接著亦與MHC分子結合,穩定整個結構。此對一抗原有專一性的T細胞與其所匹配的抗原-MHC間的最初結合使整個反應開始。此正常在次級淋巴器官中發生 18
T 細胞於 COVID-19 感染中的角色:與B細胞(其製造抗體)類似,T細胞係對抗病毒感染的免疫反應中的中心參與者 19。當SARS-CoV-2病毒(其造成COVID-19)感染上皮細胞(諸如在呼吸道中找到者)時,其在該等細胞中使用宿主細胞之生物化學機械複製。此造成宿主細胞經歷計畫性細胞死亡,釋放稱為傷害相關性分子樣式(例如核酸和寡聚物)的分子 20。此等分子被巨噬細胞和相鄰內皮和上皮細胞辨認,使其等製造促發炎細胞介素,包括趨化介素:介白素-6(IL-6);干擾素伽瑪誘發性蛋白10(IP-10;亦稱為CXCL10);巨噬細胞發炎蛋白1α和1β;單核球化學引誘蛋白1(MCP-1,亦稱為CCL2)。接著單核球、巨噬細胞、和T細胞被此等趨化介素和其他細胞介素招集至感染位置並促進進一步發炎。作為此發炎反應之部分,所招集的T細胞製造干擾素-伽瑪(IFNγ)。
數類T細胞於此反應中涉及。CD4+ T輔助(Th)細胞與CD8+ T細胞(其驅動殺死被病毒感染的細胞的細胞毒性反應)交互作用。CD8+ T細胞直接辨認於受感染細胞之表面處呈現的病毒肽,造成細胞凋亡(一種形式的計畫性細胞死亡)並預防病毒進一步擴散。濾泡輔助T(TF H)細胞係一特化的CD4+ T細胞之次組,其透過細胞-細胞交互作用和細胞介素之釋放兩者對B細胞提供幫助,導致B細胞製造抗體 19。此等中和性抗體可辨認整個病毒並藉由封阻病毒使其無法感染細胞來起作用。肺泡巨噬細胞辨認經中和病毒和凋亡細胞(被CD8+ T細胞殺死)且藉由吞噬作用清除其等。此接著導致自病毒感染恢復 20
評估感染SARS-CoV-2的患者之臨床特徵的研究已報導症狀發作前4至7 日的潛伏期,和發展成嚴重疾病前的另外7至10 日21。
對於許多初次病毒感染,典型需要7至10 日以起動並擴張適應性T細胞免疫反應以控制病毒,且此與患有COVID-19的患者恢復或發展成嚴重不適所需的典型時間相關聯 22。此引出以下可能性:差的最初T細胞反應導致SARS-CoV-2之持續性和嚴重性,而強的早期T細胞反應可係保護性的。
COVID-19 中的 CD4+ T 細胞反應:一些研究已顯示在患有嚴重COVID-19的患者,有證據顯示CD4+ T細胞功能受損,包括IFNγ製造減少 22,而其他者似乎暗示此等T細胞之過度活化 23
整體言之,急性SARS-CoV-2感染中的CD4+ T細胞反應,無論是受損、過度活化、或不適當、以及此如何與疾病結果相關仍待闡明且係重要的問題。已在已自COVID-19恢復的患者中觀察到特別高頻率的對病毒棘蛋白有專一性的CD4+ T細胞反應,其與已針對流行性感冒病毒感染報導者類似 21。於一個14名患者的小型研究中,所有自SARS- CoV-2恢復者中皆確認到循環性病毒專一性CD4+ T細胞,其亦暗示發展出T細胞記憶 24和可能較長期的免疫力的潛力。
COVID-19 中的 CD8+ T 細胞反應:患者間的免疫反應似乎多樣。一些研究已報導來自患有嚴重COVID-19的患者的CD8+ T細胞於試管內刺激後細胞介素製造減少,而一些已顯示T細胞可能耗盡的證據;相反地,其他研究已報導在患有COVID-19的患者有過度攻擊性CD8+ T細胞反應或細胞毒性反應增加的高度活化CD8+ T細胞 25實驗程序/研究策略
使用一模型細胞系統以測試此假設。Jurkat細胞株係一種永生化T淋巴球細胞株,其原本獲自一患有T細胞白血病的男孩之周邊血液 26。Jurkat細胞株最常被用作為原型T細胞株以研究多種T細胞生物學中的事件,包括a) T細胞傳訊和b) HIV感染生命週期中的分子事件。於T細胞傳訊 18,Jurkat細胞株已被用於模擬T細胞活化(TCA)(有效適應性免疫反應中的關鍵過程)中的傳訊事件和描述其特徵 26。作為模型傳訊軸心,TCA涉及透過T細胞之表面上的T細胞受體(TCR)和輔助蛋白CD3和CD28的表面傳訊且起始導致多種基因(包括介白素-2(IL-2)基因,一種典型的T細胞活化目標基因)之轉錄活化的分子事件之級聯。TCA中的步驟包括一系列激酶(例如LCK、JNK、PKC)和磷酸酯酶蛋白(鈣調神經磷酸酶(Calcineurin))之活化、以及靜止細胞質轉錄因子(例如NF-kB、NFAT)之活化(其等於活化後隨即移位入細胞核中以活化目標基因)。此等步驟之各者及許多此途徑中的其他中間因子已使用Jurkat T細胞株之突變體子殖株(其於定位傳訊途徑和鑑認構成T細胞活化之基礎的關鍵性參與者已為有幫助的)仔細分析 18,26Jurkat 細胞株培養( Jurkat ,植株 E6-1 ATCC ®TIB-152™ ;人類;人類( Homo sapiens ))
完全生長培養基:用於此細胞株的基礎培養基係ATCC調配的RPMI-1640培養基,ATCC 30-2001。為製作完全生長培養基,將以下組份加至該基礎培養基:胎牛血清(ATCC 30-2020)至10%的最終濃度。
繼代培養:培養係藉由加入新鮮的培養基或更換培養基來維持。或者,培養係藉由離心隨後以1 X 10 5個活細胞/mL再懸浮來建立。不應允許細胞密度超過3 X 10 6個細胞/mL。對於繼代培養此產物,推薦康寧®T-75燒瓶。
間隔:將培養維持於1 X 10 5和1 X 10 6個活細胞/mL之間的細胞濃度。
培養基更換:每2至3日(取決於細胞密度)添加新鮮的培養基。
培養條件:氣氛:空氣,95%;二氧化碳(CO 2),5%; 溫度:37°C 以含有來自果汁的多酚的超氧化物歧化酶組合益菌生纖維之膳食補充劑處理 Jurkat 細胞
含有來自果汁的多酚的超氧化物歧化酶組合益菌生纖維之對 Jurkat 細胞的功效:將Jurkat細胞接種在6孔盤上。於處理前,將細胞在無血清培養基中培養24個小時。以以下劑處理細胞48個小時:1.僅超氧化物歧化酶;2.僅益菌生纖維;3.僅果汁;4.超氧化物歧化酶+益菌生纖維+果汁(組合);5.陽性對照組:佛波醇12-肉豆蔻酸酯13-醋酸酯(PMA)組合離子黴素;6.陰性對照組:細胞培養基。
酶聯免疫吸附分析:於處理後,培養基係自細胞移出係置於管子中。為評估T細胞活化,在細胞培養基中測量以下因子。CD-8+;CD-4+;干擾素-伽瑪(IFNγ);介白素-6(IL-6);干擾素伽瑪誘發性蛋白10(IP-10;亦稱為CXCL10);巨噬細胞發炎蛋白1α和1β;單核球化學引誘蛋白1(MCP-1,亦稱為CCL2);和8異構前列腺素之量,藉由可商購的ELISA套組,如先前敘述的 27,28,29,30,31,32,33,34
用於流式細胞分析術分析的 T 細胞刺激:以以下劑處理細胞48個小時:1.僅超氧化物歧化酶;2.僅益菌生纖維;3.僅果汁;4.超氧化物歧化酶+益菌生纖維+果汁(組合);5.陽性對照組:佛波醇12-肉豆蔻酸酯13-醋酸酯(PMA)組合離子黴素;6.陰性對照組:細胞培養基。
如以上所述地偵測經活化Jurkat細胞並如以上所述地進行結果之統計分析。 結果
細胞存活率 分析:此分析測定活細胞之將一氧化還原染料(刃天青)轉化成螢光終產物(試鹵靈)的能力。將Jurkat細胞在完全培養基中接種至96孔盤上並於37 °C下允許黏附過夜。接著以以下者處理細胞:載體(細胞培養基)或僅益菌生纖維、僅超氧化物歧化酶、僅果汁、超氧化物歧化酶+益菌生纖維+果汁(組合)、或LPS(陽性對照組)。於以個別處理培養48 h後,將20 μl的Cell Titer-Blue試劑加至各孔。於520 nm處的吸收係藉由微滴定盤讀盤機測定。由刃天青轉化成試鹵靈產生的訊號與活細胞之數目直接成比例。如於圖1中顯示,該等凝膠組份和組合無一於細胞存活率分析中顯示毒性效果。
該凝膠和其組份活化 T 細胞,如由 CD3 陽性細胞族群上的經上調 CD69 表現看到的,使用藉由流式細胞分析術的分析:用於流式細胞分析術分析的T細胞刺激。活化和增殖步驟準則提供測定免疫勝任性和細胞反應性的有效方法。Jurkat細胞係以以下者刺激:載體(細胞培養基)或僅益菌生纖維、僅超氧化物歧化酶、僅果汁、超氧化物歧化酶+益菌生纖維+果汁(組合)、或LPS(陽性對照組)。細胞係於人類Seroblock之存在下對淋巴球閘控。數據係在ZE5™細胞分析儀上獲得。經活化T細胞係藉由CD3陽性族群上的經上調CD69表現來看,如於圖2中顯示。如於圖2中顯示,該組合顯示出人意料地高的水平的T細胞活化,如由CD69表現測量。
REVIVIFY® 之原始組份之對 Jurkat 細胞之 CD4 + 分化的功效。Jurkat細胞係以以下者刺激:載體(細胞培養基)或僅益菌生纖維、僅超氧化物歧化酶、僅果汁、超氧化物歧化酶+益菌生纖維+果汁(組合)。CD4 +之濃度(ng/mL)係根據製造商之步驟準則藉由ELISA測量。如於圖3中顯示,相較於培養基,果汁和超氧化物歧化酶+益菌生纖維+果汁(組合)顯著且出人意料地活化CD4+之分化,如由ELISA測定的。
REVIVIFY® 之原始組份之對 Jurkat 細胞之 CD8 + 分化的功效。Jurkat細胞係以以下者刺激:載體(細胞培養基)或僅益菌生纖維、僅超氧化物歧化酶、僅果汁、超氧化物歧化酶+益菌生纖維+果汁(組合)。CD8 +之濃度(pg/mL)係根據製造商之步驟準則藉由ELISA測量。如於圖4中顯示,相較於培養基,果汁和超氧化物歧化酶+益菌生纖維+果汁(組合)顯著且出人意料地活化CD4+之分化,如由ELISA測定的。
REVIVIFY® 處理的 Jurkat 細胞中的 CD4 + CD8 + 之濃度比例:經REVIVIFY®處理的JukarT細胞中的CD4 +/CD8 +之濃度比例係48:1,其比健康成人和小鼠之周邊血液高 35。CD4 +/CD8 +比例係T輔助細胞(其具有表面標記CD4)對比細胞毒性T細胞(其具有表面標記CD8)的比例。CD4 +和CD8 +T細胞兩者皆含有數個子集。 36健康成人和小鼠之周邊血液中的CD4 +/CD8 +比例係約2:1,而改變的比例可指示與免疫不全相關的疾病 35。此比例之巨大差異係導因於在試管內封閉系統中的實驗。另一方面,其亦指示REVIVIFY®刺激T細胞更高分化成CD4 +的高潛力。此等數據指示濾泡輔助T(TFH)細胞係特化的CD4 +T細胞之子集,其透過細胞-細胞交互作用和細胞介素之釋放兩者對B細胞提供幫助,導致B細胞製造抗體 19。此等中和抗體可辨認完整的病毒並藉由封阻病毒使其無法感染細胞來起作用。肺泡巨噬細胞辨認經中和病毒及凋亡細胞(被CD8+ T細胞殺死)且藉由吞噬作用清除其等。此接著導致自病毒感染恢復 20。於冠狀病毒疾病2019(COVID-19),B細胞、天然殺手細胞、和總淋巴球計數減少,但CD4+和CD8+細胞兩者皆減少至遠更大的程度。 37低CD4+預測送入加護病房的可能性更高,且CD4+細胞計數係預測病毒RNA清除時間長度的唯一參數。 37
REVIVIFY® 凝膠具有抗氧化活性:如於圖5中顯示,REVIVIFY®和其組份於試管內研究中降低Jurkat細胞之8-異構前列腺素分泌之脂多醣誘發性活化。經脂多醣(LPS)刺激Jurkat細胞係以以下者處理:載體(細胞培養基)或僅益菌生纖維、僅超氧化物歧化酶、僅果汁、超氧化物歧化酶+益菌生纖維+果汁(組合)。培養基中8IP之量係藉由ELISA測量。REVIVIFY®和其組份降低Jurkat細胞之8-異構前列腺素(8IP)分泌之脂多醣誘發性活化。已提出8IP之量為抗氧化缺乏和氧化壓力之標記 38,39。如於圖5中看到的,該組合出人意料地減少8IP量至低於未經處理細胞中看到者。
REVIVIFY® 凝膠具有抗缺氧活性:如於圖6中顯示,REVIVIFY®和其組份於試管內研究中降低Jurkat細胞之環氧合酶-2(COX-2)分泌之脂多醣誘發性活化。經脂多醣(LPS)刺激Jurkat細胞係以以下者處理:載體(細胞培養基)或僅益菌生纖維、僅超氧化物歧化酶、僅果汁、超氧化物歧化酶+益菌生纖維+果汁(組合)。培養基中COX-2之量係藉由ELISA測量。如於圖6中看到的,該組合出人意料地減少COX-2量至低於未經處理細胞中看到者。
REVIVIFY® 和其組份降低 Jurkat 細胞之 COX-2 分泌之脂多醣誘發性活化 (圖 6 ):缺氧增加COX-2表現 40。洋芫荽黃於狼瘡T細胞、B細胞、和抗原呈現細胞下調COX-2表現,並造成其等之細胞凋亡 41。雖然尚未建立清楚的結構/功能關係,且無意受限於理論,似乎C-2,3-雙鍵和A和B環上的羥基取代對於此抑制活性而言為重要貢獻者 42。動物數據確認不同發炎疾病中COX-2表現之下調 43
REVIVIFY® 凝膠具有抗發炎活性:REVIVIFY®和其組份於試管內Jurkat細胞研究中降低發炎活性之脂多醣誘發性活化。經脂多醣(LPS)刺激Jurkat細胞係以以下者處理:載體(細胞培養基)或僅益菌生纖維、僅超氧化物歧化酶、僅果汁、超氧化物歧化酶+益菌生纖維+果汁(組合)。培養基中以下者之量係藉由可商購的ELISA套組測量:干擾素伽瑪(IFNγ,圖7)、介白素6(IL-6,圖8)、轉形生長因子貝他(TGF-β,圖9)、腫瘤壞死因子(TNF,圖10)和C-X-C模體趨化介素配體10(CXCL10,圖11)。
REVIVIFY® 和其組份降低 Jurkat 細胞之 IFN-γ 分泌之脂多醣誘發性活化(圖 7 ):干擾素伽瑪(IFNγ)係一種二聚化可溶性細胞介素,其係第II型干擾素之唯一成員。 44此干擾素(於其早期歷史其被稱為免疫干擾素)之存在被E. F. Wheelock敘述成以植物性血球凝集素刺激的人類白血球之產物,且被其他人敘述成經抗原刺激淋巴球之產物。 45IFNγ(或第II型干擾素)係對於對抗病毒、一些細菌、和原蟲感染的先天性和適應性免疫力而言係關鍵性的細胞介素。IFNγ係巨噬細胞之重要活化子和第II類主要組織相容性複體分子表現之誘導子。異常IFNγ表現與一些自體發炎和自體免疫疾病相關聯。IFNγ於免疫系統中的重要性部分源自其直接抑制病毒複製的能力,且最重要地源自其免疫刺激和免疫調節功效。IFNγ絕大部分由天然殺手細胞(NK)和天然殺手T細胞(NKT)製造作為先天性免疫反應之部分,且一旦發展出抗原專一性免疫力則由CD4 Th1和CD8細胞毒性T淋巴球(CTL)效應T細胞製造 46,47作為適應性免疫反應之部分。IFNγ亦由非細胞毒性先天性淋巴細胞(ILC,2010年代早期首次發現的免疫細胞之家族)製造。 48如於圖7中看到的,以SOD、果汁多酚、和該組合處理的細胞相較於未經處理細胞出人意料地皆具有較低水平的IFNγ分泌,而於以該組合處理的細胞中看到的分泌之水平最低。
REVIVIFY® 和其組份降低 Jurkat 細胞之 IL-6 分泌之脂多醣誘發性活化(於圖 8 ):介白素6(IL-6)係起促發炎細胞介素和抗發炎肌肉激素(myokine)兩者作用的介白素。於人類,其由IL6基因編碼。 49此外,成骨細胞分泌IL-6以刺激蝕骨細胞形成。許多血管之中膜中的平滑肌細胞亦製造IL-6作為促發炎細胞介素。IL-6之作為抗發炎肌肉激素的角色係透過其對TNF-阿爾法及IL-1的抑制功效及其對IL-1ra及IL-10之活化介導。於更廣的冠狀病毒大流行之背景下,存在一些早期證據顯示IL-6可用作為對於預後差的嚴重COVID-19感染的發炎標記。 50IL-6係由巨噬細胞對稱為病原體相關分子模式(PAMP)的特殊微生物分子反應而分泌。此等PAMP與稱為模式辨識受體(PRR)(包括類Toll受體(TLR))的先天性免疫系統之偵測分子之重要群組結合。此等存在於細胞表面和細胞內腔隙且誘發導致發炎性細胞介素製造的細胞內傳訊級聯。IL-6係發燒和急性期反應之重要介導子。IL-6負責刺激急性期蛋白質合成、以及骨髓中嗜中性球之製造。其支持B細胞生長且對調節性T細胞係拮抗性的。如於圖8中看到的,該組合出人意料地降低IL-6活化水平至低於未經處理細胞中看到的水平。
REVIVIFY® 和其組份降低 Jurkat 細胞之 TGF-β 分泌之脂多醣誘發性活化(於圖 9 ):轉形生長因子貝他(TGF-β)係屬於轉形生長因子超家族的多功能細胞介素,其包括三種 51。TGFB蛋白質由所有白血球細胞系製造。經活化TGF-β與其他因子複合以形成與TGF-β受體結合的絲胺酸/蘇胺酸激酶複合體。TGF-β受體由第1型和第2型受體次單元兩者組成。於TGF-β之結合後,第2型受體激酶磷酸化並活化第1型受體激酶,其活化傳訊級聯。 52此導致不同下游受質和調節蛋白之活化,誘發於許多免疫細胞之分化、趨化性、增殖、和活化起作用的不同目標基因之轉錄。 52,53
TGF-β由許多細胞類型(包括巨噬細胞)以潛伏形式分泌,於該形式其與另外兩種多肽(潛伏TGF-貝他結合性蛋白(LTBP)和潛伏相關肽(LAP))複合。血清蛋白酶(諸如血纖蛋白酶)催化活性TGF-β自該複合物釋放。此往往在巨噬細胞之表面上發生,於該處潛伏TGF-β複合物與CD36透過其配體(血小板反應蛋白-1(thrombospondin-1,TSP-1))結合。活化巨噬細胞的發炎性刺激藉由促進血纖蛋白酶之活化來增強活性TGF-β之釋放。巨噬細胞亦可胞吞由血漿細胞分泌的與IgG結合的潛伏TGF-β複合物並接著將活性TGF-β釋放至細胞外液中。 54其關鍵功能包括發炎過程之調節,尤其是在腸中。[5] TGF-β亦於幹細胞分化以及T細胞調節和分化扮演至關重要的角色。 56,57由於其於免疫和幹細胞調節及分化的角色,其於癌症、自體免疫疾病、和感染性疾病之技術領域中係被廣泛研究的細胞介素。
TGF-β超家族包括內源性生長抑制蛋白;TGF-β表現增加往往與許多癌症之惡性和對TGF-β反應的細胞生長抑制反應之缺陷相關聯。其免疫抑制功能接著開始主導,促成腫瘤形成。 58其免疫抑制功能之失調亦牽涉於自體免疫疾病之發病機制中,雖然其等之功效係由存在的其他細胞介素之環境介導。 55TGF-β於人類淋巴球及肝細胞誘發細胞凋亡(或計畫性細胞死亡)。此功能之重要性於TGF-β不足小鼠(其經歷過度增殖及上調自體免疫力)中很清楚。 59如於圖9中看到的,以SOD、果汁多酚、及該組合處理的細胞相較於未經處理細胞出人意料地皆具有較低水平的TGF-β分泌,而於以該組合處理的細胞中看到的分泌之水平最低。
REVIVIFY® 和其組份降低 Jurkat 細胞之 TNF-α 分泌之脂多醣誘發性活化(於圖 10 ):腫瘤壞死因子(TNF、cachexin、或cachectin;往往稱為腫瘤壞死因子阿爾法或TNF-α)係一細胞介素—一免疫系統用於細胞傳訊的小型蛋白質。若巨噬細胞(某種白血球)偵測到感染,其等會釋放TNF以警告其他免疫系統細胞來作為發炎反應之部分。TNF係TNF超家族(其由種種具有同源TNF結構域的跨膜蛋白質組成)之一成員。咸認為TNF主要由巨噬細胞製造, 60但其亦由包括以下者的多種多樣的細胞類型製造:淋巴細胞,肥大細胞、內皮細胞、心臟肌細胞、脂肪組織、纖維母細胞、和神經元。 61大量TNF對脂多醣、其他細菌產物、和介白素-1(IL-1)反應而釋放。於皮膚,肥大細胞似乎係預形成的TNF(其可於發炎性刺激(例如LPS)後立即釋放)之主要來源。 62其(一般與IL-1和介白素-6(IL-6)一起)對種種器官系統有一些作用。TNF之濃度之局部增加會造成發炎將發生之極重要徵兆:發熱、腫脹、發紅、疼痛、和功能喪失。高濃度的TNF誘發類休克症狀,而長期暴露於低濃度的TNF可造成惡病質、消耗症候群。此可於例如癌症患者中找到 63
Said等人顯示TNF藉由上調單核球上的PD-1量造成CD4 T細胞擴增及功能之IL-10依賴性抑制,其導致單核球於PD-1被PD-L結合後製造IL-10。 64Pedersen等人之研究指出對敗血症反應的TNF增加受肌肉激素之運動誘發性製造抑制。為研究急性運動是否誘發真正的抗發炎反應,建立「低度發炎」之模型,其中向健康志願者投予低劑量的大腸桿菌內毒素,該等志願者於內毒素投予前已隨機分至休息或運動。於休息個體,內毒素誘發TNF之循環量增加2至3倍。相反地,當該個體進行踩測功計腳踏車3個小時並於2.5 h接受大型單劑內毒素時,TNF反應完全鈍化。 65此研究提供一些證據顯示急性運動可抑制TNF產生。 66在腦部,TNF可提供對抗興奮性毒性(excitotoxicity)的保護。 67TNF強化突觸。 68神經元中的TNF促進其等之存活,儘管巨噬細胞及微神經膠細胞中的TNF導致誘發細胞凋亡的神經毒素。 67如於圖10中看到的,以果汁多酚和該組合處理的細胞相較於未經處理細胞出人意料地皆具有較低水平的TNF-阿爾法分泌,而於以該組合處理的細胞中看到的分泌之水平最低。
REVIVIFY® 和其組份降低 Jurkat 細胞之 CXCL10 分泌之脂多醣誘發性活化(於圖 11 ):C-X-C模體趨化介素配體10(CXCL10)(亦稱為干擾素伽瑪誘發性蛋白10(IP-10)或小型可誘發細胞介素B10)係一8.7 kDa蛋白質,其在人類由CXCL10基因編碼。 69,70C-X-C模體趨化介素10係一屬於CXC趨化介素家族的小型細胞介素。CXCL10係由數種細胞類型對IFN-γ反應而分泌。此等細胞類型包括單核球、內皮細胞、和纖維母細胞。 69咸已認為CXCL10有數種角色,諸如對於單核球/巨噬細胞、T細胞、NK細胞、及樹突細胞的化學吸引力、T細胞至內皮細胞的黏附之促進、抗腫瘤活性、及骨髓群落形成和血管發生之抑制。 71,72此趨化介素藉由與細胞表面趨化介素受體CXCR3結合來引出其功效。 73如於圖10中看到的,以SOD、果汁多酚、及該組合處理的細胞相較於未經處理細胞出人意料地皆具有較低水平的CXCL10分泌,而於以該組合處理的細胞中看到的分泌之水平最低。
以上討論的ELISA結果之所有者之總結係於表5提供。 5. JRK 細胞的處理之功效(平均加 SE ),每處理使用 6 重複
變項 使用多醣加上添加物的JRK細胞之處理 P-水平
無處理 Fiberosol纖維(1.3 mg/mL) SOD(0.2 mg/mL) 果汁(4.6 mg/mL) 完成產品(5.6 mg/mL)
CXCL10(pg/mL) 35.2(0.5) A 42.5(0.4) B 34.3(0.4) AC 33.2(0.5) CD 32.5(0.4) D < 0.001#
CD4+(ng/mL) 2.5(0.1) A 2.7(0.1) AC 2.7(0.1) AC 9.8(0.4) BC 12.1(0.3) B < 0.001*
CD8+(ng/mL) 95.5(3.4) A 112.0(1.9) B 113.5(2.7) B 224.3(5.6) C 247.7(2.9) D < 0.001#
XTT細胞存活率(於490nm處的吸收) 0.76(0.02) A 0.76(0.02) A 0.69(0.01) B 0.79(0.02) AC 0.82(0.01) C < 0.001#
8-異構前列腺素(pg/mL) 26.1(0.9) AD 42.7(1.7) B 29.2(1.4) AC 31.3(1.7) C 23.3(0.7) D < 0.001#
COX-2(pg/mL) 15.7(1.1) A 21.8(0.9) B 14.8(0.7) A 15.8(0.9) A 11.5(0.4) C < 0.001#
INF-y(pg/mL) 18.3(0.7) A 23.3(0.4) B 17.2(0.4) AC 16.2(0.3) CD 15.2(0.3) D < 0.001#
IL-6(pg/mL) 10.3(0.3) A 17.2(0.7) B 12.2(0.3) C 11.3(0.4) AC 9.4(0.3) A < 0.001#
TGF-貝他(pg/mL) 21.7(0.7) A 26.2(0.7) B 20.2(0.5) AC 19.2(0.5) C 18.5(0.4) C < 0.001#
TNF-阿爾法(pg/mL) 19.5(0.6) AC 26.7(0.5) B 20.3(0.7) C 19.3(0.7) AC 18.3(0.5) A < 0.001#
實施例 1 之參考文獻1. Kangralkar VA, Patil SD, Bandivadekar RM. 氧化壓力和糖尿病:綜述。(Oxidative stress and diabetes: A review.) Intl J Pharm Appl. 2010;1:38–45. 2. Yasui K, Baba A. 超氧化物歧化酶(SOD)之對於發炎之消除的治療潛力。(Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation.) Inflamm Res. 2006;55:359–63. 3. Landis GN, Tower J. 超氧化物歧化酶演化及壽命調節。(Superoxide dismutase evolution and life span regulation.) Mech Ageing Dev. 2005;126:365–79. 4. Noor R, Mittal S, Iqbal J. 超氧化物歧化酶—於人類疾病的應用及與人類疾病的關聯性。(Superoxide dismutase –Applications and relevance to human diseases.) Med Sci Monit. 2002;8:RA210–5. 5. Inal ME, Kanbak G, Sunal E. 與老化相關的抗氧化酶活性及丙二醛水平。(Antioxidant enzyme activities and malondialdehyde levels related to aging.) Clin Chim Acta. 2001;305:75–80. 6. Riley DP. 作為治療劑的超氧化物歧化酶之功能性模擬物。(Functional mimics of superoxide dismutase enzymes as therapeutic agents.) Chem Rev. 1999;99:2573–88. 7. Salvemini D, Riley DP. 超氧化物歧化酶之非肽模擬物於用於疾病的臨床治療。(Nonpeptidyl mimetics of superoxide dismutase in clinical therapies for diseases.) Cell Mol Life Sci. 2000;57:1489–92. 8. Scalbert A, Manach C, Morand C, Remesy C. 膳食多酚及疾病之預防。(Dietary polyphenols and the prevention of diseases.) Crit Rev Food Sci Nutr. 2005;45:287–306. 9. Beckman CH. 酚儲存細胞:植物中於凋萎病抗性及於一般防禦反應的計畫性細胞死亡及周皮形成之關鍵?(Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defense responses in plants?) Physiol. Mol. Plant Pathol. 2000;57:101–110. 10. Arts ICW, Hollman PCH. 多酚及流行病學研究中的疾病風險。(Polyphenols and disease risk in epidemiologic studies.) Am J Clin Nutr. 2005;81:317–325. 11. Kondratyuk TP, Pezzuto JM. 與人類健康有關的天然產物多酚。(Natural Product Polyphenols of Relevance to Human Health.) Pharm Biol. 2004;42:46–63. 12. Shahidi F, Naczk M. 食物酚類化合物、來源、化學、功效、應用。(Food phenolics, sources, chemistry, effects, applications.) Lancaster, PA: Technomic Publishing Co Inc; 1995. 13. Slavin J.L. 膳食纖維:分類、化學分析、及食物來源。(Dietary fiber: Classification, chemical analyses, and food sources.) J. Am. Diet. Assoc. 1987;87:1164–1171. 14. Gibson G.R., Roberfroid M.B. 人類結腸微生物相之膳食調整:介紹益菌生之概念。(Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics.) J. Nutr. 1995;125:1401–1412. 15. Gibson G.R., Probert H.M., van Loo J., Rastall R.A., Roberfroid M.B. 人類結腸微生物相之膳食調整:更新益菌生之概念。(Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics.) Nutr. Res. Rev. 2004;17:259–275. doi: 10.1079/NRR200479. 16. Roberfroid M., Gobson G.R., Hoyles L., McCartney A.L., Rastall R., Rowland I., Wolvers D., Watzl B., Szajewska H., Stahl B., 等人 益菌生功效:代謝及健康益處。(Prebiotic effects: Metabolic and health benefits.) Br. J. Nutr. 2011;104:S1–S63. 17. Leach J.D., Sobolik K.D. 史前Chihauhuan沙漠中益菌生菊糖型聚果糖之高膳食攝入。(High dietaryintake of prebiotic inulin-type fructans in the prehistoric Chihauhuan desert.) Br. J. Nutr. 2010;103:1158–1561. 18. Tak W. Mak, Mary E. Saunders, 於免疫反應(The Immune Response), 2006. 19. Swain S, McKinstry KK, Strutt TM. CD4⁺ T細胞於針對病毒的免疫力的擴大角色。(Expanding roles for CD4⁺ T cells in immunity to viruses.) Nat Rev Immunol 2012; 12(2): 136-48. 20. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. COVID-19之三合一:免疫力、發炎、及干預。(The trinity of COVID-19: immunity, inflammation and intervention.) Nat Rev Immunol 2020; 20(6): 363-74. 21. Huang C, Wang Y, Li X, 等人 於中國武漢感染2019新型冠狀病毒的患者之臨床特徵。(Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.) 刺胳針(Lancet) 2020; 395(10223): 497-506. [勘誤表於刺胳針 2020; 395(10223): 496.] 22. Peng Y, Mentzer AJ, Liu G, 等人 UK之COVID-19後康復中個體之由SARS-CoV-2誘發的廣大且強力的記憶CD4+和CD8+T細胞(Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19) [線上出版早於紙本出版, 2020 Sep 4]. Nat Immunol 2020; 10.1038/s41590-020-0782-6. 23. Sattler A, Angermair S, Stockmann H, 等人 SARS-CoV-2專一性T細胞反應及與COVID-19患者體質的關係。(SARS-CoV-2 specific T-cell responses and correlations with COVID-19 patient predisposition.) J Clin Invest 2020; 140965. 24. Mathew D, Giles JR, Baxter AE, 等人 COVID-19患者之深度免疫側寫顯露有對治療干預的暗示的患者異質性及獨特免疫類型。(Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions.) 預印本. bioRxiv 2020; 2020.05.20.106401. 2020年五月23日出版. 25. Chen Z, John Wherry E. 患有COVID-19的患者中的T細胞反應。(T cell responses in patients with COVID-19.) Nat Rev Immunol 2020; 20(9): 529-36. 26. Matthew A. Lunning,, Steven M. Horwitz, 於Abeloff氏臨床腫瘤學(Abeloff's Clinical Oncology) (第六版), 2020. 27. Uddin MN, Horvat D, Glaser S, Mitchell BM, Puschett JB (2008). "marinobufagenin透過其抑制滋胚內質功能的細胞機制之檢查。(Examination of the cellular mechanism by which marinobufagenin inhibits cytotrophoblast function.)" J. Biol. Chem. 283: 17946-17953. 28. Uddin MN, Childs Ed W, Horvat D, Puschett JB (2009) "Marinobufagenin透過活化細胞凋亡傳訊來增強內皮滲透性。(Marinobufagenin enhances endothelial permeability via activation of apoptotic signaling.)" Am J Physiol Regul Integr Comp Physiol 296: R1726-R1734. 29. Uddin MN, D. Horvat, S. Demorrow, E. Agunanne, J. Puschett (2010). "Marinobufagenin於子癎前症中係Gadd45a壓力傳訊之上游調節子。(Marinobufagenin is an upstream modulator of Gadd45a stress signaling in preeclampsia.)" Biochim Biophys Acta. 2010 Sep 17. [Epub早於紙本出版] 30. Uddin MN, Agunanne E, Horvat D, Puschett JB (2010) " Resibufogenin投予於人類子癎前症之大鼠模型中預防氧化壓力(Resibufogenin Administration Prevents Oxidative Stress in a Rat Model of Human Preeclampsia)" Hypertens Pregnancy 2010 Dec 21. [Epub早於紙本出版]. 31. Uddin MN, S. Allen, R. Jones, S.S. Glaser, D. C. Zawieja及T. J. Kuehl (2012) 子癎前症之發病機制:轉譯方面:marinobufagenin及血管生成不平衡作為症狀之生物標記。(Pathogenesis of preeclampsia: translational aspects: marinobufagenin and angiogenic imbalance as biomarkers of the syndrome.) Transl Res. 2012 Aug; 160(2):99-113. Epub 2012 Feb 2. 受邀專題文獻綜述文獻. 32. Jessica R Ehrig, Horvat D, Leonard D, Allen SR, Jones RO, Kuehl TJ, Uddin MN. 強心類固醇於首三個月滋胚內質細胞誘發抗血管生成及抗增生輪廓。(Cardiotonic steroids induce anti-angiogenic and anti-proliferative profiles in first trimester cytotrophoblast cells.) 胎盤(Placenta). 2014 Aug 7. pii: S0143-4004(14)00641-9. doi: 10.1016/j.placenta.2014.07.014. [Epub早於紙本出版]. 33. Chase R Cawyer, Horvat D, Leonard D, Allen SR, Jones RO, Zawieja DC, Kuehl TJ, Uddin MN. 高血糖症透過壓力傳訊損傷滋胚內質功能。(Hyperglycemia impairs cytotrophoblast function via stress signaling.)Am J Obstet Gynecol. 2014 Nov;211(5):541.e1-8. doi: 10.1016/j.ajog.2014.04.033. Epub 2014年五月1日. 34. Jessica C. Ehrig, S. H. Afroze, M. Reyes Steven R. Allen, Nathan Drever, Kimberly A. Pilkinton, Thomas J. kuehl, Uddin, MN. 強心類固醇於首三個月滋胚內質細胞誘發細胞凋亡及壓力傳訊蛋白質。(Cardiotonic steroids induce apoptotic and stress signaling proteins in first trimester cytotrophoblast cells.) 胎盤(Placenta). 2015 Sep 3. pii: S0143-4004(15)30043-6. doi: 10.1016/j.placenta.2015.08.016. [Epub早於紙本出版] 35. Owen, Judith; Punt, Jenni; Stranford, Sharon (2013). Kuby免疫學(Kuby Immunology). 紐約: W. H. Freeman and Company. p. 40. 36. Golubovskaya V, Wu L (2016). "T細胞之不同子集、記憶、效應功能、及CAR-T免疫治療(Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy)". 癌症(Cancers). 8 (3): e36. doi:10.3390/cancers8030036. PMC 4810120. PMID 26999211. 37. Huang W, Berube J, McNamara M, Saksena S, O'Gorman M (2020). "COVID-19患者中的淋巴球子集計數:統合分析(Lymphocyte Subset Counts in COVID-19 Patients: A Meta-Analysis)". 細胞計數法A部分(Cytometry Part A). 97 (8): 772–776. doi:10.1002/cyto.a.24172. PMC 7323417. PMID 32542842. 38. Morrow JD, Frei B, Longmire AW, 等人 於抽菸者的循環脂質過氧化之產物(F2-異構前列腺素)增加。(Increase in circulating products of lipid peroxidation (F2-isoprostane) in smokers.) N Engl J Med 1995; 332:1198–1203. 39. Uddin MN; Agunanne EE; Horvat D; Puschett JB, 於姙娠的高血壓(Hypertension in pregnancy) [Hypertens Pregnancy], ISSN: 1525-6065, 2012, pp. 70-8; 出版商: Informa Healthcare; PMID: 21174582, 資料庫: MEDLINE Complete PubMed. 40. Ki Hyung Kim, Hye Young Kim, Hyeong Hoe Kim, Kyu Sup Lee, 及 JaeHun Cheong. 缺氧於人類子宮內膜細胞透過同源異形域轉錄因子CDX1和孤兒核受體SHP誘發COX-2之表現。(Hypoxia induces expression of COX-2 through the homeodomain transcription factor CDX1 and orphan nuclear receptor SHP in human endometrial cells.) 分子人類生殖(Molecular Human Reproduction), Vol.17, No.11 pp. 710–719, 2011. 41. Kang, HK, Ecklund, D, Liu, M, 等人 (2009) 洋芫荽黃,一種非誘變膳食類黃酮,透過抑制用於自體反應性Th1及Th17細胞之擴增的自體抗原呈現來抑制狼瘡。(Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells.) Arthritis Res Ther 11, R59. 42. Kim, HP, Son, KH, Chang, HW, 等人 (2004) 抗發炎植物類黃酮及細胞作用機制。(Anti-inflammatory plant flavonoids and cellular action mechanisms.) Pharm Sci 96, 229–245. 43. Moreira, A, Fraga, C, Alonso, M, 等人 (2004) 槲皮素於門脈高血壓大鼠之胃黏膜預防氧化壓力及NF-卡帕B活化。(Quercetin prevents oxidative stress and NF-kappaB activation in gastric mucosa of portal hypertensive rats.) Biochem Pharmacol 68, 1939–1946. 44. Gray PW, Goeddel DV (1982年八月). "人類免疫干擾素基因之結構(Structure of the human immune interferon gene)". 自然(Nature). 298 (5877): 859–63. Bibcode:1982Natur.298.859G. doi:10.1038/298859a0. PMID 6180322. S2CID 4275528. 45. Wheelock EF (1965年七月). "人類白血球中透過植物血球凝集素誘發的類干擾素病毒抑制劑(Interferon-Like Virus-Inhibitor Induced in Human Leukocytes by Phytohemagglutinin)". 科學(Science). 149 (3681): 310–1. Bibcode:1965Sci.149.310W. doi:10.1126/science.149.3681.310. PMID 17838106. S2CID 1366348. 46. "Entrez基因:INFG(Entrez Gene: INFG)". 47. Schoenborn JR, Wilson CB (2007). "干擾素‐γ於先天性和適應性免疫反應期間的調節(Regulation of Interferon‐γ During Innate and Adaptive Immune Responses)". 干擾素-伽瑪於先天性和適應性免疫反應期間的調節(Regulation of interferon-gamma during innate and adaptive immune responses). 免疫學進展(Advances in Immunology). 96. pp. 41–101. doi:10.1016/S0065-2776(07)96002-2. ISBN 978-0-12-373709-0. PMID 17981204. 48. Artis D, Spits H (2015年一月). "先天性淋巴細胞之生物學(The biology of innate lymphoid cells)". 自然(Nature). 517 (7534): 293–301. Bibcode:2015Natur.517.293A. doi:10.1038/nature14189. PMID 25592534. S2CID 4386692. 49. Ferguson-Smith AC, Chen YF, Newman MS, May LT, Sehgal PB, Ruddle FH (1988年四月). "干擾素-貝他2/B細胞刺激因子2/肝細胞刺激因子基因至人類染色體7p15-p21的區域定位(Regional localization of the interferon-beta 2/B-cell stimulatory factor 2/hepatocyte stimulating factor gene to human chromosome 7p15-p21)". 基因體學(Genomics). 2 (3): 203–8. doi:10.1016/0888-7543(88)90003-1. PMID 3294161. 50. "升高的肌鈣蛋白及介白素-6量於COVID-19與差的預後相關聯(Raised troponin and interleukin-6 levels are associated with a poor prognosis in COVID-19)". 心節律新聞(Cardiac Rhythm News). 2020年四月2日. 51. Meng, Xiao-ming; Nikolic-Paterson, David J.; Lan, Hui Yao (25 Apr 2016). "TGF-β:纖維化之主要調節子(TGF-β: the master regulator of fibrosis)". 自然綜述腎臟學(Nature Reviews Nephrology). 12 (6): 325–338. doi:10.1038/nrneph.2016.48. ISSN 1759-5061. PMID 27108839. S2CID 25871413. 52. Massagué J (2012年十月). "於背景下的TGFβ傳訊(TGFβ signalling in context)". 自然綜述分子生物學(Nature Reviews. Molecular Cell Biology). 13 (10): 616–30. doi:10.1038/nrm3434. PMC 4027049. PMID 22992590. 53. Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, 等人 (1997年十月). "Smad7,一種TGF-貝他傳訊之TGF貝他誘發性拮抗子,之鑑認(Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling)". 自然(Nature). 389 (6651): 631–5. Bibcode:1997Natur.389.631N. doi:10.1038/39369. PMID 9335507. S2CID 4311145. 54. AfCS傳訊閘道-數據中心-配體描述(AfCS signaling gateway - data center - ligand description) 55. Letterio JJ, Roberts AB (1998年四月). "免疫反應透過TGF-貝他的調節(Regulation of immune responses by TGF-beta)". 免疫學年度綜述(Annual Review of Immunology). 16 (1): 137–61. doi:10.1146/annurev.immunol.16.1.137. PMID 9597127. 56. Massagué J, Xi Q (2012年七月). "幹細胞分化基因之TGF-β控制(TGF-β control of stem cell differentiation genes)". FEBS Letters. 586 (14): 1953–8. doi:10.1016/j.febslet.2012.03.023. PMC 3466472. PMID 22710171. 57. Li MO, Flavell RA (2008年八月). "TGF-貝他:一種所有T細胞溝通之專家(TGF-beta: a master of all T cell trades)". 細胞(Cell). 134 (3): 392–404. doi:10.1016/j.cell.2008.07.025. PMC 3677783. PMID 18692464. 58. Massagué J, Blain SW, Lo RS (2000年十月). "生長控制、癌症、及遺傳疾患中的TGF貝他傳訊(TGFbeta signaling in growth control, cancer, and heritable disorders)". 細胞(Cell). 103 (2): 295–309. doi:10.1016/S0092-8674(00)00121-5. PMID 11057902. S2CID 15482063. 59. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, 等人 (1993年一月). "小鼠中的轉形生長因子貝他1無效突變造成過度發炎反應及早期死亡(Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death)". 美國國家科學院進展(Proceedings of the National Academy of Sciences of the United States of America). 90 (2): 770–4. 60. Iszewski MB, Groot AJ, Dastych J, Knol EF (2007年五月). "至人類肥大細胞顆粒的TNF運輸:成熟鏈依賴性胞吞作用(TNF trafficking to human mast cell granules: mature chain-dependent endocytosis)". 免疫學期刊(Journal of Immunology). 178 (9): 5701–9. doi:10.4049/jimmunol.178.9.5701. PMID 17442953. 61. Gahring LC, Carlson NG, Kulmar RA, Rogers SW (1996年九月). "鼠類腦中腫瘤壞死因子阿爾法之神經元表現(Neuronal expression of tumor necrosis factor alpha in the murine brain)". 神經免疫調節(Neuroimmunomodulation). 3 (5): 289–303. doi:10.1159/000097283. PMID 9218250. 62. Walsh LJ, Trinchieri G, Waldorf HA, Whitaker D, Murphy GF (1991年五月). "人類皮膚肥大細胞含有並釋放腫瘤壞死因子阿爾法,其誘發內皮白血球黏附分子1(Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1)". 美國國家科學院進展(Proceedings of the National Academy of Sciences of the United States of America). 88 (10): 4220–4. Bibcode:1991PNAS.88.4220W. doi:10.1073/pnas.88.10.4220. PMC 51630. PMID 1709737. 63. Feng P, Jyotaki M, Kim A, Chai J, Simon N, Zhou M, Bachmanov AA, Huang L, Wang H (2015年十月). "透過腫瘤壞死因子的苦味反應之調節(Regulation of bitter taste responses by tumor necrosis factor)". 腦、行為、及免疫力(Brain, Behavior, and Immunity). 49: 32–42. doi:10.1016/j.bbi.2015.04.001. PMC 4567432. PMID 25911043. 64. Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M, Hill BJ, Noto A, Ancuta P, Peretz Y, Fonseca SG, Van Grevenynghe J, Boulassel MR, Bruneau J, Shoukry NH, Routy JP, Douek DC, Haddad EK, Sekaly RP (2010年四月). "透過單核球的計畫性死亡-1誘發性介白素-10製造於HIV感染期間損傷CD4+ T細胞活化(Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection)". Nat. Med. 16 (4): 452–9. doi:10.1038/nm.2106. PMC 4229134. PMID 20208540. 65. Starkie R, Ostrowski SR, Jauffred S, Febbraio M, Pedersen BK (2003). "運動及IL-6輸注於人類抑制內毒素誘發性TNF-α製造(Exercise and IL-6 infusion inhibit endotoxin-induced TNF-α production in humans)". FASEB J. 17 (8): 884–886. doi:10.1096/fj.02-0670fje. PMID 12626436. S2CID 30200779. 66. Pedersen BK (2009年十二月). "體能活動不足之疾病體學–及肌肉激素之於肌肉–脂肪溝通的角色(The diseasome of physical inactivity – and the role of myokines in muscle–fat cross talk)". J Physiol. 587 (23): 5559–5568. doi:10.1113/jphysiol.2009.179515. PMC 2805368. PMID 19752112. 67. Chadwick W, Magnus T, Mattson MP, Maudsley S (2008). "靶向TNF-阿爾法受體以用於神經治療(Targeting TNF-alpha receptors for neurotherapeutics)". 神經科學趨勢(Trends in Neurosciences). 31 (10): 504–511. doi:10.1016/j.tins.2008.07.005. PMC 2574933. PMID 18774186. 68. Heir R, Stellwagen D (2020). " TNF介導性體內恆定突觸可塑性:從試管內到活體內模型(TNF-Mediated Homeostatic Synaptic Plasticity: From in vitro to in vivo Models)". 細胞神經科學前沿(Frontiers in Cellular Neuroscience). 14: 565841. doi:10.3389/fncel.2020.565841. PMC 7556297. PMID 33192311. 69. Luster AD, Unkeless JC, Ravetch JV (1985). "伽瑪-干擾素轉錄上調節與血小板蛋白質有同源性的早期反應基因(Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins)". 自然(Nature). 315 (6021): 672–6. doi:10.1038/315672a0. PMID 3925348. S2CID 4358066. 70. Luster AD, Jhanwar SC, Chaganti RS, Kersey JH, Ravetch JV (1987年五月). "干擾素誘發性基因定位於與急性白血病細胞中的(4;11)移位相關的染色體條帶(Interferon-inducible gene maps to a chromosomal band associated with a (4;11) translocation in acute leukemia cells)". 美國國家科學院進展(Proceedings of the National Academy of Sciences of the United States of America). 84 (9): 2868–71. doi:10.1073/pnas.84.9.2868. PMC 304761. PMID 2437586. 71. Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD (2002年四月). "IFN-伽瑪誘發性蛋白10(IP-10;CXCL10)不足小鼠顯露IP-10於效應T細胞產生和運輸的角色(IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking)". 免疫學期刊(Journal of Immunology). 168 (7): 3195–204. doi:10.4049/jimmunol.168.7.3195. PMID 11907072. 72. Angiolillo AL, Sgadari C, Taub DD, Liao F, Farber JM, Maheshwari S, 等人 (1995年七月). "人類干擾素誘發性蛋白10係活體內血管發生之有力抑制劑(Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo)". 實驗醫學期刊(The Journal of Experimental Medicine). 182 (1): 155–62. doi:10.1084/jem.182.1.155. PMC 2192108. PMID 7540647. 73. Booth V, Keizer DW, Kamphuis MB, Clark-Lewis I, Sykes BD (2002年八月). " CXCR3結合性趨化介素IP-10/CXCL10:結構及受體交互作用(The CXCR3 binding chemokine IP-10/CXCL10: structure and receptor interactions)". 生物化學(Biochemistry). 41 (33): 10418–25. doi:10.1021/bi026020q. PMID 12173928. 74. Javier González-Gallego, M. Victoria García-Mediavilla, Sonia Sánchez-Campos 及 María J. Tuñón. 水果多酚、免疫力、及發炎(Fruit polyphenols, immunity and inflammation). 英國營養學期刊(British Journal of Nutrition) (2010), 104, S15–S27. 75. Raso, GM, Meli, R, Di Carlo, G, 等人 (2001) 巨噬細胞J774A.1中透過類黃酮的可誘發性一氧化氮合酶及環氧合酶-2表現之抑制(Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1). Life Sci 68, 921–931. 76. Hou, DX, Luo, D, Tanigawa, S, 等人 (2007) Prodelphinidin B-4 3′-O-五倍子酸酯,一種茶多酚,於通過TAK1-NF-卡帕B途徑之下調的COX-2及iNOS之抑制中涉及。(Prodelphinidin B-4 3′-O-gallate, a tea polyphenol, is involved in the inhibition of COX-2 and iNOS via the downregulation of TAK1-NF-kappaB pathway). Biochem Pharmacol 74, 742–751. 77. Mutoh, M, Takahashi, M, Fukuda, K, 等人 (2000) 結腸癌細胞中通過具有間苯二酚型結構的化學預防性劑的環氧合酶-2啟動子依賴性轉錄活性之抑制(Suppression of cyclooxygenase-2 promoter-dependent transcriptional activity in colon cancer cells by chemopreventive agents with a resorcin-type structure). 癌發生(Carcinogenesis) 21, 959–963. 78. Kang, HK, Ecklund, D, Liu, M, 等人 (2009) 洋芫荽黃,一種非誘變性膳食類黃酮,藉由抑制用於自體反應性Th1及Th17細胞之擴增的自體抗原呈現來抑制狼瘡。(Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells.) Arthritis Res Ther 11, R59. 79. Kim, HP, Son, KH, Chang, HW, 等人 (2004) 抗發炎性植物類黃酮及細胞作用機制。(Anti-inflammatory plant flavonoids and cellular action mechanisms.) Pharm Sci 96, 229–245. 80.Moreira, A, Fraga, C, Alonso, M, 等人 (2004) 槲皮素於門脈高血壓大鼠之胃黏膜預防氧化壓力及NF-卡帕B活化。(Quercetin prevents oxidative stress and NF-kappaB activation in gastric mucosa of portal hypertensive rats.) Biochem Pharmacol 68, 1939–1946. 81.Tieppo, J, Cuevas, MJ, Vercelino, R, 等人 (2009) 硬化大鼠中藉由槲皮素投予的肝肺症狀之預防。(Prevention of hepatopulmonary syndrome by quercetin administration in cirrhotic rats.) J Nutr 139, 1339–1346. 82. Hirano, T, Higa, S, Arimitsu, J, 等人 (2004) 諸如葉黃酮、黃櫨素、及洋芫荽黃的類黃酮係透過經活化人類嗜鹼性球的介白素-4及介白素-13之製造之抑制劑。(Flavonoids such as luteolin, fisetin and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils.) Int Arch Allergy Immunol 134, 135–140. 83. Wadsworth, TL & Koop, DR (1999) 葡萄酒多酚類槲皮素及白藜蘆醇於RAW 264·7巨噬細胞對促發炎細胞介素表現的功效(Effects of the wine polyphenolics quercetin and resveratrol on pro-inflammatory cytokine expression in RAW 264·7 macrophages.) Biochem Pharmacol 57, 941–949. 84. Kim, IB, Kim, DY, Lee, SJ, 等人 (2006) 人類鼻纖維母細胞及A549上皮細胞中透過綠茶多酚的IL-8製造之抑制(Inhibition of IL-8 production by green tea polyphenols in human nasal fibroblasts and A549 epithelial cells.) Biol Pharm Bull 29, 1120–1125. 85. Park, HH, Lee, S, Son, HY, 等人 (2008) 類黃酮於肥大細胞中抑制組織胺釋放及促發炎性細胞介素之表現。(Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells.) Arch Pharm Res 31, 1303–1311. 86. Kim, YJ, Choi, SE, Lee, MW, 等人 (2008) Taxifolin醣苷抑制受脂多醣及脂壁酸刺激的樹突細胞反應。(Taxifolin glycoside inhibits dendritic cell responses stimulated by lipopolysaccharide and lipoteichoic acid.) J Pharm Pharmacol 60, 1465–1472. 87. Sternberg, Z, Chadka, K, Lieberman, A, 等人 (2008) 槲皮素及干擾素-貝他於自多發性硬化患者分離的周邊血液單核細胞調節免疫反應。(Quercetin and interferon-beta modulate immune response(s) in peripheral blood mononuclear cell isolated from multiple sclerosis patients.) J Neuroimmunol 205, 142–147. 88. Li, CY, Suen, JL, Chiang, BL, 等人 (2006) 桑色素藉由調節骨髓源樹突細胞來促進Th2細胞介素之製造。(Morin promotes the production of Th2 cytokine by modulating bone marrow-derived dendritic cells.) Am J Chin Med 34, 667–684. 89. Lee, JS, Kim, SG, Kim, KH, 等人 (2007) Silibilin透過抑制樹突細胞之免疫刺激功能來極化Th1/Th2免疫反應。(Silibilin polarizes Th1/Th2 immune responses through the inhibition of immunostimulatory function of dendritic cells.) J Cell Physiol 210, 385–397. 90. Comalada, M, Ballester, I, Bailón, E, 等人 (2006) 原代骨髓源小鼠巨噬細胞中透過天然存在的類黃酮的促發炎標記之抑制:結構-活性關係之分析。(Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship.) Biochem Pharmacol 72, 1010–1021. 91.Crouvezier, S, Powell, B, Keir, D, 等人 (2005) 試管內茶之酚組份之對促發炎及抗發炎細胞介素透過人類白血球的製造的功效。(The effects of phenolic components of tea on the production of pro- and anti-inflammatory cytokines by human leukocytes in vitro.) 細胞介素(Cytokine) 13, 280–286. 92. Wang, J, Zhang, Q, Jin, S, 等人 (2008) 金雀異黃酮於膠原誘發性類風濕性關節炎模型中調節免疫反應。(Genistein modulate immune responses in collage-induced reumathoid arthiritis model.) Maturitas 59, 405–412. 93. Yano, S, Umeda, D, Yamashita, T, 等人 (2007) 膳食黃酮於以OVA致免疫的BALB/c小鼠抑制IgE及Th2細胞介素。(Dietary flavones suppress IgE and Th2 cytokines in OVA-immunized BALB/c mice.) Eur J Nutr 46, 257–263. 94. Park, HJ, Lee, CM, Jung, ID, 等人 (2009) 槲皮素於哮喘之鼠類模型中調節Th1/Th2平衡。(Quercetin regulates Th1/Th2 balance in a murine model of asthma.) Int Immunopharmacol 9, 261–267. 95. Yu, CS, Lai, KC, Yang, JS, 等人 (2010) 槲皮素活體內抑制鼠類白血病WEHI-3細胞並促進免疫反應。(Quercetin inhibited murine leukemia WEHI-3 cells in vivo and promoted immune response.) Phytother Res 24, 163–168. 96. Lin, JP, Yang, JS, Lu, CC, 等人 (2009) 芸香苷活體內抑制鼠類白血病WEHI-3細胞之增殖並活體內促進免疫反應。(Rutin inhibits the proliferation of murine leukemia WEHI-3 cells in vivo and promotes immune responses in vivo.) Leuk Res 33, 823–828. 97. Min, K, Yoon, WK, Kim, SK, 等人 (2007) silibilin於實驗自體免疫腦脊髓炎中的免疫抑制功效。(Immunosuppressive effects of silibilin in experimental autoimmune encephalomyelitis.) Arch Pharm Res 30, 1265–1272. 98. Ramiro-Puig, & Castell, M (2009) 可可:抗氧化劑及免疫調節劑。(Cocoa: antioxidant and immunomodulator.) Br J Nutr 101, 931–940. 99. Kowalski, J, Samojedny, A, Paul, M, 等人 (2006) 洋芫荽黃於J774·2巨噬細胞中抑制單核球化學引誘蛋白1(MCP-1)之釋放及基因表現。(Apigenin inhibit release and gene expression of monocyte chemoattractant protein 1 (MCP-1) in J774·2 macrophages.) Wiad Lek 59, 634–638. 100. Ahn, HY, Xu, Y & Davidge, ST (2008) Epigallocatechin-3-O-五倍子酸酯抑制TNFα誘發性單核球趨化性蛋白-1自血管內皮細胞的製造。(Epigallocatechin-3-O-gallate inhibits TNFα-induced monocyte chemotactic protein-1 production from vascular endothelial cells.) Life Sci 82, 964–968. 101. Ruiz, PA, Braune, A, Hölzlwimmer, G, 等人 (2007) 槲皮素於鼠類腸上皮細胞抑制TNF誘發性NF-卡帕B轉錄因子至促發炎性基因啟動子的招集。(Quercetin inhibits TNF-induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells.) J Nutr 137, 1208–1215. 102. Erlejman, AG, Jaggers, G, Fraga, CG, 等人 (2008) TNFα誘發性NF-κB活化及細胞氧化劑製造於Caco-2細胞受六聚procyanidin調節。(TNFα-induced NF-κB activation and cell oxidant production are modulated by hexameric procyanidins in Caco-2 cells.) Arch Biochem Biophys 476, 186–195. 103. Sivaramakrishnan, V & Niranjali Devaraj, S (2009) 桑色素於以二乙基亞硝基胺誘發的大鼠肝細胞癌中調節NF-κB-p65、COX-2、及基質金屬蛋白酶之表現。(Morin regulates the expression of NF-κB-p65, COX-2 and matrix metalloproteinases in diethylnitrosamine induced rat hepatocellular carcinoma.) Chem Biol Interact 180, 353–359. 104. Choi, SY, Hwang, JH, Ko, HC, 等人 (2007) 來自柑橘類水果果皮的陳黃皮酮於經LPS活化RAW264·7細胞中抑制NF-κB之DNA結合活性及ROS製造。(Nobiletin from citrus fruit peel inhibits the DNA-binding activity of NF-κB and ROS production in LPS-activated RAW264·7 cells.) J Ethnopharmacol 113, 149–155. 105. Crespo, I, García-Mediavilla, MV, Gutiérrez, B, 等人 (2008) 堪非黃酮醇與槲皮素之對培養的人類內皮細胞之細胞介素誘發性促發炎狀態的功效之比較。(A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells.) Br J Nutr 100, 968–976. 106. Xu, L, Zhang, L, Bertucci, AM, 等人 (2008) 洋芫荽黃,一種膳食類黃酮,藉由抑制PKB/Akt及NF-κB活化途徑來使人類T細胞對活化誘發性細胞死亡敏感。(Apigenin a dietary flavonoid sensitizes human T cells for activation-induced cell death by inhibiting PKB/Akt and NF-κB activation pathway.) Immunol Lett 121, 74–83. 107. Rangan, GK, Wang, Y & Harris, DC (2002) 膳食槲皮素於患有已建立的慢性腎小球疾病的大鼠之腎皮質中加強活化子蛋白-1且不減少核因子-卡帕B。(Dietary quercetin augments activator protein-1 and does not reduce nuclear factor-kappa B in the renal cortex of rats with established chronic glomerular disease.) Nephron 90, 313–319.CrossRefGoogle Scholar 108. Jang, S, Kelley, KW & Johnson, RW (2008) 葉黃酮於微神經膠細胞中藉由抑制JNK磷酸化及AP-1之活化減少IL-6製造。(Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1.) Proc Natl Acad Sci U S A 105, 7534–7539. 109. Hamlinen, M, Nieminen, R, Vuorela, P, 等人 (2007) 類黃酮之抗發炎功效:金雀異黃酮、堪非黃酮醇、槲皮素、及大豆異黃酮苷素抑制STAT-1及NF-κB活化,而黃酮、鼠李素、柚配質、及天竺葵苷素僅抑制NF-κB活化,伴隨於經活化巨噬細胞中對iNOS表現及NO製造的抑制功效。(Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavones, rhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with the inhibitory effects on iNOS expression and NO production in activated macrophages.) Mediators Inflamm 2007, 45673–45683. 110. Cai, F, Li, CR, Wu, JL, 等人 (2006) 茶黃素於大鼠透過其抗發炎功效及STAT-1之調節改善大腦局部缺血-再灌注傷害。(Theaflavin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-inflammatory effect and modulation of STAT-1.) Mediators Inflamm 2006, 30490. 111. Rezai-Zadeh, K, Ehrhart, J, Bai, Y, 等人 (2008) 洋芫荽黃及葉黃酮透過抑制STAT1誘發性CD40表現來調節微神經膠細胞活化。(Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression.) J Neuroinflamm 25, 41. 112. Ma, L, Gao, HQ, Li, BY, 等人 (2007) 葡萄籽原花青素萃取物透過經過氧化體增殖子活化的受體伽瑪之活化抑制被晚期糖化終產物誘發的血管細胞黏附分子表現。(Grape seed proanthocyanidin extracts inhibit vascular cell adhesion molecule expression induced by advanced glycation end products through activation of peroxisome proliferators-activated receptor gamma.) J Cardiovasc Pharmacol 49, 293–298. 113. Wadsworth, TL & Koop, DR (2001) 銀杏萃取物(EGb 761)及槲皮素之對一氧化氮之脂多醣誘發性釋放的功效。(Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced release of nitric oxide.) Chem Biol Interact 137, 43–58. 114. Ying, B, Yang, T, Song, X, 等人 (2009) 槲皮素於肺上皮細胞株A549透過MAPK途徑抑制IL-1貝他誘發性ICAM-1表現。(Quercetin inhibits IL-1 beta-induced ICAM-1 expression in pulmonary epithelial cell line A549 through the MAPK pathways.) Mol Biol Rep 36, 1825–1832. 115. Terao, J. 調節與槲皮素相關的類黃酮之生體可用率的因子及其等之血管功能之結果。(Factors modulating bioavailability of quercetin-related flavonoids and the consequences of their vascular function.) Biochem. Pharmacol. 2017, 139, 15– 23, DOI: 10.1016/j.bcp.2017.03.021 116. Henning, S. M.; Wang, P.; Abgaryan, N.; Vicinanza, R.; de Oliveira, D. M.; Zhang, Y.; Lee, R.; Carpenter, C. L.; Aronson, W. J.; Heber, D. 來自飲用綠茶或紅茶者的血漿及尿液中的酚酸濃度及對於結腸癌的潛在化學預防特性。(Phenolic acid concentrations in plasma and urine from men consuming green or black tea and potential chemopreventive properties for colon cancer.) Mol. Nutr. Food Res. 2013, 57, 483– 493, DOI: 10.1002/mnfr.201200646 117. Hamming, I.; Timens, W.; Bulthuis, M.; Lely, A.; Navis, G.; van Goor, H. SARS冠狀病毒之功能性受體ACE2蛋白質之組織分布。了解SARS發病機制之第一步。(Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.) J. Pathol. 2004, 203, 631– 637, DOI: 10.1002/path.1570 118. de Boer, V. C. J.; Dihal, A. A.; van der Woude, H.; Arts, I. C. W.; Wolffram, S.; Alink, G. M.; Rietjens, I. M. C. M.; Keijer, J.; Hollman, P. C. H. 大鼠及豬中的槲皮素之組織分布。(Tissue distribution of quercetin in rats and pigs.) J. Nutr. 2005, 135, 1718– 1725, DOI: 10.1093/jn/135.7.1718 119. Mullen, W.; Rouanet, J.-M.; Auger, C.; Teissèdre, P.-L.; Caldwell, S. T.; Hartley, R. C.; Lean, M. E. J.; Edwards, C. A.; Crozier, A. 大鼠中的[2-14C]槲皮素-4′-葡萄糖苷之生體可用率。(Bioavailability of [2-14C]quercetin-4′-glucoside in rats.) J. Agric. Food Chem. 2008, 56, 12127– 12137, DOI: 10.1021/jf802754s 120. Ivey, K. L.; Hodgson, J. M.; Croft, K. D.; Lewis, J. R.; Prince, R. L. 類黃酮攝入及所有原因的死亡率。(Flavonoid intake and all-cause mortality.) Am J. Clin. Nutr. 2015, 101, 1012– 1020, DOI: 10.3945/ajcn.113.073106 121. Serban, M. C.; Sahebkar, A.; Zanchetti, A.; Mikhailidis, D. P.; Howard, G.; Antal, D.; Andrica, F.; Ahmed, A.; Aronow, W. S.; Muntner, P. 槲皮素之對血壓的功效:系統性綜述及隨機對照試驗之統合分析。(Effects of quercetin on blood pressure: a systematic review and meta-analysis of randomized controlled trials.) J. Am. Heart Assoc. 2016, 5, e002713 DOI: 10.1161/JAHA.115.002713 122. Tamtaji, O. R.; Milajerdi, A.; Dadgostar, E.; Kolahdooz, F.; Chamani, M.; Amirani, E.; Mirzaei, H.; Asemi, Z. 患有代謝症候群及相關疾患的患者中槲皮素補充劑之對血壓及內皮功能的功效:系統性綜述及隨機對照試驗之統合分析。(The effects of quercetin supplementation on blood pressures and endothelial function among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials.) Curr. Pharm. Des. 2019, 25, 1372– 1384, DOI: 10.2174/1381612825666190513095352 123. Bondonno, N. P.; Bondonno, C. P.; Hodgson, J. M.; Ward, N. C.; Croft, K. D. 槲皮素之於心血管健康的效力。(The efficacy of quercetin in cardiovascular health.) Curr. Nutr. Rep. 2015, 4, 290– 303, DOI: 10.1007/s13668-015-0137-3 124. Patel, R. V.; Mistry, B. M.; Shinde, S. K.; Syed, R.; Singh, V.; Shin, H.-S. 槲皮素作為心血管劑的治療潛力。(Therapeutic potential of quercetin as a cardiovascular agent.) Eur. J. Med. Chem. 2018, 155, 889– 904, DOI: 10.1016/j.ejmech.2018.06.053 125. Larson, A. J.; Symons, J. D.; Jalili, T. 槲皮素:一種對於高血壓的治療?—效力及機制之綜述。(Quercetin: A treatment for hypertension?—A review of efficacy and mechanisms.) 藥物(Pharmaceuticals) 2010, 3, 237– 250, DOI: 10.3390/ph3010237 126. Islam, M.; Schmidt, R.; Gunaseelan, S.; Sanchez, A. 槲皮素,一種植物類黃酮,之對心血管的功效的更新。(An update on the cardiovascular effects of quercetin, a plant flavonoid.) Curr. Nutr. Food Sci. 2014, 10, 36– 48, DOI: 10.2174/157340131001140328115216 127. Actis-Goretta, L.; Ottaviani, J. I.; Fraga, C. G. 透過富黃烷醇食物的血管收縮素轉化酶活性之抑制。(Inhibition of angiotensin converting enzyme activity by flavanol-rich foods.) J. Agric. Food Chem. 2006, 54, 229– 234, DOI: 10.1021/jf052263o 128. Hussain, F.; Jahan, N.; Rahman, K.-u.; Sultana, B.; Jamil, S. 芫荽之降血壓生物功能性化合物之鑑認及其等之血管收縮素轉化酶(ACE)抑制潛力之評估。(Identification of hypotensive biofunctional compounds of Coriandrum sativum and evaluation of their angiotensin-converting enzyme (ACE) inhibition potential.) Oxid. Med. Cell. Longevity 2018, 2018, 4643736 DOI: 10.1155/2018/4643736 129. Hettihewa, S. K.; Hemar, Y.; Rupasinghe, H. 大籽獼猴桃(一種野生奇異果)之富類黃酮萃取物試管內抑制血管收縮素轉化酶。(Flavonoid-rich extract of actinidia macrosperma (a wild kiwifruit) inhibits angiotensin-converting enzyme in vitro.) 食物(Foods) 2018, 7, 146, DOI: 10.3390/foods7090146 130. Häckl, L. P. N.; Cuttle, G.; Dovichi, S. S.; Lima-Landman, M.; Nicolau, M.透過槲皮素的血管收縮素轉化酶之抑制改變對於舒緩肽及血管收縮素I的血管反應。(Inhibition of angiotensin-converting enzyme by quercetin alters the vascular response to bradykinin and angiotensin I.) 藥理學(Pharmacology) 2002, 65, 182– 186, DOI: 10.1159/000064341 131. Neto-Neves, E. M.; Montenegro, M. F.; Dias-Junior, C. A.; Spiller, F.; Kanashiro, A.; Tanus-Santos, J. E. 使用槲皮素的長期治療活體內及試管內不抑制血管收縮素轉化酶。(Chronic treatment with quercetin does not inhibit angiotensin-converting enzyme in vivo or in vitro.) Basic Clin. Pharmacol. Toxicol. 2010, 107, 825– 829, DOI: 10.1111/j.1742-7843.2010.00583.x 132. McAnulty, S. R.; McAnulty, L. S.; Morrow, J. D.; Khardouni, D.; Shooter, L.; Monk, J.; Gross, S.; Brown, V. 於慢性抽菸者每日水果攝取之對血管收縮素轉化酶活性、血壓、及氧化壓力的功效。(Effect of daily fruit ingestion on angiotensin converting enzyme activity, blood pressure, and oxidative stress in chronic smokers.) Free Radical Res. 2005, 39, 1241– 1248, DOI: 10.1080/10715760500306836 133. Larson, A.; Witman, M. A.; Guo, Y.; Ives, S.; Richardson, R. S.; Bruno, R. S.; Jalili, T.; Symons, J. D. 於高血壓個體的急性槲皮素誘發性血壓降低並非繼發於較低的血漿血管收縮素轉化酶活性或內皮素-1:一氧化氮。(Acute, quercetin-induced reductions in blood pressure in hypertensive individuals are not secondary to lower plasma angiotensin-converting enzyme activity or endothelin-1: nitric oxide.) Nutr. Res. 2012, 32, 557– 564, DOI: 10.1016/j.nutres.2012.06.018 134. Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.A 血管收縮素轉化酶2(ACE2)於SARS冠狀病毒誘發性肺損傷的至關重要的角色。(crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury.) Nat. Med. 2005, 11, 875– 879, DOI: 10.1038/nm1267 135. Li, G.; He, X.; Zhang, L.; Ran, Q.; Wang, J.; Xiong, A.; Wu, D.; Chen, F.; Sun, J.; Chang, C. 評估於COVID-19之發病機制中ACE2於肺組織的表現模式。(Assessing ACE2 expression patterns in lung tissues in the pathogenesis of COVID-19.) J. Autoimmun. 2020, 102463 DOI: 10.1016/j.jaut.2020.102463 實施例 2 :超氧化物歧化酶之吸收之透過調整腸微生物的影響 背景
超氧化物歧化酶(SOD)係具有極高分子量(其一般有與物理穩定性、胃酸降解、及(最重要地)吸收相關的問題)的初級抗氧化酶。儘管SOD對於降低細胞氧化壓力而言係有益的且可對許多與老化相關的功能異常而言係有幫助的,迄今仍難以製造口服有效的SOD劑型。REVIVIFY®含有多種多樣的功能性分子之群組,其等影響彼此之生體可用率,包括SOD吸收。SOD之抗酸穩定性及吸收受微生物調整影響,而微生物調整由REVIVIFY®凝膠之某些組份(益菌生纖維和多酚)提供。為了證明此假設,進行研究以評估僅SOD及作為REVIVIFY®組成物之部分(par)的SOD是否造成任何微生物調整。以下研究顯示腸之微生物組成之改變發生,其造成SOD吸收及有效。 實驗方法
此工作之第一目的係開發用於腸微生物群系輪廓之維持的可擴展試管內模型。將細菌細胞培養在96深孔盤中並以於各孔之頂部處開孔的聚矽氧凝膠蓋子覆蓋。此蓋子促進與培養箱中的外部環境的氣體交換,以保持各孔中氣體及揮發性代謝物之分壓,其可隨後保持某些培養基中已溶解氣體分子之量。
處理條件:1.僅SOD;2.僅Fibersol(抗消化麥芽糊精);3.僅多酚;4. SOD + Fibersol;5. SOD + 多酚;及6.REVIVFY完成產品。使用此等處理,有可能使用試管內男(guy)微生物系統測定Fibersol及多酚如何影響SOD之吸收。
糞便標本收集及處理:簡言之,使用2.5 ml滅菌取樣勺(Bel-Art,美國)自各個體收集大約3 g的新鮮糞便樣本。使各勺落入含有15 ml的以0.1%(w/v)L-半胱胺酸鹽酸鹽預還原的滅菌PBS的50 ml Falcon管中。立即將樣本轉移至無氧工作站(5% H 2、5% CO 2、及90% N 2,於37ºC下)中。微生物群系係藉由於0(接種後立即)、3、6、9、12、24、34、及48 h時藉由測量於595 nm處的光學密度(OD 595)作為微生物生長及生質量之代替物及藉由總體蛋白質體學(metaproteomic)分析來定特徵。結果係使用山羊腸及聚矽氧墊微生物群系系統兩者測定。
結果:細菌生長隨時間逐漸增加。相較於對照組,Fibersol及僅SOD樣本未影響細菌生長,如OD測量所顯示(圖12,山羊腸系統;圖13,聚矽氧墊系統)。於圖12及13兩者,圖中最上面的線係REVIVIFY®完成產品,中間兩條線係僅果汁多酚及SOD + Fibersol,且下面三條線係無處理對照組、僅SOD、及僅Fibersol。然而,果汁中的多酚顯著增加細菌生長且REVIVIFY®完成產品造成最大OD增加。此等實驗透過聚矽氧墊及新鮮山羊男實驗兩者展示Fibersol加強SOD之吸收,如由增加的細菌生長展示。
結論:此研究顯示用於腸微生物群系輪廓之維持的可擴展試管內模型之開發。此外,顯示REVIVFY凝膠之不同組份之吸收模式,包括Fibersol之對SOD之吸收的影響。此腸微生物之試管內模型可用於其他藥物、益菌生、或保健營養品之評估。 實施例 3 :以試管內腸微生物群系模型評估的健康腸微生物群系之調整及短鏈脂肪酸
背景:腸健康對於健康生活及福祉而言極為重要。腸中微生物群落於免疫系統、激素過程、神經狀況、代謝、礦物質吸收、維生素製造、及數種細胞過程中扮演主要角色。根據美國糖尿病協會,已知腸微生物相在腸內及腸外實現宿主生理。腸微生物相對於腸內免疫系統之體內恆定、上皮增殖之調節、及對抗伺機性細菌的保護而言係必要的。存在於胃腸道中的腸微生物已在人類宿主內共演化以進行一些宿主自己否則無法完成的功能 主要腸微生物係厚壁菌門和擬桿菌門,接著是放線菌門和變形菌門(Protobacteria)。腸微生物之有益功效可藉由短鏈脂肪酸(SCFA)(主要是醋酸、丙酸、和丁酸、和乳酸)之製造測量。此製造依賴纖維食用之類型。於此例子,纖維係稱為Fibersol-2的可溶性纖維加上來自種種水果濃縮物的混合果-寡糖。假設為應以增加以多種方式保護宿主健康的短鏈脂肪酸之比例的方式調整有益微生物。此研究藉由腸微生物群系研究之試管內模型評估REVIVIFY®完成產品之對腸微生物群系調整及短鏈脂肪酸的功效。
實驗方法:如以上實施例2中敘述地建立試管內腸微生物群系培養模型。此工作之第一目的係開發用於腸微生物群系輪廓之維持的可擴展試管內模型。維持活體內腸微生物群系之功能及組成輪廓的試管內模型會係極有用的。如實施例2中敘述地進行試管內模型實驗。將腸微生物培養在2 ml 96孔盤中並以以下者處理24個小時:對照組、SOD、益菌生纖維、果汁、或完成的REVIVIFY®產品。於24 h時收穫經培養微生物群系樣本以用於總體蛋白質體學分析。之後,收集培養等分樣品以用於化學分析(SCFA含量)及微生物群系側寫。
結果:此研究評估當其等以四種不同化合物(SOD、纖維變性前(Prefibrotic)纖維、果汁、及完成產品)處理時腸微生物組成及SCFA之改變。如於圖14中看到的,結果顯示SCFA之量當以完成產品處理時顯著增加(圖14A)但SCFA之比例跨所有處理組(包括對照組)維持不變(圖14B)。於對照處理組,醋酸、丙酸、丁酸、和乳酸之濃度分別係30 µmol/ml、9 µmol/ml、15 µmol/ml、及6 µmol/ml,其當以完成產品處理24個小時時增加至80 µmol/ml、25 µmol/ml、35 µmol/ml、及12 µmol/ml。此係無法預期的對完成產品反應的SCFA之2.5倍增加。當計算跨對照組及所有四個處理組的此等SCFA之比例時,顯示醋酸、丙酸、丁酸、和乳酸比率維持一致分別約53%、15%、24%、及8%(參見圖14)。吾人之研究亦展示纖維變性前纖維、果汁、及完成產品當與基線及SOD比較時促進兩種好腸微生物厚壁菌門乳酸桿菌屬及放線菌門雙歧桿菌科之生長(參見圖15;其中厚壁菌門乳酸桿菌屬係以垂直細線表現且放線菌門雙歧桿菌科係以淺灰色陰影表現)。乳酸桿菌屬及雙岐桿菌屬兩者皆係好微生物且存在於許多用於消化率及免疫力的食物製品(例如優格)中。此兩者中,改變趨勢係朝向乳酸桿菌屬,其於SCFA圖中反映乳酸之製造。此外,乳酸桿菌屬屬於厚壁菌門物種。正常下此等係產丁酸者,其於該SCFA結果中反映。以完成產品處理的培養物之微生物群系輪廓顯示腸微生物的群落中厚壁菌門物種中的乳酸桿菌屬接著為放線菌門物種中的雙岐桿菌屬之顯著增加。
結論/觀點:膳食益菌生係被選擇性發酵的成分,其導致厚壁菌門物種中的乳酸桿菌屬及放線菌門物種中的雙岐桿菌屬的兩種有益微生物相之組成之特殊改變。此係重要發現,其中兩種有益微生物皆可藉由以下者提供宿主正面影響:發揮同型發酵和異型發酵結果以及消化和代謝蛋白質與碳水化合物、B-維生素以及維生素K之合成、膽鹽之分解代謝、增強先天性先天性以及後天性免疫、抑制促發炎介導子、對抗一系列病原體(諸如假單孢菌屬(Pseudonomas)、念珠菌屬、大腸桿菌、金的(Aurous)、沙門氏桿菌屬、亦志賀桿菌屬、難養芽胞梭菌、及幽門螺旋桿菌( Helicobactor pylori))的抗細菌活性。乳酸桿菌屬可係陰道健康之生物標記,其等係陰道微生物相之主要部分。此研究展示REVIVIFY®完成產品提高SCFA之在腸中的量但使各SCFA(醋酸、丙酸、丁酸、和乳酸)之比例保持與對照組一致。此結果展示SCFA之平衡增加而無以改善並維持健康結腸環境的一致方式。此研究暗示REVIVIFY®係獨特的膳食補充劑,其於丁酸製造相對較高提供許多健康益處腸上皮細胞完整性、免疫細胞完整性和反應、腸-腦軸心之腸神經元雙向傳訊、及營養素製造和代謝。丁酸係結腸上皮細胞之主要能量來源且於結腸黏膜健康之維持中涉及。 實施例 4 :人類腦微血管內皮細胞( HBMEC )之氧化性傷害之降低 引言
積累中的數據暗示氧化壓力及粒線體傷害於神經退化性疾患(包括帕金森氏病(PD)、多發性硬化(MS)、阿茲海默氏病(AD)、及許多其它者)之發病機制中涉及。腦使用約20%的氧消耗,且因此係活性含氧物(ROS)之高量產生者。此外,腦細胞膜由較多不飽和脂肪酸(MUFA及PUFA)構成,且因此更傾向導因於ROS的脂質自氧化。REVIVIFY®凝膠可提供來自多方途徑的氧化壓力及由疾病症狀誘發的立即效應之立即降低。
REVIVIFY®調配物中和超氧化物陰離子、羥基自由基、單態氧、過氧化-亞硝酸鹽、過氧化-自由基、及次氯酸鹽之主要氧化劑。 背景
超氧化物歧化酶( SOD ):SOD構成對抗體內氧化壓力的極重要抗氧化防禦。此酶起對抗活性含氧物介導性疾病的良好治療劑的作用。本綜述描述SOD之於種種生理和病理狀況(諸如癌症、發炎性疾病、囊腫纖維化、局部缺血、老化、類風濕性關節炎、神經退化性疾病、和糖尿病)的治療功效。然而,此酶於臨床應用具有某些限制。因此,已開發了SOD複合物和模擬物以增加其治療效力 1,2,3,4,5,6,7
多酚:多酚係植物之二級代謝物且一般包括於對抗紫外線輻射或病原體之侵犯的防禦中。於近十年,已對膳食植物多酚之作為抗氧化劑的潛在健康益處有很多興趣。流行病學研究和相關統合分析強烈暗示長期食用富植物多酚膳食提供對抗癌症、心血管疾病、糖尿病、骨質疏鬆症、和神經退化性疾病之發展的保護 8,9,10,11,12
膳食益菌生纖維:膳食纖維之健康益處已被了解很久。較高的膳食纖維之攝入與較少的心血管疾病相關聯且纖維於腸健康扮演某種角色,而許多有效的輕瀉劑事實上係經分離的纖維源。較高的纖維攝入與較低的體重相關聯。本來膳食纖維只包括多醣,但最近定義已包括寡醣作為膳食纖維,非基於其等之作為膳食纖維的藉由所接受總膳食纖維(TDF)方法的化學測量,而是基於其等之生理功效。在US,菊糖、果-寡糖、和其他寡醣作為纖維在食物標籤中包括。另外,寡醣係最為人所知的「益菌生」,「一種被選擇性發酵的成分,其允許該組成及/或胃腸微生物叢之活性兩者之特別改變,其賦予對宿主好-帶來和健康的益處」。迄今,所有已知和猜想的益菌生皆為碳水化合物化合物,主要係寡醣,已知在人類小腸中抗消化且到達結腸,於該處其等被腸微生物叢發酵。研究已提供證據顯示菊糖和寡果糖(OF)、乳果糖、和抗性澱粉(RS)符合該定義之所有方面,包括刺激雙岐桿菌屬(一種有益的細菌屬)。其他經分離碳水化合物和含碳水化合物食物(包括半乳寡糖(GOS)、反式半乳寡糖(TOS)、聚右旋糖、小麥糊精、阿拉伯膠、洋車前子、香蕉、全穀小麥、和全穀玉米)亦具有益菌生功效 13,14,15,16,17
此研究之目的係評估REVIVIFY®凝膠是否使人類腦微血管內皮細胞(HBMEC)之氧化性傷害減低。在缺氧誘發性HBMEC培養基中評估以下生物標記: 1.     丙二醛(MDA)—一種脂質氧化性傷害之生物標記 2.     4-羥基壬烯醛、或4-羥基-2-壬烯醛或4-HNE或HNE—一種脂質過氧化之生物標記 3.     蛋白質羰基—一種蛋白質氧化之生物標記 4.     3-硝基酪胺酸—一種與多巴胺神經元之退化相關聯的細胞傷害之生物標記
丙二醛( MDA 係一種式CH 2(CHO) 2的有機化合物。丙二醛係無色液體且係以烯醇形式存在的高度反應性化合物。[1]其天然存在且係氧化壓力之標記。
4- 羥基壬烯醛、或 4- 羥基 -2- 壬烯醛或 4-HNE HNE(C 9H 16O 2),係一種α,β-不飽和羥基烯醛,其在細胞中由脂質過氧化產生。4-HNE係於此過程形成的主要阿爾法,貝他-不飽和羥基烯醛。4-HNE具有3個反應性基團:醛、於碳2處的雙鍵、及於碳4處的羥基。
蛋白質羰基:血液及組織中的蛋白質羰基(PC)含量係蛋白質氧化之可靠標識。創傷性腦損傷(TBI)導因於對頭部的衝擊,其擾亂正常腦功能。嚴重TBI可造成永久腦損傷或死亡。瀰漫性軸突損傷(DAI)係TBI後的典型病理改變且與臨床預後密切相關。DAI有兩個獨特的病理特徵:腫脹及導因於過度神經元絲聚集的大型末端球。導因於細胞骨架異常的繼發軸突損傷係DAI之最常見原因。
氧化壓力係眾所周知的於DAI中涉及的因子,而粒線體磷酸化能力、菸鹼輔酶池之濃度、及氧化/硝化(nitrosative)壓力與DAI之嚴重性密切相關。羰基修飾作為對蛋白質的氧化性傷害之直接結果發生,導致蛋白質功能異常及形成蛋白質聚集體。已顯示蛋白質羰基化對數種神經退化性疾病(諸如多發性硬化、帕金森氏病、及阿茲海默氏病)之發病機制有貢獻。於正常條件下,咸認為羰基化蛋白質被蛋白酶體(其主要功能係辨認並降解不需要的、受損的、或摺疊錯誤的蛋白質)降解。然而,於促氧化條件下,活性含氧物(ROS)或活性含羰基物之增加的產生可能降低蛋白酶體之活性,導致受影響細胞中羰基化蛋白質之積累。
3- 硝基酪胺酸:硝基酪胺酸係由活性含氮物(諸如過氧化亞硝酸根陰離子及二氧化氮)介導的酪胺酸硝化之產物。硝基酪胺酸被認為是細胞損傷、發炎、以及NO(一氧化氮)產生之標識或標記。硝基酪胺酸係於活性代謝物NO之存在下形成。通常在許多疾病狀態下,氧化壓力增加超氧化物(O 2 )及NO之產生,形成過氧化亞硝酸鹽(ONOO ),一種破壞性自由基氧化劑。ONOO 之產生能夠氧化數種脂蛋白且能夠硝化許多蛋白質中的酪胺酸殘基。ONOO 之產生難以測定,因此蛋白質中的硝基酪胺酸通常係用於間接偵測ONOO 的可偵測標記。其於大量病理狀況中偵測到且被認為是NO依賴性活性含氮物誘發性硝化壓力之標記。硝基酪胺酸係在生物液體(諸如血漿、肺吸出物(aspirant)-BALF(支氣管肺泡內襯液)及尿液中偵測到。硝基酪胺酸之量之增加係於類風濕性關節炎敗血性休克及腹腔疾病中偵測到。於所有此等研究,硝基酪胺酸在健康的個體未偵測到。硝基酪胺酸亦於許多其他受疾病影響的組織(諸如圓錐角膜(keratoconus)中的角膜)中發現。過氧化亞硝酸鹽及/或硝化壓力可能參與糖尿病之發病機制。
亦已將硝基酪胺酸(作為活性含氧物之標記)與多巴胺神經元之退化關聯在一起。酪胺酸係多巴胺之前驅物,而多巴胺係對積極性、注意力、學習、晝夜節律、及其他生物過程而言重要的神經傳導物質。
研究設計:將人類腦微血管內皮細胞(HBMEC)以低氧條件(缺氧條件;2%氧)培養在六孔盤中。將對照組HBMEC細胞培養於正常氧濃度條件下。於處理前,將細胞在無血清培養基中培養24個小時。以以下劑處理細胞48個小時:1.僅超氧化物歧化酶;2.僅益菌生纖維;3.僅果汁;4.超氧化物歧化酶+益菌生纖維+果汁(組合);及5.陰性對照組。
酶聯免疫吸附分析:於培養48h後,培養基係自細胞移出並置於管子中。為評估revivify凝膠是否使人類腦微血管內皮細胞(HBMEC)之氧化性傷害降低,在缺氧誘發性HBMEC培養基中評估以下生物標記:1.丙二醛(MDA);2. 4-羥基壬烯醛、或4-羥基-2-壬烯醛或4-HNE或HNE;3.蛋白質羰基;及4. 3-硝基酪胺酸。
結果:如於圖16-19中看到的,雖然該凝膠之組份之一些顯示氧化性傷害生物標記之改善,使用完成產品凝膠看到最大改善。如於圖16中看到的,該凝膠之各組份相較於陽性對照組提供一些MDA生物標記之降低,而完成產品凝膠於缺氧條件下出人意料地具有比於非缺氧對照條件下培養的細胞低的MDA量。類似地結果亦於圖17中使用HNE作為生物標記看到,其中,再次地,完成產品凝膠出人意料地具有比於非缺氧對照條件下培養的細胞低的生物標記量。
如於圖18中看到的,對於各凝膠組份相較於陽性對照組蛋白質羰基生物標記之量個別降低,而完成的凝膠產品相較於陽性對照組有令人意外且顯著的降低。如於圖19中顯示,對3-硝基酪胺酸生物標記觀察到類似的結果,而完成產品相較於陽性對照組再次顯示令人意外且顯著的降低。
此實施例中的結果展示完成的REVIVIFY®凝膠提供實質上的且令人意外的HBMEC之對抗抗氧化劑的保護。此等結果暗示當與可溶性纖維及多酚組合時,所吸收的SOD可提供神經系統細胞之對抗氧化性傷害的顯著的保護。 實施例 4 之參考文獻1. Kangralkar VA, Patil SD, Bandivadekar RM. 氧化壓力和糖尿病:綜述。(Oxidative stress and diabetes: A review.) Intl J Pharm Appl. 2010;1:38–45. 2. Yasui K, Baba A. 超氧化物歧化酶(SOD)之對於發炎之消除的治療潛力。(Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation.) Inflamm Res. 2006;55:359–63. 3. Landis GN, Tower J. 超氧化物歧化酶演化及壽命調節。(Superoxide dismutase evolution and life span regulation.) Mech Ageing Dev. 2005;126:365–79. 4. Noor R, Mittal S, Iqbal J. 超氧化物歧化酶—於人類疾病的應用及與人類疾病的關聯性。(Superoxide dismutase –Applications and relevance to human diseases.) Med Sci Monit. 2002;8:RA210–5. 5. Inal ME, Kanbak G, Sunal E. 與老化相關的抗氧化酶活性及丙二醛水平。(Antioxidant enzyme activities and malondialdehyde levels related to aging.) Clin Chim Acta. 2001;305:75–80. 6. Riley DP. 作為治療劑的超氧化物歧化酶之功能性模擬物。(Functional mimics of superoxide dismutase enzymes as therapeutic agents.) Chem Rev. 1999;99:2573–88. 7. Salvemini D, Riley DP. 超氧化物歧化酶之非肽模擬物於用於疾病的臨床治療。(Nonpeptidyl mimetics of superoxide dismutase in clinical therapies for diseases.) Cell Mol Life Sci. 2000;57:1489–92. 8. Scalbert A, Manach C, Morand C, Remesy C. 膳食多酚及疾病之預防。(Dietary polyphenols and the prevention of diseases.) Crit Rev Food Sci Nutr. 2005;45:287–306. 9. Beckman CH. 酚儲存細胞:植物中於凋萎病抗性及於一般防禦反應的計畫性細胞死亡及周皮形成之關鍵?(Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defense responses in plants?) Physiol. Mol. Plant Pathol. 2000;57:101–110. 10. Arts ICW, Hollman PCH. 多酚及流行病學研究中的疾病風險。(Polyphenols and disease risk in epidemiologic studies.) Am J Clin Nutr. 2005;81:317–325. 11. Kondratyuk TP, Pezzuto JM. 與人類健康有關的天然產物多酚。(Natural Product Polyphenols of Relevance to Human Health.) Pharm Biol. 2004;42:46–63. 12. Shahidi F, Naczk M. 食物酚類化合物、來源、化學、功效、應用。(Food phenolics, sources, chemistry, effects, applications.) Lancaster, PA: Technomic Publishing Co Inc; 1995. 13. Slavin J.L. 膳食纖維:分類、化學分析、及食物來源。(Dietary fiber: Classification, chemical analyses, and food sources.) J. Am. Diet. Assoc. 1987;87:1164–1171. 14. Gibson G.R., Roberfroid M.B. 人類結腸微生物相之膳食調整:介紹益菌生之概念。(Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics.) J. Nutr. 1995;125:1401–1412. 15. Gibson G.R., Probert H.M., van Loo J., Rastall R.A., Roberfroid M.B. 人類結腸微生物相之膳食調整:更新益菌生之概念。(Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics.) Nutr. Res. Rev. 2004;17:259–275. doi: 10.1079/NRR200479. 16. Roberfroid M., Gobson G.R., Hoyles L., McCartney A.L., Rastall R., Rowland I., Wolvers D., Watzl B., Szajewska H., Stahl B., 等人 益菌生功效:代謝及健康益處。(Prebiotic effects: Metabolic and health benefits.) Br. J. Nutr. 2011;104:S1–S63. 17. Leach J.D., Sobolik K.D. 史前Chihauhuan沙漠中益菌生菊糖型聚果糖之高膳食攝入。(High dietaryintake of prebiotic inulin-type fructans in the prehistoric Chihauhuan desert.) Br. J. Nutr. 2010;103:1158–1561.
應了解儘管本文中已說明及敘述某些實施方式,不應將申請專利範圍限於所敘述及顯示的部分之特殊形式或排列。於本說明書中,已揭露了說明性實施方式,且雖然利用了特定術語,其等僅係以普通及敘述性意義使用而非為了限制之目的使用。鑒於以上教示,實施方式之修改及改變係可能的。因此應了解實施方式可以明確敘述者以外的方式實現。
雖然以上已敘述種種實施方式,應了解其等僅作為本技術之說明及實例而非以限制方式呈現。對於發明所屬技術領域中具有通常知識者而言,很明顯地,可於其中作種種形式及細節之改變而不偏離本技術之精神及範圍。因此,本技術之寬度及範圍不應受上述實施方式之任何者限制,而應僅根據所附申請專利範圍及其等之等效事物定義。亦應了解本文中討論的各實施方式之以及本文中引用的各參考文獻之各特徵可組合任何其他實施方式之特徵使用。本文中討論的所有專利及出版物之完整內容皆以引用方式併入本文中。
[圖1]係以脂多醣(LPS)、實施例1之凝膠調配物之不同組份、凝膠之組合(完成的調配物)、和陰性對照組(無處理)處理的Jurkat細胞之於490 nm處的吸收(表現細胞存活率,如實施例1中敘述)的圖。
[圖2]係顯示由CD69和CD3表現測量的T細胞活化(如實施例1中敘述)的圖。Jurkat細胞縮寫成JRK。
[圖3]係顯示以下濃度的實施例1之凝膠和其組份之對Jurkat細胞中的CD4+分化的功效的圖:Fibersol益菌生(prebiotic)纖維1.3 mg/mL;超氧化物歧化酶(SOD)0.2 mg/mL;LPS 10 µg/mL;果汁4.6 mg/mL;和其組合(完成的產品)5.6 mg/mL。
[圖4]係顯示以下濃度的實施例1之凝膠和其組份之對Jurkat細胞中的CD8+分化的功效的圖:Fibersol益菌生纖維1.3 mg/mL;超氧化物歧化酶(SOD)0.2 mg/mL;LPS 10 µg/mL;果汁4.6 mg/mL;和其組合(完成的產品)5.6 mg/mL。
[圖5]係顯示實施例1之凝膠和其組份之對減少經LPS活化的Jurkat細胞之8-異構前列腺素(Isoprostane)分泌的功效(如實施例1中敘述)的圖。
[圖6]係顯示實施例1之凝膠和其組份之對減少經LPS活化的Jurkat細胞之環氧合酶2(COX-2)分泌的功效(如實施例1中敘述)的圖。
[圖7]係顯示實施例1之凝膠和其組份之對減少經LPS活化的Jurkat細胞之干擾素-伽瑪(IFN-γ)分泌的功效(如實施例1中敘述)的圖。
[圖8]係顯示實施例1之凝膠和其組份之對減少經LPS活化的Jurkat細胞之介白素-6(IL-6)分泌的功效(如實施例1中敘述)的圖。
[圖9]係顯示實施例1之凝膠和其組份之對減少經LPS活化的Jurkat細胞之轉形生長因子-貝他(TGF-β)分泌的功效(如實施例1中敘述)的圖。
[圖10]係顯示實施例1之凝膠和其組份之對減少經LPS活化的Jurkat細胞之腫瘤壞死因子-阿爾法(TNF-α)分泌的功效(如實施例1中敘述)的圖。
[圖11]係顯示實施例1之凝膠和其組份之對減少經LPS活化的Jurkat細胞之C-X-C模體趨化介素配體10(CXCL10)分泌的功效(如實施例1中敘述)的圖。
[圖12]係在以完整的凝膠產品(REVIVIFY®完成的產品)或該凝膠之組份處理的山羊腸上生長的培養物隨時間的細菌密度之圖。
[圖13]係在以完整的凝膠產品(REVIVIFY®完成的產品)或該凝膠之組份處理的山羊腸上生長的培養物隨時間的細菌密度之圖。
[圖14A]係當以完整的凝膠產品(組合)或該凝膠之組份處理時係試管內腸微生物培養物短鏈脂肪酸(SCFA)醋酸、丙酸、丁酸、和乳酸之濃度(如實施例3中敘述)之圖。
[圖14B]係當以完整的凝膠產品(組合)或該凝膠之組份處理時係試管內腸微生物培養物短鏈脂肪酸(SCFA)醋酸、丙酸、丁酸、和乳酸之百分比(如實施例3中敘述)之圖。
[圖15]係顯示當以完整的凝膠產品(組合)或該凝膠之組份處理時試管內腸微生物培養物之微生物輪廓(如實施例3中敘述)的圖。
[圖16]係當以完整的(完成的)凝膠產品或組份處理時由人類腦微血管內皮細胞(HBMEC)分泌的丙二醛(MDA)生物標記之濃度(如實施例4中敘述)之圖。
[圖17]係當以完整的(完成的)凝膠產品或組份處理時由HBMEC分泌的4-羥基壬烯醛(HNE)生物標記之濃度(如實施例4中敘述)之圖。
[圖18]係當以完整的(完成的)凝膠產品或組份處理時由HBMEC分泌的蛋白質羰基(PC)生物標記之濃度(如實施例4中敘述)之圖。
[圖19]係當以完整的(完成的)凝膠產品或組份處理時由HBMEC分泌的3-硝基酪胺酸(NT)生物標記之濃度(如實施例4中敘述)之圖。

Claims (69)

  1. 一種液體組成物,其包含: a)約0.03單位/mL至約0.5單位/mL超氧化物歧化酶; b)約1.3 mg/mL至約23 mg/mL可溶性纖維;和 c)水。
  2. 如請求項1之液體組成物,其包含約0.05單位/mL至約0.4單位/mL超氧化物歧化酶。
  3. 如請求項1之液體組成物,其包含約0.2單位/mL至約0.3單位/mL超氧化物歧化酶。
  4. 如請求項1-3中任一項之液體組成物,其包含約2.7 mg/mL至約12 mg/mL可溶性纖維。
  5. 如請求項1-3中任一項之液體組成物,其包含約5.55 mg/mL至約11.11 mg/mL可溶性纖維。
  6. 如請求項1-5中任一項之液體組成物,其中該超氧化物歧化酶係自甜瓜、牛肝、異營細菌、或海洋植物性浮游生物萃取。
  7. 如請求項1-6中任一項之液體組成物,其中該超氧化物歧化酶係銅/鋅超氧化物歧化酶、鐵/錳超氧化物歧化酶、或鎳超氧化物歧化酶。
  8. 如請求項1-7中任一項之液體組成物,其中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:100至約1:1000。
  9. 如請求項1-7中任一項之液體組成物,其中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:500至約1:700。
  10. 如請求項1-9中任一項之液體組成物,其中該可溶性纖維係水溶性多醣。
  11. 如請求項1-10中任一項之液體組成物,其中該可溶性纖維選自可溶性玉米纖維、菊糖、糊精、瓜爾膠、寡多醣、半乳多糖 果-寡糖(galactopolysaccharides fructo-oligosaccharides)、乳果糖、抗消化澱粉、木-寡糖(xylo-oligosaccharides)、和異麥芽-寡糖(isomalto-oligossacharide)。
  12. 如請求項1-10中任一項之液體組成物,其中該可溶性纖維係可溶性玉米纖維。
  13. 如請求項12之液體組成物,其中該可溶性玉米纖維係抗消化麥芽糊精。
  14. 如請求項1-13中任一項之液體組成物,其進一步包含約0.1 mg/mL至約1.5 mg/mL的單醣(simple sugar)。
  15. 如請求項1-13中任一項之液體組成物,其進一步包含約0.1 mg/mL至約1.5 mg/mL d-核糖。
  16. 如請求項1-13中任一項之液體組成物,其進一步包含約0.40 mg/mL至約0.85 mg/mL d-核糖。
  17. 如請求項1-16中任一項之液體組成物,其進一步包含約1.3 mg/mL至約9.0 mg/mL的糖醇。
  18. 如請求項1-16中任一項之液體組成物,其進一步包含約1.3 mg/mL至約9.0 mg/mL赤藻糖醇。
  19. 如請求項1-16中任一項之液體組成物,其進一步包含約2.7 mg/mL至約5.6 mg/mL赤藻糖醇。
  20. 如請求項1-19中任一項之液體組成物,其進一步包含約0.1 mg/mL至約1.5 mg/mL的pH調整劑。
  21. 如請求項1-19中任一項之液體組成物,其進一步包含約0.1 mg/mL至約1.5 mg/mL檸檬酸。
  22. 如請求項1-19中任一項之液體組成物,其進一步包含約0.4 mg/mL至約0.7 mg/mL檸檬酸。
  23. 如請求項1-22中任一項之液體組成物,其進一步包含約0.05 mg/mL至約0.75 mg/mL的甜味劑。
  24. 如請求項1-22中任一項之液體組成物,其進一步包含約0.05 mg/mL至約0.75 mg/mL甜菊醣苷(steviol glycoside)。
  25. 如請求項1-22中任一項之液體組成物,其進一步包含約0.2 mg/mL至約0.35 mg/mL甜菊醣苷。
  26. 如請求項1-22中任一項之液體組成物,其進一步包含矯味劑。
  27. 一種組成物,其包含: a)約10單位至約200單位超氧化物歧化酶; b)約500 mg至約8000 mg可溶性纖維;和 c)益生菌。
  28. 如請求項27之組成物,其包含約50單位至約150單位超氧化物歧化酶。
  29. 如請求項27之組成物,其包含約70單位至約100單位超氧化物歧化酶。
  30. 如請求項27-29中任一項之組成物,其包含約1000 mg至約5000 mg可溶性纖維。
  31. 如請求項27-29中任一項之組成物,其包含約2000 mg至約4000 mg可溶性纖維。
  32. 如請求項27-31中任一項之組成物,其中該超氧化物歧化酶係自甜瓜、牛肝、異營細菌、或海洋植物性浮游生物萃取。
  33. 如請求項27-31中任一項之組成物,其中該超氧化物歧化酶係銅/鋅超氧化物歧化酶、鐵/錳超氧化物歧化酶、或鎳超氧化物歧化酶。
  34. 如請求項27-33中任一項之組成物,其中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:100至約1:1000。
  35. 如請求項27-33中任一項之組成物,其中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:500至約1:700。
  36. 如請求項27-35中任一項之組成物,其中該可溶性纖維係水溶性多醣。
  37. 如請求項27-35中任一項之組成物,其中該可溶性纖維選自可溶性玉米纖維、菊糖、糊精、瓜爾膠、寡多醣、半乳多糖 果-寡糖、乳果糖、抗消化澱粉、木-寡糖、和異麥芽-寡糖。
  38. 如請求項27-35中任一項之組成物,其中該可溶性纖維係可溶性玉米纖維。
  39. 如請求項38之組成物,其中該可溶性玉米纖維係抗消化麥芽糊精。
  40. 如請求項27-39中任一項之組成物,其中該益生菌包含雙岐桿菌屬( Bifidobacterium)之細菌。
  41. 如請求項27-39中任一項之組成物,其中該益生菌包含乳酸桿菌屬( Lactobacillus)之細菌。
  42. 如請求項27-39中任一項之組成物,其中該益生菌包含厚壁菌門乳酸桿菌屬( Firmicutes lactobacillus)、放線菌門雙歧桿菌科( Actinobacteria Bifidobacteriaceae)、或其等之組合。
  43. 如請求項27-39中任一項之組成物,其中該組成物呈凝膠形式.
  44. 如請求項27-39中任一項之組成物,其中該組成物呈液體形式。
  45. 如請求項27-39中任一項之組成物,其中該組成物呈粉末形式。
  46. 一種增加一個體中的T細胞活化之方法,其包含向該個體口服投予一組成物,該組成物包含: a)約10單位至約200單位超氧化物歧化酶;和 b)約500 mg至約8000 mg可溶性纖維; 其中,於投予該組成物後,該個體中T細胞之活化增加。
  47. 如請求項46之方法,其中該組成物係組合抗癌劑投予。
  48. 如請求項46之方法,其中該組成物係組合抗病毒劑投予。
  49. 一種增加一個體之消化道中的短鏈脂肪酸(SCFA)之製造之方法,其包含向該個體口服投予一組成物,該組成物包含: a)約10單位至約200單位超氧化物歧化酶;和 b)約500 mg至約8000 mg可溶性纖維; 其中,於投予該組成物後,該個體之消化道中的SCFA之製造增加。
  50. 如請求項49之方法,其中製造增加的SCFA係醋酸、丙酸、丁酸、或乳酸SCFA、或其等之組合。
  51. 如請求項50之方法,其中SCFA係以相較於增加前的醋酸、丙酸、丁酸、和乳酸SCFA之比例提供大約相同的醋酸、丙酸、丁酸、和乳酸SCFA之比例的方式增加。
  52. 一種增加一個體之消化道中的雙岐桿菌屬或乳酸桿菌屬之細菌之量之方法,其包含向該個體口服投予一組成物,該組成物包含: a)約10單位至約200單位超氧化物歧化酶;和 b)約500 mg至約8000 mg可溶性纖維; 其中,於投予該組成物後,該個體之消化道中的雙岐桿菌屬、乳酸桿菌屬、或其等之組合之細菌之量增加。
  53. 如請求項52之方法,其中該雙岐桿菌屬之細菌包含物種放線菌門雙歧桿菌科。
  54. 如請求項52之方法,其中該乳酸桿菌屬之細菌包含物種厚壁菌門乳酸桿菌屬。
  55. 如請求項46-54中任一項之方法,其中該組成物包含約50單位至約150單位超氧化物歧化酶。
  56. 如請求項46-54中任一項之方法,其中該組成物包含約70單位至約100單位超氧化物歧化酶。
  57. 如請求項46-56中任一項之方法,其中該組成物包含約1000 mg至約5000 mg可溶性纖維。
  58. 如請求項46-56中任一項之方法,其中該組成物包含約2000 mg至約4000 mg可溶性纖維。
  59. 如請求項46-58中任一項之方法,其中該超氧化物歧化酶係自甜瓜、牛肝、異營細菌、或海洋植物性浮游生物萃取。
  60. 如請求項46-58中任一項之方法,其中該超氧化物歧化酶係銅/鋅超氧化物歧化酶、鐵/錳超氧化物歧化酶、或鎳超氧化物歧化酶。
  61. 如請求項46-60中任一項之方法,其中該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:100至約1:1000。
  62. 如請求項46-60中任一項之方法,其中該組成物中超氧化物歧化酶對比可溶性纖維的比例係以重量計約1:500至約1:700。
  63. 如請求項46-62中任一項之方法,其中該可溶性纖維係水溶性多醣。
  64. 如請求項46-62中任一項之方法,其中該可溶性纖維選自可溶性玉米纖維、菊糖、糊精、瓜爾膠、寡多醣、半乳多糖 果-寡糖、乳果糖、抗消化澱粉、木-寡糖、和異麥芽-寡糖。
  65. 如請求項46-62中任一項之方法,其中該可溶性纖維係可溶性玉米纖維。
  66. 如請求項65之方法,其中該可溶性玉米纖維係抗消化麥芽糊精。
  67. 如請求項46-66中任一項之方法,其中該組成物呈凝膠形式.
  68. 如請求項46-66中任一項之方法,其中該組成物呈液體形式。
  69. 如請求項46-66中任一項之方法,其中該組成物呈粉末形式。
TW112107490A 2022-03-02 2023-03-02 超氧化物歧化酶可溶性纖維組成物及使用方法 TW202345891A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263315631P 2022-03-02 2022-03-02
US63/315,631 2022-03-02

Publications (1)

Publication Number Publication Date
TW202345891A true TW202345891A (zh) 2023-12-01

Family

ID=87884339

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112107490A TW202345891A (zh) 2022-03-02 2023-03-02 超氧化物歧化酶可溶性纖維組成物及使用方法

Country Status (2)

Country Link
TW (1) TW202345891A (zh)
WO (1) WO2023168264A2 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8642051B2 (en) * 2000-03-21 2014-02-04 Suzanne Jaffe Stillman Method of hydration; infusion packet system(s), support member(s), delivery system(s), and method(s); with business model(s) and Method(s)
US20080305096A1 (en) * 2007-06-07 2008-12-11 Unicity International, Inc. Method and composition for providing controlled delivery of biologically active substances
CN106666270A (zh) * 2015-11-10 2017-05-17 伊春市晨松山特产品有限公司 野生蓝莓超浓缩口服液
MX2021014352A (es) * 2019-06-11 2022-03-17 Advance Pharmaceutical Inc Composiciones de fibra soluble de superoxido dismutasa.

Also Published As

Publication number Publication date
WO2023168264A3 (en) 2023-10-05
WO2023168264A2 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
Di Renzo et al. COVID-19: Is there a role for immunonutrition in obese patient?
JP2018065812A (ja) バクテロイデス門の胃腸管微生物相対フィルミクテス門の微生物相の比を上昇させるための組成物および製剤の使用
JP6935632B2 (ja) 胃腸炎の処置及び予防のためのフィーカリバクテリウム・プラウスニッツィcncm i−4573株
EP2440217B1 (en) Nutrition for improving muscle strength in elderly
BRPI0620083A2 (pt) usos de b-hidróxi-b-metilbutirato
RU2668126C2 (ru) Композиция, содержащая комбинацию экстракта бузины и штамма lactobacillus rhamnosus
Gozzi-Silva et al. Immunomodulatory role of nutrients: how can pulmonary dysfunctions improve?
KR20100058823A (ko) 유산균 발효유 필터액을 함유하는 바이러스 감염 질환 예방또는 치료용 조성물
KR102178926B1 (ko) 발효 태반 조성물을 유효성분으로 하는 면역 증강 또는 항피로 조성물과 그의 용도
EP2234612B1 (en) Composition for stimulating natural killer cell activity
Kim et al. Weissella cibaria CMU exerts an anti‑inflammatory effect by inhibiting Aggregatibacter actinomycetemcomitans‑induced NF‑κB activation in macrophages
Urueña et al. Randomized double-blind clinical study in patients with COVID-19 to evaluate the safety and efficacy of a phytomedicine (P2Et)
dos Santos Ferreira et al. Immunonutrition effects on coping with COVID-19
AU2003248374A1 (en) Formulation to treat or prevent parasitic infection
KR102149185B1 (ko) 면역기능 조절 및 염증성 장질환의 개선효과를 갖는 엔테로코쿠스 락티스 WiKim0107 균주 및 이의 용도
Thi Tuoi et al. Effects of β-glucan and mannan-oligosaccharide supplementation on growth performance, fecal bacterial population, and immune responses of weaned pigs
TW202345891A (zh) 超氧化物歧化酶可溶性纖維組成物及使用方法
JP4787159B2 (ja) 抗ストレス剤
Bilir et al. Evaluation of the Effect of Anatolian Propolis on COVID-19 in Healthcare Professionals: Effect of Anatolian Propolis on COVID-19
US20240180878A1 (en) Amide derivatives of butyric acid for use in the treatment or prevention of sars-cov-2 infection
WO2019078233A1 (ja) 学習記憶能力増強組成物
Magrone et al. Prebiotics and probiotics in aging population: effects on the immune-gut microbiota axis
TWI826198B (zh) 一種嗜熱鏈球菌st7用於調節免疫能力之用途
JPWO2006085523A1 (ja) 血糖値上昇抑制用組成物
Zhao Prebiotic effects of a cranberry beverage in a randomized, placebo-controlled, crossover clinical trial