TW202332937A - 光學系統裝置以及光學系統裝置的製造方法 - Google Patents

光學系統裝置以及光學系統裝置的製造方法 Download PDF

Info

Publication number
TW202332937A
TW202332937A TW111144202A TW111144202A TW202332937A TW 202332937 A TW202332937 A TW 202332937A TW 111144202 A TW111144202 A TW 111144202A TW 111144202 A TW111144202 A TW 111144202A TW 202332937 A TW202332937 A TW 202332937A
Authority
TW
Taiwan
Prior art keywords
optical element
aforementioned
distance
adhesive
irradiation part
Prior art date
Application number
TW111144202A
Other languages
English (en)
Inventor
縄田晃史
中村智宣
楊哲
野崎剛
田中覚
Original Assignee
日商Scivax股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Scivax股份有限公司 filed Critical 日商Scivax股份有限公司
Publication of TW202332937A publication Critical patent/TW202332937A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本發明之目的在於提供一種能夠照射對比度高的光之光學系統裝置以及光學系統裝置的製造方法。本發明的光學系統裝置係具備:光學元件2,係將焦點距離為f且透過波長λ的光之透鏡以間距P週期性地排列而成;照射部1,係具有光源,光源係將波長λ的光照射至複數個透鏡;底構件,係固定照射部;側方構件,係用以固定光學元件與底構件;以及上端側接著層或者下端側接著層中的任一個或兩個,上端側接著層係將光學元件與側方構件的上端接著,下端側接著層係將底構件與側方構件的下端接著;若將照射部與光學元件的焦點位置之間的距離設為L 1且將n設為1以上的自然數,則距離L 1滿足下述式子。

Description

光學系統裝置以及光學系統裝置的製造方法
本發明係關於一種光學系統裝置以及光學系統裝置的製造方法。
使用了飛行時間(TOF:time of flight)法之三維測量感測器係被用於行動裝置、車子、機器人等。這是根據從光源照射至對象物之光被反射回來為止的時間來測量對象物的距離。若來自光源的光均勻地照射至對象物的預定的區域,則能夠測定被照射的各點的距離,能夠偵測對象物的立體結構。
上面所說明的感測器系統係由光照射部、相機部以及運算部所構成,光照射部係將光照射至對象物,相機部係偵測從對象物的各點反射來的光,運算部係根據相機接收到之訊號計算對象物的距離。
由於相機部與運算部能夠使用既有的CMOS(complementary metal-oxide-semiconductor;互補金屬氧化物半導體)成像器(imager)及CPU(central processing unit;中央處理單元),故上述感測器系統的獨自部分係成為由雷射以及光學濾光片所構成之光照射部。尤其藉由使雷射光透過微透鏡陣列(micro lens array)來整形光束,用以針對對象物進行被控制的區域中之均勻的照射之擴散濾光片係成為上述感測器系統的特徵性零件。
此處,以往的擴散濾光片係由於微透鏡陣列為週期性結構,故存在因繞射的影響而導致光強度不均之問題。因此,為了抑制該光強度不均,進行了無規地(random)配置各透鏡等的設計(例如專利文獻1)。
另一方面,TOF有遠距離測定之需求,照射光的強度(intensity)必須足夠強才能實現遠距離測定。然而,無規地配置之微透鏡陣列係由於照射光的均勻性高而強度低,故不適合遠距離測定。
因此,作為省電且能夠處理強的光訊號之方法,正在研究照射點圖案(dot pattern)並根據該光的飛行時間進行三維測量。
以往,作為將射入的光轉換為點圖案之裝置,已知利用了Lau效應之光學系統裝置(例如非專利文獻1)。該光學系統裝置係由預定間距P的繞射光柵以及光源所構成,若將光源的光的波長設為λ且將n設為1以上的自然數,則以繞射光柵與光源的距離L 0滿足下述式子A的方式配置。 [式子A] 而且,亦研究了將該繞射光柵置換為微透鏡的情況(例如專利文獻2)。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特表2006-500621。 [專利文獻2]國際公開第2017/131585。 [非專利文獻1]H. Hamam, Lau Array Illuminator, Applied Optics, 43(14):2888-2894, May 10, 2004。
[發明所欲解決之課題]
然而,當將繞射光柵置換為微透鏡時,存在點圖案的對比度低之問題。而且,亦存在難以調節光源與微透鏡的距離之問題。
因此,本發明的目的在於提供一種能夠照射對比度高的光之光學系統裝置以及光學系統裝置的製造方法。 [用以解決課題之手段]
為了達成上述目的,本發明的光學系統裝置係具備:光學元件,係將焦點距離為f且透過波長λ的光之透鏡以間距P週期性地排列而成;照射部,係具有光源,前述光源係將波長λ的光照射至複數個前述透鏡;底構件,係固定前述照射部;側方構件,係用以固定前述光學元件與前述底構件;以及上端側接著層或者下端側接著層中的任一個或兩個,前述上端側接著層係將前述光學元件與前述側方構件的上端接著,前述下端側接著層係將前述底構件與前述側方構件的下端接著;若將前述照射部與前述光學元件的焦點位置之間的距離設為L 1且將n設為1以上的自然數,則前述距離L 1滿足下述式子。
該情形下,較佳為若將從前述底構件的上表面至前述照射部的照射面為止的高度設為H 0,則從前述底構件的上表面至前述側方構件的上端為止的高度H 1滿足下述式子。
而且,較佳為前述高度H 1滿足下述式子。 。 並且,前述上端側接著層的厚度δ1為0<δ1<f。
而且,較佳為前述光源係換算成前述照射部與前述光學元件之間的介質中的距離之共振腔長度為t之VCSEL(vertical cavity surface emitting laser;垂直腔表面發射雷射);前述高度H 1滿足下述式子。 並且,前述上端側接著層的厚度δ1為0<δ1<t。
而且,較佳為若將從前述底構件的上表面至前述照射部的照射面為止的高度設為H 0,則從前述側方構件的下端至前述光學元件的下表面為止的高度H 2滿足下述式子。
而且,較佳為前述高度H 2滿足下述式子。
並且,前述下端側接著層的厚度δ2為0<δ2<f。
而且,較佳為前述光源係換算成前述照射部與前述光學元件之間的介質中的距離之共振腔長度為t之VCSEL;前述高度H 2滿足下述式子。
並且,前述下端側接著層的厚度δ2為0<δ2<t。
而且,較佳為具備:遮罩,係配置於前述照射部與前述光學元件之間,散射或者吸收從前述光學元件的表面反射的光。
較佳為前述照射部的電極係配置於不會將由前述光學元件的表面反射的光再次反射至前述光學元件之位置。
此外,本發明的光學系統裝置的製造方法中,光學系統裝置係由下述構件構成:光學元件,係將焦點距離為f且透過波長λ的光之透鏡以間距P週期性地排列而成;照射部,係具有光源,前述光源係將波長λ的光照射至複數個前述透鏡;底構件,係固定前述照射部;以及側方構件,係用以固定前述光學元件與前述底構件;前述光學系統裝置的製造方法係具有:上端側接著劑配置步驟或者下端側接著劑配置步驟,前述上端側接著劑配置步驟係將接著劑配置於前述光學元件與前述側方構件的上端之間,前述下端側接著劑配置步驟係將接著劑配置於前述底構件與前述側方構件的下端之間;距離調節步驟,係若將前述照射部與前述光學元件的焦點位置之間的距離設為L 1且將n設為1以上的自然數,則以前述距離L 1滿足下述式子 之方式按壓前述接著劑來調節前述照射部與前述光學元件的距離;以及接著劑硬化步驟,係於保持前述距離L 1之狀態下使前述接著劑硬化。
該情形下,若將從前述底構件的上表面至前述照射部的照射面為止的高度設為H 0,則較佳為在前述距離調節步驟之前具有:側方構件形成步驟,係以從前述底構件的上表面至前述側方構件的上端為止的高度H 1滿足下述式子之方式於前述底構件上形成前述側方構件。
而且,較佳為前述側方構件形成步驟係以前述高度H 1滿足下述式子 之方式於前述底構件上形成前述側方構件;前述距離調節步驟係以前述上端側接著劑配置步驟中配置之接著劑的厚度δ1成為0<δ1<f之方式按壓前述接著劑。
而且,較佳為前述光源係換算成前述照射部與前述光學元件之間的介質中的距離之共振腔長度為t之VCSEL;前述側方構件形成步驟係以前述高度H 1滿足下述式子 之方式於前述底構件上形成前述側方構件;前述距離調節步驟係以前述上端側接著劑配置步驟中配置之接著劑的厚度δ1成為0<δ1<t之方式按壓前述接著劑。
而且,若將從前述底構件的上表面至前述照射部的照射面為止的高度設為H 0,則較佳為於前述距離調節步驟之前具有:側方構件形成步驟,係以從前述側方構件的下端至前述光學元件的下表面為止的高度H 2滿足下述式子之方式於前述光學元件上形成前述側方構件。
而且,較佳為前述側方構件形成步驟係以前述高度H 2滿足下述式子 之方式於前述光學元件上形成前述側方構件;前述距離調節步驟係以前述下端側接著劑配置步驟中配置之接著劑的厚度δ2成為0<δ2<f之方式按壓前述接著劑。
而且,較佳為前述光源係換算成前述照射部與前述光學元件之間的介質中的距離之共振腔長度為t之VCSEL;前述側方構件形成步驟係以前述高度H 2滿足下述式子 之方式於前述光學元件上形成前述側方構件;前述距離調節步驟係以前述下端側接著劑配置步驟中配置之接著劑的厚度δ2成為0<δ2<t之方式按壓前述接著劑。
而且,前述距離調節步驟亦可按壓前述接著劑來調節前述照射部與前述光學元件的距離,直至將前述照射部的光照射至前述光學元件而獲得之點圖案的對比度成為預定值以上為止。 [發明功效]
本發明的光學系統裝置係能夠照射對比度高的光。而且,本發明的光學系統裝置的製造方法係能夠簡單且確實地製造可照射對比度高的光之光學系統裝置。
以下對本發明的光學系統裝置進行說明。如圖1、圖2所示,本發明的光學系統裝置係主要由下述構件所構成:照射部1,係照射波長λ的光;光學元件2,係具有週期性的透鏡21;底構件3,係固定照射部1;側方構件4,係用以固定光學元件2與底構件3;以及上端側接著層51或者下端側接著層52中的任一個或這兩個,上端側接著層51係將光學元件2與側方構件4的上端接著,下端側接著層52係將底構件3與側方構件4的下端接著。
照射部1係只要為用以照射波長λ的光之構件,則可為任何類型。而且,照射部1係可為單個光源亦可為複數個光源。而且,可藉由使單個光源的光通過形成有複數個細孔之孔(aperture)來形成複數個光源。於由複數個光源構成照射部1之情形下,該光源較佳為形成於同一平面上。另外,將射出照射部1的光之面作為照射面。作為照射部1的具體例,例如能夠列舉以較少的電力期待高輸出之VCSEL(垂直腔表面發射雷射)。VCSEL為單發射極VCSEL或者多發射極VCSEL,單發射極VCSEL係具有一個能夠在垂直於發光面之方向照射光之光源10,多發射極VCSEL係具有複數個光源10。
[發光模式] 而且,已知於增大VCSEL的光強度之情形下,該VCSEL的光中包含單模式以及多模式等複數個發光模式。圖3中顯示出具體的發光模式的例子。由於圖3所示之發光模式中的彼此旋轉對稱之(2)與(3)、(4)與(6)、(7)與(9)、(8)與(10)必須以相同比率存在,因此若分別合成這些類似模式則能夠如圖4所示般彙集為A、B、C、D、E、F這六種。
若將這六種模式以相同比例(A:B:C:D:E:F=1:1:1:1:1:1)合成,則如圖5中的(a)所示,最大強度成為0.0271。另外,圖係光源的功率設為1時的各配光角中的遠場的光強度。 另一方面,若將這六種模式中的僅一種合成為其他模式的兩倍,則如圖5中的(b)所示,A:B:C:D:E:F=2:1:1:1:1:1的最大強度成為0.03,A:B:C:D:E:F=1:1:1:2:1:1的最大強度成為0.0389,A:B:C:D:E:F=1:1:1:1:1:2的最大強度成為0.0285。亦即,發現各模式中,若最大強度位於光軸中心之模式A或者模式D、或者最大強度靠近光軸中心之模式F的比例增加,則與將六種模式設為相同比例之情形相比,合成後的光的最大強度增大。圖5中的(c)係將六種模式中的模式A、模式D、模式F進一步合成為其他模式的五倍。A:B:C:D:E:F=5:1:1:1:1:1的最大強度成為0.0354,A:B:C:D:E:F=1:1:1:5:1:1的最大強度成為0.0608,A:B:C:D:E:F=1:1:1:1:1:5的最大強度成為0.0343。亦即,將模式D合成為五倍之光(A:B:C:D:E:F=1:1:1:5:1:1)係在合成後的光的最大強度尤其顯著地增大。
根據上述,於使用具有複數個發光模式之VCSEL之情形下,對於該VCSEL的光源而言,發光模式中的光軸中心具有最大強度之發光模式的比例多則能夠增大所生成之點的光強度,且對比度亦能夠增大,就該點而言較佳。因此,光源的發光模式中的光軸中心具有最大強度之模式的比例亦可為40%以上,較佳為45%以上,進一步地較佳為60%以上。該發光模式係以控制VCSEL的發光層的電流注入路徑等之以往已知的方法調整即可。
光學元件2係將透過波長λ的光之透鏡21週期性排列而成。此處,透鏡21係在距透鏡21預定的焦點距離f(f>0)之位置具有焦點。本發明的光學元件係隨焦點距離f增大,如10μm以上、20μm以上、40μm以上、60μm以上,則較之以往能夠提高對比度。
透鏡21的形狀係能夠根據要照射之點的擴散方式的圖案(以下稱為點圖案)而自由設計。例如,於希望將點圖案作成圓形之情形下,只要將透鏡21的形狀作成球面透鏡即可。而且,於希望將點圖案作成非圓形之情形下,只要將透鏡21的形狀作成非球面透鏡並適當調節即可。作為具體的透鏡形狀,例如除了凸透鏡或者凹透鏡之外,亦有根據剖面而看起來為凸透鏡或者凹透鏡之鞍型的透鏡等。而且,關於週期排列,例如為如圖6中的(a)所示般將俯視時為正方形或者長方形的透鏡21進行正方排列、或者如圖6中的(b)所示般將俯視時為六邊形的透鏡21進行六方排列等。而且,透鏡21係只要作為透鏡發揮功能則可為任何類型,例如亦能夠使用菲涅耳透鏡(Fresnel lens)或者DOE(Diffraction Optical Element;繞射光學元件)透鏡、元透鏡(meta lens;亦稱為超穎透鏡)等。而且,較佳為在透鏡21中形成防止來自照射部1的光反射之抗反射膜。
照射部1與光學元件2係以照射部1的光源的光軸方向與光學元件2的透鏡21的光軸方向一致的方式配置。
[照射部1與光學元件2的距離] 以往,若將n設為1以上的任意自然數、將從照射部1射入之光的波長設為λ、將光學元件2的透鏡21的間距設為P、將照射部1與光學元件2之間的距離設為L 0,則認為距離L 0於下述式子A的情形下使光大幅增強(參照圖7)。 [式子A]
然而,本發明者等人經過積極研究後發現,若將光學元件2的焦點距離設為f,則距離L 0滿足下述式子B使得光大幅增強。 [式子B] 尤其發現,當滿足下述式子C時光最強。 [式子C]
若式子B、式子C並不由照射部1與光學元件2之間的距離L 0顯示,而是如圖2所示由照射部1與光學元件2的焦點位置9之間的距離L 1(L 1=L 0-f)顯示,則成為下述式子D、式子E。 [式子D] [式子E]
而且,透鏡21中有時存在複數個週期。例如,如圖6中的(a)所示,於將俯視時為正方形的透鏡21進行正方排列之情形下,除了存在與相鄰透鏡的間距P 1外,亦存在對角線方向的間距P 2(=√2P1)以及間距P 3(=√5P1)等各種間距。而且,如圖6中的(b)所示,於將俯視時為正六邊形的透鏡21進行六方排列之情形下,除了存在與相鄰透鏡的間距P 1外,亦存在間距P 2(=√3P1)等。而且,透鏡21亦有時具有複數個不同週期,如將俯視時為長方形的透鏡規則排列之情形。該情形下,若將透鏡21的間距中從小的間距起第k個(k為1以上的自然數)間距的大小設為P k、將n k設為1以上的任意自然數且設為0≦a≦f、0≦b≦f,則對於任一個以上的間距P k,照射部1與光學元件2的焦點位置9的距離L 1滿足下述式子1即可。 [式子1]
此處,上述的式子1中的a越小越佳,如a=f、a=0.5f、a=0.3f、a=0.1f。而且,b亦越小越佳,如b=f、b=0.5f、b=0.3f、b=0.1f。而且,距離L 1最佳為滿足a=b=0之下述式子2。 [式2]
[照射部1的間距] 而且,於照射部1具有複數個光源10之情形下,即便使各光源10與光學元件2相對平行移動,亦必須以俯視時光源10相對於光學元件2的各透鏡21之數量相同的方式配置。具體而言,若m設為1以上的自然數,則照射部1係較佳為相對於光學元件2的透鏡21的任一個週期方向以該週期的m倍或1/m倍規則地排列複數個光源。換言之,照射部1的光源10係較佳為相對於光學元件2的透鏡21採用間距P k之方向以間距mP k或者P k/m規則地排列。尤其,較佳為設為間距mP 1或者P 1/m。圖8中的(a)、(b)係設m=1,且將光源10的間距設為與光學元件2的透鏡21的間距P 1相等。而且,圖8中的(c)係設m=2,且將光源10的間距設為光學元件2的透鏡21的間距P 1的1/2,亦即P 1/2。而且,圖8中的(d)係設m=2,且將光源10的間距設為光學元件2的透鏡21的間距P 1的兩倍,亦即2P 1
另外,較佳為對於任兩個以上的間距P k以滿足式子1之方式來調節照射部1與光學元件2的焦點位置9之間的距離L 1。該情形下,就繞射而言,雖間距最小但影響最大,故關於最小間距P 1較佳為滿足式子1,關於第2小之間距P 2更佳為滿足式子1。
另外,於照射部1將光源10進行六方排列之情形下,若將光學元件2的透鏡21的平面形狀設為長方形、將該長方形的短邊與長邊之比設為P 1:P 2=1:√3、將光源10的間距設為mP 1或者P 1/m,則光源10相對於各透鏡21的數量變得均勻,因此較佳。而且,該情形下,為了使最小的間距P 1(長方形的短邊的大小)與第2小之間距P 2(長方形的長邊的大小)滿足式子1,較佳為考慮P 2=√3P 1亦即(P 2) 2=3(P 1) 2,照射部1與光學元件2之間的距離L 1滿足下述式子3,進一步地較佳為滿足下述式子4。 [式子3]
[式子4]
而且,本發明者經過積極研究後發現,當使用共振腔長度為t之VCSEL作為光源時,式子1中若處於0≦a≦t、0≦b≦t的範圍,則對比度沒有太大變化。因此,距離L 1較佳為滿足下述式子5。 [式子5] 。 另外,此處提及之共振腔長度為t係意味著換算成照射部1與光學元件2之間的介質中的距離之距離。
另外,若間距P k較光源10的光的波長λ小太多,則難以產生繞射,因此只要包含足以使光源10的配光角內產生繞射之透鏡21,則間距P k尤其是間距P 1較佳為充分大於光源10的光的波長λ,例如為五倍以上,較佳為10倍以上。
底構件3係用以固定照射部1。底構件3中之用以固定照射部1之面係可為平面,亦可形成供埋設照射部1之凹狀的槽。固定的方式只要使用以接著劑將照射部1固定於底構件3等之一般的方法即可。
側方構件4係用以將光學元件2與底構件3之間隔開預定距離來固定。光學元件2與側方構件4的上端係經由上端側接著層51接著。而且,底構件3與側方構件4的下端係以下端側接著層52接著。另外,如圖1中的(b)所示,側方構件4只要具有上端側接著層51,則亦可不使用下端側接著層52而與底構件3形成為一體。而且,如圖1中的(d)所示,側方構件4只要具有下端側接著層52,則亦可不使用上端側接著層51而與光學元件2形成為一體。
另外,側方構件4係形成為包圍照射部1的周圍之筒狀,亦可形成為當以接著劑接著光學元件2、底構件3以及側方構件4時能夠密閉照射部1。
底構件3或者側方構件4的材質係能夠使用周知的材質,例如較佳為由周圍的環境引起的變形小之材料。而且,較佳為不因形成接著層之樹脂而變形以及劣化之材料。
為了將照射部1配置於光學元件2與底構件3之間,上端側接著層51係形成於側方構件4的上端與光學元件2之間,用以將光學元件2與側方構件4接著。而且,下端側接著層52係形成於側方構件4的下端與底構件3之間,用以將底構件3與側方構件4接著。而且,上端側接著層51以及下端側接著層52係於固化前具有流動性之接著劑的狀態下具有調節照射部1的照射面與光學元件2的透鏡的焦點位置之間的距離L 1之功能。
上端側接著層51或者下端側接著層52係可形成於側方構件4的端部的整個面,亦可僅形成於一部分。而且,上端側接著層51或者下端側接著層52的材質只要能夠將側方構件4與光學元件2或者底構件3接著,則可為任何類型,例如使用矽系樹脂、環氧系樹脂或者丙烯酸系樹脂等接著劑即可。作為接著劑的種類,例如使用光硬化型接著劑或UV(紫外線)附加型接著劑、熱硬化型接著劑即可。
此處,將側方構件4與底構件3如圖1中的(a)所示般以下端側接著層52接著或者如圖1中的(b)所示般形成為一體時從底構件3的上表面至照射部1的照射面為止的高度設為H 0。該情形下,從底構件3的上表面至側方構件4的上端為止的高度H 1較佳為至少滿足下述式子6。 [式子6]
更佳為,高度H 1係以滿足下述式子7之方式形成後,將上端側接著層51的厚度δ1控制為0<δ1<f。 [式子7] 藉此,距離L 1係確實地滿足下述式子8。 [式子8]
而且,較佳為於光源係共振腔長度為t之VCSEL之情形下,高度H 1以滿足下述式子9之方式形成後,將上端側接著層51的厚度δ1控制為0<δ1<t。 [式子9]
藉此,距離L 1係確實地滿足下述式子10。 [式子10]
而且,將側方構件4與光學元件2如圖1中的(c)所示般以上端側接著層51接著或者如圖1中的(d)所示般形成為一體時從底構件3的上表面至照射部1的照射面為止的高度設為H 0。該情形下,從側方構件4的下端至光學元件2的下表面為止的高度H 2較佳為至少滿足下述式子11方式形成後,將上端側接著層51的厚度δ2控制為0<δ2<f。 [式子11]
更佳為,高度H 2係以滿足下述式子12方式形成後,將上端側接著層51的厚度δ2控制為0<δ2<f。 [式子12] 藉此,距離L 1係確實地滿足下述式子8。 [式子8]
而且,較佳為於光源係共振腔長度為t之VCSEL之情形下,高度H 2係以滿足下述式子13之方式形成後,將下端側接著層52的厚度δ2控制為0<δ2<t。 [式子13] 藉此,距離L 1係確實地滿足下述式子10。 [式子10]
而且,本發明者經過積極研究後發現,如圖9所示,當從照射部1照射至光學元件2之光在光學元件2的表面反射後之光係藉由例如照射部1的電極15等再次照射至光學元件2時,成為雜訊或者重像(ghost)的原因,從而對比度下降。因此,較佳為在由光學元件2的表面反射之光所通過之位置處不配置使該光再次反射至光學元件2之構件(例如電極15)。而且,即便將這種構件配置於在由光學元件2的表面反射之光所通過之位置之情形下,較佳為配置在不會將該光再次反射至光學元件2之位置。因此,例如,如圖10中的(a)所示,只要使照射部1的電極15大幅錯開由光學元件2的表面反射之光所通過之位置即可。而且,如圖10中的(b)所示,亦可將照射部1作成倒裝晶片(flip chip)型,並於光源10的背面側配置電極15。
而且,有時亦需要在由光學元件2的表面反射之光所通過之位置配置將該光再次反射至光學元件2之構件。該情形下,如圖11所示,亦可配置遮罩6,該遮罩6係配置於照射部1與光學元件2之間,用以散射或者吸收由光學元件2的表面反射之光。遮罩6的位置只要在照射部1與光學元件2之間且不遮擋從照射部1射出至光學元件2之光之位置,則可配置於任何位置;例如,如圖11中的(a)所示能夠配置於電極15上,如圖11中的(b)所示能夠配置於電極15與光學元件2之間的空間,如圖11中的(c)所示能夠配置於光學元件2上。作為吸收光之材料,例如能夠使用黑色阻劑。而且,於使光散射之情形下,例如能夠使用表面不為鏡面之材料。
其次,使用圖12、圖13對本發明的光學系統裝置的製造方法進行說明。在光學系統裝置的製造方法中,光學系統裝置由下述構件所構成:光學元件2,係將焦點距離為f且透過波長λ的光之透鏡21以間距P週期性地排列而成;照射部1,係具有光源,光源係將波長λ的光照射至複數個透鏡21;底構件3,係固定照射部1;以及側方構件4,係用以固定光學元件2與底構件3;該光學系統裝置的製造方法係主要由如下步驟所構成:上端側接著劑配置步驟或者下端側接著劑配置步驟,上端側接著劑配置步驟係將接著劑配置於光學元件2與側方構件4的上端之間,下端側接著劑配置步驟係將接著劑配置於底構件3與側方構件4的下端之間;距離調節步驟,係調節照射部1與光學元件2的距離;以及接著劑硬化步驟,係使接著劑硬化。
首先,對本發明的光學系統裝置中所使用的光學元件2的製造方法進行說明。能夠以任何方式製造光學元件2的透鏡21,例如能夠使用壓印(imprint)法來製造。具體而言,藉由旋塗機等周知的方法,於基板25上以預定的膜厚塗佈透鏡21的材料(塗佈步驟)。作為材料,只要能夠形成透過波長λ的光之透鏡21,則可使用任何材料,例如能夠使用聚二甲基矽氧烷(PDMS;polydimethylsiloxane)。
其次,準備具有透鏡21週期性地排列之圖案的反轉圖案之模具,將該模具加壓至塗佈於基板25上之材料從而轉印圖案(壓印步驟)。
藉此,因能夠製造透鏡21的焦點位置9的偏差小之光學元件2,故能夠減小距離L 1的誤差。
上端側接著劑配置步驟中,如圖12中的(a)所示,將接著劑51a配置於光學元件2與側方構件4的上端之間。而且,下端側接著劑配置步驟中,如圖13中的(a)所示,將接著劑52a配置於底構件3與側方構件4的下端之間。該接著劑係可配置於側方構件4的端部(上端或者下端)的整個面,亦可僅配置於一部分。而且,接著劑亦可配置於欲與光學元件2或者底構件3側的側方構件4接著之位置。而且,接著劑只要能夠接著側方構件4與光學元件2或者底構件3,則可為任何類型,例如使用矽系樹脂、環氧系樹脂或者丙烯酸系樹脂等接著劑即可。作為接著劑的種類,例如只要使用光硬化型接著劑、UV附加型接著劑或者熱硬化型接著劑即可。
如圖12中的(b)或者圖13中的(b)所示,距離調節步驟中,若將照射部1與光學元件2的焦點位置的距離設為L 1且將n設為1以上的自然數,則以距離L 1滿足下述式子11之方式按壓接著劑並調節照射部1與光學元件2的距離。 [式子11] 距離的調節只要能夠以滿足式子11之方式調節,則可使用任何方法。例如,使用以往已知之感測器來測定照射部1與光學元件2的距離,使照射部1與光學元件2靠近直至距離L 1滿足式子11之距離為止即可。而且,作為另一個方法,亦可按壓接著劑直至將照射部1的光照射至光學元件2而得到之點圖案的對比度達到預定值以上為止,從而調節照射部1與光學元件2的距離。
如圖12中的(c)或者圖13中的(c)所示,接著劑硬化步驟係在保持距離調節步驟中調節過之距離L 1之狀態下使接著劑硬化。藉此,形成將光學元件2與側方構件4的上端接著之上端側接著層51或者將底構件3與側方構件4的下端接著之下端側接著層52。於接著劑為光硬化型接著劑之情形下,只要將光照射至接著劑而使接著劑硬化即可。而且,於接著劑為熱硬化型接著劑的情形下,只要將熱施加至接著劑而使接著劑硬化即可。而且,於接著劑為UV附加型接著劑的情形下,亦可在對接著劑照射光後,藉由距離調節步驟調節照射部1與光學元件2的焦點位置之間的距離L 1,然後保持距離L 1直至使該接著劑充分硬化為止。
另外,距離調節步驟中,於藉由配置於側方構件4的上端之接著劑的厚度(上端側接著層51的厚度)來調節距離之情形下,若將底構件3的上表面至照射部1的照射面為止的高度設為H 0,則較佳為在距離調節步驟之前具有側方構件形成步驟,側方構件形成步驟係以從底構件3的上表面至側方構件4的上端為止的高度H 1滿足下述式子12之方式於底構件3上形成側方構件4。 [式子12] 該情形下,側方構件4係只要如圖14中的(a)所示將接著劑52a配置於底構件3與側方構件4的下端之間,如圖14中的(b)所示對接著劑52a按壓側方構件4來調節高度H 1,如圖14中的(c)所示使該接著劑52a硬化而形成即可。而且,亦可以成為預定的高度H 1之方式將側方構件4與底構件3形成為一體。
而且,更佳為側方構件形成步驟係以高度H 1滿足下述式子13之方式於底構件3上形成側方構件4,距離調節步驟較佳為以上端側接著劑配置步驟中配置之接著劑的厚度δ1成為0<δ1<f之方式按壓該接著劑。 [式子13] 藉此,能夠製造照射部1與光學元件2的焦點位置之間的距離L 1確實滿足式子11之光學系統裝置。
而且,如上述般,本發明者經過積極研究後發現,若使用換算成照射部1與光學元件2間的介質中的距離之共振腔長度為t之VCSEL作為光源,則於式子10的範圍內對比度變化不大。因此,該情形下,較佳為側方構件形成步驟係以高度H 1滿足下述式子14之方式於底構件3上形成側方構件4,距離調節步驟係以上端側接著劑配置步驟中配置之接著劑51a的厚度δ1為0<δ1<t之方式按壓該接著劑。 [式子14]
而且,距離調節步驟中,於藉由配置於側方構件4的下端之接著劑的厚度(下端側接著層52的厚度)來調節距離之情形下,若將底構件3的上表面至照射部1的照射面為止的高度設為H 0,則較佳為在距離調節步驟之前具有側方構件形成步驟,側方構件形成步驟係以從側方構件4的下端至光學元件2的下表面為止的高度H 2滿足下述式子15之方式於光學元件2上形成側方構件4。 [式子15] 該情形下,側方構件4係只要如圖15中的(a)所示將接著劑51a配置於光學元件2與側方構件4的上端之間,如圖15中的(b)所示對接著劑51a按壓側方構件4來調節高度H 2,如圖15中的(c)所示使該接著劑51a硬化而形成即可。而且,亦可以成為預定的高度H 2之方式將側方構件4與光學元件2形成為一體。
而且,更佳為側方構件形成步驟係以高度H 2滿足下述式子16之方式於光學元件2上形成側方構件4,距離調節步驟較佳為以下端側接著劑配置步驟中配置之接著劑的厚度δ2為0<δ2<f之方式按壓該接著劑。 [式子16]
藉此,能夠製造照射部1與光學元件2的焦點位置之間的距離L 1確實滿足式子11之光學系統裝置。
而且,如上述般,本發明者經過積極研究後發現,若使用換算成照射部1與光學元件2間的介質中的距離之共振腔長度為t之VCSEL作為光源,則在式子10的範圍內對比度變化不大。因此,該情形下,較佳為側方構件形成步驟係以高度H 2滿足下述式子17之方式於光學元件2上形成側方構件4,距離調節步驟係以下端側接著劑配置步驟中配置之接著劑的厚度δ2為0<δ2<t之方式按壓該接著劑。 [式子17]
[模擬] 其次,對將照射部1與光學元件2的焦點位置9之間的距離L 1設為下述式子18且使δ各種變化時的遠場中的光強度分佈進行了模擬。 [式子18]
[模擬一] 照射部1為單個光源,用以照射波長為940nm(λ=0.94)且為如圖16所示般之高斯配光之光。如圖2所示,光學元件2使用的是將複數個透鏡21以間距P 1成為30μm(P 1=30)之方式週期排列而成的元件。而且,作為透鏡21,使用了直徑為30μm、折射率為1.5、焦點距離f為(a)20μm、(b)40μm、(c)60μm這三種類。圖17中的(a)係顯示如圖17中的(b)所示對各透鏡21照射平行光時的光的傳播的情況之圖。另外,式子18中的n k設為2。圖18至圖20中顯示出使用了光學模擬軟體BeamPROP(Synopsys公司製造)之模擬結果。該模擬係為了簡化計算而不考慮圖2中之深度方向之2D的計算結果。
圖18至圖20中的(a)的曲線圖係如以往般為照射部1與光學元件2之間的距離L 0滿足上述式子A時的光強度分佈。 而且,圖18至圖20中的(b)的曲線圖為照射部1與光學元件2的焦點位置9之間的距離L 1滿足上述式子2時的光強度分佈。 而且,圖18至圖20中的(c)的曲線圖係顯示各光強度分佈的最大光強度相對於δ的值之差異。 另外,圖18至圖20中的(a)、(b)中的橫軸係顯示配光角,縱軸係顯示光源的功率為1時的遠場的光強度。而且,圖18至圖20中的(c)中的橫軸係顯示δ,縱軸係顯示光源的功率為1時的遠場的光強度。
模擬的結果發現,與滿足式子A相比,滿足式子1的光學元件2出現更漂亮的峰值,峰值的光強度亦更大。而且,可知在滿足式子2時峰值的光強度最大。
[模擬二] 照射部1為單個光源,用以照射波長為940nm(λ=0.94)且為如圖16所示般之高斯配光之光。如圖2所示,光學元件2係將複數個透鏡21以間距P 1為30μm(P 1=30)正方排列而成,折射率設為1.5。而且,透鏡21的表面設為在x軸方向與y軸方向曲率相同之旋轉對稱的面。而且,如圖21至圖23所示,作為透鏡21,使用了焦點距離f為20μm、40μm、60μm這三種類。另外,式子3中的n k設為2。圖24至圖32中顯示出使用了光學模擬軟體BeamPROP(Synopsys公司製造)之模擬的結果。該模擬係亦考慮了圖2中之深度方向之3D的計算結果。
圖24至圖26為對於三種類的透鏡使式子18的δ發生各種變化時的與光學元件2相距前方50cm處的投影像。而且,圖27至圖29為對於三種類的透鏡使式子18的δ發生各種變化時的光強度分佈。而且,圖30至32係顯示對於三種類的透鏡各光強度分佈相對於δ的值之最大光強度。
另外,圖27至29圖中之橫軸係顯示配光角,縱軸係顯示光源的功率設為1時的遠場的光強度。而且,圖30至圖32中之橫軸係顯示δ,縱軸係顯示光源的功率設為1時的遠場的光強度。
根據模擬的結果可知,與滿足式子A相比,滿足式子1的光學元件2係出現更漂亮的峰值,峰值的光強度亦大。而且,可知滿足式子2時峰值的光強度最大。
[模擬三] 照射部1為單個光源,用以照射波長為940nm(λ=0.94)且為如圖16所示般之高斯配光之光。如圖2所示,光學元件2係將複數個透鏡21以間距P 1為30μm(P 1=30)正方排列而成,折射率設為1.5。而且,透鏡21的形狀為圖33中的(a)所示般之俯視時為一邊30μm的正方形,且高度為16.26μm。而且,透鏡21的表面設為在x軸方向與y軸方向曲率不同之非旋轉對稱的非球面。圖33中的(b)係使平行光射入至該光學元件2時的遠場中的配光分佈的投影圖。而且,圖33中的(c)係相對於遠場中的x軸方向與y軸方向的角度之配光分佈。而且,如圖34所示,透鏡21的焦點距離f為20μm。圖34中的(b)係使平行光射入至透鏡21時的射出光的投影圖。另外,雖然在x軸方向與y軸方向聚光的方式存在差異,但將聚光最集中的點設為焦點位置(0μm)。而且,式子18中的n k設為2。圖35至圖38係顯示使用了光學模擬軟體BeamPROP(Synopsys公司製造)之模擬結果。該模擬係亦考慮了圖2中之深度方向之3D的計算結果。
圖35為使式子18的δ發生各種變化時與光學元件2相距前方50cm處的投影像。而且,圖36為使式子3的δ發生各種變化時的x軸方向的光強度分佈。而且,圖37為使式子18的δ發生各種變化時的y軸方向的光強度分佈。而且,圖38為顯示x軸方向以及y軸方向的各光強度分佈相對於δ的值之最大光強度。
另外,圖36、圖37的橫軸係顯示配光角,縱軸係顯示光源的功率設為1時的遠場的光強度。而且,圖38的橫軸係顯示δ,縱軸係顯示光源的功率設為1時的遠場的光強度。
根據模擬的結果可知,與滿足式子A相比,滿足式子18的光學元件2係出現更漂亮的峰值,峰值的光強度亦大。而且,因使用了在x軸方向與y軸方向曲率不同之非旋轉對稱的透鏡,故峰值的光強度最大的位置在x軸方向與y軸方向不同,但只要滿足式子18,則具有充分的光強度。
[實施例一] 作為照射部1,使用VCSEL,該VCSEL係將用以照射波長為945nm(λ=0.945)且為蝙蝠翼(batwing)配光的光之光源以32μm間距呈正方排列而成。換算成空氣中之VCSEL的共振腔長度為30μm。光學元件2使用的是將複數個透鏡21以間距P 1為32μm(P 1=32)正方排列而成且折射率為1.53之元件。而且,透鏡21的形狀為俯視時為一邊32μm的正方形且高度為17μm。而且,透鏡21的表面為在x軸方向與y軸方向曲率不同之非球面。而且,使用的是透鏡21的焦點距離f為20μm的元件。而且,將照射部1與光學元件2的焦點位置9之間的距離設為1084μm,研究與該距離之差δ發生各種變化時的點圖案的對比度以及點尺寸。圖39中的(a)係顯示出在與光學元件2相距1.5m之屏幕投影點圖案時的中心位置的點的對比度的測定結果,圖39中的(b)係顯示出點尺寸之測定結果,圖39中的(c)係顯示出背景之測定結果。
如圖39所示,若為-30≦δ≦30的範圍,亦即與共振腔長度相同程度的誤差範圍,則對比度及點尺寸沒有太大變化。
1:照射部 2:光學元件 3:底構件 4:側方構件 6:遮罩 9:焦點位置 10:光源 15:電極 21:透鏡 51:上端側接著層 51a:接著劑 52:下端側接著層 52a:接著劑 H 0,H 1,H 2:高度 L 0,L 1:距離 f:焦點距離 P 1,P 2,P 3,P k:間距 δ1,δ2:厚度
[圖1]係顯示本發明的光學系統裝置之概略剖視圖。 [圖2]係顯示本發明的照射部以及光學元件之概略剖視圖。 [圖3]係顯示每個發光模式的遠場中的光強度之圖。 [圖4]係顯示經過分類並合成之每個發光模式的遠場中的光強度之圖。 [圖5]係顯示改變每個發光模式的比例而合成之光的遠場中的光強度之圖。 [圖6]係顯示本發明相關之光學元件之概略俯視圖。 [圖7]係顯示以往的光學系統裝置之概略剖視圖。 [圖8]係顯示本發明相關之照射部與光學元件的位置關係之概略俯視圖。 [圖9]係說明本發明相關之光學元件表面處的反射之概略剖視圖。 [圖10]係說明本發明相關之照射部的電極的位置之概略剖視圖。 [圖11]係說明本發明相關之遮罩之概略剖視圖。 [圖12]係顯示本發明的光學系統裝置的製造方法之圖。 [圖13]係顯示本發明的光學系統裝置的製造方法之圖。 [圖14]係顯示本發明的側方構件與底構件的接著方法之圖。 [圖15]係顯示本發明的側方構件與光學元件的接著方法之圖。 [圖16]係顯示模擬中所使用的照射部的遠場中的配光分佈之圖。 [圖17]係顯示來自模擬一中所使用的透鏡的光的傳播的情況之圖。 [圖18]係顯示基於模擬一(焦點距離20μm)之光學特性之圖。 [圖19]係顯示基於模擬一(焦點距離40μm)之光學特性之圖。 [圖20]係顯示基於模擬一(焦點距離60μm)之光學特性之圖。 [圖21]係顯示使平行光射入至模擬二中所使用的透鏡(焦點距離20μm)時的光的情況之圖。 [圖22]係顯示使平行光射入至模擬二中所使用的透鏡(焦點距離40μm)時的光的情況之圖。 [圖23]係顯示使平行光射入至模擬二中所使用的透鏡(焦點距離60μm)時的光的情況之圖。 [圖24]係模擬二(焦點距離20μm)中的δ的差異引起之投影圖。 [圖25]係模擬二(焦點距離40μm)中的δ的差異引起之投影圖。 [圖26]係模擬二(焦點距離60μm)中的δ的差異引起之投影圖。 [圖27]係模擬二(焦點距離20μm)中的δ的差異引起之配光分佈。 [圖28]係模擬二(焦點距離40μm)中的δ的差異引起之配光分佈。 [圖29]係模擬二(焦點距離60μm)中的δ的差異引起之配光分佈。 [圖30]係顯示模擬二(焦點距離20μm)中的δ的差異引起之最大光強度之圖。 [圖31]係顯示模擬二(焦點距離40μm)中的δ的差異引起之最大光強度之圖。 [圖32]係顯示模擬二(焦點距離60μm)中的δ的差異引起之最大光強度之圖。 [圖33]係說明本發明的透鏡之圖。 [圖34]係顯示使平行光射入至模擬三中所使用的透鏡時的光的情況之圖。 [圖35]係模擬三(焦點距離20μm)中的δ的差異引起之投影圖。 [圖36]係模擬三中的δ的差異引起之配光分佈(x軸方向)。 [圖37]係模擬三中的δ的差異引起之配光分佈(y軸方向)。 [圖38]係顯示模擬三中的δ的差異引起之最大光強度之圖。 [圖39]係顯示實施例一中的δ的差異引起之對比度、點尺寸以及背景之圖。
1:照射部
2:光學元件
3:底構件
4:側方構件
51:上端側接著層
52:下端側接著層
H0,H1,H2:高度
L1:距離
f:焦點距離
δ1,δ2:厚度

Claims (17)

  1. 一種光學系統裝置,係具備: 光學元件,係將焦點距離為f且透過波長λ的光之透鏡以間距P週期性地排列而成; 照射部,係具有光源,前述光源係將波長λ的光照射至複數個前述透鏡; 底構件,係固定前述照射部; 側方構件,係用以固定前述光學元件與前述底構件;以及 上端側接著層或者下端側接著層中的任一個或兩個,前述上端側接著層係將前述光學元件與前述側方構件的上端接著,前述下端側接著層係將前述底構件與前述側方構件的下端接著; 若將前述照射部與前述光學元件的焦點位置之間的距離設為L 1且將n設為1以上的自然數,則前述距離L 1滿足下述式子:
  2. 如請求項1所記載之光學系統裝置,其中若將從前述底構件的上表面至前述照射部的照射面為止的高度設為H 0,則從前述底構件的上表面至前述側方構件的上端為止的高度H 1滿足下述式子: ; 並且,前述上端側接著層的厚度δ1為0<δ1<f。
  3. 如請求項2所記載之光學系統裝置,其中前述高度H 1滿足下述式子: ; 並且,前述上端側接著層的厚度δ1為0<δ1<f。
  4. 如請求項2所記載之光學系統裝置,其中前述光源係換算成前述照射部與前述光學元件之間的介質中的距離之共振腔長度為t之垂直腔表面發射雷射; 前述高度H 1滿足下述式子: ; 並且,前述上端側接著層的厚度δ1為0<δ1<t。
  5. 如請求項1所記載之光學系統裝置,其中若將從前述底構件的上表面至前述照射部的照射面為止的高度設為H 0,則從前述側方構件的下端至前述光學元件的下表面為止的高度H 2滿足下述式子:
  6. 如請求項5所記載之光學系統裝置,其中前述高度H 2滿足下述式子: ; 並且,前述下端側接著層的厚度δ2為0<δ2<f。
  7. 如請求項5所記載之光學系統裝置,其中前述光源係換算成前述照射部與前述光學元件之間的介質中的距離之共振腔長度為t之垂直腔表面發射雷射; 前述高度H 2係滿足下述式子: ; 並且,前述下端側接著層的厚度δ2為0<δ2<t。
  8. 如請求項1至8中任一項所記載之光學系統裝置,其中具備:遮罩,係配置於前述照射部與前述光學元件之間,用以散射或者吸收由前述光學元件的表面反射之光。
  9. 如請求項1至8中任一項所記載之光學系統裝置,其中前述照射部的電極係配置於不會將由前述光學元件的表面反射之光再次反射至前述光學元件之位置。
  10. 一種光學系統裝置的製造方法,前述光學系統裝置係由下述構件所構成:光學元件,係將焦點距離為f且透過波長λ的光之透鏡以間距P週期性地排列而成;照射部,係具有光源,前述光源係將波長λ的光照射至複數個前述透鏡;底構件,係固定前述照射部;以及側方構件,係用以固定前述光學元件與前述底構件; 前述光學系統裝置的製造方法係具有: 上端側接著劑配置步驟或者下端側接著劑配置步驟,前述上端側接著劑配置步驟係將接著劑配置於前述光學元件與前述側方構件的上端之間,前述下端側接著劑配置步驟係將接著劑配置於前述底構件與前述側方構件的下端之間; 距離調節步驟,係若將前述照射部與前述光學元件的焦點位置之間的距離設為L 1且將n設為1以上的自然數,則以前述距離L 1滿足下述式子 之方式按壓前述接著劑來調節前述照射部與前述光學元件的距離;以及 接著劑硬化步驟,係於保持前述距離L 1之狀態下使前述接著劑硬化。
  11. 如請求項10所記載之光學系統裝置的製造方法,其中若將從前述底構件的上表面至前述照射部的照射面為止的高度設為H 0,則在前述距離調節步驟前具有側方構件形成步驟,側方構件形成步驟係以從前述底構件的上表面至前述側方構件的上端為止的高度H 1滿足下述式子 之方式於前述底構件上形成前述側方構件。
  12. 如請求項11所記載之光學系統裝置的製造方法,其中前述側方構件形成步驟係以前述高度H 1滿足下述式子 之方式於前述底構件上形成前述側方構件; 前述距離調節步驟係以前述上端側接著劑配置步驟中配置之接著劑的厚度δ1為0<δ1<f之方式按壓前述接著劑。
  13. 如請求項11所記載之光學系統裝置的製造方法,其中前述光源為換算成前述照射部與前述光學元件之間的介質中的距離之共振腔長度為t之垂直腔表面發射雷射; 前述側方構件形成步驟係以前述高度H 1滿足下述式子 之方式於前述底構件上形成前述側方構件; 前述距離調節步驟係以前述上端側接著劑配置步驟中配置之接著劑的厚度δ1為0<δ1<t之方式按壓前述接著劑。
  14. 如請求項10所記載之光學系統裝置的製造方法,其中若將從前述底構件的上表面至前述照射部的照射面為止的高度設為H 0,則在前述距離調節步驟前具有側方構件形成步驟,側方構件形成步驟係以從前述側方構件的下端至前述光學元件的下表面為止的高度H 2滿足下述式子 之方式於前述光學元件上形成前述側方構件。
  15. 如請求項11所記載之光學系統裝置的製造方法,其中前述側方構件形成步驟係以前述高度H 2滿足下述式子 之方式於前述光學元件上形成前述側方構件; 前述距離調節步驟係以前述下端側接著劑配置步驟中配置之接著劑的厚度δ2成為0<δ2<f之方式按壓前述接著劑。
  16. 如請求項11所記載之光學系統裝置的製造方法,其中前述光源為換算成前述照射部與前述光學元件之間的介質中的距離之共振腔長度為t之垂直腔表面發射雷射; 前述側方構件形成步驟係以前述高度H 2滿足下述式子 之方式於前述光學元件上形成前述側方構件; 前述距離調節步驟係以前述下端側接著劑配置步驟中配置之接著劑的厚度δ2成為0<δ2<t之方式按壓前述接著劑。
  17. 如請求項10所記載之光學系統裝置的製造方法,其中前述距離調節步驟係按壓前述接著劑來調節前述照射部與前述光學元件的距離,直至將前述照射部的光照射至前述光學元件而獲得之點圖案的對比度成為預定值以上為止。
TW111144202A 2021-11-19 2022-11-18 光學系統裝置以及光學系統裝置的製造方法 TW202332937A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021188550 2021-11-19
JP2021-188550 2021-11-19

Publications (1)

Publication Number Publication Date
TW202332937A true TW202332937A (zh) 2023-08-16

Family

ID=86397061

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111144202A TW202332937A (zh) 2021-11-19 2022-11-18 光學系統裝置以及光學系統裝置的製造方法

Country Status (2)

Country Link
TW (1) TW202332937A (zh)
WO (1) WO2023090435A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029616A1 (ja) * 2022-08-05 2024-02-08 Scivax株式会社 光学素子、光学系装置および光学系装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070199B2 (ja) * 2018-07-25 2022-05-18 株式会社デンソー 光検出素子およびライダー装置
WO2021229848A1 (ja) * 2020-05-13 2021-11-18 Scivax株式会社 光学系装置および光学素子製造方法
KR20210141036A (ko) * 2020-05-15 2021-11-23 삼성전자주식회사 광원 패키지 및 이를 포함하는 모바일 기기

Also Published As

Publication number Publication date
WO2023090435A1 (ja) 2023-05-25

Similar Documents

Publication Publication Date Title
TWI709776B (zh) 具有光線偏轉元件之光學構件,其製造方法及適合於光學構件之線偏轉元件
KR102462354B1 (ko) Led들로부터의 광 방출을 시준하기 위한 나노구조의 메타물질들 및 메타표면들
US9574743B2 (en) Separate optical device for directing light from an LED
JP4478028B2 (ja) 発光素子において用いられる回折光学構造を製造するための方法
CN110196528B (zh) 微型化光学投射模块
JP2018503132A (ja) コリメータ及び小型レンズアレイを有する光学デバイス
JP2014521227A (ja) 改善された光学系を備えているオプトエレクトロニクスモジュール
TWI721346B (zh) 光學系統、照明系統以及使用此光學系統的方法
WO2021229848A1 (ja) 光学系装置および光学素子製造方法
US20230243482A1 (en) Microstructures for Transforming Light Having Lambertian Distribution into Batwing Distributions
TW202332937A (zh) 光學系統裝置以及光學系統裝置的製造方法
JPWO2017090675A1 (ja) 光源装置、照明装置及び車両用灯具
WO2022227663A1 (zh) 投影系统及投影仪
JP2005071928A (ja) バックライト及び導光体の作製方法
JP7418050B2 (ja) 光学系装置
JP2020106771A (ja) 回折光学素子およびこれを用いた光学系装置
TW202118177A (zh) 光源、感測器及照明場景的方法
WO2024106359A1 (ja) 光学系装置および光学素子
KR20200013874A (ko) 광 형상화 및 균질화를 위한 마이크로렌즈 어레이
WO2024029616A1 (ja) 光学素子、光学系装置および光学系装置の製造方法
CN214704191U (zh) 光造型装置用光学系统
WO2020073764A1 (zh) 投影模组、成像装置和电子装置
Chen et al. Optical Design of Portable LED Nails Lamps
CN116224607A (zh) 结构光投射器及3d结构光模组
JP2019078867A (ja) 光学シート、光照射装置