TW202324943A - Power and area efficient digital-to-time converter with improved stability and operating method thereof - Google Patents

Power and area efficient digital-to-time converter with improved stability and operating method thereof Download PDF

Info

Publication number
TW202324943A
TW202324943A TW112106809A TW112106809A TW202324943A TW 202324943 A TW202324943 A TW 202324943A TW 112106809 A TW112106809 A TW 112106809A TW 112106809 A TW112106809 A TW 112106809A TW 202324943 A TW202324943 A TW 202324943A
Authority
TW
Taiwan
Prior art keywords
charging
current
capacitor
voltage
circuit
Prior art date
Application number
TW112106809A
Other languages
Chinese (zh)
Other versions
TWI851042B (en
Inventor
吳正正
宋超
卡席克 娜葛拉珍
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/111,208 external-priority patent/US11177819B1/en
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW202324943A publication Critical patent/TW202324943A/en
Application granted granted Critical
Publication of TWI851042B publication Critical patent/TWI851042B/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/82Digital/analogue converters with intermediate conversion to time interval
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/82Digital/analogue converters with intermediate conversion to time interval
    • H03M1/822Digital/analogue converters with intermediate conversion to time interval using pulse width modulation
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/005Time-to-digital converters [TDC]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/22Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
    • H03K5/24Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being amplitude
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0604Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • H03M1/0607Offset or drift compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/80Simultaneous conversion using weighted impedances
    • H03M1/802Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices
    • H03M1/804Simultaneous conversion using weighted impedances using capacitors, e.g. neuron-mos transistors, charge coupled devices with charge redistribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Analogue/Digital Conversion (AREA)
  • Amplifiers (AREA)
  • Pulse Circuits (AREA)
  • Manipulation Of Pulses (AREA)
  • Control Of Eletrric Generators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

A digital-to-time converter (DTC) converts a digital code into a time delay using a capacitor digital-to-analog converter (CDAC) that functions as a charging capacitor. The DTC includes a switched capacitor voltage-to-current converter for the formation of a charging current (or a discharging current) for charging (or for discharging) the charging capacitor responsive to a triggering clock edge that begins the time delay. A comparator compares a voltage on the charging capacitor to a threshold voltage to determine an end of the time delay.

Description

帶有改進穩定性的功率及面積有效數位時延轉換器以及其操作方法Power and area efficient digital time delay converter with improved stability and method of operation thereof

相關申請的交叉引用Cross References to Related Applications

本申請主張於2020年12月3日提交的美國專利申請第17/111,208號、以及於2021年9月28日提交的美國專利申請第17/449,250號的優先權及權益,在此通過引用將其全部內容併入本文。This application claims priority and benefit to U.S. Patent Application No. 17/111,208, filed December 3, 2020, and U.S. Patent Application No. 17/449,250, filed September 28, 2021, which are hereby incorporated by reference Its entire content is incorporated herein.

本申請係關於數位時延轉換器,更具體地係關於對製程、電壓及溫度變動具有穩健性的功率有效及面積有效數位時延轉換器。This application relates to digital time-delay converters, and more particularly to power-efficient and area-efficient digital time-delay converters that are robust to process, voltage, and temperature variations.

分數N鎖相迴路(PLL)係用於頻率合成器以及用於使用固定頻率或展頻的低抖動時脈應用的關鍵構建塊。為了在達成低功率的同時在相位雜訊及分數雜散(fractional spurs)上提供改進的性能,在分數N PLL中使用數位時延轉換器(DTC)。DTC將數位代碼或字轉換為時間延遲,在PLL中作為帶有高解析度的真實分數分頻器工作。DTC亦為適用於其它應用的基本構建塊,包括取樣示波器、直接數位頻率合成(DDFS)、極性發射器、雷達、相控陣系統,以及時間交錯ADC定時校準。Fractional-N phase-locked loops (PLLs) are key building blocks for frequency synthesizers and for low-jitter clocking applications using fixed frequency or spread spectrum. To provide improved performance on phase noise and fractional spurs while achieving low power, digital delay converters (DTCs) are used in fractional-N PLLs. The DTC converts a digital code or word into a time delay, which works in the PLL as a true fractional divider with high resolution. DTCs are also fundamental building blocks for other applications, including sampling oscilloscopes, direct digital frequency synthesis (DDFS), polar transmitters, radar, phased array systems, and time-interleaved ADC timing calibration.

已知使用互補金屬氧化物半導體(CMOS)延遲單元來形成DTC。但CMOS延遲單元對製程、電壓及溫度(PVT)變動敏感。因此,可藉由利用電容器充電電路實作DTC,來獲得改進的電源雜訊穩健性。電容器充電電路根據數位字對電容器充電,該數位字由DTC轉換為時間延遲。諸如電阻式DAC(R-DAC)的數位類比轉換器(DAC)將數位字轉換為用於充電電容器的初始電壓(Vinit)。然後,利用恒定電流對經Vinit充電的充電電容器進一步充電,直到充電電容器電壓達到閾值電壓(Vtrip)。時間延遲等於來自對經Vinit充電的充電電容器從Vinit充電到Vtrip的延遲。但DAC消耗了功率及半導體裸晶面積。此外,DTC可能受到製程、電壓及溫度變動的影響。It is known to form DTCs using complementary metal oxide semiconductor (CMOS) delay cells. But CMOS delay cells are sensitive to process, voltage, and temperature (PVT) variations. Therefore, improved power supply noise robustness can be obtained by implementing DTC with a capacitor charging circuit. The capacitor charging circuit charges the capacitor according to the digital word, which is converted by the DTC into a time delay. A digital-to-analog converter (DAC), such as a resistive DAC (R-DAC), converts a digital word into an initial voltage (Vinit) for charging a capacitor. Then, the Vinit-charged charging capacitor is further charged with a constant current until the charging capacitor voltage reaches the threshold voltage (Vtrip). The time delay is equal to the delay from Vinit to Vtrip from charging the Vinit charged charging capacitor. But the DAC consumes power and semiconductor die area. In addition, DTC may be affected by process, voltage and temperature variations.

提供一種電路,包括:電容式數位類比轉換器,包括共同端子及複數個電容器;第一電流源,其被組態以利用充電電流通過該共同端子對該複數個電容器充電;以及比較器,其具有耦合到該共同端子的第一輸入端子。A circuit is provided, comprising: a capacitive digital-to-analog converter including a common terminal and a plurality of capacitors; a first current source configured to charge the plurality of capacitors with a charging current through the common terminal; and a comparator that There is a first input terminal coupled to the common terminal.

此外,提供了一種用於數位時延轉換器的方法,該方法包括:回應於數位代碼對電容式數位類比轉換器中的電容器陣列充電以形成經充電的電容器陣列;回應於定時信號,利用充電電流通過共同端子對經充電的電容器陣列進一步充電,以形成用於共同端子的增加的電壓;以及決定增加的電壓何時等於跳閘電壓。Additionally, a method for a digital time-delay converter is provided, the method comprising: charging an array of capacitors in a capacitive digital-to-analog converter in response to a digital code to form a charged array of capacitors; in response to a timing signal, utilizing the charging Current through the common terminal further charges the charged capacitor array to develop an increased voltage for the common terminal; and determining when the increased voltage is equal to the trip voltage.

此外,提供了一種電路,該電路包括:電壓電流切換電容式轉換器,其被組態以將參考電壓轉換為第一電流;充電電容器;電流鏡,其被組態以將該第一電流鏡像為用於對該充電電容器充電的充電電流;以及比較器,其具有耦合到該充電電容器的第一輸入及被組態以接收跳閘電壓的第二輸入。Additionally, a circuit is provided, the circuit comprising: a voltage-to-current switched capacitive converter configured to convert a reference voltage to a first current; a charging capacitor; a current mirror configured to mirror the first current is a charging current for charging the charging capacitor; and a comparator having a first input coupled to the charging capacitor and a second input configured to receive a trip voltage.

最後,提供了一種電路,該電路包括:電容式數位類比轉換器,包括共同端子及複數個電容器;第一電流源,其被組態以利用通過該共同端子而傳導的放電電流使該複數個電容器放電;以及比較器,其具有耦合到該共同端子的第一輸入端子。Finally, a circuit is provided that includes: a capacitive digital-to-analog converter including a common terminal and a plurality of capacitors; a first current source configured to cause the plurality of capacitors to utilize a discharge current conducted through the common terminal; a capacitor discharge; and a comparator having a first input terminal coupled to the common terminal.

通過以下實施方式可更好地理解此等及其它有利特徵。These and other advantageous features can be better understood through the following embodiments.

揭示了一種數位時延轉換器(DTC),其中電容式DAC(CDAC)用作用於充電電容器的數位控制電壓生成器以及充電電容器本身。與傳統的充電電容式DTC結構相比,所得到的DTC具有改進的功率效率並佔用減小的半導體裸晶面積。裸晶空間的此種減小提高了密度,因為由於針對數位時延轉換器實作而減小的面積,更多的電路可被整合到相同的裸晶空間中。亦揭示了一種切換電容式電壓電流轉換器,用於生成到充電電容器的充電電流,以改進關於製程、電壓及溫度變動的穩定性。A digital time-delay converter (DTC) is disclosed in which a capacitive DAC (CDAC) is used as a digitally controlled voltage generator for the charging capacitor as well as the charging capacitor itself. The resulting DTC has improved power efficiency and occupies a reduced semiconductor die area compared to conventional charged capacitive DTC structures. This reduction in die space increases density because more circuitry can be integrated into the same die space due to the reduced area for digital delay converter implementation. Also disclosed is a switched capacitor voltage-to-current converter for generating charging current to a charging capacitor for improved stability with respect to process, voltage, and temperature variations.

1中示出了例示性DTC 100。CDAC 105包括共用共同端子145的電容器陣列,該共同端子145回應於數位DTC碼(dtc_code)而被充電到初始電壓Vinit。如本文中將進一步解釋的,CDAC 105起作用,使得Vinit為DAC參考電壓(Vref_dac)之一部分。不同部分之數目取決於CDAC 105之解析度及其編碼。例如,在3位元二進位編碼實作中,CDAC 105可以將DTC碼dtc_code轉換成Vinit的如下八個可能設定之一:0 V、1/8 Vref_dac、1/4 Vref_dac、3/8 Vref_dac、1/2 Vref_dac、5/8 Vref_dac、3/4 Vref_dac及7/8 Vref_dac。 An exemplary DTC 100 is shown in FIG. 1 . The CDAC 105 includes an array of capacitors sharing a common terminal 145 that is charged to an initial voltage Vinit in response to a digital DTC code (dtc_code). As will be explained further herein, CDAC 105 functions such that Vinit is a fraction of the DAC reference voltage (Vref_dac). The number of different parts depends on the resolution of CDAC 105 and its encoding. For example, in a 3-bit binary coded implementation, the CDAC 105 can convert the DTC code dtc_code into one of eight possible Vinit settings: 0 V, 1/8 Vref_dac, 1/4 Vref_dac, 3/8 Vref_dac, 1/2 Vref_dac, 5/8 Vref_dac, 3/4 Vref_dac and 7/8 Vref_dac.

由於CDAC 105中的電容器在被充電到Vinit之後皆相對於共同端子145並聯連接,所以它們用作單個充電電容器。隨著CDAC 105中的電容器充電到Vinit,諸如輸入時脈信號(clk_in)的定時信號之邊緣(其可為上升邊緣或下降邊緣)觸發開關S1閉合,使得諸如電流鏡110的電流源開始利用恒定充電電流Ichg對電容器充電。比較器115用來將CDAC 105中的共同端子145之電壓與閾值電壓Vtrip進行比較。來自比較器115的輸出信號可由反相器120反相以形成用於DTC 100的輸出時脈信號(clk_dtc_out),其在時間延遲結束時被斷言為電源電壓。因此,來自DTC 100的時間延遲等於輸入時脈邊緣之觸發邊緣與輸出時脈信號之斷言之間的延遲。在替代實作中,比較器115可被組態以使得輸出時脈信號在時間延遲結束時具有下降邊緣(放電到地線)。Since the capacitors in CDAC 105 are all connected in parallel with respect to common terminal 145 after being charged to Vinit, they act as a single charging capacitor. As the capacitor in CDAC 105 charges to Vinit, an edge of a timing signal such as the input clock signal (clk_in), which may be a rising or falling edge, triggers switch S1 to close, causing a current source such as current mirror 110 to begin utilizing a constant The charging current Ichg charges the capacitor. The comparator 115 is used to compare the voltage of the common terminal 145 in the CDAC 105 with the threshold voltage Vtrip. The output signal from comparator 115 may be inverted by inverter 120 to form an output clock signal (clk_dtc_out) for DTC 100 which is asserted to the supply voltage at the end of the time delay. Therefore, the time delay from DTC 100 is equal to the delay between the trigger edge of the input clock edge and the assertion of the output clock signal. In an alternate implementation, comparator 115 may be configured such that the output clock signal has a falling edge (discharges to ground) at the end of the time delay.

2中示出了用於對CDAC 105中的電容器充電的一些例示性波形。在下面的討論中,CDAC 105中的電容器被統稱為充電電容器,因為在電容器被充電到Vinit的電荷重新分配階段中它們關於共同端子145並聯連接。在第一波形200中,充電電容器被充電到大於針對第二波形205的初始電壓Vinit2的初始電壓Vinit1。輸入時脈信號之觸發邊緣出現在時間t0。兩個波形從恒定充電電流Ichg線性增加。但由於Vinit1大於Vinit2,波形200在時間t1達到Vtrip比波形205達到Vtrip的時間t2快。因此,波形200從時間t0到時間t1的時間延遲Δt1比波形205從時間t0到時間t2的時間延遲Δt2短。 Some exemplary waveforms for charging capacitors in CDAC 105 are shown in FIG. 2 . In the following discussion, the capacitors in CDAC 105 are collectively referred to as charging capacitors because they are connected in parallel about common terminal 145 during the charge redistribution phase in which the capacitors are charged to Vinit. In the first waveform 200 , the charging capacitor is charged to an initial voltage Vinit1 that is greater than the initial voltage Vinit2 for the second waveform 205 . The trigger edge of the input clock signal occurs at time t0. Both waveforms increase linearly from a constant charging current Ichg. But because Vinit1 is greater than Vinit2, waveform 200 reaches Vtrip at time t1 faster than waveform 205 reaches Vtrip at time t2. Accordingly, the time delay Δt1 of waveform 200 from time t0 to time t1 is shorter than the time delay Δt2 of waveform 205 from time t0 to time t2.

再次參考圖1,當開關S1閉合時,可使用任何合適的電流源以利用恒定的充電電流Ichg對充電電容器充電。特別有利地,電流源由切換電容式電壓電流轉換器135形成,切換電容式電壓電流轉換器135用來使DTC 100對製程、電壓及溫度變動具有穩健性,如這裡將進一步解釋的。切換電容式電壓電流轉換器135將輸入參考電壓Vrefp轉換為第一電流I。諸如電流鏡110的電流源將第一電流I鏡像到對充電電容器充電的充電電流Ichg中。為了生成輸入參考電壓Vrefp,由偏置電壓Vbias偏置的電流源125驅動參考電流Iref進入電阻器。在DTC 100中,電流源125將參考電流Iref驅動到電阻器對R2及R1中,但將瞭解,在替代實作中可使用單個電阻器(或多於兩個電阻器)。在替代實作中,可使用具有電壓緩衝器的電壓參考電路來代替電流源125以生成輸入參考電壓Vrefp。Referring again to FIG. 1 , any suitable current source may be used to charge the charging capacitor with a constant charging current Ichg when switch S1 is closed. Particularly advantageously, the current source is formed by a switched capacitor voltage-to-current converter 135 used to make the DTC 100 robust to process, voltage and temperature variations, as will be explained further herein. The switched capacitor voltage-to-current converter 135 converts the input reference voltage Vrefp into a first current I. A current source such as a current mirror 110 mirrors the first current I into a charging current Ichg that charges the charging capacitor. To generate an input reference voltage Vrefp, a current source 125 biased by a bias voltage Vbias drives a reference current Iref into a resistor. In DTC 100 , current source 125 drives reference current Iref into resistor pair R2 and R1 , but it will be appreciated that a single resistor (or more than two resistors) could be used in alternative implementations. In an alternative implementation, a voltage reference circuit with a voltage buffer may be used instead of the current source 125 to generate the input reference voltage Vrefp.

電阻器R2及R1串聯佈置在電流源125及地線之間。電阻器R1及R2形成分壓器,使得電阻器R1及R2之間的分壓器節點140被充電到參考電壓Vref_dac,參考電壓Vref_dac等於輸入參考電壓Vrefp之分壓版本,這取決於針對電阻器R1及R2的電阻。藉由適當地歸整此等電阻,可相對於輸入參考電壓Vrefp來設定CDAC 105之輸出電壓範圍。Resistors R2 and R1 are arranged in series between current source 125 and ground. Resistors R1 and R2 form a voltage divider such that the voltage divider node 140 between resistors R1 and R2 is charged to a reference voltage Vref_dac which is equal to a divided version of the input reference voltage Vrefp, depending on Resistance of R1 and R2. By properly scaling these resistors, the output voltage range of CDAC 105 can be set relative to the input reference voltage Vrefp.

在一些實作中,電阻器R2可被短路或移除,使得參考電壓Vref_dac等於輸入參考電壓Vrefp,使得比較器115之偏移可被如下補償。如果比較器115為理想的,當其負端子輸入電壓Vn等於其正輸入端子處的Vtrip時,它使其輸出信號放電。但由於非理想性,當負端子輸入電壓Vn等於Vtrip加上可為正或負的某一偏移電壓時,比較器115可代替地使其輸出信號放電。為了補償該偏移電壓,耦合在比較器115之輸出端子與其負輸入端子之間的自動歸零取樣開關S3,在對充電電容器充電之前的自動歸零階段期間閉合。在自動歸零階段中,開關S2從分壓器節點140通過自動歸零電容器Caz耦合到比較器115之負輸入端子,亦將開關S2閉合以將參考電壓Vref_dac耦合到自動歸零電容器Vac之第一端子,自動歸零電容器Vac具有連接到比較器115之負輸入端子的第二端子。由於在自動歸零階段通過自動歸零開關S3的回饋,自動歸零電容器Caz將在自動歸零階段期間利用偏移電壓充電。在正常操作期間,然後斷開開關S2及S3。由於對自動歸零電容器Caz進行預充電以消除偏移電壓,因此當共同端子145被充電到跳閘電壓Vtrip時,無論對於比較器115的偏移電壓如何,比較器115將使其輸出信號放電並雙態觸變反相器120之輸出。In some implementations, the resistor R2 can be shorted or removed so that the reference voltage Vref_dac is equal to the input reference voltage Vrefp, so that the offset of the comparator 115 can be compensated as follows. If comparator 115 is ideal, it discharges its output signal when its negative terminal input voltage Vn is equal to Vtrip at its positive input terminal. But due to non-ideality, the comparator 115 may instead discharge its output signal when the negative terminal input voltage Vn is equal to Vtrip plus some offset voltage which may be positive or negative. To compensate for this offset voltage, auto-zero sampling switch S3, coupled between the output terminal of comparator 115 and its negative input terminal, is closed during the auto-zero phase prior to charging the charging capacitor. During the auto-zero phase, switch S2 is coupled from voltage divider node 140 through auto-zero capacitor Caz to the negative input terminal of comparator 115, switch S2 is also closed to couple reference voltage Vref_dac to the first terminal of auto-zero capacitor Vac. One terminal, the auto-zero capacitor Vac has a second terminal connected to the negative input terminal of the comparator 115 . Due to the feedback through the auto-zero switch S3 during the auto-zero phase, the auto-zero capacitor Caz will be charged with the offset voltage during the auto-zero phase. During normal operation, switches S2 and S3 are then opened. Since the auto-zero capacitor Caz is precharged to cancel the offset voltage, when the common terminal 145 is charged to the trip voltage Vtrip, the comparator 115 will discharge its output signal and The output of the toggle inverter 120 .

CDAC 105可使用其電容器之任何合適的編碼來形成。 3中更詳細地示出了例示性二進位編碼CDAC 300。參考電壓Vref_dac在初始充電階段期間流過開關S2以對電容器陣列305之共同端子145充電。CDAC 300對三位元寬數位代碼dtc_code作出回應,使得電容器陣列具有四個電容器,包括電容器4C、電容器2C、電容器1C及第二(或虛設)電容器1C'。如名稱所暗示的,存在對電容器的電容的二進位級數,使得電容器4C具有電容器2C之電容的兩倍,電容器2C之電容又具有1C/1C'電容器之每一者之電容的兩倍。每個電容器具有通過對應的單刀雙擲開關(SPDT)耦合到共同端子145或地線的第一板。例如,電容器4C具有耦合到SPDT開關S4的第一板,電容器2C具有耦合到SPDT開關S5的第一板,電容器1C具有耦合到SPDT開關S6的第一板,以及電容器1C'具有耦合到SPDT開關S7的第一板。在初始充電階段期間,在用於每個電容器的第二板與地線之間耦合的底部開關S8閉合。在初始充電階段期間每個SPDT開關之設定取決於DTC碼。如先前所討論,三位DTC碼對應於例如從0 V到7/8 Vref_dac範圍內的Vinit之8個不同值。對於0 V設定,每個SPDT開關選擇地線而非共同端子145。但隨著DTC碼的增加,越來越多的SPDT開關選擇共同端子145而非地線,來利用DAC參考電壓Vref_dac對它們各自的電容器充電。例如,三位DTC碼之最大值可使開關S4、S5及S6選擇共同端子,而開關S7選擇地線。在該種情況下,在初始充電階段期間,電容器S4、S5及S6都被充電到DAC參考電壓。 CDAC 105 may be formed using any suitable coding of its capacitors. An exemplary binary coded CDAC 300 is shown in more detail in FIG. 3 . The reference voltage Vref_dac flows through the switch S2 to charge the common terminal 145 of the capacitor array 305 during the initial charging phase. CDAC 300 responds to a three-bit wide digit code dtc_code such that the capacitor array has four capacitors, including capacitor 4C, capacitor 2C, capacitor 1C, and a second (or dummy) capacitor 1C'. As the name implies, there is a binary progression to the capacitance of the capacitors such that capacitor 4C has twice the capacitance of capacitor 2C which in turn has twice the capacitance of each of the 1C/1C' capacitors. Each capacitor has a first plate coupled to a common terminal 145 or ground through a corresponding single pole double throw switch (SPDT). For example, capacitor 4C has a first plate coupled to SPDT switch S4, capacitor 2C has a first plate coupled to SPDT switch S5, capacitor 1C has a first plate coupled to SPDT switch S6, and capacitor 1C' has a first plate coupled to SPDT switch S6. The first board of S7. During the initial charging phase, the bottom switch S8 coupled between the second plate for each capacitor and ground is closed. The setting of each SPDT switch during the initial charge phase depends on the DTC code. As previously discussed, the three-bit DTC code corresponds to, for example, 8 different values of Vinit ranging from 0 V to 7/8 Vref_dac. For a 0 V setting, each SPDT switch selects ground instead of common terminal 145 . But as DTC codes increase, more and more SPDT switches choose the common terminal 145 instead of ground to charge their respective capacitors with the DAC reference voltage Vref_dac. For example, the maximum value of the three-digit DTC code can cause switches S4, S5, and S6 to select a common terminal, and switch S7 to select ground. In this case, capacitors S4, S5 and S6 are all charged to the DAC reference voltage during the initial charging phase.

利用回應於DTC碼在初始充電階段中充電的適當電容器,發生電荷再分配階段。電荷重新分配階段藉由斷開底部開關S8開始。這有利地防止電容器陣列305中的電容器上的電荷在電荷重新分配階段期間改變,因為用於每一電容器的第二板係浮動的。更一般地,地線可由恒定電壓源置換,使得底部開關S8耦合在每個電容器之第二板及恒定電壓源之間。應理解,在替代實作中,開關S8可由複數個開關S8置換。在底部開關S8斷開的情況下,開關S2亦斷開以將共同端子與分壓器節點140處的DAC參考電壓Vref隔離。然後,所有SPDT開關被組態以選擇共同端子145,使得用於每個電容器的第一板連接到共同端子145。因此,第一板上的電荷從在初始充電階段充電的彼等電容器重新分配到在初始充電階段接地的彼等電容器。注意,由於非理想性,SPDT開關之切換可為交錯的或非同步的,但由於底部開關S8斷開,沒有發生電荷注入,由於用於每個電容器的第二板之浮動,底部開關S8“鎖定”所有電容器上的總電荷。然後藉由閉合底部開關S8完成重新分配階段。然後,共同端子145被充電到Vinit,使得可斷言輸入時脈以通過開關S1之閉合來觸發對經Vinit充電的充電電容器進行充電。With the appropriate capacitors charged in the initial charge phase in response to the DTC code, the charge redistribution phase occurs. The charge redistribution phase begins by opening bottom switch S8. This advantageously prevents the charge on the capacitors in capacitor array 305 from changing during the charge redistribution phase because the second plate for each capacitor is floating. More generally, the ground line can be replaced by a constant voltage source such that the bottom switch S8 is coupled between the second plate of each capacitor and the constant voltage source. It should be understood that switch S8 may be replaced by a plurality of switches S8 in alternative implementations. With bottom switch S8 open, switch S2 is also open to isolate the common terminal from the DAC reference voltage Vref at divider node 140 . All SPDT switches are then configured to select common terminal 145 such that the first plate for each capacitor is connected to common terminal 145 . Thus, the charge on the first plate is redistributed from those capacitors that were charged during the initial charging phase to those capacitors that were grounded during the initial charging phase. Note that the switching of the SPDT switches may be interleaved or asynchronous due to non-idealities, but since the bottom switch S8 is open, no charge injection occurs, due to the floating of the second plate for each capacitor, the bottom switch S8" lock" the total charge on all capacitors. The reallocation phase is then completed by closing the bottom switch S8. Common terminal 145 is then charged to Vinit so that the input clock can be asserted to trigger charging of the Vinit-charged charging capacitor through the closure of switch S1.

4示出了帶有電流鏡110的例示性切換電容式電壓電流轉換器135。帶有耦合在差動放大器405之輸出與其負輸入端子之間的回饋電容器C3的差動放大器405形成誤差積分器,該誤差積分器對輸入參考電壓Vrefp與其負輸入端子電壓之間的差進行積分。在一個實作中,放大器405驅動NMOS電晶體M4之閘極,NMOS電晶體M4之源極連接到負反饋電阻器Rdg (或在其它實作中接地)、其汲極連接到二極體連接的PMOS電晶體M3之汲極與閘極。電晶體M3與電流鏡PMOS電晶體M2形成電流鏡。類似地,電晶體M3與電流鏡PMOS電晶體M1一起形成電流鏡110。電晶體M1、M2及M3之源極連接到用於電源電壓的電源端子。電晶體M1及M2之閘極連接到二極體連接的電晶體M3之閘極。當放大器405使電晶體M4傳導電流時,該電流因此通過電晶體M3及M1被鏡像以形成第一電流I,該第一電流I由電流鏡110鏡像以形成充電電流Ichg。相對於電晶體M2決定電晶體M1之尺寸,使得充電電流Ichg係第一電流I的K倍。在一個實作中,電晶體M2之汲極通過開關S11耦合到電容器C1之第一板,並且亦通過開關S9耦合到地線。電容器C1之第二板接地。電容器C1之第一板亦通過開關S10接地。此外,電容器C1之第一板通過開關S12耦合到電容器C2之第一板。電容器C2之第二板接地。電容器C2之第一板通過開關S13耦合到放大器405之負輸入端子。 FIG. 4 shows an exemplary switched capacitive voltage-to-current converter 135 with a current mirror 110 . The differential amplifier 405 with the feedback capacitor C3 coupled between the output of the differential amplifier 405 and its negative input terminal forms an error integrator that integrates the difference between the input reference voltage Vrefp and its negative input terminal voltage . In one implementation, amplifier 405 drives the gate of NMOS transistor M4, the source of which is connected to the degeneration resistor Rdg (or ground in other implementations), and the drain of which is connected to the diode connection The drain and gate of the PMOS transistor M3. Transistor M3 and current mirror PMOS transistor M2 form a current mirror. Similarly, transistor M3 together with current mirror PMOS transistor M1 forms a current mirror 110 . The sources of transistors M1 , M2 and M3 are connected to the supply terminals for the supply voltage. The gates of transistors M1 and M2 are connected to the gate of diode-connected transistor M3. When amplifier 405 causes transistor M4 to conduct current, the current is thus mirrored through transistors M3 and M1 to form a first current I, which is mirrored by current mirror 110 to form a charging current Ichg. The size of the transistor M1 is determined relative to the transistor M2 so that the charging current Ichg is K times the first current I. In one implementation, the drain of transistor M2 is coupled to the first plate of capacitor C1 through switch S11 and is also coupled to ground through switch S9. The second plate of capacitor C1 is grounded. The first plate of capacitor C1 is also connected to ground through switch S10. Furthermore, the first plate of capacitor C1 is coupled to the first plate of capacitor C2 through switch S12. The second plate of capacitor C2 is grounded. A first plate of capacitor C2 is coupled to the negative input terminal of amplifier 405 through switch S13.

諸如晶體振盪器(未繪示)的時脈源生成用以控制開關S9、S10、S11、S12及S13的時脈信號。時脈信號以頻率F CLK在兩個相位之間振盪。例如,時脈信號之第一相位φ1可對應於時脈信號何時被充電到電源電壓,而第二相位φ2可對應於時脈信號何時被放電,儘管此兩個相位在替代實作方式中可為相反的。當時脈信號處於相位φ1時,開關S11及S12閉合。在相位φ1期間,電流I通過閉合的開關S11及S12對電容器C1及C2充電。開關S9、S10及S13在相位φ1期間斷開。在相位φ2中,開關S9、S10及S13閉合,而開關S11及S12斷開。在相位φ2中,電容器C2上的電荷驅動放大器405上的負輸入端子。電容器C1在相位φ2期間放電,並且第一電流I通過閉合的開關S9放電到地線。給定開關之此時脈控制,可示出第一電流I等於2*F CLK*Vrefp*C1。電流鏡電晶體M1鏡像第一電流I,使得充電電流Ichg等於比例常數K乘以第一電流I。因此,充電電流Ichg等於K*2*F CLK*Vrefp*C1。為了示出用於充電電流Ichg的此種關係在減小對於來自本文中揭示的DTC的定時延遲的製程、電壓及溫度變動方面係相當有利的,考慮對於本文中揭示的DTC的最大定時延遲可表示為C DAC*(Vtrip/Ichg),其中C DAC為CDAC電容器陣列之電容(充電電容器之電容)。如果Vtrip及Vrefp如前所述相等,則最大延遲可表示為(1/K)*(1/F CLK)*(C DAC/C1)。與依賴於電阻器或電容器之精度的慣用DTC相比,在包括DTC 100的積體電路中容易精確地控制此等因素。 A clock source such as a crystal oscillator (not shown) generates clock signals for controlling the switches S9 , S10 , S11 , S12 and S13 . The clock signal oscillates between two phases at frequency F CLK . For example, the first phase φ1 of the clock signal may correspond to when the clock signal is charged to the supply voltage, and the second phase φ2 may correspond to when the clock signal is discharged, although both phases may be used in alternative implementations. for the opposite. When the clock signal is in phase φ1, the switches S11 and S12 are closed. During phase φ1, current I charges capacitors C1 and C2 through closed switches S11 and S12. Switches S9, S10 and S13 are open during phase φ1. In phase φ2, switches S9, S10 and S13 are closed, and switches S11 and S12 are open. In phase φ2, the charge on capacitor C2 drives the negative input terminal on amplifier 405 . Capacitor C1 is discharged during phase φ2, and first current I is discharged to ground through closed switch S9. Given this clocking of the switches, it can be shown that the first current I is equal to 2*F CLK *Vrefp*C1. The current mirror transistor M1 mirrors the first current I, so that the charging current Ichg is equal to the proportional constant K multiplied by the first current I. Therefore, the charging current Ichg is equal to K*2*F CLK *Vrefp*C1. To show that this relationship for charge current Ichg is quite beneficial in reducing process, voltage and temperature variations for the timing delays from the DTCs disclosed herein, consider that the maximum timing delays for the DTCs disclosed herein can be Expressed as C DAC * (Vtrip/Ichg), where C DAC is the capacitance of the CDAC capacitor array (capacitance of the charging capacitor). If Vtrip and Vrefp are equal as before, then the maximum delay can be expressed as (1/K)*(1/F CLK )*(C DAC /C1). These factors are easily and precisely controlled in an integrated circuit including DTC 100 compared to conventional DTCs that rely on the precision of resistors or capacitors.

電晶體M1、M2與M3之間的失配誤差可以藉由使用動態元件匹配(DEM)技術通過切換矩陣410來改進。切換矩陣410動態地切換電晶體M1、M2及M3之汲極連接,使得電晶體M1,M2及M3之作用被動態地交換,同時它們之間的相對鏡像比保持不變。例如,在切換矩陣410之第一組態中,電晶體M3之汲極連接到電晶體M4之汲極,如圖4所示。但在切換矩陣410之第二組態中,電晶體M3之汲極改為連接到開關S11。在此第二組態中,電流鏡電晶體M2之汲極然後可通過切換矩陣410連接到電晶體M4之汲極。類似地,電流鏡電晶體M1之汲極通常耦合到開關S1(圖1),但在其它切換組態中通過切換矩陣410動態地切換,以備選地連接到開關S11或電晶體M4的汲極。所得到的電流鏡元件的交換可以在相位φ2中被觸發,而對電容器充電操作沒有影響。Mismatch errors among transistors M1 , M2 and M3 can be improved by switching matrix 410 using dynamic element matching (DEM) techniques. Switching matrix 410 dynamically switches the drain connections of transistors M1 , M2 and M3 such that the roles of transistors M1 , M2 and M3 are dynamically swapped while the relative mirror ratio between them remains unchanged. For example, in the first configuration of the switch matrix 410, the drain of the transistor M3 is connected to the drain of the transistor M4, as shown in FIG. 4 . But in the second configuration of the switch matrix 410, the drain of the transistor M3 is connected to the switch S11 instead. In this second configuration, the drain of current mirror transistor M2 can then be connected to the drain of transistor M4 through switching matrix 410 . Similarly, the drain of current mirror transistor M1 is normally coupled to switch S1 (FIG. 1), but is dynamically switched by switch matrix 410 to alternatively connect to switch S11 or the drain of transistor M4 in other switching configurations. pole. The resulting switching of the current mirror elements can be triggered in phase φ2 without affecting the capacitor charging operation.

再次參考圖4,放大器405之偏移可以藉由類似於關於比較器115所討論的自動歸零技術來移除。在時脈相位φ1期間,連接在放大器405之負輸入與放大器405之輸出之間的開關Saz1、以及連接在用於參考電壓Vrefp的節點與自動歸零電容器Caz1之第一板之間的開關Saz2閉合。自動歸零電容器Caz2之第二板連接到放大器405之負輸入。連接在電容器C3與放大器405之負輸入之間的自動歸零開關Saz3在時脈相位φ1期間斷開,以保持電容器C3上儲存的電荷。因此在時脈相位φ2期間,用於放大器405的偏移電壓在自動歸零電容器Caz1上被取樣。在相位φ2中,開關Saz1及Saz2斷開而開關Saz3閉合,使得放大器405處的偏移被經預充電的電容器Caz1抵消。當藉由在時脈相位φ2期間閉合開關S13來轉送來自電容器C2的誤差信號時,開關Saz3亦閉合以形成帶有放大器405及電容器C3的積分器。因此,在充電電流Ichg之生成中使用切換電容式電壓電流轉換器135,在確保由DTC生成的定時延遲對製程、電壓及溫度變動為穩健的方面非常有利。Referring again to FIG. 4 , the offset of amplifier 405 can be removed by an auto-zero technique similar to that discussed with respect to comparator 115 . During clock phase φ1, the switch Saz1 connected between the negative input of the amplifier 405 and the output of the amplifier 405, and the switch Saz2 connected between the node for the reference voltage Vrefp and the first plate of the auto-zero capacitor Caz1 closure. The second plate of auto-zero capacitor Caz2 is connected to the negative input of amplifier 405 . The auto-zero switch Saz3 connected between capacitor C3 and the negative input of amplifier 405 is turned off during clock phase φ1 to maintain the charge stored on capacitor C3. The offset voltage for amplifier 405 is thus sampled on auto-zero capacitor Caz1 during clock phase φ2. In phase φ2, switches Saz1 and Saz2 are open and switch Saz3 is closed, so that the offset at amplifier 405 is canceled by precharged capacitor Caz1. When the error signal from capacitor C2 is forwarded by closing switch S13 during clock phase φ2, switch Saz3 is also closed to form an integrator with amplifier 405 and capacitor C3. Therefore, the use of the switched capacitor voltage-to-current converter 135 in the generation of the charging current Ichg is very advantageous in ensuring that the timing delays generated by the DTC are robust to process, voltage and temperature variations.

現在轉到 5,示出了例示性DTC 500,其中切換電容式電壓電流轉換器135及電流鏡110用以生成如關於DTC 100所討論的充電電流Ichg。在DTC 500中,充電電容器505未整合到CDAC中,而是利用如由DAC 510設定的初始電壓Vinit來單獨充電。DTC 500之其餘組件如關於DTC 100所討論的那樣起作用。如果使用單個CDAC來形成充電電容器505及DAC 510,則DTC 500分解成DTC 100。然而,即使在沒有使用CDAC所提供的功率及裸晶空間節省的情況下,由於使用切換電容式電壓電流轉換器135來生成充電電流Ichg,DTC 500對製程、電壓及溫度變動仍為穩健的。 Turning now to FIG. 5 , an exemplary DTC 500 is shown in which switched capacitive voltage-to-current converter 135 and current mirror 110 are used to generate charging current Ichg as discussed with respect to DTC 100 . In DTC 500 , charging capacitor 505 is not integrated into the CDAC, but is charged separately with an initial voltage Vinit as set by DAC 510 . The remaining components of DTC 500 function as discussed with respect to DTC 100 . DTC 500 breaks down into DTC 100 if a single CDAC is used to form charging capacitor 505 and DAC 510 . However, even without using the power and die space savings offered by CDACs, DTC 500 is robust to process, voltage and temperature variations due to the use of switched capacitive voltage-to-current converter 135 to generate charge current Ichg.

現在將參考 6之流程圖討論用於含有CDAC的DTC的例示性操作方法。該方法包括動作600:回應於數位代碼,對電容式數位類比轉換器中的電容器陣列充電以形成經充電的電容器陣列。作為動作600之實例,將用於電容器陣列的共同端子145充電到初始電壓Vinit。此外,該方法包括動作605:回應於定時信號之邊緣而發生,並且包括利用充電電流通過共同端子對經充電的電容器陣列進一步進行充電,以形成針對共同端子的增加的電壓。作為動作605之實例,在輸入時脈信號之觸發邊緣之後通過共同端子145對CDAC電容器充電。最後,該方法包括動作610:決定增加的電壓何時等於跳閘電壓。比較器115中的比較為動作610之實例。 An exemplary method of operation for a DTC containing a CDAC will now be discussed with reference to the flowchart of FIG. 6 . The method includes act 600 of charging an array of capacitors in a capacitive DAC to form a charged array of capacitors in response to a digital code. As an example of act 600, the common terminal 145 for the capacitor array is charged to an initial voltage Vinit. Additionally, the method includes act 605 , occurring in response to an edge of the timing signal, and comprising further charging the charged array of capacitors through the common terminal with a charging current to form an increased voltage for the common terminal. As an example of act 605, the CDAC capacitor is charged through common terminal 145 after the trigger edge of the input clock signal. Finally, the method includes an action 610 of deciding when the increased voltage is equal to the trip voltage. The comparison in comparator 115 is an example of act 610 .

如本文中所揭示的DTC可有利地併入任何合適的行動裝置或電子系統中。例如,如 7所示,蜂巢電話700、膝上型電腦705及平板PC 710皆可包括根據本公開内容的DTC。諸如音樂播放機、視頻播放機、通信裝置及個人電腦的其它例示性電子系統亦可組態有根據本公開内容建構的DTC。 A DTC as disclosed herein may be advantageously incorporated into any suitable mobile device or electronic system. For example, as shown in FIG. 7 , a cellular phone 700, a laptop computer 705, and a tablet PC 710 may all include a DTC in accordance with the present disclosure. Other exemplary electronic systems such as music players, video players, communication devices, and personal computers may also be configured with DTCs constructed in accordance with the present disclosure.

再次參考DTC 100,在其中由CDAC 105形成的充電電容器在時間延遲期間被放電而非被充電的替代實作中,可提供相同的有利密度及功率增強以及對製程、電壓及溫度變動的穩健性。 8中示出了例示性放電DTC 800。CDAC 105如關於DTC 100所討論的那樣工作,以在針對CDAC 105的重新分配階段期間將數位代碼轉換成由CDAC電容器相對於共同端子145儲存的初始電壓Vinit。電流鏡810鏡像來自切換電容式電壓電流轉換器805的第一電流,以形成放電電流Idischarge。電流鏡810通過開關S1連接到共同端子145,類似於針對DTC 100所討論的那樣,使得當開關S1回應於觸發時脈信號邊緣而閉合以開始時間延遲時,電壓Vinit隨著放電電流Idischarge將CDAC電容器放電而開始放電。 Referring again to DTC 100, in an alternate implementation where the charge capacitor formed by CDAC 105 is discharged rather than charged during the time delay, the same advantageous density and power enhancements and robustness to process, voltage and temperature variations can be provided . An exemplary discharge DTC 800 is shown in FIG. 8 . The CDAC 105 operates as discussed with respect to the DTC 100 to convert the digital code to the initial voltage Vinit stored by the CDAC capacitor relative to the common terminal 145 during the reallocation phase for the CDAC 105 . The current mirror 810 mirrors the first current from the switched capacitive voltage-to-current converter 805 to form a discharge current Idischarge. Current mirror 810 is connected to common terminal 145 through switch S1, similar to that discussed for DTC 100, so that when switch S1 closes in response to the trigger clock signal edge to initiate the time delay, voltage Vinit increases by CDAC with discharge current Idischarge. The capacitor discharges and begins to discharge.

比較器815亦類似於關於比較器115所討論的那樣工作,以決定初始電壓Vinit何時已降低到等於跳閘電壓Vtrip1。然而,儘管用於DTC 100的跳閘電壓Vtrip大於初始電壓Vinit,但跳閘電壓Vtrip1小於初始電壓Vinit。由於當CDAC電容器已放電到小於跳閘電壓Vtrip1時,比較器815之輸出(clk_dtc_out)在時間延遲結束時將變高,因此不需要等效於DTC 800中的反相器120的反相器。DTC 800之其餘部分如關於DTC 100所討論的那樣起作用。Comparator 815 also operates similarly to that discussed with respect to comparator 115 to determine when initial voltage Vinit has decreased to equal trip voltage Vtrip1. However, although the trip voltage Vtrip for the DTC 100 is greater than the initial voltage Vinit, the trip voltage Vtrip1 is less than the initial voltage Vinit. Since the output of comparator 815 (clk_dtc_out) will go high at the end of the time delay when the CDAC capacitor has discharged below trip voltage Vtrip1, an inverter equivalent to inverter 120 in DTC 800 is not required. The rest of DTC 800 functions as discussed with respect to DTC 100 .

應理解,在不脫離本公開内容之範疇的情況下,可以對本公開内容的裝置之材料、器具、組態及使用方法進行許多修改,替換及變動。有鑒於此,本公開内容之範疇不應限於在此繪示及描述的特定實作之範疇,因為它們僅為藉由其一些示例之方式,而應與下文所附的申請專利範圍及其功能均等物之範疇完全相稱。It should be understood that many modifications, substitutions and variations are possible in the materials, implement, configuration and method of use of the devices of the present disclosure without departing from the scope of the present disclosure. For this reason, the scope of the present disclosure should not be limited to the specific implementations shown and described herein, as they are by way of some examples only, and should be compared with the claims and their functions attached below. The category of equals is perfectly commensurate.

100、500:數位時延轉換器(DTC) 105、300:電容式數位類比轉換器(CDAC) 110:電流鏡 115:比較器 120:反相器 125:電流源 135:切換電容式電壓電流轉換器 140:分壓器節點 145:共同端子 Caz:自動歸零電容器 Ichg:充電電流 Iref:參考電流 Vbias:偏置電壓 Vinit:初始電壓 Vn:負端子輸入電壓 Vref_dac:DAC參考電壓 Vrefp:輸入參考電壓 Vtrip:跳閘電壓 200:第一波形 205:第二波形 305:電容器陣列 405:放大器 410:切換矩陣 Rdg:負反饋電阻器 505:充電電容器 510:DAC 600、605、610:動作 700:蜂巢電話 705:膝上型電腦 710:平板PC 800:放電DTC 805:切換電容式電壓電流轉換器 810:電流鏡 815:比較器 100, 500: Digital Time Delay Converter (DTC) 105, 300: capacitive digital-to-analog converter (CDAC) 110: current mirror 115: Comparator 120: Inverter 125: Current source 135:Switched capacitive voltage-to-current converter 140:Voltage divider node 145: common terminal Caz: Auto-Zero Capacitor Ichg: charging current Iref: reference current Vbias: bias voltage Vinit: initial voltage Vn: Negative terminal input voltage Vref_dac: DAC reference voltage Vrefp: input reference voltage Vtrip: trip voltage 200: the first waveform 205: Second waveform 305: capacitor array 405: Amplifier 410: switch matrix Rdg: negative feedback resistor 505: charging capacitor 510:DAC 600, 605, 610: action 700: cellular phone 705: Laptop 710: Tablet PC 800: Discharge DTC 805:Switched Capacitor Voltage-Current Converter 810: current mirror 815: comparator

圖1係根據本公開内容之態樣的例示性DTC之圖解,其中電容式DAC(CDAC)用作在時間延遲期間被充電的充電電容器。1 is a diagram of an exemplary DTC in which a capacitive DAC (CDAC) is used as a charging capacitor that is charged during the time delay, according to aspects of the present disclosure.

圖2繪示了用於對圖1之DCT中的充電電容器進行充電的一些例示性電壓波形。FIG. 2 depicts some exemplary voltage waveforms for charging the charging capacitor in the DCT of FIG. 1 .

圖3係根據本公開内容之態樣的用於DTC的二進位加權CDAC之電路圖。3 is a circuit diagram of a binary weighted CDAC for DTC according to aspects of the disclosure.

圖4係根據本公開内容之態樣的切換電容式電壓電流轉換器及電流鏡之電路圖。4 is a circuit diagram of a switched capacitive voltage-to-current converter and a current mirror in accordance with aspects of the present disclosure.

圖5係根據本公開内容之態樣的例示性DTC之圖解,其中切換電容式電壓電流轉換器起作用以生成用於充電電容器的充電電流。5 is a diagram of an exemplary DTC in which a switched capacitive voltage-to-current converter functions to generate a charging current for charging a capacitor, according to aspects of the present disclosure.

圖6係根據本公開内容之態樣的用於DTC的例示性操作方法的流程圖。6 is a flowchart of an exemplary method of operation for a DTC in accordance with aspects of the present disclosure.

圖7繪示了根據本公開内容之態樣的各自併入DTC的一些例示性電子系統。7 depicts some exemplary electronic systems each incorporating a DTC in accordance with aspects of the present disclosure.

圖8係根據本公開内容之態樣的例示性DTC之圖解,其中CDAC用作在時間延遲期間放電的充電電容器。8 is a diagram of an exemplary DTC in which a CDAC is used as a charging capacitor that is discharged during a time delay, according to aspects of the present disclosure.

藉由參考下面的實施方式,可以最好地理解本公開内容之實作及其優點。應理解,相似的符號用來識別一個或多個圖式中繪示的相似元件。The practice of the present disclosure and its advantages are best understood by reference to the following embodiments. It should be understood that like symbols are used to identify like elements depicted in one or more of the drawings.

100:數位時延轉換器(DTC) 100: Digital Time Delay Converter (DTC)

105:電容式數位類比轉換器(CDAC) 105: Capacitive digital-to-analog converter (CDAC)

110:電流鏡 110: current mirror

115:比較器 115: Comparator

120:反相器 120: Inverter

125:電流源 125: Current source

135:切換電容式電壓電流轉換器 135:Switched capacitive voltage-to-current converter

140:分壓器節點 140:Voltage divider node

145:共同端子 145: common terminal

Caz:自動歸零電容器 Caz: Auto-Zero Capacitor

Ichg:充電電流 Ichg: charging current

Iref:參考電流 Iref: reference current

Vbias:偏置電壓 Vbias: bias voltage

Vinit:初始電壓 Vinit: initial voltage

Vn:負端子輸入電壓 Vn: Negative terminal input voltage

Vref_dac:DAC參考電壓 Vref_dac: DAC reference voltage

Vrefp:輸入參考電壓 Vrefp: input reference voltage

Vtrip:跳閘電壓 Vtrip: trip voltage

Claims (20)

一種數位時延轉換器電路,包含: 充電電容器,包括共同端子; 切換電容式電壓電流轉換器,被組態以將參考電壓轉換為第一電流; 電流鏡,被組態以將該第一電流轉換為第二電流,並且通過該共同端子將該第二電流提供給該充電電容器;以及 比較器,具有耦合到該共同端子的第一輸入端子。 A digital delay converter circuit, comprising: Charging capacitors, including common terminals; a switched capacitor voltage-to-current converter configured to convert the reference voltage to a first current; a current mirror configured to convert the first current to a second current and provide the second current to the charging capacitor through the common terminal; and A comparator has a first input terminal coupled to the common terminal. 如請求項1之電路,其中該電流鏡包括: 第一開關,耦合在該電流鏡與該共同端子之間,該第一開關被組態以回應於定時信號而閉合。 The circuit of claim 1, wherein the current mirror includes: A first switch, coupled between the current mirror and the common terminal, is configured to close in response to a timing signal. 如請求項2之電路,其中該切換電容式電壓電流轉換器包括: 第一電晶體;以及 誤差放大器,具有耦合到該第一電晶體之閘極的輸出端子,其中該電流鏡包括與該第一電晶體串聯的二極體連接電晶體及第二電晶體,該第二電晶體具有連接到該二極體連接電晶體之閘極的閘極。 The circuit of claim 2, wherein the switched capacitive voltage-to-current converter includes: a first transistor; and an error amplifier having an output terminal coupled to the gate of the first transistor, wherein the current mirror includes a diode-connected transistor in series with the first transistor and a second transistor having a connection To this diode connect the gate of the gate of the transistor. 如請求項3之電路,其中該第一開關耦合在該共同端子與該第二電晶體之間。The circuit of claim 3, wherein the first switch is coupled between the common terminal and the second transistor. 如請求項3之電路,其中該切換電容式電壓電流轉換器進一步包括: 負反饋電阻器,耦合在地線與該第一電晶體之源極之間。 The circuit of claim 3, wherein the switched capacitor voltage-to-current converter further comprises: The negative feedback resistor is coupled between the ground line and the source of the first transistor. 如請求項3之電路,其中該切換電容式電壓電流轉換器進一步包括: 自動歸零開關,耦合在該誤差放大器之該輸出端子與該誤差放大器之輸入端子之間。 The circuit of claim 3, wherein the switched capacitor voltage-to-current converter further comprises: An auto-zero switch is coupled between the output terminal of the error amplifier and the input terminal of the error amplifier. 如請求項3之電路,進一步包含: 至少一個電阻器;以及 電流源,被組態以利用參考電流驅動該至少一個電阻器以生成該參考電壓。 Such as the circuit of claim 3, further comprising: at least one resistor; and A current source configured to drive the at least one resistor with a reference current to generate the reference voltage. 如請求項7之電路,其中該至少一個電阻器包含分壓器。The circuit of claim 7, wherein the at least one resistor comprises a voltage divider. 如請求項8之電路,其中該充電電容器包含電容式數位類比轉換器。The circuit of claim 8, wherein the charging capacitor comprises a capacitive digital-to-analog converter. 如請求項9之電路,其中該分壓器包含第一電阻器,通過節點耦合到第二電阻器,該電路進一步包含: 第二開關,耦合在該節點與該電容式數位類比轉換器之間。 The circuit of claim 9, wherein the voltage divider comprises a first resistor coupled to a second resistor through a node, the circuit further comprising: A second switch is coupled between the node and the capacitive digital-to-analog converter. 一種用於數位時延轉換器的操作方法,包含: 回應於數位代碼,利用初始電壓對充電電容器充電; 在切換電容式電壓電流轉換器中將參考電壓轉換為第一電流; 將該第一電流鏡像為充電電流; 在該充電電容器被充電到該初始電壓之後,利用該充電電流對該充電電容器充電;以及 在利用該充電電流對該充電電容器充電期間,決定該充電電容器之電壓何時等於跳閘電壓。 A method of operation for a digital time delay converter comprising: Responding to the digital code, charging the charging capacitor with the initial voltage; converting the reference voltage to a first current in a switched capacitor voltage-to-current converter; mirroring the first current as a charging current; After the charging capacitor is charged to the initial voltage, charging the charging capacitor with the charging current; and During charging of the charging capacitor with the charging current, it is determined when the voltage of the charging capacitor is equal to the trip voltage. 如請求項11之方法,進一步包含: 回應於定時信號,起始利用該充電電流對該充電電容器充電。 The method of claim 11, further comprising: In response to the timing signal, charging the charging capacitor with the charging current is initiated. 如請求項12之方法,其中該定時信號為時脈信號,並且其中起始利用該充電電流對該充電電容器充電係回應於該時脈信號之時脈邊緣。The method of claim 12, wherein the timing signal is a clock signal, and wherein initiating charging the charging capacitor with the charging current is in response to a clock edge of the clock signal. 如請求項12之方法,進一步包含: 回應於該定時信號,閉合第一開關以將該充電電容器耦合到該充電電流。 The method of claim 12, further comprising: In response to the timing signal, a first switch is closed to couple the charging capacitor to the charging current. 如請求項12之方法,其中在利用該充電電流對該充電電容器充電期間,決定該充電電容器之該電壓何時等於該跳閘電壓係在比較器中履行,該比較器具有通過自動歸零電容器耦合到該充電電容器的輸入端子,該方法進一步包含: 在決定該充電電容器之該電壓何時等於該跳閘電壓之前,對該自動歸零電容器充電以消除該比較器之偏移。 The method of claim 12, wherein during charging the charging capacitor with the charging current, determining when the voltage of the charging capacitor is equal to the trip voltage is performed in a comparator having an auto-zero capacitor coupled to The input terminal of the charging capacitor, the method further comprising: The auto-zero capacitor is charged to cancel the offset of the comparator before determining when the voltage of the charging capacitor is equal to the trip voltage. 一種數位時延轉換器電路,包含: 電容式數位類比轉換器,包括複數個電容器及對應於該複數個電容器的複數個第一開關,該複數個第一開關中的每個第一開關耦合在共同端子與該複數個電容器中的各別電容器之間; 第二開關; 電流源,通過該第二開關耦合到該共同端子;以及 比較器,具有耦合到該共同端子的第一輸入端子。 A digital delay converter circuit, comprising: The capacitive digital-to-analog converter includes a plurality of capacitors and a plurality of first switches corresponding to the plurality of capacitors, each of the plurality of first switches is coupled between a common terminal and each of the plurality of capacitors between capacitors; second switch; a current source coupled to the common terminal through the second switch; and A comparator has a first input terminal coupled to the common terminal. 如請求項16之電路,其中每個第一開關為單刀雙擲開關。The circuit of claim 16, wherein each first switch is a single pole double throw switch. 如請求項16之電路,進一步包含: 第三開關,耦合在地線與該複數個電容器中的每個電容器之間。 Such as the circuit of claim 16, further comprising: A third switch coupled between ground and each capacitor of the plurality of capacitors. 如請求項16之電路,進一步包含: 反相器,被組態以將來自該比較器的輸出信號反相。 Such as the circuit of claim 16, further comprising: Inverter configured to invert the output signal from the comparator. 如請求項16之電路,進一步包含: 自動歸零電容器,耦合在該共同端子與該第一輸入端子之間。 Such as the circuit of claim 16, further comprising: An auto-zero capacitor is coupled between the common terminal and the first input terminal.
TW112106809A 2020-12-03 2021-11-19 Power and area efficient digital-to-time converter with improved stability and operating method thereof TWI851042B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/111,208 US11177819B1 (en) 2020-12-03 2020-12-03 Power and area efficient digital-to-time converter with improved stability
US17/111,208 2020-12-03
US17/449,250 2021-09-28
US17/449,250 US11626883B2 (en) 2020-12-03 2021-09-28 Power and area efficient digital-to-time converter with improved stability

Publications (2)

Publication Number Publication Date
TW202324943A true TW202324943A (en) 2023-06-16
TWI851042B TWI851042B (en) 2024-08-01

Family

ID=

Also Published As

Publication number Publication date
TW202230996A (en) 2022-08-01
JP2024056716A (en) 2024-04-23
KR102706398B1 (en) 2024-09-11
WO2022119722A3 (en) 2023-01-12
KR20230084318A (en) 2023-06-12
WO2022119722A2 (en) 2022-06-09
JP2023543337A (en) 2023-10-13
JP7545584B2 (en) 2024-09-04
CN116325506A (en) 2023-06-23
EP4256708A2 (en) 2023-10-11
TWI797839B (en) 2023-04-01

Similar Documents

Publication Publication Date Title
US11626883B2 (en) Power and area efficient digital-to-time converter with improved stability
US7652604B2 (en) Programmable analog-to-digital converter for low-power DC-DC SMPS
Seo et al. A reusable code-based SAR ADC design with CDAC compiler and synthesizable analog building blocks
JP2011061597A (en) Successive-approximation type ad converter and method for adjusting operation clock of successive-approximation type ad converter
CN110908270B (en) Constant slope digital time converter and control method thereof
CN109863697B (en) High linearity digital-to-time converter for low noise all digital phase locked loop
JP2635789B2 (en) Signal delay circuit and clock signal generation circuit using the circuit
US11581896B2 (en) Analog-to-digital converter
TW202147781A (en) Digital-to-time converter circuit and method for operating the same
Angeli et al. A low-power and area-efficient digitally controlled shunt-capacitor delay element for high-resolution delay lines
US5521556A (en) Frequency converter utilizing a feedback control loop
Chung et al. A wide-range low-cost all-digital duty-cycle corrector
Nguyen et al. Three-step cyclic Vernier TDC using a pulse-shrinking inverter-assisted residue quantizer for low-complexity resolution enhancement
JP2004139268A (en) Clock signal generation circuit
TWI797839B (en) Power and area efficient digital-to-time converter with improved stability and operating method thereof
TWI851042B (en) Power and area efficient digital-to-time converter with improved stability and operating method thereof
KR20180106805A (en) Digital-to-time converter and operating method thereof
CN111025884B (en) Two-step high-speed dynamic time-to-digital converter
JP2003069425A (en) Clock synchronization device
Yadav et al. Operational current to frequency converter
Chen et al. An On-Chip Self-Characterization of a Digital-to-Time Converter by Embedding it in a First-Order $\Delta\Sigma $ Loop
Jiang et al. A 12-bit 2.5 GHz 0.37 ps-Peak-INL digital-to-time converter with parasitic-insensitive charge-based phase interpolator
Huang et al. A 22mW 227Msps 11b self-tuning ADC based on time-to-digital conversion
US7627072B2 (en) Frequency-to-current converter
TW200401184A (en) A digital circuit having a delay circuit to adjust the timing of clock signals