WO2023090435A1 - 光学系装置および光学素子製造方法 - Google Patents
光学系装置および光学素子製造方法 Download PDFInfo
- Publication number
- WO2023090435A1 WO2023090435A1 PCT/JP2022/042921 JP2022042921W WO2023090435A1 WO 2023090435 A1 WO2023090435 A1 WO 2023090435A1 JP 2022042921 W JP2022042921 W JP 2022042921W WO 2023090435 A1 WO2023090435 A1 WO 2023090435A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical element
- adhesive
- distance
- irradiation unit
- light
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 198
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000012790 adhesive layer Substances 0.000 claims abstract description 45
- 239000000853 adhesive Substances 0.000 claims description 93
- 230000001070 adhesive effect Effects 0.000 claims description 93
- 230000001678 irradiating effect Effects 0.000 claims description 15
- 238000003825 pressing Methods 0.000 claims description 5
- 239000011295 pitch Substances 0.000 description 36
- 238000004088 simulation Methods 0.000 description 35
- 238000009826 distribution Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 21
- 239000000463 material Substances 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 240000003380 Passiflora rubra Species 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
Definitions
- the present invention relates to an optical system device and an optical element manufacturing method.
- Three-dimensional measurement sensors using the time-of-flight (TOF) method are about to be adopted in mobile devices, cars, robots, etc. This measures the distance to an object from the time it takes for the light emitted from the light source to the object to be reflected and returned. If the light from the light source irradiates a predetermined area of the object uniformly, the distance at each irradiated point can be measured and the three-dimensional structure of the object can be detected.
- TOF time-of-flight
- the above sensor system consists of a light irradiation unit that irradiates the object with light, a camera unit that detects the light reflected from each point on the object, and a calculation unit that calculates the distance of the object from the signal received by the camera.
- the unique part of the above system is the light irradiation section consisting of a laser and an optical filter.
- a diffusion filter which shapes the beam by passing the laser light through a microlens array to provide uniform illumination of a controlled area on the target, is a distinctive component of the system.
- TOF has a need for long-distance measurement, and the intensity of the irradiated light must be strong enough to enable long-distance measurement.
- the randomly arranged microlens array is not suitable for long-distance measurement because the uniformity of the irradiated light is high and the intensity is low.
- Non-Patent Document 1 an optical system device using the Lau effect is known as a device that converts incident light into a dot pattern (for example, Non-Patent Document 1).
- This is composed of a diffraction grating with a predetermined pitch P and a light source. It is placed in [Formula A] A device in which the diffraction grating is replaced with a microlens is also being studied (for example, Patent Document 2).
- an object of the present invention is to provide an optical system device capable of irradiating high-contrast light and a method of manufacturing the same.
- the optical system device of the present invention comprises an optical element in which lenses having a focal length of f and transmitting light of wavelength ⁇ are periodically arranged at a pitch P, and a light of wavelength ⁇ .
- an irradiation unit having a light source that irradiates a plurality of the lenses; a bottom member for fixing the irradiation unit; a side member for fixing the optical element and the bottom member; one or both of an upper end side adhesive layer that adheres the upper end or a lower end side adhesive layer that adheres the lower end of the bottom member and the side member;
- the height from the top surface of the bottom member to the irradiation surface of the irradiation unit is H0
- the height H1 from the top surface of the bottom member to the top end of the side member is obtained by the following formula. It is preferable to satisfy
- the height H 1 is the following formula and the thickness ⁇ 1 of the upper adhesive layer satisfies 0 ⁇ 1 ⁇ f.
- the light source is a VCSEL having a cavity length t converted to the distance in the medium between the irradiation unit and the optical element, and the height H1 is obtained by the following formula and the thickness ⁇ 1 of the upper adhesive layer satisfies 0 ⁇ 1 ⁇ t.
- the height H2 from the lower end of the side member to the lower surface of the optical element is calculated by the following formula. It is preferable to satisfy
- the height H 2 is the following formula is satisfied, and the thickness ⁇ 2 of the bottom adhesive layer satisfies 0 ⁇ 2 ⁇ f.
- the light source is a VCSEL having a cavity length t in terms of the distance in the medium between the irradiation unit and the optical element, and the height H2 is obtained by the following formula and the thickness ⁇ 2 of the bottom adhesive layer satisfies 0 ⁇ 2 ⁇ t.
- a mask that is arranged between the irradiation section and the optical element and that scatters or absorbs the light reflected from the surface of the optical element.
- the electrode of the irradiating section be arranged at a position where the light reflected by the surface of the optical element is not reflected back to the optical element.
- the method of manufacturing an optical system device comprises: an optical element in which lenses having a focal length of f and transmitting light of wavelength ⁇ are periodically arranged at pitch P;
- a method for manufacturing an optical system device comprising: an irradiation unit having a light source for irradiating a plurality of light sources; a bottom member for fixing the irradiation unit; and a side member for fixing the optical element and the bottom member, an upper end side adhesive placing step of placing an adhesive between the optical element and the upper ends of the side members, or a lower end side adhesive placing step of placing an adhesive between the bottom member and the lower ends of the side members;
- L 1 is the distance between the irradiation unit and the focal position of the optical element, and n is a natural number of 1 or more, the distance L 1 is expressed by the following formula a distance adjusting step of adjusting the distance between the irradiation unit and the optical element by pressing the adhesive so as to satisfy the above; and an adhesive curing step of curing the
- the height from the upper surface of the bottom member to the irradiation surface of the irradiation unit is H0
- the height H from the upper surface of the bottom member to the upper end of the side member is measured before the distance adjustment step. 1 is the following formula It is preferable to have a side member forming step of forming the side member on the bottom member so as to satisfy
- the height H1 is obtained by the following formula
- the side member is formed on the bottom member so that , it is preferable to press the adhesive.
- the light source is a VCSEL having a cavity length t converted to the distance in the medium between the irradiation unit and the optical element
- the side member forming step is such that the height H1 is formula is formed on the bottom member so that the thickness ⁇ 1 of the adhesive placed in the upper end side adhesive placement step satisfies 0 ⁇ 1 ⁇ t. , it is preferable to press the adhesive.
- the height from the top surface of the bottom member to the irradiation surface of the irradiation unit is H0
- the height H2 from the bottom end of the side member to the bottom surface of the optical element is measured before the distance adjusting step. is the following formula It is preferable to have a side member forming step of forming the side member on the optical element so as to satisfy the following.
- the height H2 is determined by the following formula is formed on the optical element so that the thickness ⁇ 2 of the adhesive placed in the lower end side adhesive placement step satisfies 0 ⁇ 2 ⁇ f. , it is preferable to press the adhesive.
- the light source is a VCSEL having a cavity length t converted to the distance in the medium between the irradiation unit and the optical element
- the side member forming step is such that the height H2 is formula is formed on the optical element so that the thickness ⁇ 2 of the adhesive placed in the lower end side adhesive placement step satisfies 0 ⁇ 2 ⁇ t. , it is preferable to press the adhesive.
- the adhesive is pressed until the contrast of the dot pattern obtained by irradiating the optical element with the light from the irradiation unit reaches a predetermined value or more, thereby adjusting the distance between the irradiation unit and the optical element. may be adjusted.
- the optical system device of the present invention can irradiate high-contrast light.
- the method of manufacturing an optical system device according to the present invention can easily and reliably manufacture an optical system device that can irradiate high-contrast light.
- FIG. 1 is a schematic cross-sectional view showing an optical system device of the present invention
- FIG. It is a schematic sectional drawing which shows the irradiation part and optical element of this invention. It is a figure which shows the light intensity in the far field for every emission mode.
- FIG. 5 is a diagram showing light intensity in the far field for each emission mode classified and synthesized.
- FIG. 10 is a diagram showing the light intensity in the far field of light synthesized by changing the ratio for each light emission mode;
- 1 is a schematic plan view showing an optical element according to the present invention;
- FIG. It is a schematic sectional view showing a conventional optical system device.
- FIG. 4 is a schematic plan view showing the positional relationship between an irradiation section and an optical element according to the present invention; It is a schematic sectional drawing explaining reflection in the optical element surface which concerns on this invention.
- FIG. 4 is a schematic cross-sectional view for explaining positions of electrodes of an irradiation section according to the present invention; It is a schematic sectional drawing explaining the mask which concerns on this invention.
- It is a figure which shows the manufacturing method of the optical system apparatus of this invention.
- It is a figure which shows the manufacturing method of the optical system apparatus of this invention.
- FIG. 4 is a diagram showing how light propagates from a lens used in Simulation 1;
- FIG. 4 is a diagram showing optical characteristics based on Simulation 1 (focal length of 20 ⁇ m);
- FIG. 4 is a diagram showing optical characteristics based on Simulation 1 (focal length of 40 ⁇ m);
- FIG. 4 is a diagram showing optical characteristics based on Simulation 1 (focal length of 60 ⁇ m);
- FIG. 10 is a diagram showing the state of light when parallel light is incident on the lens (focal length of 20 ⁇ m) used in Simulation 2;
- FIG. 10 is a diagram showing the state of light when parallel light is made incident on the lens (focal length of 40 ⁇ m) used in Simulation 2;
- FIG. 10 is a diagram showing the state of light when parallel light is made incident on the lens (focal length of 60 ⁇ m) used in Simulation 2;
- FIG. 10 is a projection diagram due to a difference in ⁇ in Simulation 2 (focal length of 20 ⁇ m).
- FIG. 10 is a projection diagram due to a difference in ⁇ in Simulation 2 (focal length of 40 ⁇ m).
- FIG. 10 is a projection diagram due to a difference in ⁇ in Simulation 2 (focal length of 60 ⁇ m). It is a light distribution due to a difference in ⁇ in simulation 2 (focal length of 20 ⁇ m).
- FIG. 10 is a diagram showing the maximum light intensity due to the difference in ⁇ in simulation 2 (focal length of 20 ⁇ m);
- FIG. 10 is a diagram showing the maximum light intensity depending on the difference in ⁇ in Simulation 2 (focal length of 40 ⁇ m);
- FIG. 10 is a diagram showing the maximum light intensity depending on the difference in ⁇ in simulation 2 (focal length of 60 ⁇ m); It is a figure explaining the lens of this invention.
- FIG. 11 is a diagram showing the state of light when parallel light is made incident on the lens used in Simulation 3;
- FIG. 10 is a projection diagram due to a difference in ⁇ in Simulation 3 (focal length of 20 ⁇ m). It is light distribution (x-axis direction) by the difference of (delta) in the simulation 3.
- FIG. It is a light distribution (y-axis direction) due to the difference in ⁇ in simulation 3.
- FIG. 10 is a diagram showing the maximum light intensity depending on the difference in ⁇ in simulation 3; 4 is a diagram showing contrast, dot size, and background depending on the difference in ⁇ in Example 1.
- FIG. 10 is a projection diagram due to a difference in ⁇ in Simulation 3 (focal length of 20 ⁇ m). It is light distribution (x-axis direction) by the difference of (delta) in the simulation 3.
- FIG. It is a light distribution (y-axis direction) due to the difference in ⁇ in simulation 3.
- FIG. 10 is a diagram showing the maximum light intensity depending
- the optical system device of the present invention comprises an irradiation section 1 for irradiating light of wavelength ⁇ , an optical element 2 having periodic lenses 21, and a bottom member for fixing the irradiation section 1. 3, a side member 4 for fixing the optical element 2 and the bottom member 3, an upper end adhesive layer 51 for bonding the optical element 2 and the upper end of the side member 4 or the lower ends of the bottom member 3 and the side member 4 Either one or both of the lower end side adhesive layers 52 that adhere the .
- the irradiation unit 1 may be of any type as long as it has a light source that irradiates a plurality of lenses 21 with light of wavelength ⁇ . Also, the irradiation unit 1 may be a single light source or a plurality of light sources. Alternatively, a plurality of light sources may be provided by passing light from a single light source through an aperture formed with a plurality of pores. When the irradiation section is composed of a plurality of light sources, the light sources are preferably formed on the same plane. In addition, let the surface which radiate
- a specific example of the irradiation unit 1 is a VCSEL (Vertical Cavity Surface Emitting LASER) that is expected to produce high output with low power.
- VCSELs include a single-emitter VCSEL having one light source 10 capable of irradiating light in a direction perpendicular to the light-emitting surface, and a multi-emitter VCSEL having a plurality of light sources 10 .
- Flash mode Further, it is known that when the light intensity of a VCSEL is increased, the light of the VCSEL includes a plurality of light emission modes such as single mode and multimode. Examples of specific light emission modes are shown in FIG. Of the light emission modes shown in FIG. 3, (2) and (3), (4) and (6), (7) and (9), and (8) and (10), which are rotationally symmetrical to each other, always exist at the same rate. Therefore, by synthesizing these similar modes, they can be grouped into six types of A, B, C, D, E, and F as shown in FIG.
- the light source of the VCSEL has a higher proportion of the light emission modes having the maximum intensity at the center of the optical axis, the more dots are generated. It is preferable in that the light intensity can be increased and the contrast can be increased. Therefore, the ratio of the mode having the maximum intensity at the center of the optical axis among the emission modes of the light source should be 40% or more, preferably 45% or more, and more preferably 60% or more.
- the emission mode may be adjusted by a conventionally known method such as controlling the current injection path of the emission layer of the VCSEL.
- the optical element 2 is a periodic array of lenses 21 that transmit light of wavelength ⁇ .
- the lens 21 has a focal point at a predetermined distance f (f>0) from the lens 21 .
- the optical element of the present invention can improve the contrast more than the conventional one as the focal length f becomes larger such as 10 ⁇ m or more, 20 ⁇ m or more, 40 ⁇ m or more, or 60 ⁇ m or more.
- the shape of the lens 21 can be freely designed according to the spread pattern of the dots to be irradiated (hereinafter referred to as dot pattern). For example, if the dot pattern is desired to be circular, the shape of the lens 21 should be a spherical lens. Further, when the dot pattern is desired to be non-circular, the shape of the lens 21 may be changed to an aspherical lens and appropriately adjusted. Specific lens shapes include, for example, a convex lens, a concave lens, and a saddle-shaped lens that looks like a convex lens or a concave lens depending on the cross section. Further, the periodic array includes a square array of square or rectangular lenses 21 in plan view as shown in FIG. are arranged in a hexagonal array.
- the lens 21 may be of any kind as long as it functions as a lens, and for example, a Fresnel lens, a DOE lens, a metalens, or the like can be used. Further, it is preferable that the lens 21 is formed with an antireflection film that prevents the light from the irradiation section from being reflected.
- the irradiation unit 1 and the optical element 2 are arranged so that the optical axis direction of the light source of the irradiation unit 1 and the optical axis direction of the lens 21 of the optical element 2 are aligned.
- n is any natural number of 1 or more
- ⁇ is the wavelength of light incident from the irradiation unit 1
- P is the pitch of the lens 21 of the optical element 2
- L0 is the distance between the irradiation unit 1 and the optical element 2.
- the distance L 0 can be calculated by the following formula B [Formula B] , it was found that the light is strengthened to a greater extent. In particular, it was found that the light is most intensified when the following formula C is satisfied. [Formula C]
- the irradiation unit 1 has a plurality of light sources 10, even if each light source 10 and the optical element 2 are relatively translated, the number of the light sources 10 for each lens 21 of the optical element 2 in a plan view is should be arranged to be the same. Specifically, if m is a natural number of 1 or more, the irradiating unit regularly illuminates a plurality of light sources m times or 1/m times the period in any of the periodic directions of the lens 21 of the optical element.
- the light sources 10 of the irradiation unit 1 are preferably arranged regularly at a pitch mPk or Pk /m in the direction in which the lenses 21 of the optical element 2 have the pitch Pk .
- the pitch mP 1 or P 1 /m is preferable.
- the distance L1 between the irradiation section 1 and the focal position 9 of the optical element 2 is adjusted so as to satisfy Expression 1 for any two or more pitches Pk .
- diffraction is most affected by the smallest pitch, so it is better for the smallest pitch P 1 to satisfy Equation 1, and more preferably for the second smallest pitch P 2 also Equation 1 Better to fill
- P 2 ⁇
- the distance L 1 between the irradiation unit 1 and the optical element 2 preferably satisfies the following formula 3, [Formula 3] More preferably, the following formula 4 should be satisfied. [Formula 4]
- the distance L 1 is given by Equation 5 below: [Formula 5] It is preferable to satisfy The cavity length t here means the distance converted into the distance in the medium between the irradiation unit and the optical element.
- the pitch Pk is too much smaller than the wavelength ⁇ of the light from the light source 10, it is difficult for diffraction to occur.
- the pitch P k especially the pitch P 1 , should be sufficiently larger than the wavelength ⁇ of the light from the light source 10, for example, 5 times or more, preferably 10 times or more.
- the bottom member 3 is for fixing the irradiation section 1 .
- the surface of the bottom member 3 on which the irradiation unit 1 is fixed may be a flat surface, or may be formed with a concave groove in which the irradiation unit 1 can be embedded.
- a general method such as fixing the irradiation unit 1 to the bottom member 3 with an adhesive may be used.
- the side member 4 is for fixing the optical element 2 and the bottom member 3 with a predetermined distance therebetween.
- the upper ends of the optical element 2 and the side member 4 are adhered via the upper end adhesive layer 51 .
- the lower ends of the bottom member 3 and the side members 4 are bonded with a lower end adhesive layer 52 .
- the side member 4 can be formed integrally with the bottom member 3 without using the lower end adhesive layer 52 as long as it has the upper end adhesive layer 51. good.
- the side member 4 may be formed integrally with the optical element without using the upper end side adhesive layer 51 as long as it has the lower end side adhesive layer 52. .
- the side member 4 is formed in a cylindrical shape surrounding the periphery of the irradiation section 1 so that the irradiation section 1 can be sealed when the optical element 2, the bottom member 3, and the side member 4 are adhered with an adhesive. may be formed.
- bottom member 3 and the side members 4 can be used for the bottom member 3 and the side members 4, but, for example, those that are less deformed by the surrounding environment are preferred. Moreover, it is preferable that the adhesive layer is not deformed or deteriorated by the resin forming the adhesive layer.
- the upper end adhesive layer 51 is formed between the upper end of the side member 4 and the optical element in order to arrange the irradiation unit 1 between the optical element 2 and the bottom member 3 . for gluing.
- the lower end adhesive layer 52 is formed between the lower end of the side member 4 and the bottom member 3 to bond the bottom member 3 and the side member 4 together. Further, the upper end side adhesive layer 51 and the lower end side adhesive layer 52 are in the state of fluid adhesive before being solidified, and the distance L1 between the irradiation surface of the irradiation unit 1 and the focal position of the lens of the optical element 2 is It has the function of adjusting.
- the upper end side adhesive layer 51 or the lower end side adhesive layer 52 may be formed over the entire surface of the end portion of the side member 4, or may be formed only partially. Any material can be used for the upper adhesive layer 51 or the lower adhesive layer 52 as long as the side member 4 and the optical element 2 or the bottom member 3 can be adhered.
- An adhesive such as a base resin may be used.
- a photocurable adhesive, a UV addition adhesive, or a thermosetting adhesive may be used.
- the side member 4 and the bottom member 3 are adhered by the lower end side adhesive layer 52 as shown in FIG. 1(a), or are integrally formed as shown in FIG.
- the height from the upper surface of the material 3 to the irradiation surface of the irradiation unit 1 is assumed to be H0 .
- the height H1 from the upper surface of the bottom member 3 to the upper end of the side member 4 is at least given by the following formula 6 [Formula 6] It is preferable to satisfy
- the height H 1 satisfies the following formula 7 [Formula 7] It is better to control the thickness .delta.1 of the upper end side adhesive layer 51 to satisfy 0 ⁇ .delta.1 ⁇ f after forming so as to satisfy the following condition. This ensures that the distance L 1 is [Formula 8] meet.
- the height H1 is given by the following equation 9 [Formula 9] It is preferable to control the thickness .delta.1 of the upper adhesive layer 51 so that 0 ⁇ .delta.1 ⁇ t after the formation so as to satisfy the following condition. This ensures that the distance L 1 is [Formula 10] meet.
- the height H2 from the lower end of the side member 4 to the lower surface of the optical element 2 is at least given by the following formula (11). [Formula 11] It is preferable to satisfy
- height H 2 satisfies the following formula 12 [Formula 12] It is better to control the thickness .delta.2 of the upper end side adhesive layer 51 so that 0 ⁇ .delta.2 ⁇ f after forming so as to satisfy the following condition. This ensures that the distance L 1 is [Formula 8] meet.
- the height H2 is given by the following equation 13 [Formula 13] It is preferable to control the thickness .delta.2 of the lower end side adhesive layer 52 to 0 ⁇ .delta.2 ⁇ t after the formation so as to satisfy the following condition. This ensures that the distance L 1 is [Formula 10] meet.
- the position through which the light reflected by the surface of the optical element 2 passes is not arranged with something that reflects the light back to the optical element 2 (for example, the electrode 15).
- the optical element 2 for example, the electrode 15
- the electrode 15 of the irradiation section 1 may be largely displaced from the position through which the light reflected by the surface of the optical element 2 passes.
- the irradiation section 1 may be of a flip-chip type, and the electrode 15 may be arranged on the back side of the light source 10.
- a mask 6 may be arranged between the irradiation section 1 and the optical element 2 to scatter or absorb the light reflected by the surface of the optical element 2.
- FIG. The position of the mask 6 may be anywhere between the irradiation unit 1 and the optical element 2 as long as it does not block the light emitted from the irradiation unit 1 to the optical element 2.
- FIG. arranged in the space between the electrode 15 and the optical element 2 as shown in FIG. It can be arranged on the element 2 or the like.
- a black resist for example, can be used as the light-absorbing material.
- a material having a non-mirror surface can be used.
- FIG. 1 The manufacturing method includes an optical element 2 in which lenses 21 having a focal length of f and transmitting light of wavelength ⁇ are periodically arranged at a pitch P, and a light source for irradiating a plurality of lenses 21 with light of wavelength ⁇ . a bottom member 3 for fixing the irradiation unit 1; and a side member 4 for fixing the optical element 2 and the bottom member 3.
- the lens 21 of the optical element 2 may be manufactured in any manner, but can be manufactured using, for example, an imprint method. Specifically, the material of the lens 21 is applied to the substrate 25 with a predetermined film thickness by a well-known method such as a spin coater (application step). Any material can be used as long as it can form the lens 21 that transmits light of wavelength ⁇ , and for example, polydimethylsiloxane (PDMS) can be used.
- PDMS polydimethylsiloxane
- a mold having a reverse pattern of the pattern in which the lenses 21 are arranged periodically is prepared, and the mold is pressed against the material coated on the substrate 25 to transfer the pattern (imprinting process).
- the adhesive 51a is placed between the upper ends of the optical element 2 and the side member 4, as shown in FIG. 12(a).
- the adhesive 52a is placed between the lower ends of the bottom member 3 and the side members 4, as shown in FIG. 13(a).
- the adhesive may be arranged on the entire surface of the end (upper end or lower end) of the side member 4, or may be arranged only on a part thereof. Also, the adhesive may be arranged at a position where it is desired to adhere to the optical element 2 or the side member 4 on the bottom member 3 side. Any adhesive may be used as long as it can bond the side member 4 and the optical element 2 or the bottom member 3 together.
- silicone resin, epoxy resin, acrylic resin, or the like may be used.
- a photocurable adhesive, a UV addition adhesive, or a thermosetting adhesive may be used.
- the distance between the irradiation unit and the focal position of the optical element is L 1
- n is a natural number of 1 or more
- the distance L 1 is Formula 11 below [Formula 11]
- the distance between the irradiation unit and the optical element is adjusted by pressing the adhesive so as to satisfy the following. Any method may be used to adjust the distance as long as it can be adjusted so as to satisfy Equation (11).
- a conventionally known sensor may be used to measure the distance between the irradiation unit and the optical element, and the distance L1 may bring the irradiation unit and the optical element closer to the distance that satisfies Equation (11).
- the distance between the irradiation section and the optical element is adjusted by pressing the adhesive until the contrast of the dot pattern obtained by irradiating the optical element with the light from the irradiation section reaches a predetermined value or more. There may be.
- the adhesive is cured while maintaining the distance L1 adjusted in the distance adjusting step.
- an upper adhesive layer 51 that adheres the optical element and the upper ends of the side members 4 or a lower adhesive layer 52 that adheres the lower ends of the bottom member 3 and the side members 4 is formed.
- the adhesive is a photocurable adhesive
- the adhesive may be cured by irradiating it with light.
- the adhesive may be cured by applying heat.
- the adhesive is a UV addition type adhesive
- the distance L1 between the irradiation unit and the focal position of the optical element is adjusted by a distance adjustment step, and then the adhesive is applied. It is also possible to keep the distance L1 until the agent has fully cured.
- the distance adjustment step when adjusting the distance by adjusting the thickness of the adhesive placed on the upper end of the side member 4 (thickness of the upper end adhesive layer 51), Assuming that the height to H 0 is H 0 , the height H 1 from the upper surface of the bottom member 3 to the upper end of the side member 4 is obtained by the following formula 12 before the distance adjustment process.
- the side member 4 is arranged with adhesive 52a between the bottom member 3 and the lower end of the side member 4, as shown in FIG. 14(a), and adhered, as shown in FIG. 14(b).
- the side member 4 is pressed against the adhesive 52a to adjust the height H1 , and the adhesive 52a is cured as shown in FIG. 14(c). Further, the side member 4 may be integrally formed with the bottom member 3 so as to have a predetermined height H1 .
- the height H1 is given by the following formula 13 [Formula 13]
- the side member 4 is formed on the bottom member 3 to satisfy It is preferable to press the adhesive. As a result, it is possible to manufacture an optical system device in which the distance L1 between the irradiation section and the focal position of the optical element satisfies Equation (11) without fail.
- the height H1 is determined by the following formula 14 [Formula 14]
- the side member 4 is formed on the bottom member 3 so as to satisfy It is preferable to press the adhesive.
- the distance adjustment step when adjusting the distance by adjusting the thickness of the adhesive placed on the lower end of the side member 4 (thickness of the lower end adhesive layer 52), the irradiation surface of the irradiation unit is adjusted from the upper surface of the bottom member 3. If the height from the lower end of the side member 4 to the lower surface of the optical element is H 0 before the distance adjustment process, the height H 2 from the lower end of the side member 4 to the lower surface of the optical element is given by the following formula 15 [Formula 15] It is preferable to have a side member forming step for forming the side member 4 on the optical element so as to satisfy the following.
- the side member 4 has an adhesive 51a arranged between the optical element 2 and the upper end of the side member 4 as shown in FIG.
- the side member 4 is pressed against the adhesive 51a to adjust the height H2 , and the adhesive 51a is cured as shown in FIG. 15(c).
- the side member 4 may be integrally formed with the optical element 2 so as to have a predetermined height H2.
- the height H2 is given by the following formula 16 [Formula 16]
- the side member 4 is formed on the optical element so that the distance adjustment step is performed so that the thickness ⁇ 2 of the adhesive placed in the lower end adhesive placement step is 0 ⁇ 2 ⁇ f. It is preferable to press the agent. As a result, it is possible to manufacture an optical system device in which the distance L1 between the irradiation section and the focal position of the optical element satisfies Equation (11) without fail.
- the height H2 is given by the following formula 17 [Formula 17]
- the side member 4 is formed on the optical element so that the distance adjustment step is performed so that the thickness ⁇ 2 of the adhesive placed in the lower end adhesive placement step is 0 ⁇ 2 ⁇ t. It is preferable to press the agent.
- the lens 21 three types having a diameter of 30 ⁇ m, a refractive index of 1.5, and a focal length f of (a) 20 ⁇ m, (b) 40 ⁇ m, and (c) 60 ⁇ m were used.
- FIG. 17(a) is a diagram showing how light propagates when each lens is irradiated with parallel light as shown in FIG. 17(b).
- Equation 18 is set to 2.
- 18 to 20 show the results of simulation using optical simulation software BeamPROP (manufactured by Synopsys). This simulation is a 2D calculation result that does not consider the depth direction in FIG. 2 for simplicity of calculation.
- Graphs of (a) of FIGS. 18 to 20 are light intensity distributions when the distance L0 between the irradiation unit 1 and the optical element 2 satisfies the above-mentioned formula A as in the conventional art.
- Graphs in (b) of FIGS. 18 to 20 are light intensity distributions when the distance L1 between the irradiation unit 1 and the focal position 9 of the optical element 2 satisfies the above-mentioned formula 2.
- FIG. Graphs (c) of FIGS. 18 to 20 show differences in the maximum light intensity of each light intensity distribution with respect to the value of ⁇ . 18 to 20, the horizontal axis indicates the light distribution angle, and the vertical axis indicates the light intensity in the far field when the power of the light source is set to 1.
- the horizontal axis in (c) of FIGS. 18 to 20 indicates ⁇
- the vertical axis indicates the light intensity of the far field when the power of the light source is set to one.
- the optical element 2 that satisfies the formula 1 has a clearer peak than the one that satisfies the formula A, and the peak light intensity is also higher. Also, it can be seen that the peak light intensity is maximized when Expression 2 is satisfied.
- the lens surface was rotationally symmetrical, with the same curvature in the x-axis direction and the y-axis direction.
- the lens 21 as shown in FIGS. 21 to 23, three types with focal lengths f of 20 ⁇ m, 40 ⁇ m and 60 ⁇ m were used.
- nk in Equation 3 is set to 2.
- 24 to 32 show the results of simulation using optical simulation software BeamPROP (manufactured by Synopsys). This simulation is a 3D calculation result in which the depth direction in FIG. 2 is also considered.
- FIGS. 24 to 26 are projected images 50 cm ahead from the optical element when ⁇ in Equation 18 is changed in various ways for three types of lenses.
- 27 to 29 show light intensity distributions when ⁇ in Equation 18 is changed in various ways for three types of lenses.
- 30 to 32 show the maximum light intensity of each light intensity distribution with respect to the value of ⁇ for three types of lenses.
- the horizontal axis indicates the light distribution angle
- the vertical axis indicates the light intensity in the far field when the power of the light source is set to 1.
- the horizontal axis represents ⁇
- the vertical axis represents the light intensity of the far field when the power of the light source is set to 1.
- the optical element 2 that satisfies the formula 1 has a clearer peak than the one that satisfies the formula A, and the peak light intensity is also higher. Also, it can be seen that the peak light intensity is maximized when Expression 2 is satisfied.
- the shape of the lens 21 was a square with a side of 30 ⁇ m in plan view and a height of 16.26 ⁇ m, as shown in FIG. 33(a).
- the lens surface was a non-rotationally symmetrical aspherical surface with different curvatures in the x-axis direction and the y-axis direction.
- FIG. 33(b) is a projection diagram of the light distribution in the far field when parallel light is incident on the optical element.
- FIG. 33(c) shows the light distribution with respect to the angles in the x-axis direction and the y-axis direction in the far field.
- the focal length f of the lens 21 was 20 ⁇ m as shown in FIG.
- FIG. 34(b) is a projection view of emitted light when parallel light is incident on the lens 21.
- FIG. Although there is a difference in the way light is collected in the x-axis direction and the y-axis direction, the point where the light is most concentrated is the focal position (0 ⁇ m).
- nk in Equation 18 is set to 2.
- 35 to 38 show the results of simulation using optical simulation software BeamPROP (manufactured by Synopsys). This simulation is a 3D calculation result in which the depth direction in FIG. 2 is also considered.
- FIG. 35 shows projected images 50 cm ahead from the optical element when ⁇ in Equation 18 is varied.
- FIG. 36 shows light intensity distributions in the x-axis direction when ⁇ in Equation 3 is varied.
- FIG. 37 shows light intensity distributions in the y-axis direction when ⁇ in Equation 18 is varied.
- FIG. 38 shows the maximum light intensity of each light intensity distribution in the x-axis direction and the y-axis direction with respect to the value of ⁇ .
- the horizontal axis in FIGS. 36 and 37 indicates the light distribution angle
- the vertical axis indicates the light intensity in the far field when the power of the light source is set to 1.
- the horizontal axis represents ⁇
- the vertical axis represents the light intensity of the far field when the power of the light source is set to 1.
- the optical element 2 that satisfies the formula 18 has a clearer peak than the one that satisfies the formula A, and the peak light intensity is also higher.
- the positions where the peak light intensity is maximized are different in the x-axis direction and the y-axis direction, but Equation 18 is satisfied. It can also be seen that there is sufficient light intensity if
- the cavity length of the VCSEL converted into air was 30 ⁇ m.
- the shape of the lens 21 was a square with a side of 32 ⁇ m in plan view and a height of 17 ⁇ m.
- the lens surface was an aspherical surface with different curvatures in the x-axis direction and the y-axis direction. Also, the focal length f of the lens 21 used was 20 ⁇ m. Further, the distance between the irradiation unit 1 and the focal position 9 of the optical element 2 was set to 1084 ⁇ m, and the contrast and dot size of the dot pattern were examined when the difference ⁇ from this distance was varied.
- the result of measuring the contrast of the dot at the center position when the dot pattern was projected onto the screen 1.5 m away from the optical element is shown in FIG. 39(a), the result of measuring the dot size is shown in FIG. FIG. 39(c) shows the result of ground measurement.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Semiconductor Lasers (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
を満たすことを特徴とする。
を満たすと共に、前記上端側接着層の厚さδ1が、0<δ1<tである方が好ましい。
を満たすと共に、前記下端側接着層の厚さδ2が、0<δ2<tである方が好ましい。
を満たすように前記接着剤を押圧して前記照射部と前記光学素子の距離を調節する距離調節工程と、前記距離L1を保ったまま前記接着剤を硬化させる接着剤硬化工程と、を有することを特徴とする。
を満たすように前記側方部材を前記底部材上に形成する側方部材形成工程を有する方が好ましい。
を満たすように前記側方部材を前記底部材上に形成し、前記距離調節工程は、前記上端側接着剤配置工程で配置した接着剤の厚さδ1が、0<δ1<fとなるように、当該接着剤を押圧する方が好ましい。
を満たすように前記側方部材を前記底部材上に形成し、前記距離調節工程は、前記上端側接着剤配置工程で配置した接着剤の厚さδ1が、0<δ1<tとなるように、当該接着剤を押圧する方が好ましい。
を満たすように前記側方部材を前記光学素子上に形成する側方部材形成工程を有する方が好ましい。
を満たすように前記側方部材を前記光学素子上に形成し、前記距離調節工程は、前記下端側接着剤配置工程で配置した接着剤の厚さδ2が、0<δ2<fとなるように、当該接着剤を押圧する方が好ましい。
を満たすように前記側方部材を前記光学素子上に形成し、前記距離調節工程は、前記下端側接着剤配置工程で配置した接着剤の厚さδ2が、0<δ2<tとなるように、当該接着剤を押圧する方が好ましい。
また、VCSELの光強度を大きくする場合、当該VCSELの光には、シングルモードやマルチモード等の複数の発光モードが含まれることが知られている。具体的な発光モードの例を図3に示す。図3に示す発光モードのうち互いに回転対称である(2)と(3)、(4)と(6)、(7)と(9)、(8)と(10)は、必ず同率で存在するため、これらの類似モードをそれぞれ合成すると図4に示すようにA、B、C、D、E、Fの6種類に集約できる。
一方、これら6種類のモードを1種類だけその他のモードの2倍にして合成すると図5(b)に示すように、A:B:C:D:E:F=2:1:1:1:1:1は、最大強度が0.03、A:B:C:D:E:F=1:1:1:2:1:1は、最大強度が0.0389、A:B:C:D:E:F=1:1:1:1:1:2は、最大強度が0.0285となる。すなわち、各モードのうち、最大強度が光軸中心にあるモードA又はD、または、最大強度が光軸中心に近いモードFの割合が増えると、6種類のモードを同じ割合にした場合に比べて、合成後の光の最大強度が大きくなることがわかる。図5(c)は、6種類のモードのうち、更に、モードA、モードD、モードFだけをその他のモードの5倍にして合成したものである。A:B:C:D:E:F=5:1:1:1:1:1は、最大強度が0.0354、A:B:C:D:E:F=1:1:1:5:1:1は、最大強度が0.0608、A:B:C:D:E:F=1:1:1:1:1:5は、最大強度が0.0343となった。すなわち、モードDを5倍にして合成した光(A:B:C:D:E:F=1:1:1:5:1:1)は、特に顕著に合成後の光の最大強度が大きくなった。
従来、nを1以上の任意の自然数とし、照射部1から入射する光の波長をλ、光学素子2のレンズ21のピッチをP、照射部1と光学素子2の間の距離をL0とすると、距離L0が下記式Aの場合に光を大きく強め合うと考えられてきた(図7参照)。
[式A]
[式B]
である方が、光をより大きく強め合うことがわかった。特に、下記式Cを満たすときに最も光を強め合うことがわかった。
[式C]
[式1]
を満たすようにすればよい。
[式2]
また、照射部1に複数の光源10を有する場合には、各光源10と光学素子2を相対的に平行移動しても、平面視で、光学素子2の各レンズ21に対する光源10の数が同じになるように配置する必要がある。具体的には、mを1以上の自然数とすると、照射部は、光学素子のレンズ21のいずれかの周期方向に対して、複数の光源を当該周期のm倍又は1/m倍で規則的に配列するとよい。換言すると、照射部1の光源10は、光学素子2のレンズ21がピッチPkをとる方向に対して、ピッチmPk又はPk/mで規則的に配列するとよい。特に、ピッチmP1又はP1/mとするのがよい。図8の(a),(b)は、m=1として、光源10のピッチを光学素子2のレンズ21のピッチP1と等しくしたものである。また、図8(c)は、m=2とし、光源10のピッチを光学素子2のレンズ21のピッチP1の1/2、すなわちP1/2としたものである。また、図8(d)は、m=2とし、光源10のピッチを光学素子2のレンズ21のピッチP1の2倍、すなわち2P1としたものである。
[式3]
更に好ましくは、下記式4を満たすの方がよい。
[式4]
[式5]
を満す方が好ましい。なお、ここでいう共振器長tは、照射部と光学素子の間の媒体中の距離に換算した距離を意味する。
[式6]
を満たす方が好ましい。
[式7]
を満たすように形成した後、上端側接着層51の厚さδ1を、0<δ1<fにコントロールする方がよい。これにより、距離L1は、確実に下記式8
[式8]
を満たす。
[式9]
を満たすように形成した後、上端側接着層51の厚さδ1を、0<δ1<tにコントロールする方が好ましい。これにより、距離L1は、確実に下記式10
[式10]
を満たす。
[式11]
を満たす方が好ましい。
[式12]
を満たすように形成した後、上端側接着層51の厚さδ2を、0<δ2<fにコントロールする方がよい。これにより、距離L1は、確実に下記式8
[式8]
を満たす。
[式13]
を満たすように形成した後、下端側接着層52の厚さδ2を、0<δ2<tにコントロールする方が好ましい。これにより、距離L1は、確実に下記式10
[式10]
を満たす。
[式11]
を満たすように接着剤を押圧して照射部と光学素子の距離を調節するものである。距離の調節は、式11を満たすように調節できればどのような方法を用いてもよい。例えば、従来から知られているセンサを用いて、照射部と光学素子の距離を測定し、距離L1が、式11を満たす距離まで照射部と光学素子を近づければよい。また、別の方法としては、照射部の光を光学素子に照射して得られるドットパターンのコントラストが所定値以上になるまで接着剤を押圧して照射部と光学素子の距離を調節するものであってもよい。
[式12]
を満たすように側方部材4を底部材3上に形成する側方部材形成工程を有する方がよい。この場合、側方部材4は、図14(a)に示すように、接着剤52aを底部材3と側方部材4の下端の間に配置し、図14(b)に示すように、接着剤52aに対して側方部材4を押圧して高さH1を調節し、図14(c)に示すように、当該接着剤52aを硬化して形成すればよい。また、所定の高さH1となるように、側方部材4を底部材3と一体に形成してもよい。
[式13]
を満たすように側方部材4を底部材3上に形成し、距離調節工程は、上端側接着剤配置工程で配置した接着剤の厚さδ1が、0<δ1<fとなるように、当該接着剤を押圧する方が好ましい。これにより、照射部と光学素子の焦点位置との距離L1が確実に式11を満たす光学系装置を製造することができる。
[式14]
を満たすように側方部材4を底部材3上に形成し、距離調節工程は、上端側接着剤配置工程で配置した接着剤51aの厚さδ1が、0<δ1<tとなるように、当該接着剤を押圧する方が好ましい。
[式15]
を満たすように側方部材4を光学素子上に形成する側方部材形成工程を有する方がよい。この場合、側方部材4は、図15(a)に示すように、接着剤51aを光学素子2と側方部材4の上端の間に配置し、図15(b)に示すように、接着剤51aに対して側方部材4を押圧して高さH2を調節し、図15(c)に示すように、当該接着剤51aを硬化して形成すればよい。また、所定の高さH2となるように、側方部材4を光学素子2と一体に形成してもよい。
[式16]
を満たすように側方部材4を光学素子上に形成し、距離調節工程は、下端側接着剤配置工程で配置した接着剤の厚さδ2が、0<δ2<fとなるように、当該接着剤を押圧する方が好ましい。これにより、照射部と光学素子の焦点位置との距離L1が確実に式11を満たす光学系装置を製造することができる。
[式17]
を満たすように側方部材4を光学素子上に形成し、距離調節工程は、下端側接着剤配置工程で配置した接着剤の厚さδ2が、0<δ2<tとなるように、当該接着剤を押圧する方が好ましい。
照射部1は、波長が940nm(λ=0.94)で、図16に示すようなガウシアン配光である光を照射する単光源とした。光学素子2は、図2に示すように、複数のレンズ21をピッチP1が30μm(P1=30)となるように周期配列したものを用いた。また、レンズ21としては、直径が30μm、屈折率が1.5、焦点距離fが(a)20μm、(b)40μm、(c)60μmとなる3種類を用いた。図17(a)は、各レンズに図17(b)に示すように平行光を照射した際の光の伝搬の様子を示す図である。なお、式18中のnkは2とした。図18~図20に光学シミュレーションソフトBeamPROP(Synopsys社製)を用いたシミュレーションの結果を示す。このシミュレーションは、計算を簡単にするために図2における奥行き方向を考慮しない2Dの計算結果である。
また、図18~図20の(b)のグラフは、照射部1と光学素子2の焦点位置9との間の距離L1が上述した式2を満たす場合の光強度分布である。
また、図18~図20の(c)のグラフは、δの値に対する各光強度分布の最大光強度の違いを示すものである。
なお、図18~図20の(a)(b)における横軸は配光角、縦軸は光源のパワーを1としたときの遠方界の光強度を示す。また、図18~図20の(c)における横軸はδ、縦軸は光源のパワーを1としたときの遠方界の光強度を示す。
照射部1は、波長が940nm(λ=0.94)で、図16に示すようなガウシアン配光である光を照射する単光源とした。光学素子2は、図2に示すように、複数のレンズ21をピッチP1が30μm(P1=30)で正方配列にしたもので、屈折率は1.5とした。また、レンズ表面は、x軸方向とy軸方向で曲率が同じとなる回転対称のものとした。また、レンズ21としては、図21~図23に示すように、焦点距離fが20μm、40μm、60μmである3種類を用いた。なお、式3中のnkは2とした。図24~図32に光学シミュレーションソフトBeamPROP(Synopsys社製)を用いたシミュレーションの結果を示す。このシミュレーションは、図2における奥行き方向も考慮した3Dの計算結果である。
照射部1は、波長が940nm(λ=0.94)で、図16に示すようなガウシアン配光である光を照射する単光源とした。光学素子2は、図2に示すように、複数のレンズ21をピッチP1が30μm(P1=30)で正方配列にしたもので、屈折率は、1.5とした。また、レンズ21の形状は、図33(a)に示すような、平面視が1辺30μmの正方形で、高さが16.26μmのものとした。また、レンズ表面は、x軸方向とy軸方向で曲率が異なる非回転対称の非球面とした。図33(b)は、当該光学素子に平行光を入射させた際の遠方界における配光分布の投影図である。また、図33(c)は、遠方界におけるx軸方向とy軸方向の角度に対する配光分布である。また、レンズ21の焦点距離fは、図34に示すように、20μmであるものを用いた。図34(b)は、レンズ21に平行光を入射させた際の出射光の投影図である。なお、x軸方向とy軸方向で集光の仕方に違いがあるが、最も集光している点を焦点位置(0μm)としている。また、式18中のnkは2とした。図35~図38に光学シミュレーションソフトBeamPROP(Synopsys社製)を用いたシミュレーションの結果を示す。このシミュレーションは、図2における奥行き方向も考慮した3Dの計算結果である。
照射部1としては、波長が945nm(λ=0.945)でバットウィング配光である光を照射する光源が32μmピッチで正方配列されたVCSELを用いた。空気中に換算したVCSELの共振器長は、30μmであった。光学素子2は、複数のレンズ21をピッチP1が32μm(P1=32)で正方配列にしたもので、屈折率は、1.53のものを用いた。また、レンズ21の形状は、平面視が1辺32μmの正方形で、高さが17μmのものとした。また、レンズ表面は、x軸方向とy軸方向で曲率が異なる非球面とした。また、レンズ21の焦点距離fは、20μmであるものを用いた。また、照射部1と光学素子2の焦点位置9との距離を1084μmとし、この距離からの差δを種々に変化させた場合のドットパターンのコントラストおよびドットサイズを調べた。光学素子から1.5m離れたスクリーンにドットパターンを投影した際の中心位置のドットのコントラストを測定した結果を図39(a)に、ドットサイズを測定した結果を図39(b)に、バックグラウンドを測定した結果を図39(c)に示す。
2 光学素子
3 底部材
4 側方部材
9 焦点位置
10 光源
21 レンズ
51 上端側接着層
52 下端側接着層
51a 接着剤
52a 接着剤
Claims (17)
- 前記照射部と前記光学素子の間に配置され、前記光学素子の表面で反射された光を散乱又は吸収するマスクを具備することを特徴とする請求項1ないし8のいずれかに記載の光学系装置。
- 前記照射部の電極は、前記光学素子の表面で反射された光を再び当該光学素子に反射することのない位置に配置されることを特徴とする請求項1ないし8のいずれかに記載の光学系装置。
- 焦点距離がfであって波長λの光を透過するレンズがピッチPで周期的に配列された光学素子と、波長λの光を前記レンズの複数に照射する光源を有する照射部と、前記照射部を固定する底部材と、前記光学素子と前記底部材を固定するための側方部材と、からなる光学系装置の製造方法であって、
接着剤を前記光学素子と前記側方部材の上端の間に配置する上端側接着剤配置工程又は接着剤を前記底部材と前記側方部材の下端の間に配置する下端側接着剤配置工程と、
前記照射部と前記光学素子の焦点位置との距離をL1、nを1以上の自然数とすると、前記距離L1が、下記式
を満たすように前記接着剤を押圧して前記照射部と前記光学素子の距離を調節する距離調節工程と、
前記距離L1を保ったまま前記接着剤を硬化させる接着剤硬化工程と、
を有することを特徴とする光学系装置の製造方法。 - 前記距離調節工程は、前記照射部の光を前記光学素子に照射して得られるドットパターンのコントラストが所定値以上になるまで前記接着剤を押圧して前記照射部と前記光学素子の距離を調節するものであることを特徴とする請求項10記載の光学系装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023562428A JPWO2023090435A1 (ja) | 2021-11-19 | 2022-11-18 | |
CN202280076877.1A CN118302691A (zh) | 2021-11-19 | 2022-11-18 | 光学系统装置和光学元件的制造方法 |
EP22895716.3A EP4435466A1 (en) | 2021-11-19 | 2022-11-18 | Optical system device and method for manufacturing optical element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-188550 | 2021-11-19 | ||
JP2021188550 | 2021-11-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023090435A1 true WO2023090435A1 (ja) | 2023-05-25 |
Family
ID=86397061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042921 WO2023090435A1 (ja) | 2021-11-19 | 2022-11-18 | 光学系装置および光学素子製造方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4435466A1 (ja) |
JP (1) | JPWO2023090435A1 (ja) |
CN (1) | CN118302691A (ja) |
TW (1) | TW202332937A (ja) |
WO (1) | WO2023090435A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024029616A1 (ja) * | 2022-08-05 | 2024-02-08 | Scivax株式会社 | 光学素子、光学系装置および光学系装置の製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006500621A (ja) | 2002-09-20 | 2006-01-05 | コーニング・インコーポレーテッド | 光線成形及び均一化のためのランダムマイクロレンズアレイ |
WO2017131585A1 (en) | 2016-01-26 | 2017-08-03 | Heptagon Micro Optics Pte. Ltd. | Multi-mode illumination module and related method |
JP2020016547A (ja) * | 2018-07-25 | 2020-01-30 | 株式会社デンソー | 光検出素子およびライダー装置 |
US20210356844A1 (en) * | 2020-05-15 | 2021-11-18 | Samsung Electronics Co., Ltd. | Light source package and mobile device including the same |
WO2021229848A1 (ja) * | 2020-05-13 | 2021-11-18 | Scivax株式会社 | 光学系装置および光学素子製造方法 |
-
2022
- 2022-11-18 WO PCT/JP2022/042921 patent/WO2023090435A1/ja active Application Filing
- 2022-11-18 EP EP22895716.3A patent/EP4435466A1/en active Pending
- 2022-11-18 TW TW111144202A patent/TW202332937A/zh unknown
- 2022-11-18 JP JP2023562428A patent/JPWO2023090435A1/ja active Pending
- 2022-11-18 CN CN202280076877.1A patent/CN118302691A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006500621A (ja) | 2002-09-20 | 2006-01-05 | コーニング・インコーポレーテッド | 光線成形及び均一化のためのランダムマイクロレンズアレイ |
WO2017131585A1 (en) | 2016-01-26 | 2017-08-03 | Heptagon Micro Optics Pte. Ltd. | Multi-mode illumination module and related method |
JP2020016547A (ja) * | 2018-07-25 | 2020-01-30 | 株式会社デンソー | 光検出素子およびライダー装置 |
WO2021229848A1 (ja) * | 2020-05-13 | 2021-11-18 | Scivax株式会社 | 光学系装置および光学素子製造方法 |
US20210356844A1 (en) * | 2020-05-15 | 2021-11-18 | Samsung Electronics Co., Ltd. | Light source package and mobile device including the same |
Non-Patent Citations (1)
Title |
---|
H. HAMAM: "Lau Array Illuminator", APPLIED OPTICS, vol. 43, no. 14, 10 May 2004 (2004-05-10), pages 2888 - 2894, XP055861012, DOI: 10.1364/AO.43.002888 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024029616A1 (ja) * | 2022-08-05 | 2024-02-08 | Scivax株式会社 | 光学素子、光学系装置および光学系装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023090435A1 (ja) | 2023-05-25 |
EP4435466A1 (en) | 2024-09-25 |
TW202332937A (zh) | 2023-08-16 |
CN118302691A (zh) | 2024-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI709776B (zh) | 具有光線偏轉元件之光學構件,其製造方法及適合於光學構件之線偏轉元件 | |
JP4478028B2 (ja) | 発光素子において用いられる回折光学構造を製造するための方法 | |
JP5882332B2 (ja) | オプトエレクトロニクスチップオンボードモジュール用のコーティング法 | |
US10317579B2 (en) | Optical device with a collimator and lenslet arrays | |
JP6355558B2 (ja) | 改善された光学系を備えているオプトエレクトロニクスモジュール | |
WO2021229848A1 (ja) | 光学系装置および光学素子製造方法 | |
KR20170129926A (ko) | 복합 확산판 | |
JP7198341B2 (ja) | 構造高さを低くしたレーザー装置 | |
WO2023090435A1 (ja) | 光学系装置および光学素子製造方法 | |
TWI721346B (zh) | 光學系統、照明系統以及使用此光學系統的方法 | |
JP6410964B2 (ja) | 光源装置、照明装置及び車両用灯具 | |
TWI785400B (zh) | 光源、感測器及照明場景的方法 | |
JP7418050B2 (ja) | 光学系装置 | |
JP2020106771A (ja) | 回折光学素子およびこれを用いた光学系装置 | |
CN111856771B (zh) | 集成光学器件、集成投射模组和集成光学器件的制作工艺 | |
WO2024106359A1 (ja) | 光学系装置および光学素子 | |
JPWO2013094710A1 (ja) | 光学部材の製造方法 | |
WO2024143433A1 (ja) | 光学系装置 | |
WO2024029616A1 (ja) | 光学素子、光学系装置および光学系装置の製造方法 | |
JP7530169B2 (ja) | 発光装置 | |
TWI856236B (zh) | 照明系統 | |
JP2024026011A (ja) | 光学系装置および光学素子製造方法 | |
CN116027615A (zh) | 结构光发生器及结构光投射器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22895716 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023562428 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280076877.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022895716 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022895716 Country of ref document: EP Effective date: 20240619 |