TW202246166A - 用於減少微機械超音波換能器(mut)陣列中之串擾之溝槽 - Google Patents

用於減少微機械超音波換能器(mut)陣列中之串擾之溝槽 Download PDF

Info

Publication number
TW202246166A
TW202246166A TW111111802A TW111111802A TW202246166A TW 202246166 A TW202246166 A TW 202246166A TW 111111802 A TW111111802 A TW 111111802A TW 111111802 A TW111111802 A TW 111111802A TW 202246166 A TW202246166 A TW 202246166A
Authority
TW
Taiwan
Prior art keywords
mut
trench
muts
array
substrate
Prior art date
Application number
TW111111802A
Other languages
English (en)
Inventor
布萊恩 比爾庫蕭
桑迪普 阿卡拉裘
德雷克 岡瑟
海成 權
安東尼 布洛克
Original Assignee
美商艾克索影像股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商艾克索影像股份有限公司 filed Critical 美商艾克索影像股份有限公司
Publication of TW202246166A publication Critical patent/TW202246166A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0644Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
    • B06B1/0662Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface
    • B06B1/0681Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element with an electrode on the sensitive surface and a damping structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image

Abstract

本發明描述具有溝槽之微機械超音波換能器(MUT)陣列,其減少MUT之間之串擾以減輕超音波影像中之不期望之偽影,以及製造該MUT陣列之方法。

Description

用於減少微機械超音波換能器(MUT)陣列中之串擾之溝槽
微機械超音波換能器(MUT)在許多領域提供巨大之潛力,包含(但不限於)醫學成像、空氣耦合成像、距離監測、指紋監測、非破壞性缺陷監測及診斷。在此等應用之許多者中,存在多於一個MUT協同工作。例如,對於高端醫療超音波成像,找到具有1024、2048或4096 MUT之系統係合理的。
為了正常操作,MUT經設計以將能量傳輸至其等所附接之聲學介質中。以 1A中之一MUT陣列之通用實例為例。在這種情況下,MUT由可移動隔板101a、101b、101c表示,其藉由空腔120a、120b及120c形成在基板100中或其上。隔板101a、101b、101c在一介面110處與半無限聲學介質200進行聲學耦合。聲學介質200可為任何物質或多種物質;常見之介質包含空氣、水、組織、電解質凝膠、金屬、用作身體匹配層之矽橡膠等。
在操作期間,隔板101a至101c主要在z方向上激發運動。激發通常由一壓電效應(針對壓電MUT(pMUT))或一電容效應(針對電容MUT(cMUT))產生。在兩種情況下,隔板之運動產生壓力波,並將其等傳輸至聲學介質200中。然而,隔板運動亦會在聲學介質200外產生非所要之波。最常見之非所要之波係在基板100內行進並穿過基板100之彈性壓縮波,及沿著基板100與聲學介質200之間之介面110,以及附接至基板100之其他介面行進之介面波。
聲學介質200外部輻射之所有能量都係非所要的。其不僅浪費電力,亦可能干擾MUT之功能。例如,在醫學成像中,彈性壓縮波將自其他表面反彈,並在由來自聲學介質200之經反射能量形成之醫學相關影像上引起偽影,諸如一靜態影像。作為另一實例,沿介面110行進之介面波將在醫學成像中產生串擾,從而產生一聚光效果及非所要之幽靈影像。
1B中展示一MUT陣列210之一通用實例。MUT陣列210包括一基板100及複數個MUT 101。複數個MUT 101附裝至基板之一表面。各MUT包括一可移動隔板,如 1A中所展示。在一些實施例中,MUT 101之各者係一pMUT。在一些實施例中,MUT 101之各者係一cMUT。MUT 101可經配置在正交方向上配置之一二維陣列210中。亦即,MUT 101經形成為具有N行及M列之MUT 101之一二維MxN陣列210。行數(N)及列數(M)可為相同或不同。在一些例子中,陣列210可為彎曲的,例如,以提供被成像之一物件之一更寬角度。在一些例子中,陣列可提供不同之填料,諸如六角形填料,而不是 1B中顯示之標準方形填料。在一些例子中,陣列可為不對稱的,例如,如美國專利第10,656,007號中所描述,其全部內容以引用之方式併入本文中。
本發明提供了一種新穎之解決方案,以解決MUT陣列中之壓縮波及介面波以及其等產生之串擾問題。 2提供由耦合至一水聲介質200之一矽基板100形成之一MUT陣列中之這種串擾之一實例。對角漣波220表示行進之壓力波。兩條虛線230表示水聲介質之聲速(約1,480 m/s)。此等線230下方之漣波及高幅度資料240通常表示良好之聲學資料。兩條虛線230上方之資料250表示各種形式之串擾。
2中之資料進行空間及時間傅立葉變換,得到 3中之f-k繪圖。在 3中,吾人可看到用一虛線300圈出之串擾聲能分佈在2,000至6,000 m/s周圍。矽中之縱向聲速約為8,800 m/s,而瑞利(Rayleigh)波及剪切(Shear)波之介面波速在5,000與5,500 m/s之間。這表明,串擾能量可能係由介面波及體波之一組合引起的。
使用一MUT陣列(與用於產生 2 3中所描繪之輸出以成像一模型之陣列類似)產生與 4之結果類似之一結果。兩個偽影清晰可見:(1)其中影像之中心部分比邊緣更亮之一「聚光燈」效應420,及(2)高反射目標之「幽靈」影像430在影像邊緣處顯而易見。
此等串擾能量之偽影係不期望的。吾人在本文中揭示一種用於破壞縱波及介面波並顯著減少MUT之間之串擾之通用技術。
在一個方面中,本文揭示一種MUT陣列,其包括一基板及複數個MUT。該複數個MUT附裝至該基板之一表面。各MUT包括一可移動隔板。該基板包括至少部分圍繞該複數個MUT之一或多個MUT之該隔板之一周邊之一溝槽。在一些實施例中,該複數個MUT之各MUT係一pMUT。在一些實施例中,該複數個MUT之各MUT係一cMUT。
在一些實施例中,該溝槽自該基板之該表面延伸至該基板之厚度之至少10%、至少50%或至少90%。在一些實施例中,該溝槽延伸該基板之整個厚度。
在一些實施例中,該溝槽自該基板之該表面下方延伸至該基板之該厚度之至少10%、至少50%或至少90%。
在一些實施例中,該溝槽自該基板之一相對表面延伸至該基板之該厚度之至少10%、至少50%或至少90%。
在一些實施例中,該溝槽具有1 µm與40 µm之間之一恆定寬度。在一些實施例中,該溝槽具有1 µm與40 µm之間之一可變寬度。
在一些實施例中,該溝槽具有1 µm與40 µm之間之與該隔板之該周邊之一恆定距離。在一些實施例中,該溝槽具有1 µm與40 µm之間之與該隔板之該周邊之一可變距離。
在一些實施例中,該溝槽約為該隔板之該周邊之至少50%、60%、70%、80%或90%。在一些實施例中,該溝槽圍繞該隔板之整個周邊。
在一些實施例中,該溝槽至少部分圍繞該複數個MUT之該MUT之至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%或至少90%之該隔板之一周邊。在一些實施例中,該溝槽至少部分圍繞該複數個MUT之各MUT之該隔板之一周邊。
在一些實施例中,該溝槽至少部分填充有一聲學衰減材料。
在一些實施例中,該複數個MUT經配置在複數個行及複數個列中。在一些實施例中,該溝槽沿MUT之一列延伸。在一些實施例中,MUT之各列具有沿其延伸之一溝槽。在一些實施例中,該溝槽沿MUT之一行延伸。在一些實施例中,MUT之各行具有沿其延伸之一溝槽。在一些實施例中,MUT之各列具有沿其延伸之一第一溝槽,且MUT之各行具有沿其延伸之一第二溝槽。
在一些實施例中,該溝槽至少部分圍繞該複數個MUT之一單個MUT之該隔板之一周邊。
在一些實施例中,該複數個MUT之各MUT至少部分地被一溝槽環繞。
在一些實施例中,該MUT陣列進一步包括至少部分圍繞該複數個MUT之一或多個MUT之該隔板之該周邊之至少一第二溝槽。在一些實施例中,該第二溝槽至少部分圍繞該複數個MUT之一單個MUT之該隔板之該周邊。在一些實施例中,該複數個MUT之各MUT至少部分地被一第一溝槽及一第二溝槽環繞。
在一些實施例中,該溝槽安置在相鄰之一對MUT之間。
在一些實施例中,該基板包括至少部分圍繞該複數個MUT之一或多個MUT之該隔板之該周邊之複數個溝槽。在一些實施例中,該基板包括該複數個MUT之每MUT之一個溝槽。在一些實施例中,該基板包括該複數個MUT之每對相鄰之MUT之一個溝槽。在一些實施例中,該基板包括該複數個MUT之每MUT之少於一個的溝槽。在一些實施例中,該基板包括該複數個MUT之每對相鄰之MUT之少於一個的溝槽。在一些實施例中,該基板包括該複數個MUT之每MUT之多於一個的溝槽。在一些實施例中,該基板包括該複數個MUT之每對相鄰之MUT之多於一個的溝槽。
在一些實施例中,該MUT陣列經組態用於醫學成像。
在另一方面中,本文揭示一種製造一MUT陣列之一方法。
交叉參考
本申請案主張2021年3月29日申請之美國專利申請案第17/215,776號之優先權,其全部內容以引用之方式併入本文中。 以引用方式併入
本說明書中所提及之所有出版物、專利及專利申請案以引用之方式併入本文中,其程度與各個別之出版物、專利或專利申請案以引用之方式明確且個別地指示為併入之程度相同。
在某些實施例中,本文描述微機械超音波換能器(MUT)陣列。
在一個方面中,本文揭示一種MUT陣列,其包括一基板及複數個MUT。該複數個MUT附裝至該基板之一表面。各MUT包括一可移動隔板。該基板包括至少部分圍繞該複數個MUT之一或多個MUT之該隔板之一周邊之一溝槽。在一些實施例中,該複數個MUT之各MUT係一pMUT。在一些實施例中,該複數個MUT之各MUT係一cMUT。
在一些實施例中,該溝槽自該基板之該表面延伸至該基板之厚度之至少10%、至少50%或至少90%。在一些實施例中,該溝槽延伸該基板之整個厚度。
在一些實施例中,該溝槽自該基板之一相對表面延伸至該基板之該厚度之至少10%、至少50%或至少90%。
在一些實施例中,該溝槽自該基板之該表面下方延伸至該基板之該厚度之至少10%、至少50%或至少90%。
在一些實施例中,該溝槽具有1 µm與40 µm之間之一恆定寬度。在一些實施例中,該溝槽具有1 µm與40 µm之間之一可變寬度。
在一些實施例中,該溝槽具有1 µm與40 µm之間之與該隔板之該周邊之一恆定距離。在一些實施例中,該溝槽具有1 µm與40 µm之間之與該隔板之該周邊之一可變距離。
在一些實施例中,該溝槽約為該隔板之該周邊之至少50%、70%或90%。在一些實施例中,該溝槽圍繞該隔板之整個周邊。
在一些實施例中,該溝槽至少部分圍繞該複數個MUT之該MUT之至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%或至少90%之該隔板之一周邊。在一些實施例中,該溝槽至少部分圍繞該複數個MUT之各MUT之該隔板之一周邊。
在一些實施例中,該溝槽至少部分填充有一聲學衰減材料。
在一些實施例中,該MUT陣列經組態用於醫學成像。
在某些實施例中,本文亦描述製造一微機械超音波換能器(MUT)陣列之方法。 某些定義
除非另有界定,否則本文中所使用之所有技術術語具有與本發明之一般技術者通常理解之相同含義。如在本說明書及所附申請專利範圍中所使用的,除非上下文另有明確規定,否則單數形式「一」及「該」包含複數引用。除非另有繪示,否則本文中對「或」之任何提及旨在涵蓋「及/或」。 MUT
本發明可在利用微機械超音波換能器(MUT)技術之成像裝置之背景內容中利用,包含壓電微機械超音波換能器(pMUT)或電容微機械超音波換能器(cMUT)技術。
1C係具有選擇性可變通道106、108之一成像裝置105之一方塊圖,其由一控制器109控制,且具有根據本文所描述之原理在一計算裝置110上執行之成像計算。成像裝置105可用於產生人體或動物體內組織、骨骼、血流或器官之一影像。因此,成像裝置105向身體傳輸一信號,並自被成像之身體部位接收一經反射信號。此等成像裝置可包含pMUT或cMUT,其可被稱為收發器或成像器,其可係基於光聲或超音波效應。成像裝置105亦可用於對其他物件進行成像。例如,成像裝置105可在醫學成像中使用;管道、揚聲器及麥克風陣列中之流量測量;碎石術;局部組織加熱治療;及高強度聚焦超音波(HIFU)手術。
除了與人類患者一起使用之外,成像裝置105亦可用於獲取一動物之內部器官之一影像。此外,除了對內部器官進行成像外,成像裝置105亦可像在都卜勒模式成像中那樣用於判定動脈及靜脈中之血流方向及速度,且亦可用於測量組織硬度。
成像裝置105可用於執行不同類型之成像。例如,成像裝置105可用於執行一維成像(亦稱為A掃描)、二維成像(亦稱為B掃描)、三維成像(亦稱為C掃描)及都卜勒成像。成像裝置105可切換至不同之成像模式,並在程式控制下進行電子組態。
為了促進此等成像,成像裝置105包含pMUT或cMUT換能器210之一陣列,各換能器210包含換能器元件(即,MUT)101之一陣列。MUT 101操作以1)產生通過身體或其他質量之壓力波,2)接收身體內物體或其他質量之反射波,以便成像。在一些實例中,成像裝置105可經組態以同時傳輸及接收超音波波形。例如,某些MUT 101可向被成像之目標物件發送壓力波,而其他MUT 101接收自目標物件反射之壓力波,並回應於所接收之波產生電荷。
1D展示一例示性MUT 400(在此實例中為一pMUT)之一俯視圖。 1E展示根據本發明之實施例之 1D中之MUT 400沿線4-4獲取之一橫截面圖。MUT 400可實質上類似於本文所描述之MUT 101。如所描繪,MUT可包含:一膜層406,其懸浮於一基板402上,並安置於一空腔404上方;一底部電極(O)408,其安置於膜層(或簡稱膜)406上;一壓電層410,其安置於底部電極(O)408上;及一頂部電極(X)412,其安置於壓電層410上。
MUT,無論是cMUT或是pMUT,都可利用各種半導體晶圓製造操作在一基板上有效地形成。半導體晶圓可能有6英寸、8英寸及12英寸之大小,且能夠容納數百個換能器陣列。此等半導體晶圓自一矽基板開始,在其上執行各種處理步驟。此等操作之一實例係形成SiO 2層,亦稱為絕緣氧化物。執行各種其他步驟,諸如添加用作互連及接合墊之金屬層,以允許連接至其他電子設備。一機器操作之另一實例係在基板中蝕刻空腔(例如, 1E中之空腔404)。
根據本發明,為了顯著減少串擾,在晶圓製造程序期間,在大致環繞各MUT 101之基板100內形成一溝槽103。在 5A 5B中描繪這方面之一實例。 5A展示展示具有隔板側串擾溝槽103之一通用MUT陣列(101a至101c)之一例示性示意圖。 5B展示 5A中MUT陣列沿線A-A'獲取之一橫截面視圖。藉由添加一個或多個溝槽103,MUT陣列可實質上類似於 1A 1C中所描繪之陣列。MUT陣列210包括一基板100及複數個MUT 101a至101c。複數個MUT 101a至101c被附裝至基板100之表面。各MUT 101a至101c包括一可移動隔板。基板100包括至少部分圍繞複數個MUT之隔板101a至101c之一周邊之一溝槽103。溝槽103在基板100與串擾溝槽103內之任何材料之間引入一阻抗失配。這種阻抗失配透過衰減、反射及散射破壞串擾波。
串擾溝槽103之位置將影響由溝槽提供之衰減量。來自 3之速度資料表明,介面110處之介面波解釋串擾能量中之一些。介面波(諸如瑞利波)通常會影響介面區域及介面之一定距離內之材料,其特徵在於行進波之波長。在這種情況下,與不靠近介面110之一掩埋串擾溝槽104(諸如 6A 6B中所描繪之那些)相比,附接至基板100之表面並與介面110相交之一溝槽103將係最佳的。
7A 7B係展示具有空腔側串擾溝槽105之一通用MUT陣列(101a至101c)之(a)佈局及(b)截面視圖之例示性示意圖。在一些實施例中,基板100包括至少部分圍繞複數個MUT之空腔120a至120c之一周邊之一空腔側溝槽105。溝槽105在基板100與串擾溝槽105內之任何材料之間引入一阻抗失配。這種阻抗失配透過衰減、反射及散射破壞串擾波。空腔側溝槽105藉由增加彈性波路徑長度有效地降低串擾速度。
8A 8B係展示具有隔板側103及空腔側105串擾溝槽兩者之一通用MUT陣列(101a至101c)之(a)佈局及(b)橫截面視圖之例示性示意圖。在一些實施例中,基板100包括隔板側溝槽103及空腔側溝槽105兩者。在至少一些實例中,隔板側溝槽103及空腔側溝槽105之組合可減少串擾效應(例如,藉由降低串擾效應之速度及/或降低幅度),使其超過單獨之任一溝槽類型。
在一些實施例中,基板100包括隔板側溝槽103、掩埋溝槽104及空腔側溝槽105。
9A 9D係具有具有(a)隔板側串擾溝槽103,(b)掩埋串擾溝槽104,(c)空腔側串擾溝槽105,及(d)空腔側105及隔板側103串擾溝槽兩者之掩埋空腔之一電容式MUT之橫截面視圖。MUT陣列210包括一基板100及複數個MUT 101a至101c。複數個MUT 101a至101c被附裝至基板100之一表面。各MUT 101a至101c包括由掩埋空腔130a、130b及130c在基板100中或其頂部形成之一可移動隔板。基板100包括至少部分圍繞複數個MUT之隔板101a至101c之一周邊之一溝槽103、104及/或105。溝槽103、104及/或105在基板100與串擾溝槽103、104及/或105內之任何材料之間引入一阻抗失配。這種阻抗失配透過衰減、反射及散射破壞串擾波。
在一些實施例中,一溝槽103、104或105係經由深度反應性離子蝕刻(DRIE)、電漿蝕刻、濕蝕刻或其他蝕刻技術形成的,基於此處之教示,此等技術對於一般技術者來說將係顯而易見的。
在一些實施例中,一溝槽103、104或105具有在1 µm與40 µm之間(例如,在10 µm與40 µm之間) 之與隔板或空腔之周邊之一恆定距離。替代地或在組合中,在一些實施例中,溝槽103、104或105具有在1 µm與40 µm之間(例如,在10 µm與40 µm之間) 之與隔板或空腔之周邊之一可變距離。溝槽103、104或105與隔板或空腔之周邊之距離可儘可能近(例如,原子級接近)或儘可能遠。
在一些實施例中,一溝槽103、104或105圍繞隔板或空腔之周邊之至少50%、70%或90%。在一些實施例中,一溝槽103、104或105圍繞隔板或空腔之整個周邊。
在一些實施例中,一溝槽103、104或105至少部分圍繞複數個MUT之MUT之至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%或至少90%之隔板或空腔之一周邊。在一些實施例中,一溝槽103、104或105至少部分地圍繞複數個MUT之各MUT之隔板或空腔之一周邊。
在一些實施例中,一溝槽103、104或105至少部分圍繞MUT之一第一橫向側上之隔板或空腔之一周邊。視情況地,一第二溝槽103、104或105至少部分圍繞MUT之一第二橫向側上之隔板或空腔之一周邊。在一些實施例中,MUT在其兩個橫向側上具有溝槽103、104或105。在一些實施例中,溝槽103、104或105對稱地安置在隔板或空腔之周圍。在一些實施例中,溝槽103、104或105不對稱地安置在隔板或空腔之周圍。在一些實施例中,MUT在其一單個橫向側上具有一溝槽103、104或105。
串擾溝槽103、104或105之深度將影響衰減,如 10中所繪示。 10係展示針對多個基板厚度(75 µm或150 µm)之串擾溝槽103相對於溝槽深度(範圍自0至55 µm)之一模擬衰減之一曲線圖。y軸係鄰近於被致動之元件之元件之最大速度除以被致動之元件之最大速度,單位為dB。在這種情況下,模擬展示較深之串擾溝槽103比較淺之溝槽更有效。此係因為介面波及縱向波具有一垂直之空間範圍。具有一更大深度之溝槽會導致一更大比例之串擾波被溝槽破壞。
在一些實施例中,一溝槽103、104或105自基板之表面(隔板側或空腔側)延伸至基板之厚度之至少10%、至少50%或至少90%。在一些實施例中,溝槽延伸基板之整個厚度(例如100%)。在一些實施例中,溝槽自基板之表面(隔板側或空腔側)延伸至基板之厚度之約1%。
在一些實施例中,一溝槽103、104或105自基板之表面(隔板側或空腔側)下方延伸至基板之厚度之至少10%、至少50%或至少90%。
最後,溝槽橫向寬度亦將影響串擾溝槽103、104或105之衰減特性,尤其若溝槽填充有一高衰減材料時。更大之橫向尺寸及/或更多數目之溝槽產生更好之串擾衰減。在最常見之MUT陣列中,串擾溝槽103及104之橫向寬度將受到MUT之填料密度之限制。
在一些實施例中,一溝槽103、104或105具有1 µm與40 µm之間之一恆定寬度。在一些實施例中,一溝槽103、104或105具有1 µm與100 µm之間之一恆定寬度。在一些實施例中,一溝槽103、104或105具有5 µm與10 µm之間之一恆定寬度。溝槽103、104或105之寬度可如期望般薄(例如,原子級薄)或大。
在一些實施例中,一溝槽103、104或105具有1 µm與40 µm之間之一可變寬度。在一些實施例中,一溝槽103、104或105具有1 µm與100 µm之間之一可變寬度。在一些實施例中,一溝槽103、104或105具有5 µm與10 µm之間之一可變寬度。溝槽103、104或105之寬度可如期望般薄(例如,原子級薄)或大。
在一些實施例中,一溝槽103、104或105至少部分填充有一聲學衰減材料。替代地或在組合中,在一些實施例中,一溝槽103、104或105至少部分地填充有一聲學衰減材料。
在一些實施例中,每MUT存在一個溝槽103、104或105。在一些實施例中,每對相鄰之MUT存在一個溝槽103、104或105。在一些實施例中,溝槽103、104或105可作為一個連續溝槽在MUT之間相交及延伸。在一些實施例中,每對MUT存在少於一個的溝槽103、104或105。在一些實施例中,每MUT存在多於一個的溝槽103、104或105。
在一些實施例中,每MUT存在多於一個溝槽103、104或105。例如,各MUT在MUT之一第一橫向側上具有一第一近端溝槽,在MUT之一第二橫向側上具有一第二近端溝槽,使得各對相鄰之MUT之間具有至少兩個溝槽。一第一MUT之第一橫向側上之近端溝槽及一第二MUT之第二橫向側上之近端溝槽可安置於第一與第二MUT之間之基板中。在一些實施例中,一中央溝槽可安置於近端溝槽之間,用於鄰近之第一與第二MUT之間總共至少三個溝槽。在一些實施例中,近端及中央溝槽經形成在基板之同一表面(隔板側或空腔側)中。在一些實施例中,近端及中央溝槽經形成在基板之不同表面中。例如,近端溝槽103可經形成在隔板側中,而中心溝槽105可經形成在空腔側中,如 8B 9D中所展示。在至少一些實例中,近端隔板側溝槽103及中央空腔側溝槽105之組合可減少串擾效應(例如,藉由降低串擾效應之速度及/或降低幅度),使其超過單獨之任一溝槽類型。
在一些實施例中,MUT陣列之所有溝槽103、104或105具有相同之尺寸。在一些實施例中,溝槽103、104或105之一或多者具有不同之尺寸。例如, 8B 9D中所展示之中央溝槽105可比近端溝槽103寬。
在一些實施例中,每MUT存在一個溝槽103、104或105,圍繞MUT之至少80%。替代地或在組合中,在MUT之各列下方存在一個溝槽103、104或105。替代地或在組合中,在MUT之各行下方存在一個溝槽103、104或105。替代地或在組合中,在MUT之各列下方存在一個溝槽103、104或105,且在MUT之各行下方存在一個溝槽103、104或105。替代地或在組合中,圍繞各MUT存在多個溝槽103、104或105。
在150 µm基板之矽MUT陣列中已證實此等溝槽之有效性。 11A展示無串擾溝槽之一MUT陣列101a至101c之f-k及影像。 11B展示具有串擾溝槽103(150 µm矽基板中75 µm深)之一MUT陣列101a至101c之f-k及影像。如 11A 11B所展示,串擾溝槽103有效地降低串擾能量並移除與串擾相關聯之「聚光燈」420及幽靈430偽影。
用於具有溝槽之pMUT之製造方法
一種用於製造具有溝槽之一pMUT之例示性方法,諸如 5A 8B所展示之pMUT。
(a)首先,提供通常為單晶矽之一基板(例如,基板402或100)。
(b)若期望,掩埋串擾溝槽104可在基板中經圖案化及蝕刻以產生一「處置」晶圓。另一矽「裝置」晶圓可經熱氧化,然後熔合接合至「處置」晶圓,以在其間形成掩埋溝槽104(例如,如 6A 6B中所展示)。「裝置」晶圓可經研磨並拋光至所期望之隔板厚度。
(c)然後可在基板上沈積一絕緣層。絕緣層通常係某種形式之SiO 2,厚度約為0.1μm至3μm。通常經由熱氧化、PECVD沈積或其他技術沈積。
(d)然後可沈積一第一金屬層408(亦稱為M1或金屬1)。通常,此係膜之一組合,其黏合至基板,防止壓電材料之擴散,説明壓電材料進行結構化沈積/生長,且係導電性的。SRO(SrRuO 3)可用於經結構化薄膜生長,在Pt之頂部上用於一擴散屏障及傳導,在Ti之頂部上用作一黏合層(用於Pt至SiO 2)。通常,此等層係薄的,小於200 nm,一些薄膜為10至40 nm。應力、製造及成本問題通常會將此堆疊限制在1 µm以下。導體(Pt)通常比結構層(SRO)及黏合層(Ti)厚。而非SRO,其他常見之結構層包含(La0.5Sr0.5)CoO 3、(La0.5Sr0.5)MnO 3、LaNiO 3、RuO 2、IrO 2、BaPbO 3等等。Pt可用其他導電材料代替,諸如Cu、Cr、Ni、Ag、Al、Mo、W及NiCr。此等其他材料通常有缺點,諸如擴散屏障差、脆性或不良黏合力,且Pt係最常用之導體。黏合層Ti可用任何常見之黏合層代替,諸如TiW、TiN、Cr、Ni、Cr等。
(e)然後可沈積一壓電材料410。適合之壓電材料之一些常見實例包含:PZT、KNN、PZT-N、PMN-Pt、AlN、Sc-AlN、ZnO、PVDF及LiNiO 3。壓電層之厚度可在100 nm與5 µm之間變化,或可能更大。
(f)然後可沈積一第二金屬層412(亦稱為M2或金屬2)。此第二金屬層412可類似於第一金屬層408且可用於類似目的。對於M2,可使用與M1相同之堆疊,但相反:Ti用於Pt之頂部之黏合,以防止結構之SRO之頂部之擴散。
(g)然後,第二金屬層或M2 412可經圖案化及蝕刻,停止在壓電層上。本文中可藉由多種方式進行蝕刻,例如,經由RIE(反應性離子蝕刻)、離子研磨、濕化學蝕刻、各向同性氣體蝕刻等。在圖案化及蝕刻之後,可經由濕及/或乾蝕刻來剝離用於圖案化M2之光阻劑。在本文描述之用於製造cMUT及pMUT之許多實施例中,可使用任意數目之蝕刻方法,且通常在大多數圖案及蝕刻步驟之後剝離光阻劑。
(h)然後,壓電層可類似地經圖案化及蝕刻,停止在第一金屬層或M1 408處。通常使用濕、RIE及/或離子研磨蝕刻。
(i)然後,第一金屬層或M1 408可類似地經圖案化及蝕刻,停止在介電絕緣層上。
(j)若期望,可添加以下一或兩者: (1) 一H 2屏障。H 2擴散至壓電層可能限制其壽命。為了防止這種情況,可使用一H 2屏障。可使用40 nm之ALD(原子層沈積)氧化鋁(Al 2O 3)來達成這一點。其他適合之材料可包含SiC、類金剛石碳等。 (2) 一重分佈層(RDL)。此層可提供M1與M2之間之連接及其他連接(例如,線接合、凸塊接合等)。一RDL可藉由首先添加諸如氧化物之一介電質、在介電質中蝕刻通孔、沈積一導體(通常為Al)以及最後對導體進行圖案化來形成。此外,可添加一鈍化層(通常為氧化物+氮化物),以防止物理劃痕、意外短路及/或水分進入。
(k)隔板側溝槽103可經圖案化及蝕刻(例如,如 5A 5B 8A 8B中所展示)。可經由RIE或濕蝕刻來蝕刻介電層。基板100通常係矽,且通常可經由DRIE(深度反應性離子蝕刻)進行蝕刻。
(l)通常使用一絕緣體上矽(SOI)基板。在這種情況下,在隔板101之正下方存在一掩埋絕緣體層或掩埋氧化物(BOX)層。然後,隔板由「裝置」層(BOX上方之層)及BOX下方之「處置」層組成。裝置層中之空腔可停止在BOX上,且可自處置層蝕刻出來。在這種情況下,溝槽蝕刻可包含兩個額外步驟:(1)在經由DRIE蝕刻裝置層之後蝕刻BOX(通常經由乾RIE蝕刻,或在某些情況下經由濕蝕刻),及(2)經由DRIE蝕刻處置層至所期望深度。大多數SOI晶圓都係矽,這意謂裝置及處置層通常係單晶矽。在這種情況下,絕緣體BOX通常係熱生長之二氧化矽,其稱為一「掩埋氧化物」,這就係術語「BOX」之來源。通常可使用具有單晶矽處置層及具有氧化物BOX之裝置層之矽SOI晶圓。裝置層可為5 µm,但通常在100 nm與100 µm之間變化,而處置層厚度通常在100 µm與1000 µm之間變化。BOX通常在100 nm與5µ m之間,但在許多情況下可使用1 µm。
(m)若期望,晶圓或處置層之背側可經由研磨變薄,並在這一點上進行視情況拋光。在許多實施例中,處置層自500 µm減薄至300 µm厚。普通厚度通常在50 µm與1000 µm之間變化。
(n)空腔側溝槽105可經圖案化及蝕刻(例如,如 7A 8B中所展示)。基板100之背側通常可經由DRIE(深度反應性離子蝕刻)進行蝕刻。
(o)空腔可在晶圓或處置層之背側上圖案化,且空腔可經蝕刻。通常,晶圓/處置層由矽構成,且蝕刻由DRIE完成。蝕刻可經定時。空腔可與空腔側溝槽105同時被蝕刻。蝕刻可能會選擇性地停止在BOX上。空腔可經由諸如KOH、TMAH、HNA及RIE之其他技術進行蝕刻。光阻劑剝離之後之晶圓可被認為係完整的。
基於本文之教示,一般技術者將理解,可使用其他程序來達成類似之最終結果。
用於具有溝槽之cMUT之製造方法
一種用於製造具有溝槽之一cMUT之例示性方法,諸如 9A 9D所展示之cMUT。
(a)首先,提供通常為單晶矽之一基板(例如,基板402或100)。
(b)然後可對基板進行熱氧化。
(c)空腔130a、130b、130c可在氧化物中圖案化及蝕刻以產生一「處置」晶圓。這通常藉由氧化物之一電漿蝕刻或一濕蝕刻(例如,HF)達成。
(d)若期望,掩埋串擾溝槽104可在「處置」晶圓之氧化物中經圖案化及蝕刻。這通常藉由氧化物之一電漿蝕刻或一濕蝕刻(例如,HF)達成。
(e)然後,一矽「裝置」晶圓可經熔合接合至經圖案化之氧化物「處置」晶圓。若期望,可在熔合接合之前對「裝置」晶圓進行圖案化及蝕刻(例如,經由DRIE)以對應於「處置」晶圓中之掩埋溝槽104,使得「處置」及「裝置」晶圓之熔合接合形成掩埋溝槽104(例如,如 9B中所展示)。
(f)可將「裝置」晶圓研磨並拋光至所期望之隔板厚度。
(g)隔板側溝槽103可經圖案化及蝕刻(例如,如 9A 9D中所展示)至經研磨及拋光之晶圓之隔板側中。
(h)空腔側溝槽105可經圖案化及蝕刻(例如,如 9C 9D中所展示)至經研磨及拋光之晶圓之空腔側中。
基於本文之教示,一般技術者將理解,可使用其他程序達成類似之最終結果。 實例
以下繪示性實例代表本文所描述之軟體應用、系統及方法之實施例,並不意謂以任何方式進行限制。 實例 1– 空腔側溝槽方位回應
測試pMUT晶圓經製作具有可變深度(在一75 µm厚之pMUT上為25 µm、37.5 µm及50 µm)、溝槽與空腔之間距(10 µm、15 µm、20 µm及25 µm)以及溝槽之寬度(5 µm及10 µm)。測量pMUT在不同頻率下之方位回應。 12A 12B展示在不同之間距及寬度下,50 µm及25 µm深之空腔側溝槽分別在3.50 MHz、3dB位移下之方位回應。命名約定「XX-YYW」係這樣之XX=間距且YY=寬度。因此,一20-05W係距離空腔20 µm、寬度5 µm之一溝槽。如 12A中所展示,一50 µm深之空腔側溝槽之聚光燈角似乎隨著溝槽間距之增加而進一步向外推。如 12B中所展示,一25 µm深之空腔側溝槽之聚光燈角與溝槽間距沒有一線性關係,但總之趨勢是,增加間距會導致聚光燈角變窄。串擾下降發生在 3.5 MHz處,尤其係在 20-10W(20 µm 間距,10 µm寬度)中,在25 µm 深度處大約 +/- 28 度。
雖然本發明之較佳實施例已在本文中展示並描述,但對於熟悉此項技術者來說,顯而易見的是,此等實施例僅以實例之方式提供。在不脫離本發明之情況下,熟悉此項技術者現在將想到許多變化、改變及替換。應理解,在實踐本發明時可使用本文所描述之本發明之實施例之各種替代物。
100:基板 101:微機械超音波換能器(MUT) 101a至101c:隔板 102:隔板邊緣 103:隔板側串擾溝槽 104:掩埋串擾溝槽 105:成像裝置 105:空腔側串擾溝槽 106:傳輸通道 108:接收通道 109:控制電路系統 110:介面 120a至120c:空腔 130a至130c:空腔 200:聲學介質 210:換能器 220:對角漣波 230:虛線 240:高幅度資料 250:數據 300:虛線 400:微機械超音波換能器(MUT) 402:基板 404:空腔 406:膜層 408:底部電極 410:壓電層 412:頂部電極 416:導體 420:「聚光燈」效應 430:「幽靈」影像 450:線 452:線
藉由參考以下闡述繪示性實施例及附圖之詳細描述,將獲得對標的物之特徵及優點之一更好理解,其中:
1A係展示根據實施例之附接至一聲學介質200之一通用MUT陣列(101a至101c)之一橫截面之一示意圖。
1B展示根據實施例之一MUT陣列210之一俯視圖。
1C係根據實施例之一成像裝置105之一方塊圖。
1D展示根據實施例之一MUT之一俯視圖。
1E展示根據實施例之沿 1D中之一方向4-4獲取之一MUT之一橫截面視圖。
2係展示根據實施例之在方位方向上具有128個元素、跨度約22 mm之一MUT陣列之運動幅度之一圖。中央之兩個MUT被致動,且另外126個MUT被監測以用於回應。灰階指示正(朝向白色)或負(朝向黑色)隔板偏轉。兩個被點燃之元素被自繪圖刪除,使得串擾漣波可為視覺化的。虛線230大致表示成像圓錐體,由速度為1,480 m/s之波界定。
3係展示根據實施例之來自 2之資料在空間及時間上之一傅立葉變換(亦被稱為一f-k繪圖)之一圖,其表示空間域及頻域中之資料。相對於傅立葉資料之最大幅度,幅度以dB為單位繪製,白色資料具有一更高幅度之黑藍色資料。在2與4 MHz及0.5與1.5 µsec之間圈出之資料300係不期望之串擾。
4係根據實施例之使用類似於 2 3之一MUT陣列獲取之一超音波影像。「聚光燈」效果由兩個箭頭420高亮顯示,而「幽靈」偽影被圈出為430。
5A 5B係展示根據實施例之具有隔板側串擾溝槽103之一通用MUT陣列(101a至101c)之(a)佈局及(b)截面視圖之例示性示意圖。
6A 6B係展示根據實施例之具有掩埋串擾溝槽104之一通用MUT陣列(101a至101c)之(a)佈局及(b)截面視圖之例示性示意圖。
7A 7B係展示根據實施例之具有空腔側串擾溝槽105之一通用MUT陣列(101a至101c)之(a)佈局及(b)截面視圖之例示性示意圖。
8A 8B係展示根據實施例之具有隔板側103及空腔側105串擾溝槽兩者之一通用MUT陣列(101a至101c)之(a)佈局及(b)截面視圖之例示性示意圖。
9A 9D係根據實施例之具有具有(a)隔板側串擾溝槽103,(b)掩埋串擾溝槽104,(c)空腔側串擾溝槽105,及(d)空腔側105及隔板側103串擾溝槽兩者之掩埋空腔之一電容式MUT之橫截面視圖。
10係展示根據實施例之針對多個個基板厚度之串擾溝槽103相對於溝槽深度之一模擬衰減之一曲線圖。y軸係鄰近於被致動之元件之元件之最大速度除以被致動之元件之最大速度,單位為dB。
11 A 11B展示根據實施例之(b)具有及(a)不具有串擾溝槽(150 µm矽基板中75 µm深)之MUT陣列之f-k與影像之一比較。
12A 12B展示根據實施例之在不同之間距及寬度下,50 µm及25 µm深之空腔側溝槽分別在3.50 MHz、3dB位移下之方位回應。
100:基板
101a至101c:隔板
110:介面
120a至120c:空腔
200:聲學介質

Claims (34)

  1. 一種微機械超音波換能器(MUT)陣列,其包括:一基板及複數個MUT; 該複數個MUT附裝至該基板之一表面,各MUT包括可移動隔板; 該基板包括至少部分圍繞該複數個MUT之一或多個MUT之該隔板之一周邊之一溝槽。
  2. 如請求項1之MUT陣列,其中該複數個MUT之各MUT係一pMUT。
  3. 如請求項1之MUT陣列,其中該複數個MUT之各MUT係一cMUT。
  4. 如請求項1之MUT陣列,其中該溝槽自該基板之該表面延伸至該基板之厚度之至少10%、至少50%或至少90%。
  5. 如請求項4之MUT陣列,其中該溝槽延伸該基板之整個厚度。
  6. 如請求項1之MUT陣列,其中該溝槽自該基板之一相對表面延伸至該基板之該厚度之至少10%、至少50%或至少90%。
  7. 如請求項1之MUT陣列,其中該溝槽自該基板之該表面下方延伸至該基板之該厚度之至少10%、至少50%或至少90%。
  8. 如請求項1之MUT陣列,其中該溝槽具有1 µm與40 µm之間之一恆定寬度。
  9. 如請求項1之MUT陣列,其中該溝槽具有1 µm與40 µm之間之一可變寬度。
  10. 如請求項1之MUT陣列,其中該溝槽具有1 µm與40 µm之間之與該隔板之該周邊之一恆定距離。
  11. 如請求項1之MUT陣列,其中該溝槽具有1 µm與40 µm之間之與該隔板之該周邊之一可變距離。
  12. 如請求項1之MUT陣列,其中該溝槽約為該隔板之該周邊之至少50%、60%、70%、80%或90%。
  13. 如請求項12之MUT陣列,其中該溝槽圍繞該隔板之整個周邊。
  14. 如請求項1之MUT陣列,其中該溝槽至少部分圍繞該複數個MUT之該等MUT之至少10%、至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%或至少90%之該隔板之一周邊。
  15. 如請求項14之MUT陣列,其中該溝槽至少部分圍繞該複數個MUT之各MUT之該隔板之一周邊。
  16. 如請求項1之MUT陣列,其中該溝槽至少部分填充有一聲學衰減材料。
  17. 如請求項1之MUT陣列,其中該複數個MUT經配置在複數個行及複數個列中。
  18. 如請求項17之MUT陣列,其中該溝槽沿MUT之一列延伸。
  19. 如請求項17之MUT陣列,其中MUT之各列具有沿其延伸之一溝槽。
  20. 如請求項17之MUT陣列,其中該溝槽沿MUT之一行延伸。
  21. 如請求項17之MUT陣列,其中MUT之各行具有沿其延伸之一溝槽。
  22. 如請求項17之MUT陣列,其中MUT之各列具有沿其延伸之一第一溝槽,且MUT之各行具有沿其延伸之一第二溝槽。
  23. 如請求項1之MUT陣列,其中該溝槽至少部分圍繞該複數個MUT之一單個MUT之該隔板之一周邊。
  24. 如請求項1之MUT陣列,其中該複數個MUT之各MUT至少部分地被一溝槽環繞。
  25. 如請求項1之MUT陣列,其進一步包括至少部分圍繞該複數個MUT之一或多個MUT之該隔板之該周邊之至少一第二溝槽。
  26. 如請求項25之MUT陣列,其中該第二溝槽至少部分圍繞該複數個MUT之一單個MUT之該隔板之該周邊。
  27. 如請求項25之MUT陣列,其中該複數個MUT之各MUT至少部分地被一第一溝槽及一第二溝槽環繞。
  28. 如請求項1之MUT陣列,其中該溝槽安置於相鄰之一對MUT之間。
  29. 如請求項1之MUT陣列,其中該基板包括至少部分圍繞該複數個MUT之一或多個MUT之該隔板之該周邊之複數個溝槽。
  30. 如請求項29之MUT陣列,其中該基板包括該複數個MUT之每MUT之一個溝槽。
  31. 如請求項29之MUT陣列,其中該基板包括該複數個MUT之每對相鄰之MUT之一個溝槽。
  32. 如請求項29之MUT陣列,其中該基板包括該複數個MUT之每MUT之少於一個的溝槽。
  33. 如請求項29之MUT陣列,其中該基板包括該複數個MUT之每對相鄰之MUT之少於一個的溝槽。
  34. 如請求項1之MUT陣列,其經組態用於醫學成像。
TW111111802A 2021-03-29 2022-03-29 用於減少微機械超音波換能器(mut)陣列中之串擾之溝槽 TW202246166A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/215,776 US20220304659A1 (en) 2021-03-29 2021-03-29 Trenches for the reduction of cross-talk in mut arrays
US17/215,776 2021-03-29

Publications (1)

Publication Number Publication Date
TW202246166A true TW202246166A (zh) 2022-12-01

Family

ID=83362830

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111111802A TW202246166A (zh) 2021-03-29 2022-03-29 用於減少微機械超音波換能器(mut)陣列中之串擾之溝槽

Country Status (2)

Country Link
US (1) US20220304659A1 (zh)
TW (1) TW202246166A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10648852B2 (en) 2018-04-11 2020-05-12 Exo Imaging Inc. Imaging devices having piezoelectric transceivers

Also Published As

Publication number Publication date
US20220304659A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP4795683B2 (ja) マイクロマシン加工した湾曲超音波トランスジューサ・アレイ並びに関連する製造方法
JP7216550B2 (ja) 広帯域超音波トランスジューサ
US10013969B2 (en) Acoustic lens for micromachined ultrasound transducers
US8823246B2 (en) High frequency piezocomposite transducer pillars
WO2007046180A1 (ja) 超音波トランスデューサ、超音波探触子および超音波撮像装置
JP2003153391A (ja) 可変の音響インピーダンスを有する超音波変換器ウェハー
KR102044705B1 (ko) 복합 구조의 정합층을 가진 초음파 트랜스듀서 및 그 제조방법
JP2017528032A (ja) ピッチ均一性を有したタイル状cmutダイ
Akhbari et al. Dual-electrode bimorph pmut arrays for handheld therapeutic medical devices
TW202246166A (zh) 用於減少微機械超音波換能器(mut)陣列中之串擾之溝槽
Sadeghpour et al. Novel phased array piezoelectric micromachined ultrasound transducers (PMUTs) for medical imaging
Logan et al. 2-D CMUT wafer bonded imaging arrays with a row-column addressing scheme
JP7028013B2 (ja) 超音波プローブ及び超音波診断装置
Dausch et al. 5I-4 Piezoelectric micromachined ultrasound transducer (pMUT) arrays for 3D imaging probes
US20230129720A1 (en) Micro-electro-mechanical device for transducing high-frequency acoustic waves in a propagation medium and manufacturing process thereof
EP3317026B1 (en) Ultrasound system and ultrasonic pulse transmission method
CA3154568A1 (en) Trenches for the reduction of cross-talk in mut arrays
TW202312524A (zh) 具絕緣層之微機械超音波傳感器及製造方法
JP2009201053A (ja) 超音波探触子、その製造方法およびその超音波探触子を用いた超音波診断装置
KR20240025678A (ko) 절연 층을 가진 미세-가공된 초음파 트랜듀서들 및 제조 방법들
JP2008043529A (ja) 超音波探触子の電極構造、超音波探触子、および超音波探触子の基板
JP2020115940A (ja) 超音波プローブ、及び超音波診断装置
KR20160096935A (ko) 음향특성 및 열특성을 향상시키는 초음파 트랜스듀서
Zhang et al. Fabrication of Combined Capacitive Micromachined Ultrasound Transducers with Release Method
JPS63160499A (ja) 超音波探触子