TW202324943A - Power and area efficient digital-to-time converter with improved stability and operating method thereof - Google Patents
Power and area efficient digital-to-time converter with improved stability and operating method thereof Download PDFInfo
- Publication number
- TW202324943A TW202324943A TW112106809A TW112106809A TW202324943A TW 202324943 A TW202324943 A TW 202324943A TW 112106809 A TW112106809 A TW 112106809A TW 112106809 A TW112106809 A TW 112106809A TW 202324943 A TW202324943 A TW 202324943A
- Authority
- TW
- Taiwan
- Prior art keywords
- charging
- current
- capacitor
- voltage
- circuit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/82—Digital/analogue converters with intermediate conversion to time interval
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/82—Digital/analogue converters with intermediate conversion to time interval
- H03M1/822—Digital/analogue converters with intermediate conversion to time interval using pulse width modulation
-
- G—PHYSICS
- G04—HOROLOGY
- G04F—TIME-INTERVAL MEASURING
- G04F10/00—Apparatus for measuring unknown time intervals by electric means
- G04F10/005—Time-to-digital converters [TDC]
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/22—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
- H03K5/24—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0602—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
- H03M1/0604—Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
- H03M1/0607—Offset or drift compensation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/66—Digital/analogue converters
- H03M1/74—Simultaneous conversion
- H03M1/80—Simultaneous conversion using weighted impedances
- H03M1/802—Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices
- H03M1/804—Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices with charge redistribution
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Analogue/Digital Conversion (AREA)
- Amplifiers (AREA)
- Pulse Circuits (AREA)
- Manipulation Of Pulses (AREA)
- Control Of Eletrric Generators (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
Description
相關申請的交叉引用Cross References to Related Applications
本申請主張於2020年12月3日提交的美國專利申請第17/111,208號、以及於2021年9月28日提交的美國專利申請第17/449,250號的優先權及權益,在此通過引用將其全部內容併入本文。This application claims priority and benefit to U.S. Patent Application No. 17/111,208, filed December 3, 2020, and U.S. Patent Application No. 17/449,250, filed September 28, 2021, which are hereby incorporated by reference Its entire content is incorporated herein.
本申請係關於數位時延轉換器,更具體地係關於對製程、電壓及溫度變動具有穩健性的功率有效及面積有效數位時延轉換器。This application relates to digital time-delay converters, and more particularly to power-efficient and area-efficient digital time-delay converters that are robust to process, voltage, and temperature variations.
分數N鎖相迴路(PLL)係用於頻率合成器以及用於使用固定頻率或展頻的低抖動時脈應用的關鍵構建塊。為了在達成低功率的同時在相位雜訊及分數雜散(fractional spurs)上提供改進的性能,在分數N PLL中使用數位時延轉換器(DTC)。DTC將數位代碼或字轉換為時間延遲,在PLL中作為帶有高解析度的真實分數分頻器工作。DTC亦為適用於其它應用的基本構建塊,包括取樣示波器、直接數位頻率合成(DDFS)、極性發射器、雷達、相控陣系統,以及時間交錯ADC定時校準。Fractional-N phase-locked loops (PLLs) are key building blocks for frequency synthesizers and for low-jitter clocking applications using fixed frequency or spread spectrum. To provide improved performance on phase noise and fractional spurs while achieving low power, digital delay converters (DTCs) are used in fractional-N PLLs. The DTC converts a digital code or word into a time delay, which works in the PLL as a true fractional divider with high resolution. DTCs are also fundamental building blocks for other applications, including sampling oscilloscopes, direct digital frequency synthesis (DDFS), polar transmitters, radar, phased array systems, and time-interleaved ADC timing calibration.
已知使用互補金屬氧化物半導體(CMOS)延遲單元來形成DTC。但CMOS延遲單元對製程、電壓及溫度(PVT)變動敏感。因此,可藉由利用電容器充電電路實作DTC,來獲得改進的電源雜訊穩健性。電容器充電電路根據數位字對電容器充電,該數位字由DTC轉換為時間延遲。諸如電阻式DAC(R-DAC)的數位類比轉換器(DAC)將數位字轉換為用於充電電容器的初始電壓(Vinit)。然後,利用恒定電流對經Vinit充電的充電電容器進一步充電,直到充電電容器電壓達到閾值電壓(Vtrip)。時間延遲等於來自對經Vinit充電的充電電容器從Vinit充電到Vtrip的延遲。但DAC消耗了功率及半導體裸晶面積。此外,DTC可能受到製程、電壓及溫度變動的影響。It is known to form DTCs using complementary metal oxide semiconductor (CMOS) delay cells. But CMOS delay cells are sensitive to process, voltage, and temperature (PVT) variations. Therefore, improved power supply noise robustness can be obtained by implementing DTC with a capacitor charging circuit. The capacitor charging circuit charges the capacitor according to the digital word, which is converted by the DTC into a time delay. A digital-to-analog converter (DAC), such as a resistive DAC (R-DAC), converts a digital word into an initial voltage (Vinit) for charging a capacitor. Then, the Vinit-charged charging capacitor is further charged with a constant current until the charging capacitor voltage reaches the threshold voltage (Vtrip). The time delay is equal to the delay from Vinit to Vtrip from charging the Vinit charged charging capacitor. But the DAC consumes power and semiconductor die area. In addition, DTC may be affected by process, voltage and temperature variations.
提供一種電路,包括:電容式數位類比轉換器,包括共同端子及複數個電容器;第一電流源,其被組態以利用充電電流通過該共同端子對該複數個電容器充電;以及比較器,其具有耦合到該共同端子的第一輸入端子。A circuit is provided, comprising: a capacitive digital-to-analog converter including a common terminal and a plurality of capacitors; a first current source configured to charge the plurality of capacitors with a charging current through the common terminal; and a comparator that There is a first input terminal coupled to the common terminal.
此外,提供了一種用於數位時延轉換器的方法,該方法包括:回應於數位代碼對電容式數位類比轉換器中的電容器陣列充電以形成經充電的電容器陣列;回應於定時信號,利用充電電流通過共同端子對經充電的電容器陣列進一步充電,以形成用於共同端子的增加的電壓;以及決定增加的電壓何時等於跳閘電壓。Additionally, a method for a digital time-delay converter is provided, the method comprising: charging an array of capacitors in a capacitive digital-to-analog converter in response to a digital code to form a charged array of capacitors; in response to a timing signal, utilizing the charging Current through the common terminal further charges the charged capacitor array to develop an increased voltage for the common terminal; and determining when the increased voltage is equal to the trip voltage.
此外,提供了一種電路,該電路包括:電壓電流切換電容式轉換器,其被組態以將參考電壓轉換為第一電流;充電電容器;電流鏡,其被組態以將該第一電流鏡像為用於對該充電電容器充電的充電電流;以及比較器,其具有耦合到該充電電容器的第一輸入及被組態以接收跳閘電壓的第二輸入。Additionally, a circuit is provided, the circuit comprising: a voltage-to-current switched capacitive converter configured to convert a reference voltage to a first current; a charging capacitor; a current mirror configured to mirror the first current is a charging current for charging the charging capacitor; and a comparator having a first input coupled to the charging capacitor and a second input configured to receive a trip voltage.
最後,提供了一種電路,該電路包括:電容式數位類比轉換器,包括共同端子及複數個電容器;第一電流源,其被組態以利用通過該共同端子而傳導的放電電流使該複數個電容器放電;以及比較器,其具有耦合到該共同端子的第一輸入端子。Finally, a circuit is provided that includes: a capacitive digital-to-analog converter including a common terminal and a plurality of capacitors; a first current source configured to cause the plurality of capacitors to utilize a discharge current conducted through the common terminal; a capacitor discharge; and a comparator having a first input terminal coupled to the common terminal.
通過以下實施方式可更好地理解此等及其它有利特徵。These and other advantageous features can be better understood through the following embodiments.
揭示了一種數位時延轉換器(DTC),其中電容式DAC(CDAC)用作用於充電電容器的數位控制電壓生成器以及充電電容器本身。與傳統的充電電容式DTC結構相比,所得到的DTC具有改進的功率效率並佔用減小的半導體裸晶面積。裸晶空間的此種減小提高了密度,因為由於針對數位時延轉換器實作而減小的面積,更多的電路可被整合到相同的裸晶空間中。亦揭示了一種切換電容式電壓電流轉換器,用於生成到充電電容器的充電電流,以改進關於製程、電壓及溫度變動的穩定性。A digital time-delay converter (DTC) is disclosed in which a capacitive DAC (CDAC) is used as a digitally controlled voltage generator for the charging capacitor as well as the charging capacitor itself. The resulting DTC has improved power efficiency and occupies a reduced semiconductor die area compared to conventional charged capacitive DTC structures. This reduction in die space increases density because more circuitry can be integrated into the same die space due to the reduced area for digital delay converter implementation. Also disclosed is a switched capacitor voltage-to-current converter for generating charging current to a charging capacitor for improved stability with respect to process, voltage, and temperature variations.
圖 1中示出了例示性DTC 100。CDAC 105包括共用共同端子145的電容器陣列,該共同端子145回應於數位DTC碼(dtc_code)而被充電到初始電壓Vinit。如本文中將進一步解釋的,CDAC 105起作用,使得Vinit為DAC參考電壓(Vref_dac)之一部分。不同部分之數目取決於CDAC 105之解析度及其編碼。例如,在3位元二進位編碼實作中,CDAC 105可以將DTC碼dtc_code轉換成Vinit的如下八個可能設定之一:0 V、1/8 Vref_dac、1/4 Vref_dac、3/8 Vref_dac、1/2 Vref_dac、5/8 Vref_dac、3/4 Vref_dac及7/8 Vref_dac。
An
由於CDAC 105中的電容器在被充電到Vinit之後皆相對於共同端子145並聯連接,所以它們用作單個充電電容器。隨著CDAC 105中的電容器充電到Vinit,諸如輸入時脈信號(clk_in)的定時信號之邊緣(其可為上升邊緣或下降邊緣)觸發開關S1閉合,使得諸如電流鏡110的電流源開始利用恒定充電電流Ichg對電容器充電。比較器115用來將CDAC 105中的共同端子145之電壓與閾值電壓Vtrip進行比較。來自比較器115的輸出信號可由反相器120反相以形成用於DTC 100的輸出時脈信號(clk_dtc_out),其在時間延遲結束時被斷言為電源電壓。因此,來自DTC 100的時間延遲等於輸入時脈邊緣之觸發邊緣與輸出時脈信號之斷言之間的延遲。在替代實作中,比較器115可被組態以使得輸出時脈信號在時間延遲結束時具有下降邊緣(放電到地線)。Since the capacitors in CDAC 105 are all connected in parallel with respect to
圖 2中示出了用於對CDAC 105中的電容器充電的一些例示性波形。在下面的討論中,CDAC 105中的電容器被統稱為充電電容器,因為在電容器被充電到Vinit的電荷重新分配階段中它們關於共同端子145並聯連接。在第一波形200中,充電電容器被充電到大於針對第二波形205的初始電壓Vinit2的初始電壓Vinit1。輸入時脈信號之觸發邊緣出現在時間t0。兩個波形從恒定充電電流Ichg線性增加。但由於Vinit1大於Vinit2,波形200在時間t1達到Vtrip比波形205達到Vtrip的時間t2快。因此,波形200從時間t0到時間t1的時間延遲Δt1比波形205從時間t0到時間t2的時間延遲Δt2短。
Some exemplary waveforms for charging capacitors in CDAC 105 are shown in FIG. 2 . In the following discussion, the capacitors in
再次參考圖1,當開關S1閉合時,可使用任何合適的電流源以利用恒定的充電電流Ichg對充電電容器充電。特別有利地,電流源由切換電容式電壓電流轉換器135形成,切換電容式電壓電流轉換器135用來使DTC 100對製程、電壓及溫度變動具有穩健性,如這裡將進一步解釋的。切換電容式電壓電流轉換器135將輸入參考電壓Vrefp轉換為第一電流I。諸如電流鏡110的電流源將第一電流I鏡像到對充電電容器充電的充電電流Ichg中。為了生成輸入參考電壓Vrefp,由偏置電壓Vbias偏置的電流源125驅動參考電流Iref進入電阻器。在DTC 100中,電流源125將參考電流Iref驅動到電阻器對R2及R1中,但將瞭解,在替代實作中可使用單個電阻器(或多於兩個電阻器)。在替代實作中,可使用具有電壓緩衝器的電壓參考電路來代替電流源125以生成輸入參考電壓Vrefp。Referring again to FIG. 1 , any suitable current source may be used to charge the charging capacitor with a constant charging current Ichg when switch S1 is closed. Particularly advantageously, the current source is formed by a switched capacitor voltage-to-
電阻器R2及R1串聯佈置在電流源125及地線之間。電阻器R1及R2形成分壓器,使得電阻器R1及R2之間的分壓器節點140被充電到參考電壓Vref_dac,參考電壓Vref_dac等於輸入參考電壓Vrefp之分壓版本,這取決於針對電阻器R1及R2的電阻。藉由適當地歸整此等電阻,可相對於輸入參考電壓Vrefp來設定CDAC 105之輸出電壓範圍。Resistors R2 and R1 are arranged in series between
在一些實作中,電阻器R2可被短路或移除,使得參考電壓Vref_dac等於輸入參考電壓Vrefp,使得比較器115之偏移可被如下補償。如果比較器115為理想的,當其負端子輸入電壓Vn等於其正輸入端子處的Vtrip時,它使其輸出信號放電。但由於非理想性,當負端子輸入電壓Vn等於Vtrip加上可為正或負的某一偏移電壓時,比較器115可代替地使其輸出信號放電。為了補償該偏移電壓,耦合在比較器115之輸出端子與其負輸入端子之間的自動歸零取樣開關S3,在對充電電容器充電之前的自動歸零階段期間閉合。在自動歸零階段中,開關S2從分壓器節點140通過自動歸零電容器Caz耦合到比較器115之負輸入端子,亦將開關S2閉合以將參考電壓Vref_dac耦合到自動歸零電容器Vac之第一端子,自動歸零電容器Vac具有連接到比較器115之負輸入端子的第二端子。由於在自動歸零階段通過自動歸零開關S3的回饋,自動歸零電容器Caz將在自動歸零階段期間利用偏移電壓充電。在正常操作期間,然後斷開開關S2及S3。由於對自動歸零電容器Caz進行預充電以消除偏移電壓,因此當共同端子145被充電到跳閘電壓Vtrip時,無論對於比較器115的偏移電壓如何,比較器115將使其輸出信號放電並雙態觸變反相器120之輸出。In some implementations, the resistor R2 can be shorted or removed so that the reference voltage Vref_dac is equal to the input reference voltage Vrefp, so that the offset of the
CDAC 105可使用其電容器之任何合適的編碼來形成。
圖 3中更詳細地示出了例示性二進位編碼CDAC 300。參考電壓Vref_dac在初始充電階段期間流過開關S2以對電容器陣列305之共同端子145充電。CDAC 300對三位元寬數位代碼dtc_code作出回應,使得電容器陣列具有四個電容器,包括電容器4C、電容器2C、電容器1C及第二(或虛設)電容器1C'。如名稱所暗示的,存在對電容器的電容的二進位級數,使得電容器4C具有電容器2C之電容的兩倍,電容器2C之電容又具有1C/1C'電容器之每一者之電容的兩倍。每個電容器具有通過對應的單刀雙擲開關(SPDT)耦合到共同端子145或地線的第一板。例如,電容器4C具有耦合到SPDT開關S4的第一板,電容器2C具有耦合到SPDT開關S5的第一板,電容器1C具有耦合到SPDT開關S6的第一板,以及電容器1C'具有耦合到SPDT開關S7的第一板。在初始充電階段期間,在用於每個電容器的第二板與地線之間耦合的底部開關S8閉合。在初始充電階段期間每個SPDT開關之設定取決於DTC碼。如先前所討論,三位DTC碼對應於例如從0 V到7/8 Vref_dac範圍內的Vinit之8個不同值。對於0 V設定,每個SPDT開關選擇地線而非共同端子145。但隨著DTC碼的增加,越來越多的SPDT開關選擇共同端子145而非地線,來利用DAC參考電壓Vref_dac對它們各自的電容器充電。例如,三位DTC碼之最大值可使開關S4、S5及S6選擇共同端子,而開關S7選擇地線。在該種情況下,在初始充電階段期間,電容器S4、S5及S6都被充電到DAC參考電壓。
CDAC 105 may be formed using any suitable coding of its capacitors. An exemplary binary coded CDAC 300 is shown in more detail in FIG. 3 . The reference voltage Vref_dac flows through the switch S2 to charge the
利用回應於DTC碼在初始充電階段中充電的適當電容器,發生電荷再分配階段。電荷重新分配階段藉由斷開底部開關S8開始。這有利地防止電容器陣列305中的電容器上的電荷在電荷重新分配階段期間改變,因為用於每一電容器的第二板係浮動的。更一般地,地線可由恒定電壓源置換,使得底部開關S8耦合在每個電容器之第二板及恒定電壓源之間。應理解,在替代實作中,開關S8可由複數個開關S8置換。在底部開關S8斷開的情況下,開關S2亦斷開以將共同端子與分壓器節點140處的DAC參考電壓Vref隔離。然後,所有SPDT開關被組態以選擇共同端子145,使得用於每個電容器的第一板連接到共同端子145。因此,第一板上的電荷從在初始充電階段充電的彼等電容器重新分配到在初始充電階段接地的彼等電容器。注意,由於非理想性,SPDT開關之切換可為交錯的或非同步的,但由於底部開關S8斷開,沒有發生電荷注入,由於用於每個電容器的第二板之浮動,底部開關S8“鎖定”所有電容器上的總電荷。然後藉由閉合底部開關S8完成重新分配階段。然後,共同端子145被充電到Vinit,使得可斷言輸入時脈以通過開關S1之閉合來觸發對經Vinit充電的充電電容器進行充電。With the appropriate capacitors charged in the initial charge phase in response to the DTC code, the charge redistribution phase occurs. The charge redistribution phase begins by opening bottom switch S8. This advantageously prevents the charge on the capacitors in capacitor array 305 from changing during the charge redistribution phase because the second plate for each capacitor is floating. More generally, the ground line can be replaced by a constant voltage source such that the bottom switch S8 is coupled between the second plate of each capacitor and the constant voltage source. It should be understood that switch S8 may be replaced by a plurality of switches S8 in alternative implementations. With bottom switch S8 open, switch S2 is also open to isolate the common terminal from the DAC reference voltage Vref at
圖 4示出了帶有電流鏡110的例示性切換電容式電壓電流轉換器135。帶有耦合在差動放大器405之輸出與其負輸入端子之間的回饋電容器C3的差動放大器405形成誤差積分器,該誤差積分器對輸入參考電壓Vrefp與其負輸入端子電壓之間的差進行積分。在一個實作中,放大器405驅動NMOS電晶體M4之閘極,NMOS電晶體M4之源極連接到負反饋電阻器Rdg (或在其它實作中接地)、其汲極連接到二極體連接的PMOS電晶體M3之汲極與閘極。電晶體M3與電流鏡PMOS電晶體M2形成電流鏡。類似地,電晶體M3與電流鏡PMOS電晶體M1一起形成電流鏡110。電晶體M1、M2及M3之源極連接到用於電源電壓的電源端子。電晶體M1及M2之閘極連接到二極體連接的電晶體M3之閘極。當放大器405使電晶體M4傳導電流時,該電流因此通過電晶體M3及M1被鏡像以形成第一電流I,該第一電流I由電流鏡110鏡像以形成充電電流Ichg。相對於電晶體M2決定電晶體M1之尺寸,使得充電電流Ichg係第一電流I的K倍。在一個實作中,電晶體M2之汲極通過開關S11耦合到電容器C1之第一板,並且亦通過開關S9耦合到地線。電容器C1之第二板接地。電容器C1之第一板亦通過開關S10接地。此外,電容器C1之第一板通過開關S12耦合到電容器C2之第一板。電容器C2之第二板接地。電容器C2之第一板通過開關S13耦合到放大器405之負輸入端子。
FIG. 4 shows an exemplary switched capacitive voltage-to-
諸如晶體振盪器(未繪示)的時脈源生成用以控制開關S9、S10、S11、S12及S13的時脈信號。時脈信號以頻率F
CLK在兩個相位之間振盪。例如,時脈信號之第一相位φ1可對應於時脈信號何時被充電到電源電壓,而第二相位φ2可對應於時脈信號何時被放電,儘管此兩個相位在替代實作方式中可為相反的。當時脈信號處於相位φ1時,開關S11及S12閉合。在相位φ1期間,電流I通過閉合的開關S11及S12對電容器C1及C2充電。開關S9、S10及S13在相位φ1期間斷開。在相位φ2中,開關S9、S10及S13閉合,而開關S11及S12斷開。在相位φ2中,電容器C2上的電荷驅動放大器405上的負輸入端子。電容器C1在相位φ2期間放電,並且第一電流I通過閉合的開關S9放電到地線。給定開關之此時脈控制,可示出第一電流I等於2*F
CLK*Vrefp*C1。電流鏡電晶體M1鏡像第一電流I,使得充電電流Ichg等於比例常數K乘以第一電流I。因此,充電電流Ichg等於K*2*F
CLK*Vrefp*C1。為了示出用於充電電流Ichg的此種關係在減小對於來自本文中揭示的DTC的定時延遲的製程、電壓及溫度變動方面係相當有利的,考慮對於本文中揭示的DTC的最大定時延遲可表示為C
DAC*(Vtrip/Ichg),其中C
DAC為CDAC電容器陣列之電容(充電電容器之電容)。如果Vtrip及Vrefp如前所述相等,則最大延遲可表示為(1/K)*(1/F
CLK)*(C
DAC/C1)。與依賴於電阻器或電容器之精度的慣用DTC相比,在包括DTC 100的積體電路中容易精確地控制此等因素。
A clock source such as a crystal oscillator (not shown) generates clock signals for controlling the switches S9 , S10 , S11 , S12 and S13 . The clock signal oscillates between two phases at frequency F CLK . For example, the first phase φ1 of the clock signal may correspond to when the clock signal is charged to the supply voltage, and the second phase φ2 may correspond to when the clock signal is discharged, although both phases may be used in alternative implementations. for the opposite. When the clock signal is in phase φ1, the switches S11 and S12 are closed. During phase φ1, current I charges capacitors C1 and C2 through closed switches S11 and S12. Switches S9, S10 and S13 are open during phase φ1. In phase φ2, switches S9, S10 and S13 are closed, and switches S11 and S12 are open. In phase φ2, the charge on capacitor C2 drives the negative input terminal on
電晶體M1、M2與M3之間的失配誤差可以藉由使用動態元件匹配(DEM)技術通過切換矩陣410來改進。切換矩陣410動態地切換電晶體M1、M2及M3之汲極連接,使得電晶體M1,M2及M3之作用被動態地交換,同時它們之間的相對鏡像比保持不變。例如,在切換矩陣410之第一組態中,電晶體M3之汲極連接到電晶體M4之汲極,如圖4所示。但在切換矩陣410之第二組態中,電晶體M3之汲極改為連接到開關S11。在此第二組態中,電流鏡電晶體M2之汲極然後可通過切換矩陣410連接到電晶體M4之汲極。類似地,電流鏡電晶體M1之汲極通常耦合到開關S1(圖1),但在其它切換組態中通過切換矩陣410動態地切換,以備選地連接到開關S11或電晶體M4的汲極。所得到的電流鏡元件的交換可以在相位φ2中被觸發,而對電容器充電操作沒有影響。Mismatch errors among transistors M1 , M2 and M3 can be improved by switching
再次參考圖4,放大器405之偏移可以藉由類似於關於比較器115所討論的自動歸零技術來移除。在時脈相位φ1期間,連接在放大器405之負輸入與放大器405之輸出之間的開關Saz1、以及連接在用於參考電壓Vrefp的節點與自動歸零電容器Caz1之第一板之間的開關Saz2閉合。自動歸零電容器Caz2之第二板連接到放大器405之負輸入。連接在電容器C3與放大器405之負輸入之間的自動歸零開關Saz3在時脈相位φ1期間斷開,以保持電容器C3上儲存的電荷。因此在時脈相位φ2期間,用於放大器405的偏移電壓在自動歸零電容器Caz1上被取樣。在相位φ2中,開關Saz1及Saz2斷開而開關Saz3閉合,使得放大器405處的偏移被經預充電的電容器Caz1抵消。當藉由在時脈相位φ2期間閉合開關S13來轉送來自電容器C2的誤差信號時,開關Saz3亦閉合以形成帶有放大器405及電容器C3的積分器。因此,在充電電流Ichg之生成中使用切換電容式電壓電流轉換器135,在確保由DTC生成的定時延遲對製程、電壓及溫度變動為穩健的方面非常有利。Referring again to FIG. 4 , the offset of
現在轉到
圖 5,示出了例示性DTC 500,其中切換電容式電壓電流轉換器135及電流鏡110用以生成如關於DTC 100所討論的充電電流Ichg。在DTC 500中,充電電容器505未整合到CDAC中,而是利用如由DAC 510設定的初始電壓Vinit來單獨充電。DTC 500之其餘組件如關於DTC 100所討論的那樣起作用。如果使用單個CDAC來形成充電電容器505及DAC 510,則DTC 500分解成DTC 100。然而,即使在沒有使用CDAC所提供的功率及裸晶空間節省的情況下,由於使用切換電容式電壓電流轉換器135來生成充電電流Ichg,DTC 500對製程、電壓及溫度變動仍為穩健的。
Turning now to FIG. 5 , an
現在將參考
圖 6之流程圖討論用於含有CDAC的DTC的例示性操作方法。該方法包括動作600:回應於數位代碼,對電容式數位類比轉換器中的電容器陣列充電以形成經充電的電容器陣列。作為動作600之實例,將用於電容器陣列的共同端子145充電到初始電壓Vinit。此外,該方法包括動作605:回應於定時信號之邊緣而發生,並且包括利用充電電流通過共同端子對經充電的電容器陣列進一步進行充電,以形成針對共同端子的增加的電壓。作為動作605之實例,在輸入時脈信號之觸發邊緣之後通過共同端子145對CDAC電容器充電。最後,該方法包括動作610:決定增加的電壓何時等於跳閘電壓。比較器115中的比較為動作610之實例。
An exemplary method of operation for a DTC containing a CDAC will now be discussed with reference to the flowchart of FIG. 6 . The method includes
如本文中所揭示的DTC可有利地併入任何合適的行動裝置或電子系統中。例如,如
圖 7所示,蜂巢電話700、膝上型電腦705及平板PC 710皆可包括根據本公開内容的DTC。諸如音樂播放機、視頻播放機、通信裝置及個人電腦的其它例示性電子系統亦可組態有根據本公開内容建構的DTC。
A DTC as disclosed herein may be advantageously incorporated into any suitable mobile device or electronic system. For example, as shown in FIG. 7 , a
再次參考DTC 100,在其中由CDAC 105形成的充電電容器在時間延遲期間被放電而非被充電的替代實作中,可提供相同的有利密度及功率增強以及對製程、電壓及溫度變動的穩健性。
圖 8中示出了例示性放電DTC 800。CDAC 105如關於DTC 100所討論的那樣工作,以在針對CDAC 105的重新分配階段期間將數位代碼轉換成由CDAC電容器相對於共同端子145儲存的初始電壓Vinit。電流鏡810鏡像來自切換電容式電壓電流轉換器805的第一電流,以形成放電電流Idischarge。電流鏡810通過開關S1連接到共同端子145,類似於針對DTC 100所討論的那樣,使得當開關S1回應於觸發時脈信號邊緣而閉合以開始時間延遲時,電壓Vinit隨著放電電流Idischarge將CDAC電容器放電而開始放電。
Referring again to
比較器815亦類似於關於比較器115所討論的那樣工作,以決定初始電壓Vinit何時已降低到等於跳閘電壓Vtrip1。然而,儘管用於DTC 100的跳閘電壓Vtrip大於初始電壓Vinit,但跳閘電壓Vtrip1小於初始電壓Vinit。由於當CDAC電容器已放電到小於跳閘電壓Vtrip1時,比較器815之輸出(clk_dtc_out)在時間延遲結束時將變高,因此不需要等效於DTC 800中的反相器120的反相器。DTC 800之其餘部分如關於DTC 100所討論的那樣起作用。
應理解,在不脫離本公開内容之範疇的情況下,可以對本公開内容的裝置之材料、器具、組態及使用方法進行許多修改,替換及變動。有鑒於此,本公開内容之範疇不應限於在此繪示及描述的特定實作之範疇,因為它們僅為藉由其一些示例之方式,而應與下文所附的申請專利範圍及其功能均等物之範疇完全相稱。It should be understood that many modifications, substitutions and variations are possible in the materials, implement, configuration and method of use of the devices of the present disclosure without departing from the scope of the present disclosure. For this reason, the scope of the present disclosure should not be limited to the specific implementations shown and described herein, as they are by way of some examples only, and should be compared with the claims and their functions attached below. The category of equals is perfectly commensurate.
100、500:數位時延轉換器(DTC)
105、300:電容式數位類比轉換器(CDAC)
110:電流鏡
115:比較器
120:反相器
125:電流源
135:切換電容式電壓電流轉換器
140:分壓器節點
145:共同端子
Caz:自動歸零電容器
Ichg:充電電流
Iref:參考電流
Vbias:偏置電壓
Vinit:初始電壓
Vn:負端子輸入電壓
Vref_dac:DAC參考電壓
Vrefp:輸入參考電壓
Vtrip:跳閘電壓
200:第一波形
205:第二波形
305:電容器陣列
405:放大器
410:切換矩陣
Rdg:負反饋電阻器
505:充電電容器
510:DAC
600、605、610:動作
700:蜂巢電話
705:膝上型電腦
710:平板PC
800:放電DTC
805:切換電容式電壓電流轉換器
810:電流鏡
815:比較器
100, 500: Digital Time Delay Converter (DTC)
105, 300: capacitive digital-to-analog converter (CDAC)
110: current mirror
115: Comparator
120: Inverter
125: Current source
135:Switched capacitive voltage-to-current converter
140:Voltage divider node
145: common terminal
Caz: Auto-Zero Capacitor
Ichg: charging current
Iref: reference current
Vbias: bias voltage
Vinit: initial voltage
Vn: Negative terminal input voltage
Vref_dac: DAC reference voltage
Vrefp: input reference voltage
Vtrip: trip voltage
200: the first waveform
205: Second waveform
305: capacitor array
405: Amplifier
410: switch matrix
Rdg: negative feedback resistor
505: charging capacitor
510:
圖1係根據本公開内容之態樣的例示性DTC之圖解,其中電容式DAC(CDAC)用作在時間延遲期間被充電的充電電容器。1 is a diagram of an exemplary DTC in which a capacitive DAC (CDAC) is used as a charging capacitor that is charged during the time delay, according to aspects of the present disclosure.
圖2繪示了用於對圖1之DCT中的充電電容器進行充電的一些例示性電壓波形。FIG. 2 depicts some exemplary voltage waveforms for charging the charging capacitor in the DCT of FIG. 1 .
圖3係根據本公開内容之態樣的用於DTC的二進位加權CDAC之電路圖。3 is a circuit diagram of a binary weighted CDAC for DTC according to aspects of the disclosure.
圖4係根據本公開内容之態樣的切換電容式電壓電流轉換器及電流鏡之電路圖。4 is a circuit diagram of a switched capacitive voltage-to-current converter and a current mirror in accordance with aspects of the present disclosure.
圖5係根據本公開内容之態樣的例示性DTC之圖解,其中切換電容式電壓電流轉換器起作用以生成用於充電電容器的充電電流。5 is a diagram of an exemplary DTC in which a switched capacitive voltage-to-current converter functions to generate a charging current for charging a capacitor, according to aspects of the present disclosure.
圖6係根據本公開内容之態樣的用於DTC的例示性操作方法的流程圖。6 is a flowchart of an exemplary method of operation for a DTC in accordance with aspects of the present disclosure.
圖7繪示了根據本公開内容之態樣的各自併入DTC的一些例示性電子系統。7 depicts some exemplary electronic systems each incorporating a DTC in accordance with aspects of the present disclosure.
圖8係根據本公開内容之態樣的例示性DTC之圖解,其中CDAC用作在時間延遲期間放電的充電電容器。8 is a diagram of an exemplary DTC in which a CDAC is used as a charging capacitor that is discharged during a time delay, according to aspects of the present disclosure.
藉由參考下面的實施方式,可以最好地理解本公開内容之實作及其優點。應理解,相似的符號用來識別一個或多個圖式中繪示的相似元件。The practice of the present disclosure and its advantages are best understood by reference to the following embodiments. It should be understood that like symbols are used to identify like elements depicted in one or more of the drawings.
100:數位時延轉換器(DTC) 100: Digital Time Delay Converter (DTC)
105:電容式數位類比轉換器(CDAC) 105: Capacitive digital-to-analog converter (CDAC)
110:電流鏡 110: current mirror
115:比較器 115: Comparator
120:反相器 120: Inverter
125:電流源 125: Current source
135:切換電容式電壓電流轉換器 135:Switched capacitive voltage-to-current converter
140:分壓器節點 140:Voltage divider node
145:共同端子 145: common terminal
Caz:自動歸零電容器 Caz: Auto-Zero Capacitor
Ichg:充電電流 Ichg: charging current
Iref:參考電流 Iref: reference current
Vbias:偏置電壓 Vbias: bias voltage
Vinit:初始電壓 Vinit: initial voltage
Vn:負端子輸入電壓 Vn: Negative terminal input voltage
Vref_dac:DAC參考電壓 Vref_dac: DAC reference voltage
Vrefp:輸入參考電壓 Vrefp: input reference voltage
Vtrip:跳閘電壓 Vtrip: trip voltage
Claims (20)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/111,208 US11177819B1 (en) | 2020-12-03 | 2020-12-03 | Power and area efficient digital-to-time converter with improved stability |
US17/111,208 | 2020-12-03 | ||
US17/449,250 | 2021-09-28 | ||
US17/449,250 US11626883B2 (en) | 2020-12-03 | 2021-09-28 | Power and area efficient digital-to-time converter with improved stability |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202324943A true TW202324943A (en) | 2023-06-16 |
TWI851042B TWI851042B (en) | 2024-08-01 |
Family
ID=
Also Published As
Publication number | Publication date |
---|---|
TW202230996A (en) | 2022-08-01 |
JP2024056716A (en) | 2024-04-23 |
KR102706398B1 (en) | 2024-09-11 |
WO2022119722A3 (en) | 2023-01-12 |
KR20230084318A (en) | 2023-06-12 |
WO2022119722A2 (en) | 2022-06-09 |
JP2023543337A (en) | 2023-10-13 |
JP7545584B2 (en) | 2024-09-04 |
CN116325506A (en) | 2023-06-23 |
EP4256708A2 (en) | 2023-10-11 |
TWI797839B (en) | 2023-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11626883B2 (en) | Power and area efficient digital-to-time converter with improved stability | |
US7652604B2 (en) | Programmable analog-to-digital converter for low-power DC-DC SMPS | |
Seo et al. | A reusable code-based SAR ADC design with CDAC compiler and synthesizable analog building blocks | |
JP2011061597A (en) | Successive-approximation type ad converter and method for adjusting operation clock of successive-approximation type ad converter | |
CN110908270B (en) | Constant slope digital time converter and control method thereof | |
CN109863697B (en) | High linearity digital-to-time converter for low noise all digital phase locked loop | |
JP2635789B2 (en) | Signal delay circuit and clock signal generation circuit using the circuit | |
US11581896B2 (en) | Analog-to-digital converter | |
TW202147781A (en) | Digital-to-time converter circuit and method for operating the same | |
Angeli et al. | A low-power and area-efficient digitally controlled shunt-capacitor delay element for high-resolution delay lines | |
US5521556A (en) | Frequency converter utilizing a feedback control loop | |
Chung et al. | A wide-range low-cost all-digital duty-cycle corrector | |
Nguyen et al. | Three-step cyclic Vernier TDC using a pulse-shrinking inverter-assisted residue quantizer for low-complexity resolution enhancement | |
JP2004139268A (en) | Clock signal generation circuit | |
TWI797839B (en) | Power and area efficient digital-to-time converter with improved stability and operating method thereof | |
TWI851042B (en) | Power and area efficient digital-to-time converter with improved stability and operating method thereof | |
KR20180106805A (en) | Digital-to-time converter and operating method thereof | |
CN111025884B (en) | Two-step high-speed dynamic time-to-digital converter | |
JP2003069425A (en) | Clock synchronization device | |
Yadav et al. | Operational current to frequency converter | |
Chen et al. | An On-Chip Self-Characterization of a Digital-to-Time Converter by Embedding it in a First-Order $\Delta\Sigma $ Loop | |
Jiang et al. | A 12-bit 2.5 GHz 0.37 ps-Peak-INL digital-to-time converter with parasitic-insensitive charge-based phase interpolator | |
Huang et al. | A 22mW 227Msps 11b self-tuning ADC based on time-to-digital conversion | |
US7627072B2 (en) | Frequency-to-current converter | |
TW200401184A (en) | A digital circuit having a delay circuit to adjust the timing of clock signals |